Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;4(4):270–276. doi: 10.1111/j.1582-4934.2000.tb00126.x

Comparative studies of the protein composition of red blood cell membranes from eight mammalian species

H Matei 1, L Frentescu 1, Gh Benga 1,
PMCID: PMC6745522  PMID: 12067461

Abstract

The polypeptide pattern of red blood cell (RBC) membranes from cow, sheep, horse, rabbit, guinea pig, rat, mouse, analyzed by polyacrylamide gel electrophoresis, was compared to human RBC counterpart. Some qualitative and quantitative differences were noted. Among the high molecular weight components the bands 2.1‐ 2.3 appeared slightly decreased in rabbit and rat and increased in sheep RBC membranes. Band 3 appeared to have a higher molecular weight in the cow, guinea pig and mouse RBCs, and a lower molecular weight in the sheep RBCs. Band 4.1 from the RBC membranes of cow, sheep, rabbit and guinea pig was splitted into two sub‐bands, while band 4.2 overlapped with band 4.1 in horse and guinea pig RBC membranes. There are marked differences in the number and position of bands in the 4.5 region, while band 4.9 is present in higher amounts in horse, rabbit and guinea pig RBC membranes. Band 6 (glyceraldehyde 3‐phosphate dehydrogenase) was undetectable in horse, rat and mouse RBC membranes and was decreased in sheep, rabbit and guinea pig. There are also major differences in the region of band 7 and below (“post‐7”). Band 8 was undetectable in horse, cow and guinea pig, and was in higher amounts in rat. A band corresponding to a molecular weight of about 22 kD in the “post‐8” region was present only in guinea pig RBC membranes.

Keywords: red blood cell, membrane proteins, mammalian

References

  • 1. Guyton A.C., Human physiology and mechanisms of diseases. 4th edition, W.B. Saunders, Philadelphia , pp. 37, 1987. [Google Scholar]
  • 2. Macey R.I., Transport of water and urea in red blood cells, Am. J. Physiol., 246:195, 1984. [DOI] [PubMed] [Google Scholar]
  • 3. Benga Gh., Water transport in red blood cell membranes, Prog. Biophys. Mol., 51:193, 1988. [DOI] [PubMed] [Google Scholar]
  • 4. Verkman A.S., Mitra A.K., Structure and function of aquaporin water channels, Am. J. Physiol., 278:13, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Benga Gh., Popescu O., Borza V., Pop V.I., Muresan A., Mocsy I., Brain A., Wriggleswoth J., Water permeability of human erythrocytes. Identification of membrane proteins involved in water transport, Eur. J. Cell. Biol., 41:252, 1986. [PubMed] [Google Scholar]
  • 6. Benga Gh., Popescu O., Pop V.I., Holmes R.P., Chloromercuribenzensulfonate binding by membranes proteins and the inhibition of water transport in human erythrocytes, Biochem., 25:1535, 1986. [DOI] [PubMed] [Google Scholar]
  • 7. Preston G.M., Caroll T.P., Guggino W.B., Agre P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science, 256:385, 1992. [DOI] [PubMed] [Google Scholar]
  • 8. Agre P., Preston G.M., Smith B.L. et al., Aquaporin CHIP: the archetypal molecular water channel, Am. J. Physiol., 265:F463, 1993. [DOI] [PubMed] [Google Scholar]
  • 9. Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J.B., Engel A., Fujiyoshi Y., Structural determinants of water permeation through aquaporin‐1, Nature, 407:599, 2000. [DOI] [PubMed] [Google Scholar]
  • 10. Benga Gh., Borza T., Popescu O., Porutiu D., Matei H., Comparative nuclear magnetic resonance studies of red blood cells from sheep and cow, Comp. Biochem. Physiol., 104:589, 1993. [DOI] [PubMed] [Google Scholar]
  • 11. Benga Gh., Chapman B.E., Gallagher C.H., Agar N.S., Kuchel P.W., NMR studies of diffusional water permeabiliy from eight species of marsupial, Comp. Biochem. Physiol., 106:515, 1993. [DOI] [PubMed] [Google Scholar]
  • 12. Benga Gh., Chapman B.E., Gallagher C.H., Cooper D., Kuchel P.W., NMR studies of diffusional water permeability of red blood cells from Macropodid marsupials (Kangaroos and Wallabies), Comp. Biochem. Physiol., 104:799, 1993. [DOI] [PubMed] [Google Scholar]
  • 13. Benga Gh., Matei H., Borza T., Porutiu D., Lupse C., Comparative nuclear magnetic resonance studies on water diffusional permeability of red blood cells from mice and rats, Comp. Biochem. Physiol., 104:491, 1993. [DOI] [PubMed] [Google Scholar]
  • 14. Benga G., Matei H., Borza T., Porutiu D., Lupse C., Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. V–Rabbit (Oryctolagus cuniculus), Comp Biochem Physiol B., 106:281–5, 1993. [DOI] [PubMed] [Google Scholar]
  • 15. Benga Gh., Chapman B.E., Hinds L., Kuchel P.W., Comparative NMR studies of diffusional water permeability of erythrocytes from some animals introduced to Australia: rat, rabbit and sheep, Comp. Haematol. Int., 4:232, 1994. [Google Scholar]
  • 16. Benga Gh., Ralston G.B., Borza T., Chapman B.E., Gallagher C.H., Kuchel P.W., Diffusional water permeability of red blood cells from Echidna (Tachyloglossus aculeatus), Comp. Biochem. Physiol., 107:45, 1994. [Google Scholar]
  • 17. Benga Gh., Borza T., Matei H., Hodor P., Frentescu L., Ghiran I., Lupse C., Comparative nuclear magnetic resonance of water permeability of red blood cells from different species. VIII. Adult and fetal guineea pig (Cavia porcellus), Comp. Haematol. Int., 5:106, 1995. [Google Scholar]
  • 18. Benga Gh., Matei H., Chapman B.E., Bulliman B.T., Gallagher C.H., Agar N.S., Kuchel P.W., Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. IX. Australian feral chicken and domestic chicken (Gallus domesticus), Comp. Haematol. Int., 6:92, 1996. [Google Scholar]
  • 19. Benga, Gh. , Grieve, S.M. , Chapman, B.E. , Gallagher, C.H. , Kuchel, P.W. , Comparative NMR studies of diffusional water permeability of red blood cells from different species. X. Camel (Camelus dromedarius) and alpaca (Lama Pacos), Comp. Haematol. Int., 9:43, 1999. [Google Scholar]
  • 20. Benga Gh., Kuchel P.W., Chapman B.E., Cox G.C., Ghiran I., Gallagher C.H., Comparative cell shape and diffusional water permeability of red blood cells from Indian elefant (Elephas Maximus) and man (Homo sapiens), Comp. Haematol. Int., 10:1, 2000. [Google Scholar]
  • 21. Lowry O.H., Rosebrough N.V, Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193:265, 1951. [PubMed] [Google Scholar]
  • 22. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 , Nature, 227:680, 1970. [DOI] [PubMed] [Google Scholar]
  • 23. Fairbanks G., Steck T.L., Wallach D.F.H., Electrophoretic analysis of the major polypeptides of the human erytrocyte membrane, Biochemistry, 10:2606, 1971. [DOI] [PubMed] [Google Scholar]
  • 24. Lenard B., Protein components of erythrocyte membranes from different animal species, Biochemistry, 9:5037, 1970. [DOI] [PubMed] [Google Scholar]
  • 25. Ballas S.K., Comparative distribution of glyceraldehyde 3‐phosphate dehydrogenase activity in human, guinea‐pig, rabbit and mouse erythrocytes, Comp. Biochem. Physiol., 87:837, 1987. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES