Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2018 Aug 20;38(8):975–979. [Article in Chinese] doi: 10.3969/j.issn.1673-4254.2018.08.12

PARP-1介导的自噬流受阻在大鼠心肌细胞缺血再灌注损伤中的作用

Role of poly(ADP-ribose) polymerases-1-mediated blockade of autophagy in ischemia/reperfusion injury of rat cardiomyocytes

赵 伟 1, 王 永伟 1, 韦 冠山 1, 徐 世元 1,*
PMCID: PMC6744030  PMID: 30187876

Abstract

目的

探讨PARP-1介导的自噬流受阻在大鼠心肌缺血再灌注损伤(MIRI)中的作用。

方法

采用大鼠心肌细胞H9c2制备缺血再灌注细胞模型。实验分为对照组、缺氧/复氧处理模型组、PARP-1抑制剂组、PARP-1抑制剂+模型组(PJ34+H/R组)。取各组处理后的6孔板H9c2细胞提取总蛋白后Western blot分别检测PARP-1活性蛋白pADPr,凋亡相关蛋白Bax,细胞DNA损伤标记蛋白p-γH2ax的表达,细胞自噬流相关蛋白:LC3BⅡ/LC3Ⅰ、Beclin-1、P62的表达量。通过GraphPad Prism 6统计软件对数据进行分析,比较各组间差异。

结果

与对照组比较,MIRI模型组PARP-1活性标记物pADPr表达更高表示PARP-1激活增多,细胞凋亡损伤增加,DNA损伤(p-γH2ax)也增多(P < 0.05)。LC3B Ⅱ、beclin-1表达增高,同时p62表达也增高(P < 0.05),表示自噬流受阻。与模型组比较,加入PARP-1抑制剂后(H/R+PJ34组)可明显抑制心肌细胞内PARP-1活性(pADPr),细胞凋亡减少,细胞DNA损伤也减轻(P < 0.05);自噬相关蛋白LC3B Ⅱ、beclin-1表达无明显变化,而p62表达降低(P < 0.05),表明自噬流受阻情况得到缓解(P < 0.05)。

结论

PARP-1激活介导的自噬流受阻在大鼠MIRI中发挥着作用,通过抑制PARP-1活性后可明显逆转自噬流受阻情况,减轻MIRI。

Keywords: PARP-1, 心肌缺血再灌注损伤, 自噬


心肌缺血-再灌注损伤(MIRI)是围手术期面临的一种常见病理生理变化,其严重威胁患者生命安全及术后恢复[1-2]。但其确切发病机制仍未完全阐明[3],临床上尚缺乏有效的预防和治疗手段。因此明确MIRI发病机制已成为基础和临床防治该疾病研究的难点和热点。

二磷酸腺苷核糖聚合酶PARP-1是细胞内应激反应的枢纽(包括炎症反应、氧化应激、基因毒性反应、代谢等)[4-5]。在氧化应激和DNA损伤的刺激下,活化的PARP-1可通过调控自噬与坏死的动态平衡在决定细胞的生死方面发挥着重要作用[6]。心肌缺血再灌注损伤与细胞自噬关系密切[7-9],在心肌缺血阶段细胞自噬起保护作用,而在再灌注阶段自噬却是有害的[10]。那么由活化的PARP-1诱发的心肌细胞自噬究竟在MIRI过程中扮演的何种角色?至今仍不明确。本研究旨在离体心肌细胞模型上,通过加入PARP-1特异性抑制剂PJ-34后检测自噬流相关指标表达及心肌细胞缺血再灌注后损伤情况,论证PARP-1介导自噬流受阻在MIRI发病过程中的作用,为MIRI发病机制及防治研究提供新思路。

1. 材料和方法

1.1. 材料

大鼠心肌细胞,H9c2中科院上海细胞库(目录号GNR 5);一抗pADPr,abcam(ab14459),Bax抗体CST(#2772),Phospho-Histone H2A.X (S139)抗体,CST(9718S),Beclin-1抗体,CST,(#3738),LC3B抗体,CST,(#3868),SQSTM1/P62抗体,CST(5114)。PARP- 1蛋白抑制剂(PJ-34 #S7300)Selleckchem。内参β-actin多克隆抗体(AC0060-50)、HRP标记的IgG多克隆二抗,凯基生物。

