Abstract
目的
探讨IL-9在结肠癌组织中的表达水平及其临床意义。
方法
采用免疫组化法和实时荧光定量PCR(qRT-PCR)法分别检测92例结肠癌组织及相应癌旁正常组织中IL-9的表达情况;统计分析IL-9在结肠癌与癌旁正常组织中的表达差异;分析IL-9蛋白表达与结肠癌患者的临床病理特征及生存预后之间的关系。
结果
在癌旁正常组织中IL-9蛋白及mRNA的表达水平均显著高于结肠癌组织(P < 0.001)。IL-9蛋白表达水平与结肠癌患者的TNM分期、Ducks分期及淋巴结转移相关(P=0.013, 0.025, 0.004),而与性别、年龄、肿瘤大小、分化程度及肝转移等临床病理特征无明显相关性(P > 0.05)。IL-9表达阳性结肠癌患者的生存时间明显长于阴性表达的患者(P=0.015)。
结论
IL-9在结肠癌组织中较在癌旁正常组织中低表达;IL-9在结肠癌组织中的表达与TNM分期、Ducks分期及淋巴结转移呈负相关,与良好预后呈正相关,提示在结肠癌肿瘤微环境中IL-9发挥了重要的作用。
Keywords: IL-9, 结肠癌, 免疫组化, 预后
Abstract
Objective
To investigate the expression of interleukin-9 (IL-9) in colon cancer tissues and its clinical significance.
Methods
Immunohistochenmistry and qRT-PCR were used to detect the expressions of IL-9 protein and mRNA in 92 colon cancer tissues and paired adjacent normal tissues. The correlation of IL-9 expressions with the clinicopathological features and prognosis of the patients was analyzed.
Results
IL-9 protein and mRNA expressions were significantly higher in adjacent normal tissues than in the colon cancer tissues (P < 0.001). In colon cancer patients, IL-9 expression was significantly correlated with TNM stage (P=0.013), Ducks stage (P=0.025) and lymph node metastasis (P=0.004) but not with gender, age, tumor size, differentiation or hepatic metastasis (P > 0.05). The survival time of colon cancer patients with positive IL-9 expression was significantly longer than that of patients negative for IL-9 expression (P=0.015).
Conclusions
IL-9 expression is lowered in colon cancer tissues compoved with in the adjacent normal tissues. IL-9 expression is negatively correlated with TNM staging, Ducks staging and lymph node metastasis but positively with good prognosis, suggesting its important role in the tumor microenvironment of colon cancer.
Keywords: interleukin-9, colon cancer, immunohistochemistry, prog
结肠癌是消化系统最常见的恶性肿瘤之一,其发病率在全球居第3位[1]。随着生活质量的提高及饮食习惯的改变,近年来结肠癌的发病率及死亡率呈现上升趋势[2-3],据统计,其5年生存率仅约50%[4]。手术、放疗、化疗、分子靶向治疗等是目前治疗结肠癌的主要方式,而肿瘤免疫治疗有望成为新的治疗手段[5-6]。
近来研究发现,细胞因子中的白细胞介素-9(IL-9)具有强大的抗肿瘤作用[7],如IL-9可明显降低小鼠黑色素瘤的增长速度,且可减少肺转移灶数量[8, 22-23];IL-9亦可抑制小鼠鳞癌的生长[9];此外,IL-9可促进CTL细胞抗原的启动并进入肺癌组织发挥抗肿瘤作用[10]。IL-9在结肠癌患者的血浆及癌组织中低表达,且与结肠癌进展相关[11]。对于IL-9的表达与结肠癌患者的临床病理特征及生存时间之间的关系,尚未有进一步研究。本研究通过免疫组织化学SP法及实时荧光定量PCR(qRT-PCR)法检测IL-9在结肠癌组织及相应癌旁正常组织中的表达水平,探讨其与结肠癌临床病理特征及预后之间的关系。
