Abstract
This retrospective cohort study examined the effects of care continuity on the utilization of follow-up services and outcome of breast cancer patients (stages I–III) in the post-treatment phase of care. Propensity score matching and generalized estimation equations were used in the analysis of data obtained from national longitudinal databases. The continuity of care index (COCI) was calculated separately for primary care physicians (PCP) and oncologists. Our results revealed that breast cancer survivors with a higher oncology COCI were more likely than those with a lower oncology COCI to use mammography or breast ultrasound during the follow-up period (OR = 1.26, 95% CI: 1.19–1.32; OR = 1.12, 95% CI: 1.06–1.18; respectively). In terms of health outcomes, a higher oncology COCI was associated with a lower likelihood of hospitalization (OR = 0.78, 95% CI: 0.71–0.85) and emergency department use (OR = 0.88, 95% CI: 0.82–0.95). A higher PCP COCI was also associated with a lower likelihood of hospitalization (OR = 0.77, 95% CI: 0.70–0.85) and emergency department use (OR = 0.75, 95% CI: 0.68–0.82). Overall, this study determined that ambulatory care continuity is positively associated with the likelihood of using recommended follow-up care services and negatively associated with adverse health events among breast cancer survivors.
Keywords: breast cancer, survivors, continuity of care, care continuity, follow-up care, surveillance, health outcome, hospitalization, emergency department use
1. Introduction
Early diagnosis and improvements in cancer treatment have greatly enhanced the likelihood of cancer survival, and the number of cancer survivors is expected to reach 20 million by 2026 [1]. Since the National Institute of Medicine (IOM) reported on the importance of survivorship care [2], this issue has gradually attracted attention. Survivorship care has even been described as a paradigm shift in the cancer care continuum [3]. The follow-up period after cancer treatment is a distinct phase of care, involving psychosocial, community and supportive care, health promotion, regular monitoring, and long-term follow-up as well as interventions for late-effects [4,5,6].
Cancer care is a worldwide problem of considerable complexity and fragmentation [7,8]. The fact that treatment can have a major impact on the long-term health and quality of life of survivors greatly complicates disease management, and the disease burden of survivors is often underestimated. Many patients with limited resources must deal with intermittent healthcare and compromised adherence to treatment regimes. In some cases, regular surveillance care in accordance with established guidelines is underused [9,10]. In other cases, advanced imaging diagnostics (widely regarded as low-value care), are overused [9,11,12,13]. The American Society of Clinical Oncology (ASCO) has listed the overuse of advanced imaging methods for breast cancer as one of the top five issues that must be addressed in efforts to improve the quality of cancer care and reduce the associated costs [14].
Continuity of care is concerned with the quality of care over time as well as fairness and efficiency [15,16,17,18,19,20,21,22,23]. Some empirical studies have surveyed care continuity from the perspective of cancer patients [23,24,25]. Previous research has indicated that higher care continuity is associated with a stronger sense of satisfaction, higher quality of life, and better mental health [19,22]. Poor care continuity is associated with excessive consumption of medical resources, primarily through the consumption of unnecessary services [26].
One population-based study linked a lower oncology care continuity to a higher likelihood that breast cancer survivors would exceed the recommended number of visits to their oncologist [27]; however, there has been little research on the relationship between care continuity and health outcomes among cancer survivors empirically by using claims-based measurements. In addition, Taiwan has a unique medical environment which might undermine the care continuity [28]. The implementation of universal health insurance has greatly improved access to medical treatment in Taiwan; however, the family physician arrangement has not been formally implemented. This means that under the current scheme, patients may visit specialists without a referral [29].
Breast cancer is the most common form of cancer among women; however, the survival rate is relatively high [30]. Breast cancer survivors face multiple medical and psychosocial needs as they progress from treatment to survival [31]. Nonetheless, it has been shown that many breast cancer survivors do not receive adequate care [32,33,34,35]. Therefore, we employed a nationally representative longitudinal database from the universal health insurance program in Taiwan to evaluate the effects of post-treatment care continuity on follow-up care utilization and health outcomes among breast cancer survivors in this study.
2. Methods
2.1. Study Design, Data Resource, Participants
This retrospective cohort study was based on the long-form databases of the Taiwan Cancer Registry, comprising a nationally representative cohort of patients diagnosed with cancer [36,37]. Patients newly diagnosed with breast cancer between January 1, 2002 and December 31, 2007 were included. Follow-up information extending until December 31, 2012 was obtained via data linkage using profiles from the National Healthcare Insurance Database (NHIRD) and the National Register of Deaths. Data resources were collected, organized, and managed by the Health and Welfare Data Science Center (HWDC) of the Ministry of Health and Welfare (MOHW). The index date for each patient in this study was set at 366 days post-diagnosis. The follow-up period was defined as the period from one year after the index date to four years after the index date (or sooner if censored), as this covers the period in which survivors are followed-up most intensively [27]. The recurrence or death during the follow-up period was considered as censored. This study was approved by the Institutional Review Board at the National Taiwan University Hospital (IRB approval number 201405054w), which waived the requirement for informed consent.
In accordance with previous studies [38,39,40,41], patients were selected for inclusion based on the following criteria: (1) newly diagnosed with breast cancer, (2) confirmed diagnosis of cancer between 2002 and 2007, (3) diagnosis of Stage I–III breast cancer, (4) >20 years old at the time of diagnosis, and (5) survived at least two years after diagnosis. Exclusion criteria included (1) missing information including age, gender, and date of cancer diagnosis date, and (2) receiving chemotherapy or radiation therapy during the follow-up period. Additionally, our focus in this study was on care continuity in the outpatient setting, and particularly in the second year after diagnosis during which survivors switch from treatment to follow-up care. Thus, cases without any outpatient records beyond the second year after diagnosis were also excluded. In order to avoid the problem of reverse causality, the care continuity was measured for one-year period and the measurement of follow-up care and health outcome was measured for a subsequent period (Figure 1).
Figure 1.
Study design.
2.2. Variables
2.2.1. Independent Variables
The independent variable was continuity of care between patients and their physician (solely for outpatient services) during the follow-up period. We adopted the continuity of care index (COCI) to calculate care continuity due to the larger number of physician visits typical of the Taiwanese healthcare system. The COCI derived from the number of different physicians visited and the number of visits made to each physician [42]. Note that this index is less sensitive to the number of visits to physicians [43].
The equation used to derive the index is as follows:
(1) |
, where N represents the total number of primary care physician visits for a given patient, nj is the number of visits to the same physician j, and M is the total number of physicians for a given patient. COCI was calculated separately for primary care physicians (PCP) and oncology specialists. PCPs were physicians dealing with general medicine, internal medicine, family medicine, and obstetrics/gynecology [44,45,46]. Oncology specialists included subspecialists in medical oncology, hematology oncology, surgeons, or radiation oncologists.
COCI was calculated only for patients who made at least three visits, due to the fact that continuity of care would be meaningless if based a small number of visits [47,48,49]. COCI is bounded between 0 and 1, where a higher value indicates greater continuity of care. The value assigned for continuity of care has no inherent clinical meaning; therefore, we divided the sample into two groups (high and low continuity) based on the median COCI and distribution of scores across the entire study population. COCI was treated as time-varying variable for each year.
2.2.2. Dependent Variables
Measurements of follow-up care included the use of annual surveillance mammograms, breast ultrasounds, and advanced imaging tests for metastatic disease, which included chest X-rays, bone scans, liver ultrasound, computed tomography (CT) scans, positron emission tomography (PET) scans, and breast magnetic resonance imaging (MRI). The health outcomes included instances of hospital admission or emergency department visit in a given year. All outcome measures were coded as dichotomous variables.
2.2.3. Covariates
Patient characteristics included the year of diagnosis, age at the time of diagnosis, tumor stage, hormone receptor status, type of surgery, health status, occupation, and the level of insurance premiums. We used the modified Charlson Comorbidity Index (CCI) [50], the number of visits to physicians, and the likelihood of hospitalization for any reason in the year prior to breast cancer diagnosis as proxy variables for a patient health status. Modified CCI values were used to recalculate the score excluding cancer-related diagnoses. Regional characteristics included the level of urbanization and the number of physicians per square kilometer in the area of residence. The characteristics of the medical provider most frequently visited by the patient each year included the age of the physician and the average annual breast cancer volume of the physician. The characteristics of the medical institution most frequently visited by the patient each year included the accreditation level, ownership, and average annual breast cancer volume of the facility.
2.3. Statistical Analysis
In cases of bivariate analysis, the chi-square test was used for the analysis of categorical variables. The continuous variable was first checked using the Kolmogorov–Smirnov test for normality. If the data presented normal distribution, then the Student’s t-test was used; otherwise, the Mann–Whitney U Test was used. Additionally, we used propensity score matching (PSM) to minimize confounding effects [51]. In estimating propensity scores for oncology care continuity and PCP care continuity, the variables used in the logistic regression models included patient characteristics (year of diagnosis, age, tumor stage, hormone receptor status, type of surgical procedure, health status, and socioeconomic variables), regional characteristics (urbanization and number of physicians per square kilometer in area of patient residence), physician characteristics (age, average annual breast cancer volume), and the hospital characteristics (accreditation level, ownership, and average annual breast cancer volume).
Data were randomized using nearest neighbor matching, matching without replacement, and the tolerable caliper width was set at 0.001. After matching, the sample was analyzed in terms of standardized difference to determine whether the distribution of data was balanced. Generalized estimating equations (GEEs) were used for data analysis in order to control for subject characteristics that were not observed during the study, such as healthcare-seeking behavior. Note that GEE methods are commonly used for the analysis of correlated data to obtain unbiased estimates of coefficients despite possible misspecification of the correlation structure [52]. To avoid over-adjustment, we opted not to include in our analysis any variables that had been used in propensity score matching and had been balanced after matching.
3. Results
3.1. Patient Characteristics
This study included patients newly diagnosed with breast cancer (Stage I, II, or III) between 2002 and 2007. A total of 18,031 patients were included in the analysis. Table 1 presents the distribution of baseline characteristics of the sample grouped according to the continuity of oncology care. Among breast cancer survivors with higher continuity of oncology care, the average age at the time of diagnosis was 51.7 years with the age distribution peaking at 45–54 years (37%), followed by 35–44 years old (22%), and 55–64 years (21%). In terms of clinical characteristics, most of the tumors were in Stage II (48%), followed by Stage I (34%). The estrogen receptor (ER)-positive rate was 52%, and progesterone receptor (PR)-positive rate was 47%. Approximately 25% of the patients underwent breast conserving surgery (BCS). In terms of basic health status, the CCI score of most of the patients was 0 (80%) or 1 (13%), and 16% were hospitalized one year prior to diagnosis. The occupation of most of the patients fell within the category of labor (31%). It was observed that 2% of the patients were physicians or family members of physicians. Most of the patients resided in urban areas (69%). The facilities most frequently visited by patients in the second year after diagnosis were medical centers (55%), most of which were non-public hospitals (80%). The physicians most frequently visited by patients were 40–59 years old (74%). Following PSM, the distributions of the variables were balanced.
Table 1.
Baseline characteristics of patients grouped according to the oncology continuity of care.
Characteristics | Pre-PSM Sample a | Post-PSM Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low COCI (n = 7133, 50%) |
High COCI (n = 7129, 50%) |
p Value |
Low COCI (n = 5545, 50%) |
High COCI (n = 5545, 50%) |
p Value |
Standardized Difference |
|||||
n | % | n | % | n | % | n | % | ||||
Year of diagnosis | 0.0064 | 0.9913 | 0.005 | ||||||||
2002 | 274 | 3.84 | 219 | 3.07 | 202 | 3.64 | 194 | 3.50 | |||
2003 | 379 | 5.31 | 334 | 4.69 | 281 | 5.07 | 274 | 4.94 | |||
2004 | 1304 | 18.28 | 1363 | 19.12 | 1035 | 18.67 | 1034 | 18.65 | |||
2005 | 1447 | 20.29 | 1568 | 21.99 | 1185 | 21.37 | 1189 | 21.44 | |||
2006 | 1706 | 23.92 | 1680 | 23.57 | 1316 | 23.73 | 1340 | 24.17 | |||
2007 | 2023 | 28.36 | 1965 | 27.56 | 1526 | 27.52 | 1514 | 27.30 | |||
Age of diagnosis | <0.0001 | 0.9199 | –0.005 | ||||||||
<35 | 326 | 4.57 | 310 | 4.35 | 244 | 4.40 | 254 | 4.58 | |||
35–44 | 1765 | 24.74 | 1597 | 22.40 | 1293 | 23.32 | 1306 | 23.55 | |||
45–54 | 2714 | 38.05 | 2662 | 37.34 | 2115 | 38.14 | 2081 | 37.53 | |||
55–64 | 1452 | 20.36 | 1508 | 21.15 | 1131 | 20.4 | 1139 | 20.54 | |||
65–74 | 654 | 9.17 | 790 | 11.08 | 563 | 10.15 | 581 | 10.48 | |||
75+ | 222 | 3.11 | 262 | 3.68 | 199 | 3.59 | 184 | 3.32 | |||
Stage | 0.0010 | 0.9819 | 0.001 | ||||||||
I | 2469 | 34.61 | 2446 | 34.31 | 1925 | 34.72 | 1918 | 34.59 | |||
II | 3222 | 45.17 | 3398 | 47.66 | 2552 | 46.02 | 2562 | 46.20 | |||
III | 1442 | 20.22 | 1285 | 18.02 | 1068 | 19.26 | 1065 | 19.21 | |||
ER | 0.0219 | 0.9362 | –0.006 | ||||||||
Negative | 1417 | 19.87 | 1307 | 18.33 | 1058 | 19.08 | 1073 | 19.35 | |||
Positive | 3541 | 49.64 | 3685 | 51.69 | 2835 | 51.13 | 2827 | 50.98 | |||
Unknown | 2175 | 30.49 | 2137 | 29.98 | 1652 | 29.79 | 1645 | 29.67 | |||
PR | 0.0004 | 0.876 | 0.002 | ||||||||
Negative | 1802 | 25.26 | 1625 | 22.79 | 1343 | 24.22 | 1326 | 23.91 | |||
Positive | 3156 | 44.25 | 3362 | 47.16 | 2549 | 45.97 | 2575 | 46.44 | |||
Unknown | 2175 | 30.49 | 2142 | 30.05 | 1653 | 29.81 | 1644 | 29.65 | |||
Type of surgery | <0.0001 | 0.548 | –0.011 | ||||||||
BCS | 2590 | 36.31 | 1784 | 25.02 | 1680 | 30.3 | 1651 | 29.77 | |||
Else | 4543 | 63.69 | 5345 | 74.98 | 3865 | 69.7 | 3894 | 70.23 | |||
CCI score | 0.1164 | 0.7611 | –0.009 | ||||||||
0 | 5661 | 79.36 | 5730 | 80.38 | 4418 | 79.68 | 4429 | 79.87 | |||
1 | 968 | 13.57 | 955 | 13.40 | 749 | 13.51 | 757 | 13.65 | |||
2+ | 504 | 7.07 | 444 | 6.23 | 378 | 6.82 | 359 | 6.47 | |||
Prior hospitalization | 0.1088 | 0.6401 | 0.009 | ||||||||
Yes | 1083 | 15.18 | 1152 | 16.16 | 872 | 15.73 | 890 | 16.05 | |||
No | 6050 | 84.82 | 5977 | 83.84 | 4673 | 84.27 | 4655 | 83.95 | |||
Number of outpatient visits | <0.0001 | 0.9904 | 0.000 | ||||||||
Low | 1808 | 25.35 | 2077 | 29.13 | 1521 | 27.43 | 1518 | 27.38 | |||
Median | 2491 | 34.92 | 2620 | 36.75 | 1964 | 35.42 | 1971 | 35.55 | |||
High | 2834 | 39.73 | 2432 | 34.11 | 2060 | 37.15 | 2056 | 37.08 | |||
Level of insurance premiums | <0.0001 | 0.9574 | –0.009 | ||||||||
Low | 1523 | 21.35 | 1552 | 21.77 | 1205 | 21.73 | 1212 | 21.86 | |||
Mid-Low | 1910 | 26.78 | 2120 | 29.74 | 1544 | 27.84 | 1560 | 28.13 | |||
Mid-High | 1489 | 20.87 | 1493 | 20.94 | 1153 | 20.79 | 1156 | 20.85 | |||
High | 2211 | 31.00 | 1964 | 27.55 | 1643 | 29.63 | 1617 | 29.16 | |||
Occupation status | 0.0002 | 0.8437 | 0.004 | ||||||||
Labor | 2362 | 33.11 | 2187 | 30.68 | 1727 | 31.15 | 1768 | 31.88 | |||
Public servant | 1868 | 26.19 | 1905 | 26.72 | 1510 | 27.23 | 1474 | 26.58 | |||
Farmer or fishermen | 861 | 12.07 | 1018 | 14.28 | 714 | 12.88 | 723 | 13.04 | |||
Low-income households b | 64 | 0.90 | 48 | 0.67 | 57 | 1.03 | 43 | 0.78 | |||
Unemployed | 1978 | 27.73 | 1971 | 27.65 | 1537 | 27.72 | 1537 | 27.72 | |||
Whether physicians/family members of physicians | 0.8187 | 0.7476 | –0.006 | ||||||||
Yes | 151 | 2.12 | 147 | 2.06 | 126 | 2.27 | 121 | 2.18 | |||
No | 6982 | 97.88 | 6982 | 97.94 | 5419 | 97.73 | 5424 | 97.82 | |||
Urbanization | <0.0001 | 0.9834 | 0.000 | ||||||||
Low | 1972 | 27.65 | 2207 | 30.96 | 1638 | 29.54 | 1639 | 29.56 | |||
High | 5161 | 72.35 | 4922 | 69.04 | 3907 | 70.46 | 3906 | 70.44 | |||
Number of physicians per square kilometer | <0.0001 | 0.8113 | –0.008 | ||||||||
Low | 3357 | 47.07 | 3612 | 50.67 | 2717 | 49.00 | 2754 | 49.67 | |||
High | 3776 | 52.94 | 3517 | 49.33 | 2828 | 51.00 | 2791 | 50.33 | |||
Age of physician | 0.0002 | 0.9917 | 0.001 | ||||||||
<40 | 1553 | 21.77 | 1439 | 20.19 | 1162 | 20.96 | 1157 | 20.87 | |||
40–59 | 5132 | 71.95 | 5251 | 73.66 | 4056 | 73.15 | 4062 | 73.26 | |||
60+ | 448 | 6.28 | 439 | 6.16 | 327 | 5.90 | 326 | 5.88 | |||
Average annual breast cancer volume of the physician | <0.0001 | 0.8578 | –0.008 | ||||||||
Low | 3972 | 55.68 | 3145 | 44.12 | 2789 | 50.30 | 2801 | 50.51 | |||
Median | 1383 | 19.39 | 2198 | 30.83 | 1299 | 23.43 | 1312 | 23.66 | |||
High | 1778 | 24.93 | 1786 | 25.05 | 1457 | 26.28 | 1432 | 25.83 | |||
Accreditation level | 0.0595 | 0.8045 | 0.005 | ||||||||
Medical center | 3799 | 53.26 | 3909 | 54.83 | 2962 | 53.42 | 2975 | 53.65 | |||
Non-medical center | 3334 | 46.74 | 3220 | 45.17 | 2583 | 46.58 | 2570 | 46.35 | |||
Ownership | <0.0001 | 0.5364 | –0.012 | ||||||||
Public hospital | 2192 | 30.73 | 1423 | 19.96 | 1372 | 24.74 | 1344 | 24.24 | |||
Non-public hospital | 4941 | 69.27 | 5706 | 80.04 | 4173 | 75.26 | 4201 | 75.76 | |||
Average annual breast cancer volume of the facility | <0.0001 | 0.7792 | –0.012 | ||||||||
Low | 3179 | 44.57 | 3506 | 49.18 | 2618 | 47.21 | 2638 | 47.57 | |||
Median | 2065 | 28.95 | 2231 | 31.29 | 1669 | 30.10 | 1680 | 30.30 | |||
High | 1889 | 26.48 | 1392 | 19.53 | 1258 | 22.69 | 1227 | 22.13 |
PSM: propensity score matching; COCI: continuity of care index; ER: estrogen receptor; PR:progesterone receptor; CCI: Charlson comorbidity index; BCS: breast cancer surgery. a The analytic sample included only the patients who made at least 3 visits for oncologists in the second year after diagnosis. b Insured income is lower than the level required for charging premium.
Table 2 presents the distribution of baseline characteristics of the sample grouped according to continuity of care by primary physicians (PCP). At the time of diagnosis, the average age of breast cancer survivors experiencing high continuity of primary care was 54.9 years with the age distribution peaking at 45–54 years (34%) followed by 55–64 years (26%). In terms of clinical characteristics, most of the tumors were in Stage II (47%) followed by Stage I (34%). The proportion of ER-positive results was 47%, and the proportion of PR-positive results was 42%. BCS accounted for 28% of the surgical procedures. In terms of basic health status, most of the patients had CCI scores of 0 (72%) or 1 (20%), and 16% were hospitalized during the year prior to diagnosis. Most of the patients were unemployed (28%) or categorized as labor (27%). It was observed that 1.6% of the patients were physicians or family members of physicians. Most of the patients resided in urban areas (65%). The hospitals most frequently visited in the second year after diagnosis were medical centers (66%), most of which were non-public hospitals (81%). The physicians most frequently visited by patients were between 40–59 years (74%). Following PSM, the distributions of the variables were balanced.
Table 2.
Baseline characteristics of patients grouped according to the PCP continuity of care.