1.2. 方法

1.2.1. 细胞培养

细胞描述:大鼠心肌细胞H9c2是来源于胚胎期BD1X大鼠心脏组织的亚克隆细胞系,由于来源于心脏常作为心脏成肌细胞也用于心肌疾病的研究。细胞培养:H9c2细胞在含有10% FBS,100 U/mL青霉素,100 μg/mL链霉素的DMEM培养液中,置于37 ℃、5% CO2细胞孵箱培养,培养液每2 d换1次[11]

1.2.2. 心肌细胞H9c2缺血再灌注模型制备

H/R模型的建立:6孔板中的细胞在37 ℃,5% CO2培养箱中培养24 h后换液。细胞长至80%后,将H/R组中细胞用PBS冲洗,再加入不含血清的低糖DMEM,再置入85% N2、10% H2、5% CO2的37%饱和湿度厌氧培养箱。分别缺氧培养6 h后,加入新鲜DMEM培养基,置入5% CO2培养箱中继续复氧培养2 h。对照组在37 ℃、5% CO2培养箱中培养[12]

1.2.3. 实验分组

将正常培养的H9c2细胞随机分成4组:正常培养组(control组):37 ℃、5% CO2培养箱中正常培养;PARP-1抑制剂PJ34对照组(PJ34组):在培养基中加入终浓度为20 nmol/L抑制剂PJ34;缺氧/复氧组(H/R组):按照上述构建模型;PJ34+缺氧/复氧(PJ34+ H/R组):于缺氧后复氧前30 min在培养基中加入终浓度为20 nmol/L抑制剂PJ34。

1.2.4. Western blot检测相关蛋白表达

取各组处理后的6孔板H9c2细胞,以预冷的PBS洗涤3次后加入100 μL含10% PMSF和5%磷酸酶抑制剂的细胞裂解液(使用前5 min配置)低温离心取蛋白上清液后,进行蛋白定量。上样后进行SDS-PAGE凝胶电泳,电泳完成后再用300 mA恒定电流进行0.2 μm PVDF转膜90 min,封闭1 h,继续孵一抗过夜,TBST缓冲液清洗3次后,室温下孵二抗1 h,再次用TBST清洗3次,化学发光仪进行检测。用Image J软件分析照片中蛋白的吸光度A 值,以目的蛋白A值/内参蛋白β-actin A值的比值反映目的蛋白相对表达水平。

1.2.5. 统计学方法

采用GraphPad Prism 6统计软件对数据进行分析。所有实验均独立重复3次(n=3),正态分布的实验数据以均数±标准差表示,两组之间的比较采用t检验,以P < 0.05为差异有统计学意义。

2. 结果

2.1. MIRI细胞模型中PARP-1活性及细胞损伤蛋白表达

大鼠心肌细胞H9c2经过缺氧/复氧(H/R)处理后,提取细胞总蛋白后采用Western Blot分别检测PARP-1蛋白活性标记物pADPr的表达量,细胞凋亡相关蛋白Bax,细胞DNA损伤标记蛋白p-γH2ax的表达。与对照组(C组)比较,MIRI模型组(H/R组)PARP-1活性标记物表达更高表示PARP-1激活增多,细胞凋亡损伤(Bax)增加,DNA损伤(p-γH2ax)情况也增多(P < 0.05,n=3,图 1)。

1.

1

MIRI细胞模型中PARP-1活性及细胞损伤蛋白表达

PARP-1 activity and expression of cell damage-associated proteins in the cell model of MIRI. *P < 0.05 vs control.