1. 资料和方法
1.1. 一般资料
收集2010年1月~2010年12月苏州大学附属第一医院行手术切除的92例结肠癌组织标本及相应的癌旁正常组织标本(距肿瘤边缘5 cm以上,经术后病理证实无癌组织侵犯的结肠组织),所有组织标本留存两份:其中1份予以10%甲醛溶液(福尔马林溶液)固定,石蜡包埋、切片存档;另一份-80 ℃冰箱冻存,备抽提RNA。同时收集该92例患者完整的临床资料。所有患者均无自身免疫性疾病及结核、肝炎、艾滋病等传染病史,术前均未行放、化疗、靶向治疗及免疫治疗,术后病理均确诊为结肠癌。其中男性53例,女性39例;年龄46~91岁,平均年龄70.1岁;肿瘤直径≤3 cm 17例, > 3 cm 75例;低或中分化癌69例,高分化癌23例;根据第7版美国癌症联合委员会(AJCC)/国际抗癌联盟(UICC)结直肠癌TNM分期标准:Ⅰ~Ⅱ期44例,Ⅲ~Ⅳ期48例;根据Ducks分期标准:A~B期51例,C~D期41例;有淋巴结转移45例,无淋巴结转移47例;有肝转移6例,无肝转移86例。
1.2. 免疫组织化学法
1.2.1. 免疫组化SP法检测IL-9的表达及分布
石蜡切片,脱蜡水化,PBS洗片,柠檬酸缓冲液冲洗;3%的H2O2滴于组织切片,室温下放置灭活内源性过氧化物酶10 min,PBS再次洗片,去除PBS并滴加5% BSA 50 μL,室温孵育10 min;滴加IL-9一抗(1:200稀释)4 ℃过夜,PBS洗片;加二抗室温60 min静置,PBS再次洗片;DAB显色剂反应5 min,苏木精复染,梯度浓度乙醇脱水,中性树脂封片观察。IL-9抗体购于Abcam。
1.2.2. 结果判定标准
IL-9主要表达于细胞质,遂以细胞质出现淡黄色、棕黄色或棕褐色颗粒为阳性。随机观察10个200倍镜视野,按阳性细胞所占比例计分: < 5%为0分,5%~30%为1分,31%~60%为2分, > 60%为3分;按染色强度计分:无色为0分,淡黄色为1分,棕黄色为2分,棕褐色为3分。将阳性染色细胞比例与染色强度相乘: < 2分为IL-9表达阴性(-),≥2分为IL-9表达阳性(+)。
1.3. 实时荧光定量PCR法
1.3.1. Trizol法抽提结肠癌组织及癌旁组织中的总RNA
加1 mL Trizol研磨组织标本至均质,转至1.5 mL无酶EP管并加入氯仿离心后,取上清液加入等体积异丙嗪,离心后弃上清液,加入75%乙醇,待酒精完全挥发后加入RNase-Free H2O2溶解RNA,适当稀释后用紫外分光光度计测定RNA A260 nm和A280 nm,判断RNA纯度,并调整样本RNA终浓度至同一水平。
1.3.2. 逆转录反应
使用Prime Script RT Master试剂盒,计算反应体系所需试剂剂量,加样后行逆转录反应,反应程序:37 ℃ 15 min,85 ℃ 15 s,4 ℃ 1 min,最终RNA逆转录成cDNA。
1.3.3. 检测IL-9 mRNA的表达水平
以甘油醛-3-磷酸脱氢酶(GAPDH)为内参,反应程序:95 ℃ 5 min,95 ℃ 10 s,60 ℃ 30 s,共40个循环,进行PCR扩增。根据仪器自动计算所得每组标本的Ct值,计算目的基因mRNA的相对表达量2-ΔΔCt,△△Ct=实验组△Ct-对照组△Ct,△Ct=目的基因Ct值-内参Ct值。引物序列如下:IL-9: F: 5'-CTCTGTTTGGGCATTCCCTCT-3',R: 5'-GGGTATCTTGTTTGCATGGTGG-3';GAPDH F: 5'-TGTGGGCATCAATGGATTTGG-3',R:5'-ACACCATGTATTCCGGGTCAAT-3'。
1.4. 随访方法
随访时间为6~72月,截止至2016年12月1日。生存时间为患者手术当日至随访截止日期或至患者死亡日期;术后2年内每3月随访1次,术后2~5年每半年随访1次,术后5年以上每1年随访1次;随访通过电话、复诊等方式进行。
1.5. 统计学方法
应用SPSS 19.0统计软件进行分析,计数资料采用率表示,不同组间的比较采用卡方检验,正态分布的计量资料用均数±标准差表示,组间比较采用t检验,应用GraphPad Prism 7.0统计软件绘制生存曲线,并采用Kaplan-Meier及Log-rank检验进行生存分析,P < 0.05为差异具有统计学意义。
2. 结果
2.1. IL-9在结肠癌组织及癌旁组织中的表达
免疫组织化学染色结果显示:结肠癌组织中IL-9阴性表达58例,阳性表达34例,阳性率为37.0%(34/92);癌旁组织中IL-9阴性表达21例,阳性表达71例,阳性率为77.2%(71/92)。结肠癌组织中IL-9的阳性表达率明显低于癌旁正常组织,且差异具有统计学意义(P < 0.001,图 1、表 1)。
1.