Characteristics | Pre-PSM Sample a | Post-PSM Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low COCI (n = 3058, 49%) |
High COCI (n = 3143, 51%) |
p Value |
Low COCI (n = 2565, 50%) |
High COCI (n = 2565, 50%) |
p Value |
Standardized Difference |
|||||
n | % | n | % | n | % | n | % | ||||
Year of diagnosis | 0.0025 | 0.9954 | 0.006 | ||||||||
2002 | 122 | 3.99 | 123 | 3.91 | 100 | 3.9 | 106 | 4.13 | |||
2003 | 212 | 6.93 | 196 | 6.24 | 164 | 6.39 | 164 | 6.39 | |||
2004 | 652 | 21.32 | 625 | 19.89 | 526 | 20.51 | 530 | 20.66 | |||
2005 | 728 | 23.81 | 662 | 21.06 | 583 | 22.73 | 579 | 22.57 | |||
2006 | 624 | 20.41 | 670 | 21.32 | 546 | 21.29 | 533 | 20.78 | |||
2007 | 720 | 23.54 | 867 | 27.59 | 646 | 25.19 | 653 | 25.46 | |||
Age of diagnosis | 0.0683 | 0.9942 | 0.001 | ||||||||
<35 | 85 | 2.78 | 70 | 2.23 | 66 | 2.57 | 62 | 2.42 | |||
35–44 | 507 | 16.58 | 507 | 16.13 | 412 | 16.06 | 415 | 16.18 | |||
45–54 | 1016 | 33.22 | 1065 | 33.88 | 851 | 33.18 | 862 | 33.61 | |||
55–64 | 727 | 23.77 | 830 | 26.41 | 650 | 25.34 | 634 | 24.72 | |||
65–74 | 514 | 16.81 | 473 | 15.05 | 416 | 16.22 | 421 | 16.41 | |||
75+ | 209 | 6.83 | 198 | 6.30 | 170 | 6.63 | 171 | 6.67 | |||
Stage | 0.0961 | 0.7737 | 0.019 | ||||||||
I | 1114 | 36.43 | 1075 | 34.20 | 913 | 35.59 | 896 | 34.93 | |||
II | 1421 | 46.47 | 1478 | 47.03 | 1202 | 46.86 | 1201 | 46.82 | |||
III | 523 | 17.10 | 590 | 18.77 | 450 | 17.54 | 468 | 18.25 | |||
ER | 0.0028 | 0.871 | 0.015 | ||||||||
Negative | 761 | 24.89 | 705 | 22.43 | 607 | 23.66 | 594 | 23.16 | |||
Positive | 1482 | 48.46 | 1485 | 47.25 | 1240 | 48.34 | 1239 | 48.3 | |||
Unknown | 815 | 26.65 | 953 | 30.32 | 718 | 27.99 | 732 | 28.54 | |||
PR | 0.0034 | 0.7007 | 0.021 | ||||||||
Negative | 906 | 29.63 | 855 | 27.21 | 742 | 28.93 | 715 | 27.88 | |||
Positive | 1337 | 43.72 | 1333 | 42.41 | 1104 | 43.04 | 1117 | 43.55 | |||
Unknown | 815 | 26.65 | 955 | 30.38 | 719 | 28.03 | 733 | 28.58 | |||
Type of surgery | 0.7421 | 0.9007 | 0.003 | ||||||||
BCS | 855 | 27.96 | 867 | 27.59 | 713 | 27.8 | 709 | 27.64 | |||
Else | 2203 | 72.04 | 2276 | 72.41 | 1852 | 72.2 | 1856 | 72.36 | |||
CCI score | 0.0019 | 0.973 | 0.007 | ||||||||
0 | 2107 | 68.90 | 2261 | 71.94 | 1794 | 69.94 | 1801 | 70.21 | |||
1 | 629 | 20.57 | 629 | 20.01 | 523 | 20.39 | 520 | 20.27 | |||
2+ | 322 | 10.53 | 253 | 8.05 | 248 | 9.67 | 244 | 9.51 | |||
Prior hospitalization | 0.0755 | 0.5019 | 0.019 | ||||||||
Yes | 537 | 17.56 | 499 | 15.88 | 441 | 17.19 | 423 | 16.49 | |||
No | 2521 | 82.44 | 2644 | 84.12 | 2124 | 82.81 | 2142 | 83.51 | |||
Number of outpatient visits | <0.0001 | 0.7804 | 0.017 | ||||||||
Low | 843 | 27.57 | 1056 | 33.60 | 763 | 29.75 | 774 | 30.18 | |||
Median | 1081 | 35.35 | 1100 | 35.00 | 901 | 35.13 | 914 | 35.63 | |||
High | 1134 | 37.08 | 987 | 31.40 | 901 | 35.13 | 877 | 34.19 | |||
Level of insurance premiums | 0.0009 | 0.909 | 0.008 | ||||||||
Low | 768 | 25.11 | 777 | 24.72 | 665 | 25.93 | 655 | 25.54 | |||
Mid-Low | 749 | 24.49 | 691 | 21.99 | 593 | 23.12 | 604 | 23.55 | |||
Mid-High | 823 | 26.91 | 803 | 25.55 | 678 | 26.43 | 662 | 25.81 | |||
High | 718 | 23.48 | 872 | 27.74 | 629 | 24.52 | 644 | 25.11 | |||
Occupation status | 0.0018 | 0.9864 | 0.010 | ||||||||
Labor | 719 | 23.51 | 850 | 27.04 | 619 | 24.13 | 634 | 24.72 | |||
Public servant | 775 | 25.34 | 799 | 25.42 | 654 | 25.50 | 643 | 25.07 | |||
Farmer or fishermen | 664 | 21.71 | 575 | 18.29 | 510 | 19.88 | 506 | 19.73 | |||
Low-income households b | 35 | 1.14 | 41 | 1.30 | 35 | 1.36 | 33 | 1.29 | |||
Unemployed | 829 | 27.94 | 914 | 28.26 | 747 | 29.12 | 749 | 29.20 | |||
Whether physicians/family members of physicians | 0.1581 | 0.8071 | 0.007 | ||||||||
Yes | 35 | 1.14 | 49 | 1.56 | 33 | 1.29 | 35 | 1.36 | |||
No | 3023 | 98.86 | 3094 | 98.44 | 2532 | 98.71 | 2530 | 98.64 | |||
Urbanization | 0.0610 | 0.7276 | 0.010 | ||||||||
Low | 1151 | 37.64 | 1111 | 35.35 | 938 | 36.57 | 926 | 36.10 | |||
High | 1907 | 62.36 | 2032 | 64.65 | 1627 | 63.43 | 1639 | 63.90 | |||
Number of physicians per square kilometer | 0.2812 | 0.8736 | 0.014 | ||||||||
Low | 1554 | 50.82 | 1529 | 48.65 | 1266 | 49.35 | 1270 | 49.52 | |||
High | 1504 | 49.18 | 1614 | 51.35 | 1299 | 50.65 | 1295 | 50.48 | |||
Age of physician | <0.0001 | 0.899 | 0.012 | ||||||||
<40 | 645 | 21.09 | 550 | 17.50 | 509 | 19.84 | 502 | 19.57 | |||
40–59 | 2202 | 72.01 | 2313 | 73.59 | 1865 | 72.71 | 1864 | 72.67 | |||
60+ | 211 | 6.90 | 280 | 8.91 | 191 | 7.45 | 199 | 7.76 | |||
Average annual breast cancer volume of the physician | <0.0001 | 0.8736 | 0.014 | ||||||||
Low | 1370 | 44.80 | 1731 | 55.07 | 1271 | 49.55 | 1289 | 50.25 | |||
Median | 746 | 24.40 | 799 | 25.42 | 672 | 26.2 | 666 | 25.96 | |||
High | 942 | 30.80 | 613 | 19.50 | 622 | 24.25 | 610 | 23.78 | |||
Accreditation level | <0.0001 | 0.9082 | 0.003 | ||||||||
Medical center | 1255 | 41.04 | 1069 | 34.01 | 964 | 37.58 | 960 | 37.43 | |||
Non-medical center | 1803 | 58.96 | 2074 | 65.99 | 1601 | 62.42 | 1605 | 62.57 | |||
Ownership | <0.0001 | 0.6116 | 0.014 | ||||||||
Public hospital | 730 | 23.87 | 608 | 19.34 | 550 | 21.44 | 565 | 22.03 | |||
Non-public hospital | 2328 | 76.13 | 2535 | 80.66 | 2015 | 78.56 | 2000 | 77.97 | |||
Average annual breast cancer volume of the facility | <0.0001 | 0.9726 | 0.003 | ||||||||
Low | 1399 | 45.75 | 1692 | 53.83 | 1269 | 49.47 | 1269 | 49.47 | |||
Median | 851 | 27.83 | 766 | 24.37 | 674 | 26.28 | 680 | 26.51 | |||
High | 808 | 26.42 | 685 | 21.79 | 622 | 24.25 | 616 | 24.02 |
PCP: primary care physician; PSM: propensity score matching; COCI: continuity of care index; ER: estrogen receptor; PR: progesterone receptor; CCI: Charlson Comorbidity Index; BCS: breast cancer surgery. a The analytic sample included only the patients who made at least three visits for primary care physicians in the second year after diagnosis. b Insured income is lower than the level required for charging premium.