C为对照组,H/R是心肌缺氧/复氧模型组;pADPr是PARP-1蛋白活性标记物;Bax是细胞凋亡相关蛋白;p-γH2ax是细胞DNA损伤标记蛋白(P < 0.05,n=3,图 1)。

2.2. PJ-34可抑制MIRI细胞模型中PARP-1活性及减轻损伤

H9c2细胞做缺氧模型后复氧前,加入PARP-1抑制剂PJ34处理。Western blot检测细胞蛋白表达量,pADPr表达量反应PARP-1活性;Bax检测凋亡,p-γH2ax检测DNA损伤。结果显示:与模型组比较(H/R组),加入PARP-1抑制剂后(H/R+PJ34组)可明显抑制心肌细胞内PARP-1活性(pADPr),细胞凋亡(Bax)减少,细胞DNA损伤情况也减轻(P < 0.05,P < 0.01,n=3,图 2)。

2.

2

PJ-34可抑制MIRI细胞模型中PARP-1活性及减轻损伤

PJ-34 inhibits PARP-1 activity and reduces damage in the cell model of MIRI. *P < 0.05, **P < 0.01 vs control.

C组为对照组,H/R组是心肌缺氧/复氧模型组,PJ34组是抑制剂对照组,H/R+PJ34是加入PARP-1抑制剂的模型组;pADPr是PARP-1蛋白活性标记物;Bax是细胞凋亡相关蛋白;p-γH2ax是细胞DNA损伤标记蛋白(P < 0.05,P < 0.01,n=3,图 2)。

2.3. PJ-34可逆转MIRI细胞模型中自噬流受阻情

H9c2细胞做缺氧模型后复氧前,加入PARP-1抑制剂PJ34[13]处理。Western blot检测细胞自噬流相关蛋白表达量,LC3BⅡ/LC3Ⅰ、Beclin-1表达量反应自噬激活形成水平,P62蛋白可以通过自噬来降解,因此P62蛋白表达可以反映自噬清除水平的强弱。当LC3B Ⅱ升高,P62同时降低,表明自噬流通畅[14];如果LC3B Ⅱ升高而P62升高,表明自噬起始正常但下游不通,吞噬体和溶酶体不能融合。结果显示:与对照组(C组)比较,缺氧/复氧处理后心肌细胞H/R组,LC3B Ⅱ、beclin-1表达增高,同时p62表达也增高(P < 0.05),表示自噬流受阻。与H/R组比较,加入PARP-1抑制剂PJ34处理后(H/R+ PJ34组),LC3B Ⅱ、beclin-1表达无明显变化,而p62表达降低(P < 0.05),表明自噬流受阻情况得到缓解(P < 0.05,n=3,图 3)。

3.

3

PJ-34可逆转MIRI细胞模型中自噬流受阻情况

PJ-34 reverses autophagy block in the cell model of MIRI. *P < 0.05, **P < 0.01 vs control.

C组为对照组,H/R组是心肌缺氧/复氧模型组,PJ34组是抑制剂对照组,H/R+PJ34是加入PARP-1抑制剂的模型组。LC3B Ⅱ/LC3Ⅰ、Beclin-1表达量反应自噬激活形成水平;P62蛋白可以通过自噬来降解,因此P62可以反映自噬清除水平的强弱(P < 0.05,n=3,图 3

3. 讨论

本研究发现DNA损伤修复酶PARP-1激活及自噬流密切参与MIRI病理过程,且首次证实PARP-1介导自噬流受阻在MIRI发病过程中发挥重要作用,为进一步防治MIRI提供新的思路和靶点。

氧自由基的大量产生、钙超载、心肌能量代谢障碍、细胞凋亡、自噬、中性粒细胞激活和血管内皮细胞DNA损伤等因素可能参与了MIRI的发病过程[15]。MIRI是多种因素共同作用的结果,有研究表明[16]:在缺血再灌注状态中氧化应激发挥了显著的破坏作用。当心肌缺血再灌注时,活性氧自由氧(ROS)爆发性产生[17-18]超过了机体捕获清除的能力;ROS攻击生物膜上的不饱和脂肪酸,发生脂质过氧化,从而造成膜流动性与离子通透性增加破坏膜结构完整性,导致心肌细胞损伤或死亡。本研究结果显示在大鼠心肌细胞MIRI模型中,细胞凋亡比例增多(Bax蛋白表达),细胞DNA损伤加重(p-γH2ax蛋白表达)。也表明MIRI可能是心肌细胞凋亡和DNA损伤增多等多种因素共同作用的结果。

DNA作为生物体最重要的遗传物质,其稳定性决定生物的生存和发展。MIRI病理过程中氧化应激产生的活性氧很可能导致心肌细胞DNA损伤[19]。随后启动细胞相应的DNA损伤修复机制,激活相关修复酶来完成DNA损伤的修复[20]。而PARP-1是细胞内重要的DNA损伤修复酶之一,其在多种生物功能上都扮演重要角色:包括DNA修复、基因表达、基因组稳态、细胞周期以及长期记忆[21]

已有证据表明PARP-1在肿瘤的发生、脑缺血再灌注损伤、神经退行性变、糖尿病及心血管疾病中发挥重要的作用[1, 21]。同样在本研究结果显示:在大鼠心肌MIRI模型中PARP-1活性蛋白pADPr表达明显增多。这表明MIRI过程中PARP-1被激活,该结果与前期研究推测较一致。此外,有研究表明抑制PARP-1活性可以部分逆转休克、高血压、心衰及缺血再灌注损伤的心肌内在功能[22-23]。因此本研究中采用PARP-1活性抑制剂处理心肌细胞,可明显降低MIRI模型中心肌细胞凋亡和DNA损伤程度。提示PARP-1的活化很可能在心肌缺血再灌注损伤发病机制过程中发挥重要的作用。

细胞自噬与MIRI关系密切[24-25]。在氧化应激和DNA损伤的刺激下,活化的PARP-1通过调控自噬与坏死的动态平衡在决定细胞的生死方面发挥着重要作用[8, 24]。在缺血阶段自噬起保护作用,而在再灌注阶段自噬却是有害的[10]。那么由活化的PARP-1诱发的细胞自噬究竟在MIRI过程中扮演的何种角色?至今仍不明确[26-27]。Huang等[28]报道在氧化应激损伤过程中PARP-1过度激活、消耗NAD+和大量ATP可通过LKB1- AMPK-mTOR信号通路产生自噬。本研究中大鼠MIRI模型中自噬相关蛋白LC3B Ⅱ、beclin-1表达增高,同时p62表达也增高,表明该过程自噬流受阻;同时我们在应用PARP-1活性抑制剂PJ-34处理心肌细胞后发现自噬相关蛋白LC3B Ⅱ、beclin-1表达无明显变化,而p62表达降低表明自噬流受阻情况得到缓解。与Ma[9]提出在心肌缺血的再灌注阶段,自噬流部分受损伤、自噬体清除受阻进而导致MIRI的结论相似。

综上,本研究提出PARP-1调控自噬流可能密切参与了MIRI的发病过程。通过实验论证我们得出:在离体心肌细胞模型中加入PARP-1特异性抑制剂PJ-34可明显逆转MIRI时自噬流受阻情况从而减轻MIRI。该结果将有助于阐明MIRI的发病机制,也为进一步防治MIRI提供新的思路。

Biography

赵伟,博士,医师,E-mail: zw618812@smu.edu.cn

Funding Statement

广东省自然科学基金(2017A030313627);广东省医学科研基金(A20162234);南方医科大学青年科技人员培育项目(C1034379)

Contributor Information

赵 伟 (Wei ZHAO), Email: zw618812@smu.edu.cn.

徐 世元 (Shiyuan XU), Email: xsy998@smu.edu.cn.

References

  • 1.Thielmann M, Kottenberg E, Kleinbongard P, et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet. 2013;382(9892):597–604. doi: 10.1016/S0140-6736(13)61450-6. [Thielmann M, Kottenberg E, Kleinbongard P, et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial[J]. Lancet, 2013, 382 (9892): 597-604.] [DOI] [PubMed] [Google Scholar]
  • 2.Devereaux PJ, Goldman L, Cook DJ, et al. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ. 2005;173(6):627–34. doi: 10.1503/cmaj.050011. [Devereaux PJ, Goldman L, Cook DJ, et al. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk[J]. CMAJ, 2005, 173 (6): 627-34.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.王 紫监, 张 立民, 赵 自刚, et al. 心肌缺血再灌注损伤研究进展. 中国老年学杂志. 2018;38(6):1532–36. doi: 10.3969/j.issn.1005-9202.2018.06.102. [王紫监, 张立民, 赵自刚, 等.心肌缺血再灌注损伤研究进展[J].中国老年学杂志, 2018, 38(6): 1532-36.] [DOI] [Google Scholar]
  • 4.Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012;26(5):417–32. doi: 10.1101/gad.183509.111. [Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1[J]. Genes Dev, 2012, 26 (5): 417-32.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhang R, Tang S, Huang W, et al. Protection of the brain following cerebral ischemia through the attenuation of PARP-1-induced neurovascular unit damage in rats. http://www.sciencedirect.com/science/article/pii/S0006899315005521. Brain Res. 2015;1624(2015):9–18. doi: 10.1016/j.brainres.2015.07.023. [Zhang R, Tang S, Huang W, et al. Protection of the brain following cerebral ischemia through the attenuation of PARP-1-induced neurovascular unit damage in rats[J]. Brain Res, 2015, 1624(2015): 9-18.] [DOI] [PubMed] [Google Scholar]
  • 6.Huang Q, Shen HM. To die or to live: the dual role of poly(ADPribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy. 2009;5(2):273–6. doi: 10.4161/auto.5.2.7640. [Huang Q, Shen HM. To die or to live: the dual role of poly(ADPribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage[J]. Autophagy, 2009, 5 (2): 273-6.] [DOI] [PubMed] [Google Scholar]
  • 7.Lavandero S, Troncoso R, Rothermel BA, et al. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy. 2013;9(10):1455–66. doi: 10.4161/auto.25969. [Lavandero S, Troncoso R, Rothermel BA, et al. Cardiovascular autophagy: concepts, controversies, and perspectives[J]. Autophagy, 2013, 9 (10): 1455-66.] [DOI] [PubMed] [Google Scholar]
  • 8.Zhao C, Mei Y, Chen X, et al. Autophagy plays a pro-survival role againstmethamphetamine-induced apoptosis in H9C2 cells. http://europepmc.org/abstract/MED/29763685. Toxicol Lett. 2018;294(2018):156–65. doi: 10.1016/j.toxlet.2018.05.017. [Zhao C, Mei Y, Chen X, et al. Autophagy plays a pro-survival role againstmethamphetamine-induced apoptosis in H9C2 cells[J]. Toxicol Lett, 2018, 294(2018), 156-65.] [DOI] [PubMed] [Google Scholar]
  • 9.Ma S, Wang Y, Chen Y, et al. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta. 2015;1852(2):271–6. doi: 10.1016/j.bbadis.2014.05.010. [Ma S, Wang Y, Chen Y, et al. The role of the autophagy in myocardial ischemia/reperfusion injury[J]. Biochim Biophys Acta, 2015, 1852 (2): 271-6.] [DOI] [PubMed] [Google Scholar]
  • 10.Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22. doi: 10.1161/01.RES.0000261924.76669.36. [Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy[J]. Circ Res, 2007, 100 (6): 914-22.] [DOI] [PubMed] [Google Scholar]
  • 11.徐 金金, 雷 少青, 夏 中元, et al. 异丙酚对高糖诱导心肌细胞凋亡时STAT3活性的影响. 临床和实验医学杂志. 2014;13(19):1569–72. doi: 10.3969/j.issn.1671-4695.2014.19.001. [徐金金, 雷少青, 夏中元, 等.异丙酚对高糖诱导心肌细胞凋亡时STAT3活性的影响[J].临床和实验医学杂志, 2014, 13(19): 1569-72.] [DOI] [Google Scholar]
  • 12.习 明明, 刘 晶, 谢 亮, et al. 比索洛尔预处理对缺氧/复氧诱导的H9c2细胞损伤的影响. http://www.j-smu.com/oa/DArticle.aspx?type=view&id=2016091198. 南方医科大学学报. 2016;36(9):1198–203. doi: 10.3969/j.issn.1673-4254.2016.09.06. [习明明, 刘晶, 谢亮, 等.比索洛尔预处理对缺氧/复氧诱导的H9c2细胞损伤的影响[J].南方医科大学学报, 2016, 36 (9): 1198-203.] [DOI] [PubMed] [Google Scholar]
  • 13.El Amki M, Lerouet D, Garraud M, et al. Improved reperfusion and vasculoprotection by the poly (ADP-Ribose) polymerase inhibitor PJ34 after Stroke and thrombolysis in mice. http://www.ncbi.nlm.nih.gov/pubmed/29651748. Mol Neurobiol. 2018;1(1):1–13. doi: 10.1007/s12035-018-1063-3. [El Amki M, Lerouet D, Garraud M, et al. Improved reperfusion and vasculoprotection by the poly (ADP-Ribose) polymerase inhibitor PJ34 after Stroke and thrombolysis in mice[J]. Mol Neurobiol, 2018, 1(1): 1-13.] [DOI] [PubMed] [Google Scholar]
  • 14.Li R, Ma H, Zhang X, et al. Impaired autophagosome clearance contributes to local anesthetic bupivacaine-induced myotoxicity in mouse myoblasts. Anesthesiology. 2015;122(3):595–605. doi: 10.1097/ALN.0000000000000568. [Li R, Ma H, Zhang X, et al. Impaired autophagosome clearance contributes to local anesthetic bupivacaine-induced myotoxicity in mouse myoblasts[J]. Anesthesiology, 2015, 122 (3): 595-605.] [DOI] [PubMed] [Google Scholar]
  • 15.Xia Z, Li H, Irwin MG. Myocardial ischaemia reperfusion injury: the challenge of translating ischaemic and anaesthetic protection from animal models to humans. https://www.sciencedirect.com/science/article/pii/S0007091217301459. Br J Anaesth. 2016;117(Suppl 2):ⅱ44–62. doi: 10.1093/bja/aew267. [Xia Z, Li H, Irwin MG. Myocardial ischaemia reperfusion injury: the challenge of translating ischaemic and anaesthetic protection from animal models to humans[J]. Br J Anaesth, 2016, 117 (Suppl 2): ⅱ44-62.] [DOI] [PubMed] [Google Scholar]
  • 16.Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5. doi: 10.1038/nature13909. [Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS [J]. Nature, 2014, 515 (7527): 431-5.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114(3):524–37. doi: 10.1161/CIRCRESAHA.114.300559. [Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation[J]. Circ Res, 2014, 114 (3): 524-37.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Cadenas S. ROS and redox signaling in myocardial ischemiareperfusion injury and cardioprotection. http://www.sciencedirect.com/science/article/pii/S0891584918300340. Free Radic Biol Med. 2018;117(2):76–89. doi: 10.1016/j.freeradbiomed.2018.01.024. [Cadenas S. ROS and redox signaling in myocardial ischemiareperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117(2): 76-89.] [DOI] [PubMed] [Google Scholar]
  • 19.Baban B, Liu JY, Mozaffari MS. Pressure overload regulates expression of cytokines, gammaH2AX, and growth arrest- and DNA-damage inducible protein 153 via glycogen synthase kinase- 3beta in ischemic-reperfused hearts. Hypertension. 2013;61(1):95–104. doi: 10.1161/HYPERTENSIONAHA.111.00028. [Baban B, Liu JY, Mozaffari MS. Pressure overload regulates expression of cytokines, gammaH2AX, and growth arrest- and DNA-damage inducible protein 153 via glycogen synthase kinase- 3beta in ischemic-reperfused hearts[J]. Hypertension, 2013, 61(1): 95-104.] [DOI] [PubMed] [Google Scholar]