Tissue | IL-9 expression (%) | χ2 | P | |
- | + | |||
Tumor tissues Normal tissues |
58 (63.0) 21(22.8) |
34 (37.0) 71(77.2) |
30.367 | 0.000 |
2.2. qRT-PCR检测结肠癌组织及癌旁组织中IL-9 mRNA的表达
设癌旁组织IL-9 mRNA表达量均值为1。则癌旁正常组织IL-9 mRNA相对表达量(1.00±0.13)与结肠癌组织(0.32±0.09)相比,癌旁正常组织中IL-9 mRNA的表达显著高于结肠癌组织,差异具有统计学意义(P < 0.001,图 2)。
2.3. IL-9的表达与结肠癌临床病理特征之间的关系
结肠癌组织中IL-9的表达与肿瘤TNM分期、Ducks分期和淋巴结转移有相关性,且呈负相关:结肠癌Ⅰ~Ⅱ期、Ⅲ~Ⅳ期IL-9的阳性表达率分别为50.0%、25.0%;结肠癌A~B期、C~D期IL-9的阳性表达率分别为47.1%、24.4%,结肠癌TNM分期、Ducks分期越晚,IL-9的阳性表达率越低,差异均具有统计学意义(P < 0.05);有淋巴结转移组IL-9的阳性表达率(22.2%)明显低于无淋巴结转移组(51.1%),差异具有统计学意义(P < 0.05)。结肠癌组织中IL-9的表达与性别、年龄、肿瘤大小、分化程度及肝转移等临床病理特征无明显相关性(P > 0.05,表 2)。
2.
Clinicopathological parameters | n | IL-9expression (n, %) | χ2 | P | |
Negative | Positive | ||||
Gender | 1.279 | 0.258 | |||
Male | 53 | 36 (67.9) | 17(32.1) | ||
Female | 39 | 22 (56.4) | 17(43.6) | ||
Age(year) | 1.596 | 0.206 | |||
≤65 | 29 | 21 (72.4) | 8 (27.6) | ||
> 65 | 63 | 37 (58.7) | 26(41.3) | ||
Tumor size (cm) | 2.287 | 0.130 | |||
≤3 | 17 | 8 (47.1) | 9 (52.9) | ||
> 3 | 75 | 50 (66.7) | 25 (33.3) | ||
Differentiation | 3.048 | 0.081 | |||
Poor or moderate | 69 | 47 (68.1) | 22(31.9) | ||
Well | 23 | 11 (47.8) | 12(52.2) | ||
TNM staging | 6.158 | 0.013 | |||
Ⅰ-Ⅱ | 44 | 22 (50.0) | 22 (50.0) | ||
Ⅲ-Ⅳ | 48 | 36 (75.0) | 12(25.0) | ||
Ducks staging | 5.013 | 0.025 | |||
A-B | 51 | 27 (52.9) | 24 (47.1) | ||
C-D | 41 | 31 (75.6) | 10(24.4) | ||
Lymph node metastasis | 8.208 | 0.004 | |||
Without | 47 | 23 (48.9) | 24(51.1) | ||
With | 45 | 35 (77.8) | 10(22.2) | ||
Hepatic metastasis | 3.763 | 0.052 | |||
With | 6 | 6 (100.0) | 0 (0.00) | ||
Without | 86 | 52 (60.5) | 34 (39.5) |
2.4. 结肠癌组织中IL-9的表达与临床预后之间的关系
随访时间为6~72月,中位数为68月,随访率93.3%。92例结肠癌患者的5年总体生存率为57.6%(53/92)。IL-9表达阴性的结肠癌患者(58例)的1、3、5年生存率分别为94.8%、74.1%、53.4%;IL-9表达阳性的结肠癌患者(34例)的1、3、5年生存率分别为100.0%、91.2%、76.5%。单因素生存分析显示,与IL-9表达阴性的结肠癌患者相比,IL-9表达阳性患者的术后生存时间更长,且差异具有统计学意义(P < 0.05,图 2)。
3. 讨论
白细胞介素在抗肿瘤免疫应答中的作用日益受到关注[12-13]。IL-9主要来源于活化的Th9细胞,嗜酸性粒细胞、中性粒细胞及肥大细胞等也可分泌产生,而肿瘤实质细胞不能表达IL-9;IL-9受体由2条链构成,分别为α链(IL-9Rα)和γ链(IL-9Rγ);IL-9与其受体结合后,可激发JAK1、JAK3交叉磷酸化,从而激活STAT1、STAT3、STAT5形成同源及异源二聚体,进入细胞核内启动相关基因转录表达,发挥相应的生物学作用[14-17]。IL-9的效应细胞为肥大细胞、T细胞亚群、抗原提呈细胞及树突状细胞等[18],这就决定了IL-9作用的多样性。IL-9具有促进炎症反应及自身免疫性疾病,抗寄生虫及抗结核等作用[19-20],近年的研究发现IL-9具有抗肿瘤免疫作用[21]。
本研究发现,在结肠癌组织中IL-9蛋白及mRNA的表达均明显高于癌旁正常组织。近来关于IL-9的抗肿瘤作用日益受到关注。IL-9可抑制小鼠皮下黑色素瘤的生长速度及获得较长生存时间[22];Lu等[10, 23]建立小鼠肺黑色素瘤模型发现IL-9可抑制小鼠肺转移灶数量;通过IL-9激发树突状细胞(DC)的功能来提高肿瘤特异性细胞毒T淋巴细胞(CTL)的抗肿瘤免疫[24];IL-9可抑制小鼠鳞状上皮细胞癌[9];建立Th9抗原特异性疫苗发现IL-9可抑制肿瘤细胞的种植以及扩散[25]。本研究探讨了IL-9在结肠癌和癌旁组织的表达以及IL-9在结肠癌组织的表达与患者临床病理特征的关系,研究结果与上述结论一致,说明IL-9在恶性肿瘤中可能发挥了抗肿瘤免疫作用。其原因可能为肠道是人体重要的免疫屏障,结肠组织中存在数量及种类较多的免疫细胞,这些细胞分泌了较多的细胞因子,而肿瘤组织微环境中以肿瘤细胞为主,且免疫效应细胞处于免疫抑制状态,浸润的免疫细胞较少,因此分泌细胞因子IL-9较少。
本研究还发现IL-9在结肠癌组织中的表达与TNM分期密切相关,分期越晚IL-9的阳性表达率越低,这与Huang等[11]研究发现Ⅲ~Ⅳ期结肠癌组织中IL-9的表达低于Ⅰ~Ⅱ期的结果一致,但该研究尚未对IL-9与其他临床病理特征及预后的关系作进一步研究。通过研究我们发现IL-9在结肠癌组织中的表达与Ducks分期、淋巴结转移呈负相关:Ducks分期越晚IL-9的阳性表达率越低,有淋巴结转移组的IL-9的阳性表达率明显低于无淋巴结转移组;IL-9的表达与性别、年龄、肿瘤大小、分化程度及肝转移等临床病理特征无明显相关性,提示结肠癌肿瘤微环境中高表达IL-9可能在抑制结肠癌的进展中发挥了重要作用。除此之外,通过生存分析我们还发现IL-9表达阳性的结肠癌患者的术后生存时间明显比IL-9表达阴性的患者长,提示IL-9的表达水平可评估结肠癌患者的预后情况。以上结果提示:IL-9可能具有较强的抗肿瘤作用;对结肠癌细胞有较强免疫反应的个体,可能通过在肿瘤微环境中聚集相应的抗肿瘤免疫细胞,分泌IL-9产生抗肿瘤免疫作用,抑制肿瘤细胞的局部侵犯和远处转移,所以预后较好。
关于IL-9激发抗肿瘤免疫反应的机制,已有一些研究进行了探索。在小鼠黑色素瘤中IL-9通过上调抗增值分子p21和凋亡分子TRAIL促进黑色素瘤细胞的凋亡[26];IL-9作用于效应细胞肥大细胞,激发固有免疫反应,发挥抗肿瘤作用[22, 25, 27];IL-9通过诱导肺癌组织CCL20-CCR6依赖的DCs细胞进入引流淋巴结,激活CTL细胞后引入肿瘤组织发挥抗肿瘤作用,同时刺激CD8+细胞介导的抗肿瘤免疫[10, 23];在小鼠鳞癌中金黄色葡萄球菌肠毒素B增加CD4+细胞信号转导及IL-9转录因子STAT5、HDAC1、PU.1的表达,促进IL-9产生,从而抑制鳞癌细胞生长[9]。SIRT1对诱导IL-9分泌具有重要作用,其上游抑制信号为TAK1,SIRT1缺陷可活化和诱导下游信号mTOR-HIF1 α,促进IL-9的分泌从而抑制肿瘤进展[8, 28];GITR可通过转录因子STAT6和组蛋白乙酰化酶P300促进IL-9分泌[29];通过DCs表达的OX40及NF-κB信号通路可调节IL-9的产生[30]。但目前对于IL-9的抗肿瘤作用机制尚未完全阐明。
综上所述,IL-9可能具有抗肿瘤免疫作用,与结肠癌的进展密切相关。因本研究为单中心研究,有待于大样本多中心研究证实;同时,IL-9在结肠癌微环境中的抗肿瘤免疫机制尚需细胞免疫学、分子生物学实验及动物实验进一步探讨,从而为结肠癌的临床免疫治疗提供新的理论基础。
Biography
王进,硕士,E-mail: wjjim1991@163.com
Funding Statement
国家自然科学基金(31770985,81302146);中国博士后基金(2016M591913);江苏省自然科学基金(BK20161225);江苏省卫生计生委科研课题(H201620);苏州市科技计划(SYS201539);江苏省青年医学人才(QNRC2016732);江苏省“六大人才高峰”计划资助项目(2016-WSW-043)
Supported by National Natural Science Foundation of China (31770985, 81302146)
Contributor Information
王 进 (Jin WANG), Email: wjjim1991@163.com.
赵 鑫 (Xin ZHAO), Email: zhaox@suda.edu.cn.
References
- 1.蔡 国响, 戴 卫星, 蔡 三军. 结直肠癌多学科综合治疗的现状与未来. 中华胃肠外科杂志. 2016;19(6):607–11. doi: 10.3760/cma.j.issn.1671-0274.2016.06.002. [蔡国响, 戴卫星, 蔡三军.结直肠癌多学科综合治疗的现状与未来[J].中华胃肠外科杂志, 2016, 19(6): 607-11.] [DOI] [PubMed] [Google Scholar]
- 2.Chow CJ, Al-Refaie WB, Abraham A, et al. Does patient rurality predict quality colon cancer care? A population-based study. Dis Colon Rectum. 2015;58(4):415–22. doi: 10.1097/DCR.0000000000000173. [Chow CJ, Al-Refaie WB, Abraham A, et al. Does patient rurality predict quality colon cancer care? A population-based study[J]. Dis Colon Rectum, 2015, 58(4): 415-22.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.宋 文, 彭 曼, 段 世玉, et al. MIER3在结直肠癌中的表达及其相关蛋白的生物信息学分析. http://www.j-smu.com/oa/DArticle.aspx?type=view&id=2017081040. 南方医科大学学报. 2017;37(8):1040–6. doi: 10.3969/j.issn.1673-4254.2017.08.07. [宋文, 彭曼, 段世玉, 等. MIER3在结直肠癌中的表达及其相关蛋白的生物信息学分析[J].南方医科大学学报, 2017, 37(8): 1040-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi: 10.1002/ijc.29210. [Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-86.] [DOI] [PubMed] [Google Scholar]
- 5.Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. doi: 10.1126/science.342.6165.1432. [Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy[J]. Science, 2013, 342(6165): 1432-3.] [DOI] [PubMed] [Google Scholar]
- 6.Yang YP. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335–7. doi: 10.1172/JCI83871. [Yang YP. Cancer immunotherapy: harnessing the immune system to battle cancer[J]. J Clin Invest, 2015, 125(9): 3335-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Végran F, Apetoh L, Ghiringhelli F. Th9 cells: a novel CD4 T-cell subset in the immune war against cancer. Cancer Res. 2015;75(3):475–9. doi: 10.1158/0008-5472.CAN-14-2748. [Végran F, Apetoh L, Ghiringhelli F. Th9 cells: a novel CD4 T-cell subset in the immune war against cancer[J]. Cancer Res, 2015, 75 (3): 475-9.] [DOI] [PubMed] [Google Scholar]
- 8.Nakatsukasa H, Zhang D, Maruyama T, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16(10):1077–84. doi: 10.1038/ni.3252. [Nakatsukasa H, Zhang D, Maruyama T, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells[J]. Nat Immunol, 2015, 16(10): 1077-84.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Miao BP, Zhang RS, Sun HJ, et al. Inhibition of squamous cancer growth in a mouse model by Staphylococcal enterotoxin B. Cell Mol Immunol. 2017;14(4):371–9. doi: 10.1038/cmi.2015.88. [Miao BP, Zhang RS, Sun HJ, et al. Inhibition of squamous cancer growth in a mouse model by Staphylococcal enterotoxin B[1]triggered Th9 cell expansion[J]. Cell Mol Immunol, 2017, 14(4): 371-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lu Y, Yi Q. Utilizing T9 cells as a novel therapeutic strategy for malignancies. Oncoimmunology. 2013;2(3):23084. doi: 10.4161/onci.23084. [Lu Y, Yi Q. Utilizing T9 cells as a novel therapeutic strategy for malignancies[J]. Oncoimmunology, 2013, 2(3): 23084.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Huang Y, Cao Y, Zhang S, et al. Association between low expression levels of interleukin-9 and colon cancer progression. Exp Ther Med. 2015;10(3):942–6. doi: 10.3892/etm.2015.2588. [Huang Y, Cao Y, Zhang S, et al. Association between low expression levels of interleukin-9 and colon cancer progression[J]. Exp Ther Med, 2015, 10(3): 942-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Davis MR, Zhu Z, Hansen DM, et al. The role of IL-21 in immunity and cancer. Cancer Lett. 2015;358(2):107–14. doi: 10.1016/j.canlet.2014.12.047. [Davis MR, Zhu Z, Hansen DM, et al. The role of IL-21 in immunity and cancer[J]. Cancer Lett, 2015, 358(2): 107-14.] [DOI] [PubMed] [Google Scholar]
- 13.Schwartz C, O'grady K, Lavelle EC, et al. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer. Eur J Immunol. 2016;46(5):1091–100. doi: 10.1002/eji.201545780. [Schwartz C, O'grady K, Lavelle EC, et al. Interleukin 33: an innate alarm for adaptive responses beyond Th2 immunity-emerging roles in obesity, intestinal inflammation, and cancer[J]. Eur J Immunol, 2016, 46(5): 1091-100.] [DOI] [PubMed] [Google Scholar]
- 14.Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta. Nat Immunol. 2008;9(12):1347–55. doi: 10.1038/ni.1677. [Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta[1]induced Foxp3+ T cells and, together with TGF-beta, generates IL- 9+ IL-10+ Foxp3(-) effector T cells[J]. Nat Immunol, 2008, 9(12): 1347-55.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Cheng G, Yu A, Dee MJ, et al. IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol. 2013;190(4):1567–75. doi: 10.4049/jimmunol.1201218. [Cheng G, Yu A, Dee MJ, et al. IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development[J]. J Immunol, 2013, 190(4): 1567-75.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Pan HF, Leng RX, Li XP, et al. Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev. 2013;24(6):515–22. doi: 10.1016/j.cytogfr.2013.09.001. [Pan HF, Leng RX, Li XP, et al. Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases[J]. Cytokine Growth Factor Rev, 2013, 24(6): 515-22.] [DOI] [PubMed] [Google Scholar]
- 17.Ma L, Xue HB, Guan XH, et al. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol. 2014;175(1):25–31. doi: 10.1111/cei.2014.175.issue-1. [Ma L, Xue HB, Guan XH, et al. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis[J]. Clin Exp Immunol, 2014, 175(1): 25-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Goswami R, Kaplan MH. A brief history of IL-9. J Immunol. 2011;186(6):3283–8. doi: 10.4049/jimmunol.1003049. [Goswami R, Kaplan MH. A brief history of IL-9[J]. J Immunol, 2011, 186(6): 3283-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Nalleweg N, Chiriac MT, Podstawa E, et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 2015;64(5):743–55. doi: 10.1136/gutjnl-2013-305947. [Nalleweg N, Chiriac MT, Podstawa E, et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC[J]. Gut, 2015, 64(5): 743-55.] [DOI] [PubMed] [Google Scholar]
- 20.Rojas-Zuleta WG, Sanchez E. IL-9: function, sources, and detection. http://d.old.wanfangdata.com.cn/Periodical/shandyy200905004. Methods Mol Biol. 2017;1585(8):21–35. doi: 10.1007/978-1-4939-6877-0_2. [Rojas-Zuleta WG. Sanchez E. IL-9: function, sources, and detection [J]. Methods Mol Biol, 2017, 1585(8): 21-35.] [DOI] [PubMed] [Google Scholar]
- 21.许 昆鹏, 赵 路军. Th9细胞抗肿瘤免疫作用及机制研究进展. 中国肿瘤临床. 2017;44(6):294–8. doi: 10.3969/j.issn.1000-8179.2017.06.390. [许昆鹏, 赵路军. Th9细胞抗肿瘤免疫作用及机制研究进展[J].中国肿瘤临床, 2017, 44(6): 294-8.] [DOI] [Google Scholar]
- 22.Purwar R, Schlapbach C, Xiao S, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med. 2012;18(8):1248–53. doi: 10.1038/nm.2856. [Purwar R, Schlapbach C, Xiao S, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells[J]. Nat Med, 2012, 18(8): 1248-53.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Lu Y, Hong S, Li H, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Invest. 2012;122(11):4160–71. doi: 10.1172/JCI65459. [Lu Y, Hong S, Li H, et al. Th9 cells promote antitumor immune responses in vivo[J]. J Clin Invest, 2012, 122(11): 4160-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kim IK, Kim BS, Koh CH, et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med. 2015;21(9):1010–7. doi: 10.1038/nm.3922. [Kim IK, Kim BS, Koh CH, et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells[J]. Nat Med, 2015, 21(9): 1010-7.] [DOI] [PubMed] [Google Scholar]
- 25.Abdul-Wahid A, Cydzik M, Prodeus A, et al. Induction of antigen. Int J Cancer. 2016;139(4):841–53. doi: 10.1002/ijc.30121. [Abdul-Wahid A, Cydzik M, Prodeus A, et al. Induction of antigen[1]specific TH 9 immunity accompanied by mast cell activation blocks tumor cell engraftment[J]. Int J Cancer, 2016, 139(4): 841-53.] [DOI] [PubMed] [Google Scholar]
- 26.Fang Y, Chen X, Bai Q, et al. IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol. 2015;111(8):969–74. doi: 10.1002/jso.v111.8. [Fang Y, Chen X, Bai Q, et al. IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL[J]. J Surg Oncol, 2015, 111(8): 969-74.] [DOI] [PubMed] [Google Scholar]
- 27.Végran F, Berger H, Boidot R, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol. 2014;15(8):758–66. doi: 10.1038/ni.2925. [Végran F, Berger H, Boidot R, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells[J]. Nat Immunol, 2014, 15(8): 758-66.] [DOI] [PubMed] [Google Scholar]
- 28.Wang Y, Bi Y, Chen X, et al. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-Producing CD4(+) T cells. Immunity. 2016;44(6):1337–49. doi: 10.1016/j.immuni.2016.05.009. [Wang Y, Bi Y, Chen X, et al. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-Producing CD4(+) T cells[J]. Immunity, 2016, 44(6): 1337-49.] [DOI] [PubMed] [Google Scholar]
- 29.Xiao X, Shi X, Fan Y, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. http://europepmc.org/abstract/MED/26365427. Nat Commun. 2015;6(12):8266. doi: 10.1038/ncomms9266. [Xiao X, Shi X, Fan Y, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation[J]. Nat Commun, 2015, 6(12): 8266.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Zhao Y, Chu X, Chen J, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. http://europepmc.org/articles/PMC4980454. Nat Commun. 2016;7(7):12368. doi: 10.1038/ncomms12368. [Zhao Y, Chu X, Chen J, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells[J]. Nat Commun, 2016, 7(7): 12368.] [DOI] [PMC free article] [PubMed] [Google Scholar]