3.2. Distribution of Care Continuity, Follow-Up Care, and Health Outcome
Table 3 presents the values of ambulatory care continuity, the percentage of follow-up service utilization, and negative health outcomes in the various follow-up periods. The average continuity of oncology care value was 0.70–0.72, and the average continuity of PCP care value was 0.52–0.54. In terms of follow-up services, 56–57% of the breast cancer survivors underwent mammography and 73–75% underwent breast ultrasound. Advanced imaging tests were administered to 82–85% of the patients. In terms of health outcomes, 11–13% of the patients were hospitalized and 12–15% visited the emergency department in each of the years (Table 3).
Table 3.
Summary statistics for main interest variables according to follow-up period.
Variable | Follow-Up Period 1 (n = 18031) |
Follow-Up Period 2 (n = 16904) |
Follow-Up Period 3 (n = 15990) |
Follow-Up Period 4 (n = 15237) |
---|---|---|---|---|
Continuity of care | mean (SD) | mean (SD) | mean (SD) | mean (SD) |
Oncology COCI | 0.71 (0.28) | 0.72 (0.29) | 0.71 (0.29) | 0.70 (0.30) |
PCP COCI | 0.52 (0.31) | 0.54 (0.31) | 0.54 (0.31) | 0.54 (0.30) |
Follow-up service | % | % | % | % |
Mammography # | 56.63 | 55.54 | 56.77 | 56.96 |
Breast Ultrasound # | 74.63 | 74.26 | 73.13 | 73.73 |
Mammography or Breast Ultrasound # | 79.89 | 78.49 | 77.55 | 75.28 |
Advanced Imaging Taking | 84.75 | 83.62 | 82.95 | 82.18 |
Health Outcome | % | % | % | % |
Hospitalization | 13.06 | 10.59 | 10.57 | 10.92 |
Emergency Department Use | 12.03 | 13.36 | 14.13 | 14.67 |
COCI: continuity of care index; PCP: primary care physician. # Excludes women with a history of bilateral mastectomy.
3.3. Effect of Oncology Care Continuity and PCP Care Continuity
Table 4 lists sample analysis after PSM. The distribution of each variable was balanced; therefore, we did not include the covariates used for adjustment; i.e., the table presents crude odds ratios). In terms of follow-up care utilization, breast cancer survivors with a higher oncology COCI was more likely to use mammography (OR = 1.26, 95% CI: 1.19–1.32), breast ultrasound (OR = 1.12, 95% CI: 1.06–1.18), or advanced imaging tests (OR = 1.47, 95% CI: 1.36–1.60). Primary care COCI was not associated with the use of these services. In terms of health outcomes, a higher oncology COCI was associated with a lower likelihood of hospitalization (OR = 0.78, 95% CI: 0.71–0.85) and lower likelihood of emergency department use (OR = 0.88, 95% CI: 0.82–0.95). Similarly, a higher primary care COCI was associated with lower likelihood of hospitalization (OR = 0.77, 95% CI: 0.70–0.85) and lower likelihood of emergency department use (OR = 0.75, 95% CI: 0.68–0.82). In addition, we used subgroup analysis to explore the potential effects of other variables on the association between continuity of care and the likelihood of adverse health events. The results are presented in Appendix A, Figure A1.
Table 4.
Generalized estimating equation models for the effect of continuity of care.
Variable | Mammography | Breast Ultrasound | Advanced Imaging Test |
Hospitalization | Emergency Department Use | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | ||||||
Oncology COCI a | 1.26 | 1.19 | 1.32 | 1.12 | 1.06 | 1.18 | 1.47 | 1.36 | 1.60 | 0.78 | 0.71 | 0.85 | 0.88 | 0.82 | 0.95 |
PCP COCI a | 1.02 | 0.95 | 1.09 | 0.95 | 0.88 | 1.03 | 1.01 | 0.93 | 1.10 | 0.77 | 0.70 | 0.85 | 0.75 | 0.68 | 0.82 |
COCI: Continuity of Care Index; PCP: Primary care physician; OR: Odds ratio; CI: Confidence interval. a Reference group is lower continuity of care. Using a generalized estimating equation model with binominal distribution with logit link. To avoid over-adjustment, we opted not to include in our analysis any variables that had been used in propensity score matching and had been balanced after matching.
4. Discussion
This study examined the correlations between ambulatory continuity of care (by oncologists and primary care physicians) and the utilization of follow-up care by breast cancer survivors and their health outcomes.
Existing guidelines suggest that breast cancer survivors regularly undergo mammography in the first five years of the follow-up period; however, only 56%–57% of breast cancer survivors in this study actually undergo annual mammography during that period. The use of mammography by breast cancer survivors was estimated at 41% in South Korea [53], 54% in the UK [34], and 47%–82% in the US [9,44,46,54,55]. Considering the fear of pain caused by mammography and the higher density of breast tissue in Asian women, it is not uncommon for clinicians to opt for breast ultrasound as an alternative for follow-up monitoring. We discovered that 80% of the breast cancer survivors underwent mammography or breast ultrasonography in each year of the follow-up period.
On the other hand, we observed that 80% of breast cancer survivors used advanced imaging tests that were not recommended in current guidelines. Based on a review of medical records, Hahn et al. reported that 55% of breast cancer survivors in the US underwent at least one imaging examination that was not recommended for the monitoring of cancer status [22]. Note that we were unable to confirm the purpose of using the various examinations with administrative datasets; therefore, the relevant proportion may be overestimated. This type of imaging test exposes the patient to unnecessary high doses of radiation and many imaging tests are prone to false positive results, which can lead to anxiety and in some cases unnecessary invasive treatment [14]. In one study, it was surmised that the use of unnecessary imaging tests can be attributed to requests from patients for more aggressive examinations [56].
In the current study, the average ambulatory COCI values were as follows: oncology specialists (0.71) and primary care physicians (0.54). In relevant empirical studies on chronic diseases in the past, the mean COCI of outpatient care provided by physicians was 0.66 for asthma patients [57], 0.55–0.79 for patients with chronic obstructive pulmonary disease [57,58,59], 0.33–0.55 for patients with chronic heart failure [60], 0.50–0.71 for patients with diabetes [58], and 0.74 for patients with hypertension [57]. Continuity of care is related to disease characteristics; therefore, patients requiring long-term treatment and follow-up tend to have better ambulatory continuity of care [59]. The higher COCI values observed in this study may correlate with the risk of recurrence and the requirements of health management (e.g., dealing with late-effect symptoms). Anxiety about recurrence often prompts breast cancer survivors to seek follow-up support from oncologists [61].
Our results revealed that patients who continued to receive care from their oncologist were more likely to use mammography and/or breast ultrasonography, whereas patients who received follow-up care from their primary care physician were not likely to do so. Additionally, our results indicate that continuity of care, no matter for oncologists or for PCP, is negatively associated with hospitalization and emergency department visits. This result is consistent with the influence direction reported in previous studies [20,62,63,64,65,66]. Continuity of care can promote a willingness on the part of patients to communicate disease-related information. It also makes it easier for patients and their families to deal with the disease. It appears that continuity of care can alter the health behavior of patients [67]. A good physician–patient relationship may increase the likelihood that the patient will seek medical help before the condition becomes urgent, thereby reducing the possibility of hospital admission or emergency department use. Long-term physician–patient relationships also make it easier for the physician to understand changes in the health status and needs of the patient. Patients who feel trust and satisfaction with their physician are more likely to comply with disease management instructions, such as compliance in taking medication [68]. At the provider level, regular care is highly conducive to information continuity. Lack of care continuity has been associated with a higher number of medical errors, such as duplicate medication and inappropriate medication [49,69,70].
This study has several limitations. First, the secondary database used in this study did not include clinical test values or data pertaining to comprehensive health status (e.g., awareness and physiological functions), socio-economic status (e.g., education level and actual income), health literacy, social network, psychological support resources, diet or exercise, or the life style choices of breast cancer survivors. We were also unable to confirm the care decision-making process, which made it impossible to determine whether the use of care services was related to the attitudes of health care providers or patient preferences. Furthermore, our use of the National Health Insurance Research Database made it impossible to obtain relevant information on self-paid health examinations from other archives. We were unable to confirm the reasons for using the various imaging tests; i.e., it is difficult to distinguish between surveillance and diagnostic procedures. This increases the likelihood that we overestimated the use of low-value (non-recommended) imaging diagnostics. Third, the indicators of continuity of care adopted in this study reflect only the degree to which patients sought medical care from regular medical providers. Thus, it was not possible for us to examine the variables related to physician–patient relationships, communication, and trust. Our analysis was also limited to physicians, such that the characteristics of the entire medical team could not be taken into consideration. Finally, it is possible that the influence of continuity of care may vary over time. This issue could be addressed in future studies.
5. Conclusions
This study provides evidence that breast cancer survivors receiving ambulatory care continuity are more likely to use recommended surveillance care services and less likely to experience negative health events. Maintaining regular source of care should be adequately addressed in the post-treatment phase of cancer care.
Acknowledgments
The study is based on data provided by Ministry of Health and Welfare (MOHW), and managed by the Health and Welfare Data Science Center of Ministry of Health and Welfare (HWDC), Taiwan. The interpretation and conclusions shown in this article do not represent those of Health and Welfare Data Science Center of Ministry of Health and Welfare, Taiwan.
Appendix A
Figure A1.
Subgroup analysis of odds ratio between the high COCI and low COCI groups for health events of (A) all-cause hospitalization and (B) all-cause emergency department use.
Author Contributions
Conceptualization/design: Y.-Y.C., C.-I.H. and K.-P.C.; data analysis and interpretation: Y.-Y.C. and C.-I.H.; resources: K.-P.C.; supervision: K.-P.C.; manuscript writing: Y.-Y.C.; final approval of the manuscript: All authors.
Funding
The study was supported by grants from the Ministry of Science and Technology (MOST102-2410-H-002-123-SS3, MOST103-2420-H-002-039-DR) in Taiwan. The funding source had no role in the study.
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1.Nekhlyudov L., Ganz P.A., Arora N.K., Rowland J.H. Going beyond being lost in transition: A decade of progress in cancer survivorship. J. Clin. Oncol. 2017;35:1978–1981. doi: 10.1200/JCO.2016.72.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Institute of Medicine and National Research Council . From Cancer Patient to Cancer Survivor: Lost in Transition: An American Society of Clinical Oncology and Institute of Medicine Symposium. The National Academies Press; Washington, DC, USA: 2006. [Google Scholar]
- 3.Jacobs L.A., Palmer S.C., Schwartz L.A., DeMichele A., Mao J.J., Carver J., Gracia C., Hill-Kayser C.E., Metz J.M., Hampshire M.K., et al. Adult cancer survivorship: Evolution, research, and planning care. CA Cancer J. Clin. 2009;59:391–410. doi: 10.3322/caac.20040. [DOI] [PubMed] [Google Scholar]
- 4.Carver J.R., Shapiro C.L., Ng A., Jacobs L., Schwartz C., Virgo K.S., Hagerty K.L., Somerfield M.R., Vaughn D.J. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: Cardiac and pulmonary late effects. J. Clin. Oncol. 2007;25:3991–4008. doi: 10.1200/JCO.2007.10.9777. [DOI] [PubMed] [Google Scholar]
- 5.Grunfeld E., Earle C.C. The interface between primary and oncology specialty care: Treatment through survivorship. JNCI Monogr. 2010;40:25–30. doi: 10.1093/jncimonographs/lgq002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Mayer D.K., Nasso S.F., Earp J.A. Defining cancer survivors, their needs, and perspectives on survivorship health care in the USA. Lancet Oncol. 2017;18:e11–e18. doi: 10.1016/S1470-2045(16)30573-3. [DOI] [PubMed] [Google Scholar]
- 7.Brazil K., Whelan T., O’Brien M.A., Sussman J., Pyette N., Bainbridge D. Towards improving the co-ordination of supportive cancer care services in the community. Health Policy. 2004;70:125–131. doi: 10.1016/j.healthpol.2004.02.007. [DOI] [PubMed] [Google Scholar]
- 8.Lohfeld L., Brazil K., Willison K. Continuity of care for advanced cancer patients: Comparing the views of spouse caregivers in Ontario, Canada, to Dumont et al.’s theoretical model. J. Palliat. Care. 2007;23:117–126. doi: 10.1177/082585970702300207. [DOI] [PubMed] [Google Scholar]
- 9.Hahn E.E., Hays R.D., Kahn K.L., Litwin M.S., Ganz P.A. Use of imaging and biomarker tests for posttreatment care of early-stage breast cancer survivors. Cancer. 2013;119:4316–4324. doi: 10.1002/cncr.28363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Runowicz C.D., Leach C.R., Henry N.L., Henry K.S., Mackey H.T., Cowens-Alvarado R.L., Hurria A. American cancer society/American society of clinical oncology breast cancer survivorship care guideline. CA: Cancer J. Clin. 2016;66:43–73. doi: 10.3322/caac.21319. [DOI] [PubMed] [Google Scholar]
- 11.Khatcheressian J.L., Hurley P., Bantug E., Esserman L.J., Grunfeld E., Halberg F., Hantel A., Henry N.L., Muss H.B., Smith T.J., et al. Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 2012 doi: 10.1200/JCO.2012.45.9859. [DOI] [PubMed] [Google Scholar]
- 12.Hahn E.E., Tang T., Lee J.S., Munoz-Plaza C.E., Shen E., Rowley B., Maeda J.L., Mosen D.M., Ruckdeschel J.C., Gould M.K. Use of posttreatment imaging and biomarkers in survivors of early-stage breast cancer: Inappropriate surveillance or necessary care? Cancer. 2016;122:908–916. doi: 10.1002/cncr.29811. [DOI] [PubMed] [Google Scholar]
- 13.Baxi S.S., Kale M., Keyhani S., Roman B.R., Yang A., Derosa A., Korenstein D. Overuse of health care services in the management of cancer: A systematic review. Med. Care. 2017;55:723. doi: 10.1097/MLR.0000000000000734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Schnipper L.E., Smith T.J., Raghavan D., Blayney D.W., Ganz P.A., Mulvey T.M., Wollins D.S. American Society of Clinical Oncology identifies five key opportunities to improve care and reduce costs: The top five list for oncology. J. Clin. Oncol. 2012;30:1715–1724. doi: 10.1200/JCO.2012.42.8375. [DOI] [PubMed] [Google Scholar]
- 15.Raddish M., Horn S.D., Sharkey P.D. Continuity of care: Is it cost effective. Am. J. Manag Care. 1999;5:727–734. [PubMed] [Google Scholar]
- 16.Turgeon J., Dumont S., St-Pierre M., Sévigny A., Vézina L. Continuity of cancer care in Quebec: Beyond the symptoms. Can. Fam. Phys. 2006;52:1572–1573. [PMC free article] [PubMed] [Google Scholar]
- 17.Oeffinger K.C., McCabe M.S. Models for delivering survivorship care. J. Clin. Oncol. 2006;24:5117–5124. doi: 10.1200/JCO.2006.07.0474. [DOI] [PubMed] [Google Scholar]
- 18.Masood S. Survivorship: A needed program for the continuity of care for breast cancer patients. Breast. 2008;14:515–516. doi: 10.1111/j.1524-4741.2008.00640.x. [DOI] [PubMed] [Google Scholar]
- 19.Hudson S.V., Chubak J., Coups E.J., Blake-Gumbs L., Jacobsen P.B., Neugut A.I., Buist D.S. Identifying key questions to advance research and practice in cancer survivorship follow-up care: A report from the ASPO Survivorship Interest Group. Cancer Epidemiol. Biomark. Prev. 2009;18:2152–2154. doi: 10.1158/1055-9965.EPI-18-7-ASPO01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.King M., Jones L., McCarthy O., Rogers M., Richardson A., Williams R., Tookman A., Nazareth I. Development and pilot evaluation of a complex intervention to improve experienced continuity of care in patients with cancer. Br. J. Cancer. 2009;100:274–280. doi: 10.1038/sj.bjc.6604836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Van Walraven C., Oake N., Jennings A. The association between continuity of care and outcomes. J. Eval. Clin. Pr. 2010;16:947–956. doi: 10.1111/j.1365-2753.2009.01235.x. [DOI] [PubMed] [Google Scholar]
- 22.Aubin M., Giguère A., Martin M., Verreault R., Fitch M.I., Kazanjian A., Carmichae P.H. Interventions to improve continuity of care in the follow-up of patients with cancer. Cochrane Database Syst. Rev. 2012;7 doi: 10.1002/14651858.CD007672.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Husain A., Barbera L., Howell D., Moineddin R., Bezjak A., Sussman J. Advanced lung cancer patients experience with continuity of care and supportive care needs. Support. Care Cancer. 2013;21:1351–1358. doi: 10.1007/s00520-012-1673-7. [DOI] [PubMed] [Google Scholar]
- 24.Nazareth I., Jones L., Irving A., Aslett H., Ramsay A., Richardson A., Tookman A., Mason C., KING M. Perceived concepts of continuity of care in people with colorectal and breast cancer–A qualitative case study analysis. Eur J. Cancer Care. 2008;17:569–577. doi: 10.1111/j.1365-2354.2007.00891.x. [DOI] [PubMed] [Google Scholar]
- 25.Lafferty J., Rankin F., Duffy C., Kearney P., Doherty E., McMenamin M., Coates V. Continuity of care for women with breast cancer: A survey of the views and experiences of patients, carers and health care professionals. Eur. J. Oncol. Nurs. 2011;15:419–427. doi: 10.1016/j.ejon.2010.10.010. [DOI] [PubMed] [Google Scholar]
- 26.Skolarus T.A., Zhang Y., Hollenbeck B.K. Understanding fragmentation of prostate cancer survivorship care: Implications for cost and quality. Cancer. 2012;118:2837–2845. doi: 10.1002/cncr.26601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Grunfeld E., Hodgson D.C., Del Giudice M.E., Moineddin R. Population-based longitudinal study of follow-up care for breast cancer survivors. J. Oncol. Pr. 2010;6:174–181. doi: 10.1200/JOP.200009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Lu J.F.R., Hsiao W.C. Does universal health insurance make health care unaffordable? Lessons from Taiwan. Health Aff. 2003;22:77–88. doi: 10.1377/hlthaff.22.3.77. [DOI] [PubMed] [Google Scholar]
- 29.Cheng S.H., Hou Y.F., Chen C.C. Does continuity of care matter in a health care system that lacks referral arrangements? Health Policy Plan. 2010;26:157–162. doi: 10.1093/heapol/czq035. [DOI] [PubMed] [Google Scholar]
- 30.Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. [DOI] [PubMed] [Google Scholar]
- 31.Burstein H.J., Winer E.P. Primary care for survivors of breast cancer. N. Engl J. Med. 2000;343:1086–1094. doi: 10.1056/NEJM200010123431506. [DOI] [PubMed] [Google Scholar]
- 32.Brenna M., Butow P., Spillane A. Survivorship care after breast cancer. Aus. Fam. Phys. 2008;37:826–839. [PubMed] [Google Scholar]
- 33.Hollowell K., Olmsted C.L., Richardson A.S., Pittman H.K., Bellin L., Tafra L., Verbanac K.M. American Society of Clinical Oncology-recommended surveillance and physician specialty among long-term breast cancer survivors. Cancer. 2010;116:2090–2098. doi: 10.1002/cncr.25038. [DOI] [PubMed] [Google Scholar]
- 34.Khan N.F., Carpenter L., Watson E., Rose P.W. Cancer screening and preventative care among long-term cancer survivors in the United Kingdom. Br. J. Cancer. 2010;102:1085–1090. doi: 10.1038/sj.bjc.6605609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Lawler S., Spathonis K., Masters J., Adams J., Eakin E. Follow-up care after breast cancer treatment: Experiences and perceptions of service provision and provider interactions in rural Australian women. Support Care Cancer. 2011;19:1975–1982. doi: 10.1007/s00520-010-1041-4. [DOI] [PubMed] [Google Scholar]
- 36.Allemani C., Weir H.K., Carreira H., Harewood R., Spika D., Wang X.S., Bannon F., VAhn J., Johnson C.J., Bonaventure A. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2) Lancet. 2015;385:977–1010. doi: 10.1016/S0140-6736(14)62038-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Chiang C.J., You S.L., Chen C.J., Yang Y.W., Lo W.C., Lai M.S. Quality assessment and improvement of nationwide cancer registration system in Taiwan: A review. Jpn. J. Clin. Oncol. 2015;45:291–296. doi: 10.1093/jjco/hyu211. [DOI] [PubMed] [Google Scholar]
- 38.Earle C.C., Neville B.A. Under use of necessary care among cancer survivors. Cancer. 2004;1018:1712–1719. doi: 10.1002/cncr.20560. [DOI] [PubMed] [Google Scholar]
- 39.Snyder C.F., Frick K.D., Herbert R.J., Blackford A.L., Neville B.A., Carducci M.A., Earle C.C. Preventive care in prostate cancer patients: Following diagnosis and for five-year survivors. J. Cancer Surviv. 2011;5:283–291. doi: 10.1007/s11764-011-0181-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Snyder C.F., Frick K.D., Herbert R.J., Blackford A.L., Neville B.A., Wolff A.C., Carducci M.A., Earle C.C. Quality of care for comorbid conditions during the transition to survivorship: Differences between cancer survivors and noncancer controls. J. Clin. Oncol. 2013;31:1140. doi: 10.1200/JCO.2012.43.0272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Pollack C.E., Frick K.D., Herbert R.J., Blackford A.L., Neville B.A., Wolff A.C., Carducci M.A., Earle C.C., Snyder C.F. It’s who you know: Patient-sharing, quality, and costs of cancer survivorship care. J. Cancer Surviv. 2014;8:156–166. doi: 10.1007/s11764-014-0349-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Bice T.W., Boxerman S.B. A quantitative measure of continuity of care. Med. Care. 1977;15:347–349. doi: 10.1097/00005650-197704000-00010. [DOI] [PubMed] [Google Scholar]
- 43.Smedby Ö., Eklund G., Eriksson E.A., Smedby B. Measures of continuity of care: A register-based correlation study. Med. Care. 1986:511–518. doi: 10.1097/00005650-198606000-00005. [DOI] [PubMed] [Google Scholar]
- 44.Earle C.C., Burstein H.J., Winer E.P., Weeks J.C. Quality of non–breast cancer health maintenance among elderly breast cancer survivors. J. Clin. Oncol. 2003;21:1447–1451. doi: 10.1200/JCO.2003.03.060. [DOI] [PubMed] [Google Scholar]
- 45.Snyder C.F., Earle C.C., Herbert R.J., Neville B.A., Blackford A.L., Frick K.D. Preventive care for colorectal cancer survivors: A 5-year longitudinal study. J. Clin. Oncol. 2008;26:1073–1079. doi: 10.1200/JCO.2007.11.9859. [DOI] [PubMed] [Google Scholar]
- 46.Snyder C.F., Frick K.D., Peairs K.S., Kantsiper M.E., Herbert R.J., Blackford A.L., Wolff A.C., Earle C.C. Comparing care for breast cancer survivors to non-cancer controls: A five-year longitudinal study. J. Gen. Intern. Med. 2009;24:469–474. doi: 10.1007/s11606-009-0903-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Mainous A.G., Gill J.M. The importance of continuity of care in the likelihood of future hospitalization: Is site of care equivalent to a primary clinician? Am. J. Public Health. 1998;88:1539–1541. doi: 10.2105/AJPH.88.10.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Gill J.M., Mainous A.G., Nsereko M. The effect of continuity of care on emergency department use. Arch. Fam. Med. 2000;9:333–338. doi: 10.1001/archfami.9.4.333. [DOI] [PubMed] [Google Scholar]
- 49.Chu H.Y., Chen C.C., Cheng S.H. Continuity of care, potentially inappropriate medication, and health care outcomes among the elderly: Evidence from a longitudinal analysis in Taiwan. Med. Care. 2012:1002–1009. doi: 10.1097/MLR.0b013e31826c870f. [DOI] [PubMed] [Google Scholar]
- 50.Deyo R.A., Cherkin D.C., Ciol M.A. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J. Clin. Epidemiol. 1992;45:613–619. doi: 10.1016/0895-4356(92)90133-8. [DOI] [PubMed] [Google Scholar]
- 51.Austin P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 2011;46:399–424. doi: 10.1080/00273171.2011.568786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Ghisletta P., Spini D. An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. J. Educ. Behav. Stat. 2004;29:421–437. doi: 10.3102/10769986029004421. [DOI] [Google Scholar]
- 53.Shin D.W., Kim Y.W., Oh J.H., Kim S.W., Chung K.W., Lee W.Y., Lee J.E., Lee W.C., Guallar E., Cho J. Knowledge, attitudes, risk perception, and cancer screening behaviors among cancer survivors. Cancer. 2011:3850–3859. doi: 10.1002/cncr.25951. [DOI] [PubMed] [Google Scholar]
- 54.Field T.S., Doubeni C., Fox M.P., Buist D.S.M., Wei F., Geiger A.M., Quinn V.P., Lash T.L., Prout M.N., Yood M.U., et al. Under utilization of surveillance mammography among older cancer survivors. J. Gen. Intern. Med. 2007;23:158–163. doi: 10.1007/s11606-007-0471-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Snyder C.F., Frick K.D., Kantsiper M.E., Peairs K.S., Herbert R.J., Blackford A.L., Wolff A.C., Earle C.C. Prevention, screening, and surveillance care for breast cancer survivors compared with controls: Changes from 1998 to 2002. J. Clin. Oncol. 2009;27:1054–1061. doi: 10.1200/JCO.2008.18.0950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Virgo K.S., Lerro C.C., Klabunde C.N., Earle C., Ganz P.A. Barriers to breast and colorectal cancer survivorship care: Perceptions of primary care physicians and medical oncologists in the United States. J. Clin. Oncol. 2013;31:2322. doi: 10.1200/JCO.2012.45.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Hong J.S., Kang H.C., Kim J. Continuity of care for elderly patients with diabetes mellitus, hypertension, asthma, and chronic obstructive pulmonary disease in Korea. J. Korean Med. Sci. 2010;25:1259–1271. doi: 10.3346/jkms.2010.25.9.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Hussey P.S., Schneider E.C., Rudin R.S., Fox D.S., Lai J., Pollack C.E. Continuity and the costs of care for chronic disease. JAMA Intern. Med. 2014;174:742–748. doi: 10.1001/jamainternmed.2014.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Lin I.P., Wu S.C. The Determinants of Continuity of Care for Patients with Chronic Obstructive Pulmonary Disease. Taiwan J. Public Health. 2015;34:404–412. [Google Scholar]
- 60.Ryvicker M., Russell D. Individual and Environmental Determinants of Provider Continuity Among Urban Older Adults with Heart Failure: A Retrospective Cohort Study. Gerontol. Geriatr. Med. 2018;4:2333721418801027. doi: 10.1177/2333721418801027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Simard S., Savard J. Fear of cancer recurrence inventory: Development and initial validation of a multidimensional measure of fear of cancer recurrence. Support. Care Cancer. 2009;17:241–251. doi: 10.1007/s00520-008-0444-y. [DOI] [PubMed] [Google Scholar]
- 62.Cree M., Bell N.R., Johnson D., Carriere K.C. Increased continuity of care associated with decreased hospital care and emergency department visits for patients with asthma. Dis. Manag. 2006;9:63–71. doi: 10.1089/dis.2006.9.63. [DOI] [PubMed] [Google Scholar]
- 63.Menec V.H., Sirski M., Attawar D., Katz A. Does continuity of care with a family physician reduce hospitalizations among older adults? J. Health Serv. Res. Policy. 2006;11:196–201. doi: 10.1258/135581906778476562. [DOI] [PubMed] [Google Scholar]
- 64.Ionescu-Ittu R., McCusker J., Ciampi A., Vadeboncoeur A.M., Roberge D., Larouche D., Verdon J., Pineault R. Continuity of primary care and emergency department utilization among elderly people. Can. Med. Assoc. J. 2007;177:1362–1368. doi: 10.1503/cmaj.061615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Worrall G., Knight J. Continuity of care is good for elderly people with diabetes: Retrospective cohort study of mortality and hospitalization. Can. Fam. Phys. 2011;57:e16–e20. [PMC free article] [PubMed] [Google Scholar]
- 66.Huang S.T., Wu S.C., Hung Y.N., Lin I.P. Effects of continuity of care on emergency department utilization in children with asthma. Am. J. Manag/ Care. 2016;22:e31–e37. [PubMed] [Google Scholar]
- 67.Parchman M.L., Pugh J.A., Noël P.H., Larme A.C. Continuity of care, self-management behaviors, and glucose control in patients with type 2 diabetes. Med. Care. 2002;40:137–144. doi: 10.1097/00005650-200202000-00008. [DOI] [PubMed] [Google Scholar]
- 68.Chen C.C., Tseng C.H., Cheng S.H. Continuity of care, medication adherence, and health care outcomes among patients with newly diagnosed type 2 diabetes: A longitudinal analysis. Med. Care. 2013:231–237. doi: 10.1097/MLR.0b013e31827da5b9. [DOI] [PubMed] [Google Scholar]
- 69.Cook R.I., Render M., Woods D.D. Gaps in the continuity of care and progress on patient safety. BMJ. 2000;320:791–794. doi: 10.1136/bmj.320.7237.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Guilcher S.J., Hogan M.E., Calzavara A., Hitzig S.L., Patel T., Packer T., Lofters A.K. Prescription drug claims following a traumatic spinal cord injury for older adults: A retrospective population-based study in Ontario, Canada. Spinal Cord. 2018;56:1059–1068. doi: 10.1038/s41393-018-0174-z. [DOI] [PMC free article] [PubMed] [Google Scholar]