  • 20.Shafirovich V, Geacintov NE. Removal of oxidatively generated DNA damage by overlapping repair pathways. http://www.ncbi.nlm.nih.gov/pubmed/27818219. Free Radic Biol Med. 2017;107(1):53–61. doi: 10.1016/j.freeradbiomed.2016.10.507. [Shafirovich V, Geacintov NE. Removal of oxidatively generated DNA damage by overlapping repair pathways[J]. Free Radic Biol Med, 2017, 107(1): 53-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Chiu SC, Huang SY, Tsai YC, et al. Poly (ADP-ribose) polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells. J Biomed Sci. 2012;19(1):29. doi: 10.1186/1423-0127-19-29. [Chiu SC, Huang SY, Tsai YC, et al. Poly (ADP-ribose) polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells[J]. J Biomed Sci, 2012, 19(1): 29.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Liu M, Li Z, Chen GW, et al. AG-690/11026014, a novel PARP-1 inhibitor, protects cardiomyocytes from AngⅡ-induced hypertrophy. Mol Cell Endocrinol. 2014;392(1-2):14–22. doi: 10.1016/j.mce.2014.05.010. [Liu M, Li Z, Chen GW, et al. AG-690/11026014, a novel PARP-1 inhibitor, protects cardiomyocytes from AngⅡ-induced hypertrophy [J]. Mol Cell Endocrinol, 2014, 392 (1-2): 14-22.] [DOI] [PubMed] [Google Scholar]
  • 23.李 岩, 吴 捧莲, 杜 良鹤, et al. PARP-1抑制剂PJ34对脑缺血再灌注损伤大鼠血脑屏障的影响. 中国医科大学学报. 2015;44(8):709–13. doi: 10.3969/j.issn.0258-4646.2015.08.009. [李岩, 吴捧莲, 杜良鹤, 等. PARP-1抑制剂PJ34对脑缺血再灌注损伤大鼠血脑屏障的影响[J].中国医科大学学报, 2015, 44(8): 709-13.] [DOI] [Google Scholar]
  • 24.叶 红伟, 方 婷婷, 谷 小雨, et al. Rho激酶和自噬在法舒地尔抗心肌缺血/再灌注损伤中的作用. http://www.j-smu.com/oa/DArticle.aspx?type=view&id=2016121706. 南方医科大学学报. 2016;36(12):1706–11. doi: 10.3969/j.issn.1673-4254.2016.12.20. [叶红伟, 方婷婷, 谷小雨, 等. Rho激酶和自噬在法舒地尔抗心肌缺血/再灌注损伤中的作用[J].南方医科大学学报, 2016, 36 (12): 1706- 11.] [DOI] [PubMed] [Google Scholar]
  • 25.于 影, 闵 凤, 叶 红伟, et al. Y-27632通过抑制自噬减轻H9c2心肌细胞缺氧/复氧损伤. http://www.cnki.com.cn/Article/CJFDTOTAL-XBFM201711013.htm. 细胞与分子免疫学杂志. 2017;33(11):1511–5. [于影, 闵凤, 叶红伟, 等. Y-27632通过抑制自噬减轻H9c2心肌细胞缺氧/复氧损伤[J].细胞与分子免疫学杂志, 2017, 33(11): 1511-5.] [PubMed] [Google Scholar]
  • 26.Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, et al. ROSinduced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 2012;22(7):1181–98. doi: 10.1038/cr.2012.70. [Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, et al. ROSinduced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy[J]. Cell Res, 2012, 22 (7): 1181-98.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Muñoz-Gámez JA, Rodríguez-Vargas JM, Quiles-Pérez R, et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5(1):61. doi: 10.4161/auto.5.1.7272. [Muñoz-Gámez JA, Rodríguez-Vargas JM, Quiles-Pérez R, et al. PARP-1 is involved in autophagy induced by DNA damage[J]. Autophagy, 2009, 5 (1): 61.] [DOI] [PubMed] [Google Scholar]
  • 28.Huang Q, Wu YT, Tan HL, et al. A novel function of poly(ADPribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16(2):264–77. doi: 10.1038/cdd.2008.151. [Huang Q, Wu YT, Tan HL, et al. A novel function of poly(ADPribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress[J]. Cell Death Differ, 2009, 16 (2): 264-77.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES