Skip to main content
Neural Plasticity logoLink to Neural Plasticity
. 2019 Sep 3;2019:1538137. doi: 10.1155/2019/1538137

Emerging Roles of Synapse Organizers in the Regulation of Critical Periods

Adema Ribic 1,, Thomas Biederer 1,2,
PMCID: PMC6745111  PMID: 31565044

Abstract

Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.

1. Introduction

Sensitive periods for the development of brain function have been described in different species and brain areas, but it was the work of Hubel and Wiesel in cat and primate visual cortexes during the 1970s and 1980s that first shed light on the underlying circuit principles [14]. This enabled studies of cellular mechanisms, leading to the recognition of synapses in the visual cortex as cellular substrates for critical period plasticity [59]. These studies showed that balanced visual input is accompanied by stereotypic developmental remodeling and pruning of synapses in the primary visual cortex, whereas visual deprivation results in synapse loss and shrinkage of axonal and dendritic arbors [5, 1017]. The application of genetic, chemo-, and optogenetic tools in mice later revealed how vision shapes cortical connectivity during development and how the establishment of cortical connectivity instructs visual function [1823]. These approaches have also shed light on synaptic mechanisms that control critical periods and actively restrict plasticity in the adult brain [18, 19]. This review is focused on the recently discovered roles of molecules that specify and assemble synaptic connectivity in the onset and closure of plasticity in the visual cortex, a model of cortical plasticity.

2. Synaptic Control of Critical Period Timing

Circuit functions emerge early in development and are shaped by the environment and patterns of activity during critical periods [2427]. Heightened plasticity and adaptability of circuits during critical periods enable sensory input, vision included, to guide selective strengthening and refinement of different synapse types [22, 28]. This experience-dependent synaptic remodeling stabilizes the synaptic connectivity patterns that underlie mature circuit function. Notably, in the visual cortex, GABA(gamma-aminobutyric acid)-releasing inhibitory neurons are considered key for critical period timing [2931]. The onset of synaptic integration of inhibitory neurons into local networks coincides with a rise in inhibitory synapse density and overall levels of inhibitory neurotransmitters in the brain [13, 22, 3235]. A threshold level of cortical inhibition is necessary for the visual critical period to open, and manipulating GABAergic transmission with pharmacologic or genetic tools can either advance or prevent critical period opening [2931]. As levels of cortical inhibition further rise in the maturing brain, the critical period closes and the potential for plasticity and remodeling wanes (Figure 1). In parallel, glutamatergic synapses onto both excitatory pyramidal and inhibitory neurons undergo vision-driven remodeling [22, 36]. The heightened circuit plasticity that is characteristic of critical periods is no longer present once mature circuit functions are established, and active stabilization and maintenance of function take over in the adult brain [18, 24, 26, 27] (Figure 1).

Figure 1.

Figure 1

Circuit plasticity, stability, and levels of inhibition as functions of age. Circuit functions are shaped by external experiences during the critical period, when plasticity is high. Levels of cortical inhibitory neurotransmission rise through the critical period and, once optimal function is reached, contribute to the waning of plasticity and stabilization of circuit function in adults.

High levels of inhibition in adults are thought to contribute to the stabilization of mature brain function by limiting circuit plasticity (Figure 1) [24]. Indeed, acute reduction in levels of inhibitory neurotransmitters in the mature visual cortex can reinstate visual plasticity [37, 38]. On a cellular level, manipulation of activity of soma-targeting, fast-spiking Parvalbumin (PV) and dendrite-targeting, regular-spiking Somatostatin (SST) circuitry results in robust changes in visual plasticity [18, 3947]. These interneuron classes exert powerful control over critical period onset: transplantation of embryonic PV and SST interneurons derived from medial ganglionic eminence into the adult visual cortex can trigger another visual critical period, with remarkably preserved timing of onset and closure [40, 48]. These precise developmental sequences indicate tight genetic control of interneuron maturation, which is well described for PV interneurons [4952]. PV interneuron maturation is directed, at least in part, by the complex interplay of Orthodenticle Homeobox 2 (Otx2), a non-cell-autonomous transcription factor secreted from the retina and choroid plexus, and the extracellular matrix (ECM) deposited around interneurons [50, 51, 5357]. The capture of Otx2 by the ECM that surrounds PV interneurons is essential for the onset of their maturation [57, 58], and misregulated Otx2 expression and localization lead to deficits in critical period plasticity [50, 51, 53, 5760]. The stereotypic circuit integration of transplanted PV interneurons supports the additional involvement of cell-autonomous factors that control the development of synaptic connectivity of these cells [48]. Activity-driven assembly of local excitatory inputs onto PV interneurons prior to critical period opening in mice is pivotal for its onset [19]. The parallel increase in interneuron expression of synapse-organizing adhesion proteins such as Neuroligins and SynCAMs (see below) further supports that synaptogenesis is an important factor in PV cell maturation [61]. A recent study demonstrated that PV interneuron-expressed Synaptic Cell Adhesion Molecule 1 (SynCAM 1) is required for critical period closure, which involves the SynCAM 1-dependent formation of long-range excitatory inputs from the thalamus [18]. In the following sections, we describe known molecular regulators of synaptic connectivity in the visual cortex.

3. Roles of Synapse-Organizing Proteins in Visual Cortex Synaptogenesis and Plasticity

Cell adhesion proteins that instruct synapse assembly and their maintenance are expressed in diverse neuron types and in glial cells [6266]. These proteins were initially identified as potent drivers of presynaptic differentiation in an in vitro heterologous system, and they form complexes in trans (for adhesion) and in cis (for lateral assembly) [6670]. After instructing the assembly of pre- and postsynaptic specializations into functional synapses, these proteins can maintain synapses in the maturing brain [7173]. Recent research suggests that distinct pairs of synaptic organizers impact different synapse types in the cortex [74, 75] as summarized below.

3.1. Neuroligins and Hevin

Neuroligins are prototypical postsynaptic synapse organizers and type 1 transmembrane proteins that interact with presynaptic Neurexins [67, 76, 77]. Neuroligins 1-4 are redundant for synapse assembly in vivo but are key for synapse maturation and function [65, 77]. Their interactions with α- and β-Neurexins affect both inhibitory and excitatory presynaptic functions, as well as recruitment of synapse scaffolding components and neurotransmitter receptors to the postsynapse [7883]. Different combinations of Neuroligin/Neurexin complexes can potentially specify different synapse types, and the repertoire of these interactions is expanded by splicing isoforms [84] and accessory extracellular linker proteins, such as glia-expressed Hevin [85] (Figure 2). While cell-surface expression levels of Neuroligins can be regulated by visual activity [86], it is the removal of Hevin in the visual cortex that impairs Neuroligin 1/Neurexin interaction and reduces the density of thalamic inputs (Figure 2) [85, 87]. Mice that lack Hevin show impaired ocular dominance and critical period opening, suggesting that the assembly of thalamocortical synapses by Neuroligin 1/Neurexin/Hevin interactions controls the opening of the visual critical period [85]. Hevin knockout mice display a compensatory increase in local, intracortical excitatory synapses that is insufficient to open the critical period, indicating that specific synapse types are key for different circuit functions [85].

Figure 2.

Figure 2

Synaptic connectivity of the visual thalamocortical circuit. (a) Excitatory inputs carrying visual information from the dorsal lateral geniculate nucleus (dLGN, green) in the thalamus innervate pyramidal (PYR, blue box) neurons and Parvalbumin (PV, red box) interneurons in thalamorecipient layers of the visual cortex (red box). PV interneurons receive inputs from neighbouring PYR neurons across cortical layers. Astrocytes (AST) express molecules that can act as synaptic bridges between thalamocortical axons and their postsynaptic targets (Hevin, blue box). (b) Red box: the synaptic immunoglobulin SynCAM 1 organizes thalamic inputs onto PV interneurons. Presynaptic interacting partners of SynCAM 1 at thalamocortical synapses are currently unknown, but other SynCAMs (2 and 3) are candidates. Blue box: Neuroligin 1 on PYR cells interacts with Neurexin-1α via the astrocytic Hevin (brown) to organize thalamic inputs onto PYR cells. Astrocytic process is depicted in orange. Presynapse (Pre) and postsynapse (Post) are indicated.

3.2. SynCAMs

Similar to Neuroligins, SynCAM cell adhesion complexes are prominently expressed in the visual cortex and recent research highlighted their role in timing the onset and offset of cortical critical periods [18, 88, 89]. SynCAMs are potent inducers of synapse differentiation in vitro [68, 90] that contribute to excitatory synapse formation and maintenance in vivo across different brain regions [18, 72, 91, 92]. SynCAMs 1-4 are immunoglobulin domain type-1 transmembrane proteins, whose homo- and heterophilic interactions across the synaptic cleft organize excitatory synapses [90, 93]. The most studied family member is SynCAM 1 that interacts with itself and SynCAMs 2 and 3 in cis and trans [90, 9395]. SynCAM 1 controls both pre- and postsynaptic properties through its interactions across the synaptic cleft and affects cytoskeletal remodeling and receptor recruitment at the synapse through its intracellular partners [72, 88, 96, 97]. In the cortex, SynCAM 1 recruits large and potent long-range thalamocortical excitatory inputs onto PV interneurons (Figure 2) [18, 91]. Further, PV-expressed SynCAM 1 is regulated by visual activity [18]. In agreement with its role in PV maturation, SynCAM 1 is a regulatory target of Otx2 [52] and is essential for maturation of PV interneurons in the visual cortex. Similar to Hevin knockout mice, mice that lack SynCAM 1 have fewer thalamocortical synapses (Figure 2) [18]. This results in poorly developed binocular vision and an extended visual critical period [18]. SynCAM 1 is actively required to control plasticity and even a brief cell-specific removal of SynCAM 1 from PV interneurons results in increased levels of visual plasticity in the adult brain, pointing to a key role for thalamic inputs onto PV interneurons in the regulation of plasticity in mature circuits [18]. This cell-autonomous, postsynaptic requirement for SynCAM 1 in PV interneurons suggests that postsynaptic SynCAM 1 engages currently unknown transsynaptic partners in thalamic axons to assemble thalamocortical synapses (Figure 2) [18, 90].

3.3. Distinct Roles of Neuroligin/Hevin and SynCAM 1

As reviewed above, both Neuroligin/Neurexin interaction (through Hevin) and SynCAM 1 play a role in the formation of thalamocortical synapses but with opposing effects on visual plasticity [18, 85]. Lack of Hevin prevents the critical period from opening, whereas lack of SynCAM 1 prevents it from closure [18, 85]. However, Hevin appears to affect most, if not all, excitatory thalamocortical synapses formed across neuron types, while SynCAM 1 shows a PV-specific action on thalamocortical inputs [18, 85, 87]. It is possible that gross development of thalamocortical synapses mediated by Neuroligin 1/Neurexin-1α/Hevin interaction is a prerequisite for the critical period to open, and PV-specific recruitment and maintenance of thalamic inputs by SynCAM 1 is necessary for subsequent critical period closure. Future studies can address whether any cross-talk between the two pathways exists in PV interneurons, as well as whether these molecules control plasticity through thalamocortical synapses in other sensory or association areas [98, 99].

3.4. Extracellular Matrix, LRRTMs, and NCAM

So far, only SynCAMs and Neuroligins (through Hevin) have demonstrated roles in visual plasticity, but recent research demonstrated that members of the leucine-rich repeat transmembrane (LRRTM) family of molecules can interact at synapses with the extracellular matrix (ECM), a powerful regulator of visual plasticity [34, 100]. LRRTMs 1-4 are another group of type 1 transmembrane proteins that bind Neurexins, potently induce excitatory presynaptic differentiation and regulate receptor composition at the synapse [70, 101, 102]. LRRTM-deficient mice show defects in both pre- and postsynaptic functions, and their repertoire of interactions with Neurexins can impact diverse synapse types [70, 74, 103, 104]. LRRTMs bind Neurexins across the synaptic cleft similar to Neuroligins, but they can also instruct differential synapse formation through interactions with components of the ECM [100102, 105]. As the ECM in the form of perineuronal nets exerts powerful control over the maturation of PV interneurons and critical period timing [34, 58, 106111], the role of LRRTMs in visual plasticity warrants future investigation. An ECM-related protein modification, the polysialylation of neural cell adhesion molecule (NCAM), guides the development of inhibitory connections in the visual cortex [112]. NCAM is an immunoglobulin superfamily protein that regulates early synapse development and is mostly found in a glycan-bound state [113]. Visual activity-dependent polysialylation of NCAM affects its homophilic interactions across the synapse, and removal of PSA from NCAM can shift the critical period to an earlier time point through modulation of PV connectivity [112]. SynCAM 1 can also be found in the polysialylated state, pointing to yet another way to diversify the function and interactions of synapse organizers [114, 115].

4. Therapeutic Potential of Synapse-Organizing Molecules in Amblyopia and Neurodevelopmental Disorders

The diminished plasticity of mature circuits is thought to preclude recovery from early visual insults such as amblyopia. Patching or visual stimulation can provide therapeutic interventions before the critical period closes, but the reduced capacity of visual synapses for activity-driven remodeling likely interferes with the success of interventions later in life [116118]. The reduced potential of the adult brain to rewire itself may also impede treatments for other neurodevelopmental disorders, such as autism-spectrum disorders (ASD) and schizophrenia [55, 119122]. Studies of amblyopia and visual plasticity have identified promising interventions for recovering the potential for plasticity in the entire brain, such as neuromodulation of inhibitory connections [46, 123], systemic regulation of inhibitory neurotransmission [124], and sensory manipulations that may target the activity of thalamocortical synapses [125127]. On a more specific level, recent research has demonstrated that the cell-specific manipulation of thalamocortical synapses reinstates plastic features to the adult visual cortex [18]. As distinct circuits regulate plasticity of binocularity and improvements in visual acuity in amblyopia models [128, 129], targeting synapses that organize different circuits may hence represent a way to precisely manipulate different brain functions.

How do we target specific synapse types? Transient genetic silencing tools in combination with cell-specific adenoviral vectors could allow manipulating synapse organizers in a cell type-and-region-specific manner [130132]. Further, peptide fragments of extracellular domains of synapse organizers can impair their interactions in vitro and may have a similar effect in vivo [86, 93]. Indeed, a recent study using a combination of these approaches to manipulate signaling by a secreted molecule, semaphorin 3A, demonstrated its feasibility in rat models of amblyopia [133]. Such approaches may increase plasticity to a level sufficient for visual therapy to have effects in adult amblyopic patients [116118, 133136]. These tools could provide a localized therapy that can be restricted to the visual cortex alone, thus precluding systemic side-effects. A transient elevation of cortical plasticity may even improve therapeutic outcomes for other neurodevelopmental disorders [137140]. Approaches that result in the elevated potential for plasticity in the mature brain could additionally enhance recovery after brain injury, including traumatic brain injury (TBI) and stroke [120, 141147]. In combination with targeting mechanisms that control neuronal specification [148152], tools that target specific synapse types hence offer highly specific therapeutic interventions for developmental brain disorders. Future studies on mechanisms of synapse specification within distinct circuits are likely to provide an avenue for progress in this area.

Acknowledgments

This work was supported by a National Institute of Health grant (R01 DA018928, to T.B.) and the Knights Templar Eye Foundation Career Starter Grant in Paediatric Ophthalmology (to A.R.).

Contributor Information

Adema Ribic, Email: adema.ribic@gmail.com.

Thomas Biederer, Email: thomas.biederer@tufts.edu.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  • 1.Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology. 1970;206(2):419–436. doi: 10.1113/jphysiol.1970.sp009022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hubel D. H., Wiesel T. N., LeVay S. Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. Cold Spring Harbor Symposia on Quantitative Biology. 1976;40:581–589. doi: 10.1101/SQB.1976.040.01.054. [DOI] [PubMed] [Google Scholar]
  • 3.Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 1977;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  • 4.Le Vay S., Wiesel T. N., Hubel D. H. The development of ocular dominance columns in normal and visually deprived monkeys. The Journal of Comparative Neurology. 1980;191(1):1–51. doi: 10.1002/cne.901910102. [DOI] [PubMed] [Google Scholar]
  • 5.Antonini A., Fagiolini M., Stryker M. P. Anatomical correlates of functional plasticity in mouse visual cortex. The Journal of Neuroscience. 1999;19(11):4388–4406. doi: 10.1523/JNEUROSCI.19-11-04388.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Antonini A., Stryker M. P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. The Journal of Neuroscience. 1993;13(8):3549–3573. doi: 10.1523/JNEUROSCI.13-08-03549.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Antonini A., Gillespie D. C., Crair M. C., Stryker M. P. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. The Journal of Neuroscience. 1998;18(23):9896–9909. doi: 10.1523/JNEUROSCI.18-23-09896.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lund J. S., Holbach S. M., Chung W. W. Postnatal development of thalamic recipient neurons in the monkey striate cortex: Influence of afferent driving on spine acquisition and dendritic growth of layer 4c spiny stellate neurons. The Journal of Comparative Neurology. 1991;309(1):129–140. doi: 10.1002/cne.903090109. [DOI] [PubMed] [Google Scholar]
  • 9.Lachica E. A., Crooks M. W., Casagrande V. A. Effects of monocular deprivation on the morphology of retinogeniculate axon arbors in a primate. The Journal of Comparative Neurology. 1990;296(2):303–323. doi: 10.1002/cne.902960210. [DOI] [PubMed] [Google Scholar]
  • 10.Huttenlocher P. R. Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency. 1984;88(5):488–496. [PubMed] [Google Scholar]
  • 11.Zhou Y., Lai B., Gan W. B. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Scientific Reports. 2017;7(1, article 4977) doi: 10.1038/s41598-017-05337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yu H., Majewska A. K., Sur M. Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(52):21235–21240. doi: 10.1073/pnas.1108270109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.De Felipe J., Marco P., Fairen A., Jones E. G. Inhibitory synaptogenesis in mouse somatosensory cortex. Cerebral Cortex. 1997;7(7):619–634. doi: 10.1093/cercor/7.7.619. [DOI] [PubMed] [Google Scholar]
  • 14.Blue M. E., Parnavelas J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. Journal of Neurocytology. 1983;12(4):697–712. doi: 10.1007/BF01181531. [DOI] [PubMed] [Google Scholar]
  • 15.Huttenlocher P. R., de Courten C., Garey L. J., Van der Loos H. Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development. Neuroscience Letters. 1982;33(3):247–252. doi: 10.1016/0304-3940(82)90379-2. [DOI] [PubMed] [Google Scholar]
  • 16.Antonini A., Stryker M. P. Rapid remodeling of axonal arbors in the visual cortex. Science. 1993;260(5115):1819–1821. doi: 10.1126/science.8511592. [DOI] [PubMed] [Google Scholar]
  • 17.Antonini A., Stryker M. P. Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. The Journal of Comparative Neurology. 1996;369(1):64–82. doi: 10.1002/(SICI)1096-9861(19960520)369:1<64::AID-CNE5>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 18.Ribic A., Crair M. C., Biederer T. Synapse-selective control of cortical maturation and plasticity by parvalbumin-autonomous action of SynCAM 1. Cell Reports. 2019;26(2):381–393.e6. doi: 10.1016/j.celrep.2018.12.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kuhlman S. J., Olivas N. D., Tring E., Ikrar T., Xu X., Trachtenberg J. T. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature. 2013;501(7468):543–546. doi: 10.1038/nature12485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stephany C. E., Ikrar T., Nguyen C., Xu X., McGee A. W. Nogo receptor 1 confines a disinhibitory microcircuit to the critical period in visual cortex. The Journal of Neuroscience. 2016;36(43):11006–11012. doi: 10.1523/JNEUROSCI.0935-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Sun Y., Ikrar T., Davis M. F., et al. Neuregulin-1/ErbB4 signaling regulates visual cortical plasticity. Neuron. 2016;92(1):160–173. doi: 10.1016/j.neuron.2016.08.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Miao Q., Yao L., Rasch M. J., Ye Q., Li X., Zhang X. Selective maturation of temporal dynamics of intracortical excitatory transmission at the critical period onset. Cell Reports. 2016;16(6):1677–1689. doi: 10.1016/j.celrep.2016.07.013. [DOI] [PubMed] [Google Scholar]
  • 23.Ko H., Cossell L., Baragli C., et al. The emergence of functional microcircuits in visual cortex. Nature. 2013;496(7443):96–100. doi: 10.1038/nature12015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Takesian A. E., Hensch T. K. Balancing plasticity/stability across brain development. Progress in Brain Research. 2013;207:3–34. doi: 10.1016/B978-0-444-63327-9.00001-1. [DOI] [PubMed] [Google Scholar]
  • 25.Wang B. S., Sarnaik R., Cang J. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron. 2010;65(2):246–256. doi: 10.1016/j.neuron.2010.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tien N. W., Kerschensteiner D. Homeostatic plasticity in neural development. Neural Development. 2018;13(1):p. 9. doi: 10.1186/s13064-018-0105-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Vitureira N., Letellier M., Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. Current Opinion in Neurobiology. 2012;22(3):516–521. doi: 10.1016/j.conb.2011.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Chittajallu R., Isaac J. T. R. Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nature Neuroscience. 2010;13(10):1240–1248. doi: 10.1038/nn.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fagiolini M., Hensch T. K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000;404(6774):183–186. doi: 10.1038/35004582. [DOI] [PubMed] [Google Scholar]
  • 30.Hensch T. K., Fagiolini M., Mataga N., Stryker M. P., Baekkeskov S., Kash S. F. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998;282(5393):1504–1508. doi: 10.1126/science.282.5393.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Iwai Y., Fagiolini M., Obata K., Hensch T. K. Rapid critical period induction by tonic inhibition in visual cortex. The Journal of Neuroscience. 2003;23(17):6695–6702. doi: 10.1523/JNEUROSCI.23-17-06695.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ye Q., Miao Q. L. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Matrix Biology. 2013;32(6):352–363. doi: 10.1016/j.matbio.2013.04.001. [DOI] [PubMed] [Google Scholar]
  • 33.Ferrer C., Hsieh H., Wollmuth L. P. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. Journal of Neurophysiology. 2018;120(6):3063–3076. doi: 10.1152/jn.00495.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Lensjo K. K., Lepperod M. E., Dick G., Hafting T., Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. The Journal of Neuroscience. 2017;37(5):1269–1283. doi: 10.1523/JNEUROSCI.2504-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.van Versendaal D., Levelt C. N. Inhibitory interneurons in visual cortical plasticity. Cellular and Molecular Life Sciences. 2016;73(19):3677–3691. doi: 10.1007/s00018-016-2264-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lu J., Tucciarone J., Lin Y., Huang Z. J. Input-specific maturation of synaptic dynamics of parvalbumin interneurons in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(47):16895–16900. doi: 10.1073/pnas.1400694111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Harauzov A., Spolidoro M., DiCristo G., et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. The Journal of Neuroscience. 2010;30(1):361–371. doi: 10.1523/JNEUROSCI.2233-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J. W., Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–1251. doi: 10.1126/science.1072699. [DOI] [PubMed] [Google Scholar]
  • 39.Larimer P., Spatazza J., Espinosa J. S., et al. Caudal ganglionic eminence precursor transplants disperse and integrate as lineage-specific interneurons but do not induce cortical plasticity. Cell Reports. 2016;16(5):1391–1404. doi: 10.1016/j.celrep.2016.06.071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Tang Y., Stryker M. P., Alvarez-Buylla A., Espinosa J. S. Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(51):18339–18344. doi: 10.1073/pnas.1421844112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Pfeffer C. K., Xue M., He M., Huang Z. J., Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience. 2013;16(8):1068–1076. doi: 10.1038/nn.3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Fu Y., Kaneko M., Tang Y., Alvarez-Buylla A., Stryker M. P. A cortical disinhibitory circuit for enhancing adult plasticity. eLife. 2015;4, article e05558 doi: 10.7554/eLife.05558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Priya R., Rakela B., Kaneko M., et al. Vesicular GABA transporter is necessary for transplant-induced critical period plasticity in mouse visual cortex. The Journal of Neuroscience. 2019;39(14):2635–2648. doi: 10.1523/JNEUROSCI.1253-18.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yaeger C. E., Ringach D. L., Trachtenberg J. T. Neuromodulatory control of localized dendritic spiking in critical period cortex. Nature. 2019;567(7746):100–104. doi: 10.1038/s41586-019-0963-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Demars M. P., Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Molecular Brain. 2014;7(1):p. 75. doi: 10.1186/s13041-014-0075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Sadahiro M., Demars M. P., Burman P., et al. Activation of somatostatin inhibitory neurons by Lypd6-nAChRα2 system restores juvenile-like plasticity in adult visual cortex. bioRxiv; 2017. [DOI] [Google Scholar]
  • 47.Kaneko M., Stryker M. P. Sensory experience during locomotion promotes recovery of function in adult visual cortex. eLife. 2014;3, article e02798 doi: 10.7554/eLife.02798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Southwell D. G., Froemke R. C., Alvarez-Buylla A., Stryker M. P., Gandhi S. P. Cortical plasticity induced by inhibitory neuron transplantation. Science. 2010;327(5969):1145–1148. doi: 10.1126/science.1183962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Apulei J., Kim N., Testa D., et al. Non-cell autonomous OTX2 homeoprotein regulates visual cortex plasticity through Gadd45b/g. Cerebral Cortex. 2019;29(6):2384–2395. doi: 10.1093/cercor/bhy108. [DOI] [PubMed] [Google Scholar]
  • 50.Sugiyama S., Di Nardo A. A., Aizawa S., et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134(3):508–520. doi: 10.1016/j.cell.2008.05.054. [DOI] [PubMed] [Google Scholar]
  • 51.Bernard C., Prochiantz A. Otx2-PNN interaction to regulate cortical plasticity. Neural Plasticity. 2016;2016:7. doi: 10.1155/2016/7931693.7931693 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sakai A., Nakato R., Ling Y., et al. Genome-wide target analyses of Otx2 homeoprotein in postnatal cortex. Frontiers in Neuroscience. 2017;11:p. 307. doi: 10.3389/fnins.2017.00307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Spatazza J., Lee H. H. C., di Nardo A. A., et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports. 2013;3(6):1815–1823. doi: 10.1016/j.celrep.2013.05.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lee H. H. C., Bernard C., Ye Z., et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Molecular Psychiatry. 2017;22(5):680–688. doi: 10.1038/mp.2017.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Morishita H., Cabungcal J. H., Chen Y., Do K. Q., Hensch T. K. Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biological Psychiatry. 2015;78(6):396–402. doi: 10.1016/j.biopsych.2014.12.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Hou X., Yoshioka N., Tsukano H., et al. Chondroitin sulfate is required for onset and offset of critical period plasticity in visual cortex. Scientific Reports. 2017;7(1, article 12646) doi: 10.1038/s41598-017-04007-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Miyata S., Komatsu Y., Yoshimura Y., Taya C., Kitagawa H. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nature Neuroscience. 2012;15(3):414–422. doi: 10.1038/nn.3023. [DOI] [PubMed] [Google Scholar]
  • 58.Beurdeley M., Spatazza J., Lee H. H. C., et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. The Journal of Neuroscience. 2012;32(27):9429–9437. doi: 10.1523/JNEUROSCI.0394-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Despras G., Bernard C., Perrot A., et al. Toward libraries of biotinylated chondroitin sulfate analogues: From synthesis to in vivo studies. Chemistry - A European Journal. 2013;19(2):531–540. doi: 10.1002/chem.201202173. [DOI] [PubMed] [Google Scholar]
  • 60.Favuzzi E., Marques-Smith A., Deogracias R., et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95(3):639–655.e10. doi: 10.1016/j.neuron.2017.06.028. [DOI] [PubMed] [Google Scholar]
  • 61.Favuzzi E., Deogracias R., Marques-Smith A., et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science. 2019;363(6425):413–417. doi: 10.1126/science.aau8977. [DOI] [PubMed] [Google Scholar]
  • 62.Missler M., Südhof T. C., Biederer T. Synaptic cell adhesion. Cold Spring Harbor Perspectives in Biology. 2012;4(4, article a005694) doi: 10.1101/cshperspect.a005694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Biederer T., Kaeser P. S., Blanpied T. A. Transcellular nanoalignment of synaptic function. Neuron. 2017;96(3):680–696. doi: 10.1016/j.neuron.2017.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kolodkin A. L., Tessier-Lavigne M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harbor Perspectives in Biology. 2011;3(6) doi: 10.1101/cshperspect.a001727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Sudhof T. C. Towards an understanding of synapse formation. Neuron. 2018;100(2):276–293. doi: 10.1016/j.neuron.2018.09.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Shen K., Scheiffele P. Genetics and cell biology of building specific synaptic connectivity. Annual Review of Neuroscience. 2010;33(1):473–507. doi: 10.1146/annurev.neuro.051508.135302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Scheiffele P., Fan J., Choih J., Fetter R., Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell. 2000;101(6):657–669. doi: 10.1016/S0092-8674(00)80877-6. [DOI] [PubMed] [Google Scholar]
  • 68.Biederer T., Sara Y., Mozhayeva M., et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science. 2002;297(5586):1525–1531. doi: 10.1126/science.1072356. [DOI] [PubMed] [Google Scholar]
  • 69.Czondor K., Thoumine O. Synaptogenic assays using neurons cultured on micropatterned substrates. Methods in Molecular Biology. 2017;1538:29–44. doi: 10.1007/978-1-4939-6688-2_3. [DOI] [PubMed] [Google Scholar]
  • 70.Linhoff M. W., Lauren J., Cassidy R. M., et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61(5):734–749. doi: 10.1016/j.neuron.2009.01.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Korber N., Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Scientific Reports. 2016;6(1, article 24241) doi: 10.1038/srep24241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Robbins E. M., Krupp A. J., Perez de Arce K., et al. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron. 2010;68(5):894–906. doi: 10.1016/j.neuron.2010.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Mendez P., De Roo M., Poglia L., Klauser P., Muller D. N-cadherin mediates plasticity-induced long-term spine stabilization. Journal of Cell Biology. 2010;189(3):589–600. doi: 10.1083/jcb.201003007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Schroeder A., Vanderlinden J., Vints K., et al. A modular organization of LRR protein-mediated synaptic adhesion defines synapse identity. Neuron. 2018;99(2):329–344.e7. doi: 10.1016/j.neuron.2018.06.026. [DOI] [PubMed] [Google Scholar]
  • 75.Sando R., Jiang X., Sudhof T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science. 2019;363(6429, article eaav7969) doi: 10.1126/science.aav7969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Dean C., Scholl F. G., Choih J., et al. Neurexin mediates the assembly of presynaptic terminals. Nature Neuroscience. 2003;6(7):708–716. doi: 10.1038/nn1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Scheiffele P. Cell-cell signaling during synapse formation in the CNS. Annual Review of Neuroscience. 2003;26(1):485–508. doi: 10.1146/annurev.neuro.26.043002.094940. [DOI] [PubMed] [Google Scholar]
  • 78.Varoqueaux F., Aramuni G., Rawson R. L., et al. Neuroligins determine synapse maturation and function. Neuron. 2006;51(6):741–754. doi: 10.1016/j.neuron.2006.09.003. [DOI] [PubMed] [Google Scholar]
  • 79.Poulopoulos A., Aramuni G., Meyer G., et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron. 2009;63(5):628–642. doi: 10.1016/j.neuron.2009.08.023. [DOI] [PubMed] [Google Scholar]
  • 80.Martenson J. S., Yamasaki T., Chaudhury N. H., Albrecht D., Tomita S. Assembly rules for GABAA receptor complexes in the brain. Elife. 2017;6 doi: 10.7554/eLife.27443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Maro G. S., Gao S., Olechwier A. M., et al. MADD-4/punctin and neurexin organize C. elegans GABAergic postsynapses through neuroligin. Neuron. 2015;86(6):1420–1432. doi: 10.1016/j.neuron.2015.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Chih B., Engelman H., Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science. 2005;307(5713):1324–1328. doi: 10.1126/science.1107470. [DOI] [PubMed] [Google Scholar]
  • 83.Heine M., Thoumine O., Mondin M., Tessier B., Giannone G., Choquet D. Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(52):20947–20952. doi: 10.1073/pnas.0804007106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Chih B., Gollan L., Scheiffele P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron. 2006;51(2):171–178. doi: 10.1016/j.neuron.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 85.Singh S. K., Stogsdill J. A., Pulimood N. S., et al. Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via hevin. Cell. 2016;164(1-2):183–196. doi: 10.1016/j.cell.2015.11.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Peixoto R. T., Kunz P. A., Kwon H., et al. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron. 2012;76(2):396–409. doi: 10.1016/j.neuron.2012.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Risher W. C., Patel S., Kim I. H., et al. Astrocytes refine cortical connectivity at dendritic spines. Elife. 2014;3 doi: 10.7554/eLife.04047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Thomas L. A., Akins M. R., Biederer T. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. The Journal of Comparative Neurology. 2008;510(1):47–67. doi: 10.1002/cne.21773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Lyckman A. W., Horng S., Leamey C. A., et al. Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(27):9409–9414. doi: 10.1073/pnas.0710172105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Fogel A. I., Akins M. R., Krupp A. J., Stagi M., Stein V., Biederer T. SynCAMs organize synapses through heterophilic adhesion. The Journal of Neuroscience. 2007;27(46):12516–12530. doi: 10.1523/JNEUROSCI.2739-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Park K. A., Ribic A., Laage Gaupp F. M., et al. Excitatory synaptic drive and feedforward inhibition in the hippocampal CA3 circuit are regulated by SynCAM 1. The Journal of Neuroscience. 2016;36(28):7464–7475. doi: 10.1523/JNEUROSCI.0189-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Ribic A., Liu X., Crair M. C., Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. The Journal of Comparative Neurology. 2014;522(4):900–920. doi: 10.1002/cne.23452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Fogel A. I., Stagi M., Perez de Arce K., Biederer T. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. The EMBO Journal. 2011;30(23):4728–4738. doi: 10.1038/emboj.2011.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Frei J. A., Andermatt I., Gesemann M., Stoeckli E. T. The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. Journal of Cell Science. 2014;127(24):5288–5302. doi: 10.1242/jcs.157032. [DOI] [PubMed] [Google Scholar]
  • 95.Ranaivoson F. M., Turk L. S., Ozgul S., et al. A proteomic screen of neuronal cell-surface molecules reveals IgLONs as structurally conserved interaction modules at the synapse. Structure. 2019;27(6):893–906.e9. doi: 10.1016/j.str.2019.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Cheadle L., Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. Journal of Cell Biology. 2012;199(6):985–1001. doi: 10.1083/jcb.201205041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Hoy J. L., Constable J. R., Vicini S., Fu Z., Washbourne P. SynCAM1 recruits NMDA receptors via protein 4.1B. Molecular and Cellular Neurosciences. 2009;42(4):466–483. doi: 10.1016/j.mcn.2009.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Blundon J. A., Roy N. C., Teubner B. J. W., et al. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science. 2017;356(6345):1352–1356. doi: 10.1126/science.aaf4612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Barre A., Berthoux C., De Bundel D., et al. Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(10):E1382–E1391. doi: 10.1073/pnas.1525586113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Siddiqui T. J., Tari P. K., Connor S. A., et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron. 2013;79(4):680–695. doi: 10.1016/j.neuron.2013.06.029. [DOI] [PubMed] [Google Scholar]
  • 101.Roppongi R. T., Karimi B., Siddiqui T. J. Role of LRRTMs in synapse development and plasticity. Neuroscience Research. 2017;116:18–28. doi: 10.1016/j.neures.2016.10.003. [DOI] [PubMed] [Google Scholar]
  • 102.Siddiqui T. J., Pancaroglu R., Kang Y., Rooyakkers A., Craig A. M. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. The Journal of Neuroscience. 2010;30(22):7495–7506. doi: 10.1523/JNEUROSCI.0470-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Bhouri M., Morishita W., Temkin P., et al. Deletion of LRRTM1 and LRRTM2 in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(23):E5382–E5389. doi: 10.1073/pnas.1803280115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Ko J., Soler-Llavina G. J., Fuccillo M. V., Malenka R. C., Sudhof T. C. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. Journal of Cell Biology. 2011;194(2):323–334. doi: 10.1083/jcb.201101072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Zhang P., Lu H., Peixoto R. T., et al. Heparan sulfate organizes neuronal synapses through neurexin partnerships. Cell. 2018;174(6):1450–1464.e23. doi: 10.1016/j.cell.2018.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Carulli D., Kwok J. C. F., Pizzorusso T. Perineuronal nets and CNS plasticity and repair. Neural Plasticity. 2016;2016:2. doi: 10.1155/2016/4327082.4327082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Carulli D., Pizzorusso T., Kwok J. C. F., et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133(8):2331–2347. doi: 10.1093/brain/awq145. [DOI] [PubMed] [Google Scholar]
  • 108.Cornez G., Madison F. N., Van der Linden A., et al. Perineuronal nets and vocal plasticity in songbirds: a proposed mechanism to explain the difference between closed-ended and open-ended learning. Developmental Neurobiology. 2017;77(8):975–994. doi: 10.1002/dneu.22485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.De Luca C., Papa M. Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochemical Research. 2016;41(7):1507–1515. doi: 10.1007/s11064-016-1876-2. [DOI] [PubMed] [Google Scholar]
  • 110.Ohira K., Takeuchi R., Iwanaga T., Miyakawa T. Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Molecular Brain. 2013;6(1):p. 43. doi: 10.1186/1756-6606-6-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Sorg B. A., Berretta S., Blacktop J. M., et al. Casting a wide net: role of perineuronal nets in neural plasticity. The Journal of Neuroscience. 2016;36(45):11459–11468. doi: 10.1523/JNEUROSCI.2351-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Di Cristo G., Chattopadhyaya B., Kuhlman S. J., et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nature Neuroscience. 2007;10(12):1569–1577. doi: 10.1038/nn2008. [DOI] [PubMed] [Google Scholar]
  • 113.Kiss J. Z., Muller D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Reviews in the Neurosciences. 2001;12(4):297–310. doi: 10.1515/revneuro.2001.12.4.297. [DOI] [PubMed] [Google Scholar]
  • 114.Guirado R., La Terra D., Bourguignon M., et al. Effects of PSA removal from NCAM on the critical period plasticity triggered by the antidepressant fluoxetine in the visual cortex. Frontiers in Cellular Neuroscience. 2016;10:p. 22. doi: 10.3389/fncel.2016.00022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Muhlenhoff M., Rollenhagen M., Werneburg S., Gerardy-Schahn R., Hildebrandt H. Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochemical Research. 2013;38(6):1134–1143. doi: 10.1007/s11064-013-0979-2. [DOI] [PubMed] [Google Scholar]
  • 116.Levi D. M., Li R. W. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vision Research. 2009;49(21):2535–2549. doi: 10.1016/j.visres.2009.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Zhou Y., Huang C., Xu P., et al. Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research. 2006;46(5):739–750. doi: 10.1016/j.visres.2005.07.031. [DOI] [PubMed] [Google Scholar]
  • 118.Polat U., Ma-Naim T., Belkin M., Sagi D. Improving vision in adult amblyopia by perceptual learning. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(17):6692–6697. doi: 10.1073/pnas.0401200101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Chang H. K., Hsu J. W., Wu J. C., et al. Traumatic brain injury in early childhood and risk of attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide longitudinal study. The Journal of Clinical Psychiatry. 2018;79(6) doi: 10.4088/JCP.17m11857. [DOI] [PubMed] [Google Scholar]
  • 120.Ismail F. Y., Fatemi A., Johnston M. V. Cerebral plasticity: windows of opportunity in the developing brain. European Journal of Paediatric Neurology. 2017;21(1):23–48. doi: 10.1016/j.ejpn.2016.07.007. [DOI] [PubMed] [Google Scholar]
  • 121.LeBlanc J. J., Fagiolini M. Autism: a “critical period” disorder? Neural Plasticity. 2011;2011:17. doi: 10.1155/2011/921680.921680 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Greenhill S. D., Juczewski K., de Haan A. M., Seaton G., Fox K., Hardingham N. R. Neurodevelopment. Adult cortical plasticity depends on an early postnatal critical period. Science. 2015;349(6246):424–427. doi: 10.1126/science.aaa8481. [DOI] [PubMed] [Google Scholar]
  • 123.Morishita H., Miwa J. M., Heintz N., Hensch T. K. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science. 2010;330(6008):1238–1240. doi: 10.1126/science.1195320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Vetencourt J. F. M., Sale A., Viegi A., et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–388. doi: 10.1126/science.1150516. [DOI] [PubMed] [Google Scholar]
  • 125.Murase S., Lantz C. L., Quinlan E. M. Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9. Elife. 2017;6 doi: 10.7554/eLife.27345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Montey K. L., Quinlan E. M. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nature Communications. 2011;2(1):p. 317. doi: 10.1038/ncomms1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Rodriguez G., Chakraborty D., Schrode K. M., et al. Cross-modal reinstatement of thalamocortical plasticity accelerates ocular dominance plasticity in adult mice. Cell Reports. 2018;24(13):3433–3440.e4. doi: 10.1016/j.celrep.2018.08.072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Stephany C.-E., Chan L. L. H., Parivash S. N., et al. Plasticity of binocularity and visual acuity are differentially limited by Nogo receptor. The Journal of Neuroscience. 2014;34(35):11631–11640. doi: 10.1523/JNEUROSCI.0545-14.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Stephany C. E., Ma X., Dorton H. M., et al. Distinct circuits for recovery of eye dominance and acuity in murine amblyopia. Current Biology. 2018;28(12):1914–1923.e5. doi: 10.1016/j.cub.2018.04.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Dimidschstein J., Chen Q., Tremblay R., et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience. 2016;19(12):1743–1749. doi: 10.1038/nn.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Graybuck L. T., Sedeño-Cortés A., Nguyen T. N., et al. Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs. bioRxiv; 2019. [DOI] [Google Scholar]
  • 132.Jüttner J., Szabo A., Gross-Scherf B., et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience. 2019;22(8):1345–1356. doi: 10.1038/s41593-019-0431-2. [DOI] [PubMed] [Google Scholar]
  • 133.Boggio E. M., Ehlert E. M., Lupori L., et al. Inhibition of semaphorin3A promotes ocular dominance plasticity in the adult rat visual cortex. Molecular Neurobiology. 2019;56(9):5987–5997. doi: 10.1007/s12035-019-1499-0. [DOI] [PubMed] [Google Scholar]
  • 134.Bonaccorsi J., Berardi N., Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Frontiers in Neural Circuits. 2014;8:p. 82. doi: 10.3389/fncir.2014.00082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Hussain Z., Webb B. S., Astle A. T., McGraw P. V. Perceptual learning reduces crowding in amblyopia and in the normal periphery. The Journal of Neuroscience. 2012;32(2):474–480. doi: 10.1523/JNEUROSCI.3845-11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Liu X. Y., Zhang T., Jia Y. L., Wang N. L., Yu C. The therapeutic impact of perceptual learning on juvenile amblyopia with or without previous patching treatment. Investigative Ophthalmology & Visual Science. 2011;52(3):1531–1538. doi: 10.1167/iovs.10-6355. [DOI] [PubMed] [Google Scholar]
  • 137.Gatto C. L., Broadie K. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Frontiers in Synaptic Neuroscience. 2010;2:p. 4. doi: 10.3389/fnsyn.2010.00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Nelson S. B., Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87(4):684–698. doi: 10.1016/j.neuron.2015.07.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Baroncelli L., Braschi C., Spolidoro M., Begenisic T., Maffei L., Sale A. Brain plasticity and disease: a matter of inhibition. Neural Plasticity. 2011;2011:11. doi: 10.1155/2011/286073.286073 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Marin O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nature Medicine. 2016;22(11):1229–1238. doi: 10.1038/nm.4225. [DOI] [PubMed] [Google Scholar]
  • 141.Nahmani M., Turrigiano G. G. Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience. 2014;283:4–16. doi: 10.1016/j.neuroscience.2014.04.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Hensch T. K., Bilimoria P. M. Re-opening windows: manipulating critical periods for brain development. Cerebrum. 2012;2012:p. 11. [PMC free article] [PubMed] [Google Scholar]
  • 143.Kwok J. C. F., Dick G., Wang D., Fawcett J. W. Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology. 2011;71(11):1073–1089. doi: 10.1002/dneu.20974. [DOI] [PubMed] [Google Scholar]
  • 144.Cramer S. C., Sur M., Dobkin B. H., et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591–1609. doi: 10.1093/brain/awr039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Prilloff S., Henrich-Noack P., Kropf S., Sabel B. A. Experience-dependent plasticity and vision restoration in rats after optic nerve crush. Journal of Neurotrauma. 2010;27(12):2295–2307. doi: 10.1089/neu.2010.1439. [DOI] [PubMed] [Google Scholar]
  • 146.Fawcett J. Molecular control of brain plasticity and repair. Progress in Brain Research. 2009;175:501–509. doi: 10.1016/S0079-6123(09)17534-9. [DOI] [PubMed] [Google Scholar]
  • 147.Spolidoro M., Sale A., Berardi N., Maffei L. Plasticity in the adult brain: lessons from the visual system. Experimental Brain Research. 2009;192(3):335–341. doi: 10.1007/s00221-008-1509-3. [DOI] [PubMed] [Google Scholar]
  • 148.Tasic B., Yao Z., Graybuck L. T., et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature. 2018;563(7729):72–78. doi: 10.1038/s41586-018-0654-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Daigle T. L., Madisen L., Hage T. A., et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell. 2018;174(2):465–480.e22. doi: 10.1016/j.cell.2018.06.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Rosenberg A. B., Roco C. M., Muscat R. A., et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360(6385):176–182. doi: 10.1126/science.aam8999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Poulin J. F., Tasic B., Hjerling-Leffler J., Trimarchi J. M., Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nature Neuroscience. 2016;19(9):1131–1141. doi: 10.1038/nn.4366. [DOI] [PubMed] [Google Scholar]
  • 152.Paul A., Crow M., Raudales R., He M., Gillis J., Huang Z. J. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell. 2017;171(3):522–539.e20. doi: 10.1016/j.cell.2017.08.032. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neural Plasticity are provided here courtesy of Wiley

RESOURCES