Skip to main content
ACS Omega logoLink to ACS Omega
. 2019 Sep 9;4(12):15312–15322. doi: 10.1021/acsomega.9b02712

Metal-Free C–H Functionalization of Allenamides: An Access to Branched Allylic Esters

Guoli Luo 1, Yongchun Liu 1, Na Ding 1, Xiaoxiao Li 1,*, Zhigang Zhao 1,*
PMCID: PMC6751998  PMID: 31552378

Abstract

graphic file with name ao9b02712_0011.jpg

A regioselective acyloxylation with carboxylic acids at the proximal carbon of allenamides by an N-iodosuccinimide-mediated C–H functionalization is reported. The reaction proceeds rapidly, is scalable to a gram scale, and displays a broad substrate scope, providing an efficient and practical protocol for the synthesis of branched allylic esters. Notably, protected amino acids were tolerated under the reaction conditions and afforded allylic amino acid esters in moderate yields.

Introduction

Allylic esters have garnered increasing attention because of their presence in bioactive and medicinally relevant molecules.1 They are widely present in bioactive natural products such as grandiuvarone A and albanol A (Figure 1), which are isolated from the barks of Uvaria grandiflora and Uvaria alba, respectively, and are known to exhibit antileishmanial, cytostatic, and antiproliferative activities. Furthermore, branched allylic alcohols and their ester derivatives are important building blocks in organic synthesis.2

Figure 1.

Figure 1

Bioactive molecules comprising the allylic ester unit.

Traditional synthetic methods for the preparation of allyl esters involve the reaction of an acid or its derivatives (acyl chlorides and anhydrides) with the corresponding allylic alcohols.3 However, these approaches suffer from limited substrate scope and harsh reaction conditions. The transition-metal-catalyzed direct oxidative esterification of allylic sp3 C–H bonds has emerged as one of the most important strategies for the synthesis of branched allylic esters and is an important alternative to the traditional synthetic approaches. Several methodologies relying on this approach have been reported for the synthesis of allylic esters. Although palladium-,4 copper-,5 and iron-catalyzed6 esterifications of allylic sp3 C–H bonds have been reported, they suffer from poor atom economy because of the necessity for the use of stoichiometric equivalents of oxidants. An elegant alternate approach for the synthesis of allylic esters via a redox-neutral and atom-economic rhodium-catalyzed coupling of terminal alkynes with carboxylic acids has been reported recently.7 Allenes are an easily accessible and remarkably stable substrate class, and Yamamoto,8 Krische,9 and Breit10 reported the palladium-, iridium-, and rhodium-catalyzed coupling of allenes with carboxylic acids for synthesizing linear and branched allylic esters. Although these methods are powerful synthetic transformations, they require the use of transition metals, and in many cases the corresponding ligands in the catalytic system, which make them expensive and less ecofriendly. Considering these wide arrays of available approaches, a metal-free approach to allylic sp3 C–H bond esterification would obviate many of the aforementioned disadvantages. However, reports on such metal-free allylic sp3 C–H esterification are limited, and only one example using Bu4NI as a catalyst was reported,11 which further highlights the necessity for the development of a straightforward and low-cost metal-free allylic sp3 C–H esterification protocol.

Allenamides have recently emerged as important synthetic intermediates and participate in diverse and interesting transformations.12 We have reported the halogen-mediated intermolecular coupling reactions of allenamides13 and recently reported a related methodology for the metal-free synthesis of allylic ethers by the regioselective alkoxylation of allenamides with alcohols (Scheme 1a).14 However, this reaction required the use of low-boiling alcohol nucleophiles as the reaction solvents, which limited the substrate scope for the transformation and promoted us to examine the allylic substitution using carboxylic acids as the nucleophiles. We present herein a metal-free synthesis of branched allylic esters with broad functional group tolerance by the N-iodosuccinimide (NIS)-mediated regioselective acyloxylation at the proximal carbon of allenamides (Scheme 1b).

Scheme 1. NIS-Mediated Regioselective Alkoxylation and Acyloxylation of Allenamides.

Scheme 1

Results and Discussion

On the basis of our previous results on the regioselective 1,2-additions of alcohols to allenamides, we began our studies by exploring the reaction between phenyl allenamide 1a and acetic acid 2a, and the optimization results of the study are summarized in Table 1. Employing the conditions from our previous study, upon treating phenyl allenamide 1a with 1.05 equiv of NIS in 3 mL of acetic acid, the acyloxylated product 4aa was isolated in 86% yield (Table 1, entry 1). When the reaction was performed with 1 equiv of acetic acid 2a in 3 mL of dichloromethane (DCM), the branched allylic ester 4aa was obtained in 52% yield along with the linear allylic ester 5a in 20% yield (Table 1, entry 2). In an attempt to increase the nucleophilicity of acetic acid 2a, 2 equiv of K2CO3 was added to the reaction mixture, which delivered the branched allylic ester in 27% yield (Table 1, entry 3). After screening various equivalent ratios of 1a and 2a, we found that the best regioselectivity and yield of the branched allylic ester 4a were obtained with the use of 6 equiv of 2a (Figure 2). Various iodine sources were evaluated next, and compared to other iodine sources such as N-iodophthalimide (3d) and elemental iodine (3g), NIS proved to be the best choice for generating the target compound 4aa. Encouraged by these results, we examined the related N-haloimides for this transformation. When N-bromosuccinimide (3b) and N-bromophthalimide (3e) were used in this reaction, the branched allylic ester 4b was isolated in 50 and 47% yields, respectively (Table 1, entries 5 and 8). N-Chlorosuccinimide (3c) and N-chlorophthalimide (3f) were less reactive and delivered the corresponding product 4c in 55 and 34% yields, respectively. Subsequent solvent screening studies indicated an increase in the yield of 4aa to 85% when CH3CN was used as the solvent, whereas 1,2-dichloroethane (DCE), CHCl3, toluene, and acetone were not as effective under the reaction conditions (Table 1, entry 11–15). Furthermore, the control experiment (Table 1, entry 16) showed that no acyloxylated product was obtained in the absence of NIS, revealing the importance of the iodine sources.

Table 1. Optimization of Halogen-Mediated Acyloxylation of Allenamide 1a with Acetic Acid 2aa.

graphic file with name ao9b02712_0006.jpg

entry 1a/2a halogen reagent solvent yield 4/5 (%)
1b   3a acetic acid 86/0
2 1/1 3a DCM 52/20
3c 1/1 3a DCM 27/0
4d 1/6 3a DCM 79/7
5 1/6 3b DCM 50/12
6e 1/6 3c DCM 55/22
7f 1/6 3d DCM 38/0
8 1/6 3e DCM 47/0
9 1/6 3f DCM 34/0
10 1/6 3g DCM trace
11 1/6 3a DCE 62/16
12 1/6 3a CHCl3 69/23
13 1/6 3a CH3CN 85/0
14 1/6 3a toluene 69/5
15 1/6 3a acetone 77/10
16 1/6   CH3CN NR
a

Unless stated otherwise, all reactions were carried out with 1a (0.1 mmol) and 3 (0.105 mmol) in 3 mL of solvent at rt and are complete within 5 min.

b

The reaction was carried out with 3 mL of acetic acid as the solvent.

c

1.1 equiv K2CO3 was added.

d

Best ratio of 1a/2a equiv.

e

1a was consumed within 1.5 h.

f

1a was consumed within 9 h.

Figure 2.

Figure 2

Optimization of 1a/2a equiv ratio.

Employing the optimized conditions (Table 1, entry 13), we investigated the scope of the carboxylic acid substrates in the reaction (Table 2) and were pleased to find the efficient formation of the desired products in good yields for all acids which were evaluated. Aliphatic carboxylic acids (linear and branched) worked well and afforded the desired allylic esters (4aa–4ae) in 62–85% yields. Similarly, cyclic carboxylic acids afforded the branched allylic esters (4af–4ai) in 63–84% yields. Furthermore, the sterically hindered adamantyl carboxylic acid 2j was a suitable substrate and furnished the corresponding product in 63% yield. In addition to the unsubstituted benzoic acid 2k, both electron-rich and electron-poor aromatic carboxylic acids were suitable reaction partners (4al–4ap). The 2-methyl- and 3-fluoro-substituted benzoic acids also provided the corresponding products 4aq and 4ar in 68% yield, respectively. The 2-naphthyl carboxylic acid 2s and cinnamic acid 2t were also tolerated under the reaction conditions and afforded the desired allylic esters in 72 and 69% yields, respectively.

Table 2. NIS-Mediated Acyloxylation of Allenamide 1a with Various Carboxylic Acidsa.

graphic file with name ao9b02712_0007.jpg

graphic file with name ao9b02712_0008.jpg

a

Conditions: 1a (0.1 mmol), 2a (0.6 mmol), NIS (0.105 mmol), CH3CN (3 mL), rt, within 5 min.

Having studied the scope of the carboxylic acids in this reaction, we turned our attention to the investigation of the allenamide scope (Table 3). Several para- and meta-substituted phenyl allenamides were investigated first (1b–1h). Phenyl allenamides bearing electron-rich substituents worked better in this reaction and afforded the desired allylic esters 4ba and 4ca in 89 and 81% yields, respectively. The initial step of this reaction was proposed to be the electrophilic halogenation between the iodine electrophile and the π system of the allenamide. The reactions with 3,5-dimethoxyl- and 2-naphthyl-substituted allenamides 1i and 1j proceeded smoothly and provided 4ia and 4ja in 72 and 78% yields, respectively. Moreover, the molecular structure of the branched allylic ester 4ia was unambiguously determined by single-crystal X-ray diffraction (Figure 3).15 Interestingly, when trimethyl phenyl allenamide was used as the reactant, the linear allylic ester was isolated as the sole product in 56% yield, possibly because of the increased steric hindrance of the substrate. Next, benzyl allenamides 1k–1p were employed as substrates under optimized reaction conditions, and the para-methyl- and bromo-substituted benzyl allenamide 1l and 1p gave the allylic esters 4la and 4pa in 91 and 84% yields, respectively. Both electron-rich and electron-poor benzyl allenamides 1k and 1m–1o furnished the desired products in about 70% yields, exhibiting no obvious substituent effects. We investigated next the reactivity of different allenamides bearing aliphatic substituents under the optimized conditions. Both phenethyl- and n-butyl-substituted allenamides produced products 4qa and 4ra in 72 and 48% yields, respectively. The reaction was also efficient when the tosyl group in the allenamides was substituted with the acyl and mesyl amino protecting groups and delivered 4sa and 4ta in 74 and 81% yields, respectively. Furthermore, 2-oxazolidinone allenamide 1u also provided the corresponding product 4ua in 48% yield.

Table 3. NIS-Mediated Acyloxylation of Various Allenamides 1 with Acetic Acid 2aa.

graphic file with name ao9b02712_0009.jpg

graphic file with name ao9b02712_0010.jpg

a

Conditions: 1a (0.1 mmol), 2a (0.6 mmol), NIS (0.105 mmol), CH3CN (3 mL), rt, within 5 min.

Figure 3.

Figure 3

X-ray structure of 4ia.

To establish the practicality of this reaction, a gram-scale synthesis of the branched allylic ester 4aa was carried out. When 1.42 g of allenamide 1a (5.0 mmol) was used, 1.95 g of the desired product 4aa was obtained in 83% yield within 5 min, indicating the facile scalability of the transformation to the gram scale without loss in efficiency (Scheme 2). To further demonstrate the potential applications of this protocol, 1a was reacted with N-Boc-l-Phe, N-Ac-l-Phe, and N-Boc-l-Tyr, upon which the corresponding products 6, 7, and 8 were isolated in moderate yields in a 1:1 dr.

Scheme 2. Gram-Scale Synthesis and Synthetic Applications.

Scheme 2

In summary, we demonstrated the first intermolecular addition of carboxylic acids to the proximal carbon of allenamides toward the formation of highly useful branched allylic esters under superior regioselectivity by employing a simple and commercially available iodine reagent. This reaction proceeds rapidly, is scalable up to a gram scale, and tolerates a broad scope of substrates. Notably, the protected amino acids were compatible and furnished the desired allylic amino acid esters in moderate yields. A further exploration of potential applications and studies to extend this interesting synthetic methodology is currently underway.

Experimental Section

General Conditions

All reactions were performed using Schlenk tubes, septa, and syringes without the protection of nitrogen. Tetrahydrofuran, toluene, DCM, and DCE were freshly distilled over sodium/benzophenone and calcium hydride, respectively. Commercial reagents were used as supplied or were purified by standard techniques where necessary. Column chromatography was performed using a 200–300 mesh silica gel (Qingdao Haiyang Chemical Co., Ltd., silica gel F254) with an appropriate solvent system, as determined by thin-layer chromatography (TLC) analysis using UV light and KMnO4 stain to visualize the reaction components. Melting points were determined using a WRS-1B digital melting point instrument. IR spectra were recorded on a Nicoletisso Fourier transform infrared spectrometer using KBr disks. Unless otherwise noted, nuclear magnetic resonance spectra were recorded at room temperature on an Agilent 400 MHz spectrometer using CDCl3 as the solvent and tetramethylsilane (TMS) as the internal reference. Chemical shifts for 13C nuclear magnetic resonance (NMR) spectra were recorded in parts per million relative to TMS using the central peak of deuterochloroform (77.0 ppm) as the internal standard (see Supporting Information). High-resolution mass spectrometry (HRMS) was performed using a Bruker Daltonics Bio time-of-flight (TOF) mass spectrometer.

Allenamides 1a–1u were prepared according to the published methods.16 Carboxylic acids were obtained commercially and used without further purification.

General Procedure for NIS-Mediated Acyloxylation of Allenamide 1a with Acetic Acid 2a

To a Schlenk tube were added allenamide 1a (0.1 mmol, 28.5 mg), acetic acid 2a (6.0 equiv, 34 μL), NIS (1.05 equiv, 23.5 mg), and CH3CN (anhydrous, 3 mL). Then, the reaction mixture was stirred at room temperature (rt) for 5 min until the complete consumption of the starting material as monitored by TLC. The mixture was then washed with saturated sodium bicarbonate solution (5 mL), extracted with DCM (3 mL × 2), and dried over anhydrous Na2SO4. The concentration of the reaction mixture in vacuo followed by purification through flash chromatography on a silica gel column (hexane/EtOAc = 5/1 as the eluent) afforded 4aa (40.0 mg, 85% yield) as a white solid.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Acetate (4aa)

Yield 85% (40.0 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 103.6–108.2 °C; IR (neat, cm–1): 3452, 1660, 1630, 1170, 1090, 745, 702; 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 8.1 Hz, 2H), 7.36 (t, J = 7.1 Hz, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.26–7.24 (m, 5H), 6.03 (s, 1H), 5.72 (s, 1H), 2.44 (s, 3H), 1.99 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 144.0, 136.1, 134.5, 131.5, 129.2, 129.1, 128.9, 128.6, 128.1, 101.2, 84.9, 21.6, 20.6; HRMS (ESI) m/z: calcd for C18H18INO4SNa+ (M + Na)+, 493.9893; found, 493.9899.

2-Bromo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Acetate (4b)

Yield 50% (21.2 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 120.5–120.9 °C; IR (neat, cm–1): 3468, 2935, 2378, 1760, 1365, 1249, 1170, 1088, 700, 666; 1H NMR (400 MHz, CDCl3): δ 7.43 (d, J = 7.9 Hz, 2H), 7.28–7.23 (m, 1H), 7.22–7.12 (m, 5H), 7.10 (d, J = 7.5 Hz, 2H), 5.45 (s, 1H), 5.32 (s, 1H), 2.33 (s, 3H), 1.90 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 144.0, 136.2, 134.5, 131.4, 129.3, 129.2, 128.6, 128.0, 125.0, 120.5, 82.9, 21.6, 20.6. HRMS (ESI) m/z: calcd for C18H18BrNO4SNa+ (M + Na)+, 446.0032: found, 446.0038.

2-Chloro-1-(4-methyl-N-phenylphenylsulfonamido)allyl Acetate (4c)

Yield 55% (20.8 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 103.4–104.3 °C; IR (neat, cm–1): 3480, 2935, 2376, 1761, 1353, 1167, 1091, 700, 667; 1H NMR (400 MHz, CDCl3): δ 7.44 (d, J = 8.2 Hz, 2H), 7.26 (t, J = 7.3 Hz, 1H), 7.19 (t, J = 7.5 Hz, 2H), 7.15 (d, J = 8.9 Hz, 3H), 7.07 (d, J = 7.6 Hz, 2H), 5.09 (s, 1H), 5.02 (s, 1H), 2.33 (s, 3H), 1.91 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 144.0, 136.3, 134.5, 134.4, 131.4, 129.3, 129.2, 128.6, 128.0, 116.0, 81.8, 21.6, 20.7. HRMS (ESI) m/z: calcd for C18H18Cl4SNa+ (M + Na)+, 402.0537; found, 402.0540.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Propionate (4ab)

Yield 77% (37.5 mg); Rf = 0.31 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 117.7–118.7 °C; IR (neat, cm–1): 3463, 2938, 2383, 1642, 1360, 1081, 745; 1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 7.7 Hz, 2H), 7.31–7.27 (m, 1H), 7.24 (d, J = 7.4 Hz, 2H), 7.21–7.16 (m, 5H), 5.94 (s, 1H), 5.64 (s, 1H), 2.36 (s, 3H), 2.24–2.10 (m, 2H), 1.03 (t, J = 7.5 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 171.4, 144.0, 136.2, 134.5, 131.5, 129.3, 129.1, 128.8, 128.5, 128.1, 101.4, 84.7, 27.3, 21.6, 8.7; HRMS (ESI) m/z: calcd for C19H20INO4SNa+ (M + Na)+, 508.0050; found, 508.0051.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Butyrate (4ac)

Yield 67% (33.5 mg); Rf = 0.12 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 97.7–99.1 °C; IR (neat, cm–1): 3453, 1646, 1271, 1168, 745, 705; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.9 Hz, 2H), 7.38–7.34 (m, 1H), 7.31 (d, J = 7.6 Hz, 2H), 7.27 (m, 4H), 7.24 (s, 1H), 6.01 (s, 1H), 5.71 (s, 1H), 2.43 (s, 3H), 2.20 (dd, J = 16.1, 8.0 Hz, 2H), 1.61 (dd, J = 14.7, 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 170.7, 144.0, 136.2, 134.5, 131.5, 129.3, 129.1, 128.8, 128.5, 128.1, 101.5, 84.7, 35.7, 21.6, 18.00, 13.7; HRMS (ESI) m/z: calcd for C20H22INO4SNa+ (M + Na)+, 522.0206; found, 522.0209.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Isobutyrate (4ad)

Yield 62% (30.7 mg); Rf = 0.5 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 101.7–102.0 °C; IR (neat, cm–1): 3432, 3141, 1647, 1625, 1406, 1075, 600, 574; 1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 8.2 Hz, 2H), 7.39–7.35 (m, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.27–7.23 (m, 4H), 6.00 (s, 1H), 5.71 (s, 1H), 2.46 (q, J = 7.0 Hz), 2.42 (s, 3H), 1.13 (s, 3H), 1.11 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 173.9, 144.0, 136.3, 134.5, 131.6, 129.3, 129.1, 128.7, 128.6, 128.1, 101.7, 84.6, 33.8, 21.6, 18.7, 18.5; HRMS (ESI) m/z: calcd for C20H22INO4SNa+ (M + Na)+, 522.0206; found, 522.0208.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Nonanoate (4ae)

Yield 66% (37.5 mg); Rf = 0.55 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 96.2–97.5 °C; IR (neat, cm–1): 3463, 2937, 2372, 2350, 1757, 1172, 1079, 744, 672; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.7 Hz, 2H), 7.35 (d, J = 6.5 Hz, 1H), 7.31 (d, J = 7.4 Hz, 2H), 7.26–7.23 (m, 5H), 6.01 (s, 1H), 5.71 (s, 1H), 2.43 (s, 3H), 2.27–2.13 (m, 2H), 1.59–1.52 (m, 2H), 1.28 (br, 10H), 0.89 (t, J = 6.5 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 170.9, 143.9, 136.3, 134.6, 131.6, 129.3, 129.1, 128.8, 128.6, 128.1, 101.6, 84.7, 33.9, 31.8, 29.2, 29.1, 29.08, 24.5, 22.6, 21.6, 14.1; HRMS (ESI) m/z: calcd for C25H32INO4SNa+ (M + Na)+, 592.0989; found, 592.0988.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Cyclopropanecarboxylate (4af)

Yield 84% (41.7 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 137.9–138.8 °C; IR (neat, cm–1): 3464, 2257, 1662, 1641, 1076, 744; 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 7.6 Hz, 2H), 7.36 (d, J = 6.9 Hz, 1H), 7.32 (d, J = 7.0 Hz, 2H), 7.29–7.24 (m, 5H), 6.05 (s, 1H), 5.72 (s, 1H), 2.44 (s, 3H), 1.54–1.51 (m, 1H), 1.07–1.06 (m, 1H), 0.95–0.90 (m, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ 172.1, 143.9, 136.1, 134.5, 131.5, 129.3, 129.1, 128.9, 128.5, 128.1, 101.3, 84.8, 21.6, 12.5, 8.9, 8.7; HRMS (ESI) m/z: calcd for C20H20INO4SNa+ (M + Na)+, 520.0050; found, 520.0046.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Cyclobutanecarboxylate (4ag)

Yield 63% (32.2 mg); Rf = 0.34 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 113.9–114.6 °C; IR (neat, cm–1): 3433, 2936, 2383, 1635, 1363, 1166, 1085, 702; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 8.1 Hz, 2H), 7.38–7.34 (m, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.29–7.23 (m, 5H), 6.00 (s, 1H), 5.71 (s, 1H), 3.07–2.98 (m, 2H), 2.43 (s, 3H), 2.22–2.12 (m, 4H), 2.01–1.94 (m, 1H), 1.90–1.86 (m, 1H); 13C{1H} NMR (100 MHz, CDCl3): δ 172.4, 144.0, 136.2, 134.5, 131.5, 129.3, 129.1, 128.8, 128.6, 128.1, 101.6, 84.5, 37.5, 25.0, 24.8, 21.6, 18.4; HRMS (ESI) m/z: calcd for C21H22INO4SNa+ (M + Na)+, 534.0206; found, 534.0208.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Cyclopentanecarboxylate (4ah)

Yield 63% (33.0 mg); Rf = 0.16 (SiO2; hexanes/ethyl acetate, 10:1); colorless liquid; IR (neat, cm–1): 3471, 2934, 1711, 1604, 1500, 1355, 1094, 744; 1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 7.1 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.28–7.24 (m, 4H), 7.23 (s, 1H), 6.01 (s, 1H), 5.71 (s, 1H), 2.66–2.58 (m, 1H), 2.42 (s, 3H), 1.87–1.79 (m, 2H), 1.73–1.65 (m, 4H), 1.61–1.56 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 173.6, 143.9, 136.3, 134.6, 131.6, 129.3, 129.1, 128.7, 128.6, 128.1, 101.8, 84.5, 43.4, 29.8, 29.4, 25.8, 25.7, 21.6. HRMS (ESI) m/z: calcd for C22H24INO4SNa+ (M + Na)+, 548.03630; found, 548.0364.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Cyclohexanecarboxylate (4ai)

Yield 68% (36.6 mg); Rf = 0.33 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 107.5–107.9 °C; IR (neat, cm–1): 3458, 2378, 1678, 1641, 1270, 1080, 744; 1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 8.2 Hz, 2H), 7.39–7.35 (m, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.27–7.23 (m, 5H), 6.00 (s, 1H), 5.70 (s, 1H), 2.43 (s, 3H), 2.20–2.15 (m, 1H), 1.85–1.73 (m, 4H), 1.67–1.62 (m, 1H), 1.38–1.23 (m, 5H). 13C{1H} NMR (100 MHz, CDCl3): δ 173.0, 143.9, 136.4, 134.6, 131.5, 129.3, 129.1, 128.8, 128.6, 128.1, 101.7, 84.6, 42.8, 28.8, 28.6, 25.6, 25.3, 25.26, 21.6. HRMS (ESI) m/z: calcd for C23H26INO4SNa+ (M + Na)+, 562.0519; found, 562.0519.

(3R,5R,7R)-2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Adamantane-1-carboxylate (4aj)

Yield 63% (38.0 mg); Rf = 0.26 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 99.7–101.2 °C; IR (neat, cm–1): 3474, 2929, 2368, 1661, 1630, 1171, 1055, 743; 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 8.1 Hz, 2H), 7.34–7.28 (m, 5H), 7.26–7.24 (m, 3H), 5.99 (s, 1H), 5.70 (s, 1H), 2.42 (s, 3H), 2.00 (s, 3H), 1.80–1.70 (m, 10H), 1.67 (br, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 174.6, 143.9, 136.6, 134.6, 131.6, 129.4, 129.1, 128.7, 128.6, 128.1, 101.9, 84.5, 40.6, 38.7, 36.3, 27.7, 21.6. HRMS (ESI) m/z: calcd for C27H30INO4SNa+ (M + Na)+, 614.0832; found, 614.0836.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Benzoate (4ak)

Yield 85% (45.3 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 120.2–123.1 °C; IR (neat, cm–1): 3454, 2384, 1733, 1635, 1271, 1067, 707, 573; 1H NMR (400 MHz, CDCl3): δ 7.82 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.52–7.46 (m, 4H), 7.43 (d, J = 7.8 Hz, 2H), 7.40–7.36 (m, 4H), 7.03 (d, J = 7.9 Hz, 2H), 6.09 (s, 1H), 5.75 (s, 1H), 2.25 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 163.9, 143.9, 136.0, 134.7, 133.7, 131.5, 129.7, 129.3, 129.2, 128.7, 128.5, 128.0, 100.9, 85.8, 21.4. HRMS (ESI) m/z: calcd for C23H20INO4SNa+ (M + Na)+, 556.0050; found, 556.0049.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 4-Methylbenzoate (4al)

Yield 74% (40.4 mg); Rf = 0.29 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 141.3–142.1 °C; IR (neat, cm–1): 3460, 2382, 1635, 1272, 1067, 754, 580; 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.7 Hz, 2H), 7.50 (s, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.42–7.34 (m, 5H), 7.24 (d, J = 7.5 Hz, 2H), 7.03 (d, J = 7.5 Hz, 2H), 6.08 (s, 1H), 5.73 (s, 1H), 2.44 (s, 3H), 2.26 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 164.0, 144.6, 143.8, 135.9, 134.7, 131.5, 129.7, 129.3, 129.2, 129.14, 129.1, 128.6, 127.9, 125.8, 101.0, 85.6, 21.8, 21.4. HRMS (ESI) m/z: calcd for C24H22INO4SNa+ (M + Na)+, 570.0206; found, 570.0204.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 4-Methoxybenzoate (4am)

Yield 70% (39.2 mg); Rf = 0.2 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 139.6–139.9 °C; IR (neat, cm–1): 3465, 2936, 2381, 1725, 1266, 1170, 1064, 744, 699; 1H NMR (400 MHz, CDCl3): δ 7.78 (d, J = 8.0 Hz, 2H), 7.48–7.46 (m, 3H), 7.38–7.35 (m, 5H), 7.04 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.08 (s, 1H), 5.73 (s, 1H), 3.89 (s, 3H), 2.27 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 163.9, 163.6, 143.8, 136.0, 134.7, 131.8, 131.5, 129.3, 129.1, 129.07, 128.6, 128.0, 120.9, 113.7, 101.2, 85.5, 55.5, 21.5. HRMS (ESI) m/z: calcd for C24H22INO4SNa+ (M + Na)+, 586.0161; found, 586.0170.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 4-Fluorobenzoate (4an)

Yield 68% (37.6 mg); Rf = 0.4 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 115.9–116.3 °C; IR (neat, cm–1): 3434, 3143, 1625, 1406, 1069, 575, 476; 1H NMR (400 MHz, CDCl3): δ 7.87 (d, J = 5.4 Hz, 1H), 7.84 (d, J = 5.4 Hz, 1H), 7.49 (s, 2H), 7.47 (s, 1H), 7.40–7.32 (m, 5H), 7.12 (t, J = 8.6 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.08 (t, J = 1.9 Hz, 1H), 5.75 (s, 1H), 2.29 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 166.1 (d, J = 254.3 Hz), 163.0, 143.9, 136.0, 134.6, 132.3 (d, J = 9.4 Hz), 131.5, 129.3, 129.24, 129.2, 128.7, 128.0, 124.9 (d, J = 3.0 Hz), 115.8 (d, J = 22.0 Hz), 100.8, 85.9, 21.4. HRMS (ESI) m/z: calcd for C23H19FINO4SNa+ (M + Na)+, 573.9956; found, 573.9958.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 4-Chlorobenzoate (4ao)

Yield 65% (36.7 mg); Rf = 0.38 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 98.3–99.7 °C; IR (neat, cm–1): 3465, 2276, 1660, 1648, 1271, 1059, 744, 707; 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 8.5 Hz, 2H), 7.49 (s, 2H), 7.47 (s, 1H), 7.44–7.43 (m, 1H), 7.42–7.40 (m, 1H), 7.39–7.38 (m, 1H), 7.36 (s, 1H), 7.35–7.31 (m, 3H), 7.06 (d, J = 8.2 Hz, 2H), 6.08 (s, 1H), 5.75 (s, 1H), 2.29 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 163.1, 144.0, 140.3, 136.0, 134.6, 131.5, 131.0, 129.3, 129.2, 128.9, 128.7, 128.0, 127.1, 100.7, 86.0, 21.4. HRMS (ESI) m/z: calcd for C23H19ClINO4SNa+ (M + Na)+, 589.9660; found, 589.9664.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 4-Bromobenzoate (4ap)

Yield 69% (41.9 mg); Rf = 0.33 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 112.1–112.8 °C; IR (neat, cm–1): 3464, 2286, 1647, 1271, 1070, 745, 706; 1H NMR (400 MHz, CDCl3): δ 7.68 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.49 (s, 2H), 7.47 (s, 1H), 7.42–7.31 (m, 5H), 7.06 (d, J = 7.7 Hz, 2H), 6.07 (s, 1H), 5.76 (s, 1H), 2.29 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 163.3, 144.0, 135.9, 134.5, 131.9, 131.4, 131.1, 129.3, 129.27, 129.25, 128.9, 128.7, 127.9, 127.5, 100.6, 86.0, 21.5. HRMS (ESI) m/z: calcd for C23H19BrINO4SNa+ (M + Na)+, 633.9155; found, 633.9157.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 2-Methylbenzoate (4aq)

Yield 68% (37.0 mg); Rf = 0.38 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 96.6–96.9 °C; IR (neat, cm–1): 3456, 2935, 2383, 1635, 1049, 754, 702; 1H NMR (400 MHz, CDCl3): δ 7.51 (d, J = 7.8 Hz, 2H), 7.47–7.43 (m, 3H), 7.40–7.33 (m, 5H), 7.29 (d, J = 7.2 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.09 (d, J = 7.5 Hz, 2H), 6.11 (s, 1H), 5.75 (s, 1H), 2.63 (s, 3H), 2.30 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 164.3, 143.9, 141.6, 136.1, 134.7, 132.7, 132.0, 131.5, 130.1, 129.3, 129.1, 129.09, 128.6, 127.9, 127.5, 125.6, 101.3, 85.6, 21.8, 21.5. HRMS (ESI) m/z: calcd for C24H22INO4SNa+ (M + Na)+, 570.0206; found, 570.0205.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 3-Fluorobenzoate (4ar)

Yield 68% (37.4 mg); Rf = 0.31 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 92.1–92.7 °C; IR (neat, cm–1): 3453, 2928, 2375, 1633, 1081, 756; 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 7.7 Hz, 1H), 7.49 (s, 2H), 7.47 (s, 1H), 7.44–7.39 (m, 4H), 7.37–7.30 (m, 5H), 7.07 (d, J = 7.9 Hz, 2H), 6.07 (s, 1H), 5.76 (s, 1H), 2.29 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 162.9, 162.8, 162.4 (d, J = 246.5 Hz), 144.1, 135.9, 134.5, 131.5, 130.3, 130.2, 129.4, 129.3 (d, J = 2.4 Hz), 128.7, 127.9, 125.5 (d, J = 3.1 Hz), 120.8 (d, J = 21.2 Hz), 116.4 (d, J = 23.1 Hz), 100.5, 86.2, 21.4. HRMS (ESI) m/z: calcd for C23H19FINO4SNa+ (M + Na)+, 573.9956; found, 573.9959.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 2-Naphthoate (4as)

Yield 72% (41.4 mg); Rf = 0.24 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 121.8–122.3 °C; IR (neat, cm–1): 3452, 2928, 2366, 1634, 1025, 724, 668; 1H NMR (400 MHz, CDCl3): δ 8.30 (s, 1H), 7.91–7.86 (m, 3H), 7.82 (d, J = 8.5 Hz, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.56 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.44–7.38 (m, 5H), 6.97 (d, J = 7.9 Hz, 2H), 6.14 (s, 1H), 5.76 (s, 1H), 2.08 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 164.1, 143.9, 136.0, 135.7, 134.7, 132.2, 131.5, 131.46, 129.32, 129.3, 129.2, 129.2, 128.8, 128.7, 128.3, 127.9, 127.8, 126.9, 125.8, 124.9, 100.9, 86.0, 21.3. HRMS (ESI) m/z: calcd for C27H22INO4SNa+ (M + Na)+, 606.0206; found, 606.0207.

2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl Cinnamate (4at)

Yield 69% (38.5 mg); Rf = 0.36 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 134.0–135.2 °C; IR (neat, cm–1): 3462, 2936, 2382, 1758, 1634, 1366, 1215, 1013, 716; 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 16.0 Hz, 1H), 7.51–7.49 (m, 4H), 7.43–7.41 (m, 3H), 7.38–7.36 (m, 2H), 7.35–7.31 (m, 4H), 7.15 (d, J = 7.9 Hz, 2H), 6.25 (d, J = 16.0 Hz, 1H), 6.08 (s, 1H), 5.73 (s, 1H), 2.27 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 164.1, 146.6, 143.9, 136.0, 134.6, 133.7, 131.5, 130.9, 129.3, 129.1, 129.0, 128.6, 128.2, 128.1, 116.2, 101.0, 85.3, 21.4. HRMS (ESI) m/z: calcd for C25H22INO4SNa+ (M + Na)+, 582.0206; found, 582.0208.

2-Iodo-1-(4-methyl-N-(p-tolyl)phenylsulfonamido)allyl Acetate (4ba)

Yield 89% (43.0 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 112.3–113.4 °C; IR (neat, cm–1): 3463, 2934, 2382, 1755, 1635, 1217, 1087, 744; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.7 Hz, 2H), 7.26 (s, 2H), 7.24 (s, 1H), 7.10 (br, 4H), 6.03 (s, 1H), 5.72 (s, 1H), 2.44 (s, 3H), 2.35 (s, 3H), 1.98 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 143.9, 139.2, 136.1, 131.7, 131.1, 129.2, 128.8, 128.1, 101.3, 84.9, 21.6, 21.2, 20.5. HRMS (ESI) m/z: calcd for C19H20INO4SNa+ (M + Na)+, 508.0050; found, 508.0048.

2-Iodo-1-(N-(4-methoxyphenyl)-4-methylphenylsulfonamido)allyl Acetate (4ca)

Yield 81% (40.6 mg); Rf = 0.2 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 142.1–142.3 °C; IR (neat, cm–1): 3469, 2384, 1634, 1270, 1072, 749; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 5.2 Hz, 2H), 7.25 (d, J = 7.2 Hz, 4H), 7.14 (d, J = 6.3 Hz, 1H), 6.80 (d, J = 7.2 Hz, 2H), 6.03 (s, 1H), 5.74 (s, 1H), 3.81 (s, 3H), 2.44 (s, 3H), 1.99 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 159.9, 143.9, 136.1, 132.7, 129.3, 128.8, 128.1, 126.9, 113.7, 101.5, 85.0, 55.3, 21.6, 20.6. HRMS (ESI) m/z: calcd for C19H20INO5SNa+ (M + Na)+, 523.9999; found, 523.9996.

1-(N-(4-Fluorophenyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4da)

Yield 66% (32.4 mg); Rf = 0.22 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 108.2–109.4 °C; IR (neat, cm–1): 3468, 2965, 2376, 1660, 1213, 1011, 740; 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 2.8 Hz, 2H), 7.26–7.22 (m, 3H), 7.21 (d, J = 5.0 Hz, 1H), 6.99 (t, J = 8.5 Hz, 2H), 6.04 (s, 1H), 5.75 (s, 1H), 2.44 (s, 3H), 2.00 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.0, 162.7 (d, J = 248.3 Hz), 144.3, 135.8, 133.3 (d, J = 8.8 Hz), 130.3 (d, J = 3.2 Hz), 129.4, 129.0, 128.0, 115.6 (d, J = 22.5 Hz), 101.1, 84.8, 21.6, 20.5. HRMS (ESI) m/z: calcd for C18H17FINO4SNa+ (M + Na)+, 511.9799; found, 511.9798.

1-(N-(4-Chlorophenyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4ea)

Yield 73% (36.9 mg); Rf = 0.24 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 129.3–130.7 °C; IR (neat, cm–1): 3448, 2932, 2378, 1643, 1273, 1014, 752; 1H NMR (400 MHz, CDCl3): δ 7.44 (d, J = 8.0 Hz, 2H), 7.22–7.16 (m, 5H), 7.11 (d, J = 8.5 Hz, 2H), 5.98 (s, 1H), 5.67 (s, 1H), 2.37 (s, 3H), 1.91 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 144.3, 135.7, 135.2, 133.0, 132.6, 129.4, 129.1, 128.8, 128.0, 100.9, 84.8, 21.6, 20.5. HRMS (ESI) m/z: calcd for C18H17ClINO4SNa+ (M + Na)+, 527.9503; found, 527.9506.

1-(N-(4-Bromophenyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4fa)

Yield 71% (39.0 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 145.6–145.9 °C; IR (neat, cm–1): 3475, 1936, 2368, 1758, 1636, 1216, 1013, 753; 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 3.0 Hz, 1H), 7.25 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.5 Hz, 2H), 6.05 (s, 1H), 5.75 (s, 1H), 2.44 (s, 3H), 1.99 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 144.3, 135.7, 133.6, 133.0, 131.9, 129.4, 129.2, 128.0, 123.5, 100.9, 84.7, 21.6, 20.5. HRMS (ESI) m/z: calcd for C18H17BrINO4SNa+ (M + Na)+, 571.8999; found, 571.8998.

2-Iodo-1-(N-(3-methoxyphenyl)-4-methylphenylsulfonamido)allyl Acetate (4ga)

Yield 72% (36.0 mg); Rf = 0.2 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 114.8–115.9 °C; IR (neat, cm–1): 3458, 2935, 2388, 1617, 1172, 1087, 752, 569; 1H NMR (400 MHz, CDCl3): δ 7.55 (d, J = 5.4 Hz, 2H), 7.29–7.17 (m, 4H), 6.91 (d, J = 5.7 Hz, 1H), 6.83 (s, 2H), 6.05 (s, 1H), 5.73 (s, 1H), 3.76 (s, 3H), 2.44 (s, 3H), 1.98 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 159.3, 144.1, 136.0, 135.5, 129.3, 128.9, 128.1, 123.5, 117.3, 114.8, 100.9, 84.9, 55.3, 21.6, 20.5. HRMS (ESI) m/z: calcd for C19H20INO5SNa+ (M + Na)+, 523.9999; found, 523.9998.

1-(N-(3-Bromophenyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4ha)

Yield 62% (34.1 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 144.9–145.7 °C; IR (neat, cm–1): 3466, 2377, 4642, 1272, 745; 1H NMR (400 MHz, CDCl3): δ 7.54 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.39 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.24–7.16 (m, 3H), 6.08 (s, 1H), 5.77 (s, 1H), 2.45 (s, 3H), 2.00 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 144.4, 135.8, 135.6, 134.4, 132.3, 130.1, 129.7, 129.4, 129.2, 128.0, 121.6, 100.7, 84.7, 21.6, 20.5. HRMS (ESI) m/z: calcd for C18H17BrINO4SNa+ (M + Na)+, 571.8998; found, 571.9004.

1-(N-(3,5-Dimethoxyphenyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4ia)

Yield 72% (38.3 mg); Rf = 0.10 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 81.5–82.3 °C; IR (neat, cm–1): 3457, 2968, 2834, 1629, 1438, 1168, 1085, 772; 1H NMR (400 MHz, CDCl3): δ 7.59 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 5.5 Hz, 2H), 7.21 (s, 1H), 6.46 (s, 1H), 6.42 (s, 2H), 6.08 (s, 1H), 5.76 (s, 1H), 3.73 (s, 6H), 2.44 (s, 3H), 1.96 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 160.0, 144.1, 136.1, 136.0, 129.3, 129.1, 128.1, 109.8, 101.1, 100.8, 84.9, 55.4, 21.6, 20.5. HRMS (ESI) m/z: calcd for C20H22INO6SNa+ (M + Na)+, 554.0105; found, 554.0108.

2-Iodo-1-(4-methyl-N-(naphthalen-2-yl)phenylsulfonamido)allyl Acetate (4ja)

Yield 78% (40.5 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 123.3–125.2 °C; IR (neat, cm–1): 3456, 2924, 2384, 1643, 1272, 1084, 752; 1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 7.3 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.76 (d, J = 9.9 Hz, 2H), 7.54–7.49 (m, 4H), 7.34 (br, 2H), 7.25 (d, J = 8.2 Hz, 2H), 6.03 (s, 1H), 5.66 (s, 1H), 2.45 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 144.1, 136.1, 133.1, 132.9, 131.9, 130.8, 129.3, 129.0, 128.6, 128.4, 128.3, 128.1, 127.6, 127.1, 126.3, 101.0, 85.2, 21.6, 20.7. HRMS (ESI) m/z: calcd for C22H20INO4SNa+ (M + Na)+, 544.0050; found, 544.0046.

1-(N-Benzyl-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4ka)

Yield 69% (33.4 mg); Rf = 0.24 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 86.9–88.9 °C; IR (neat, cm–1): 3463, 2968, 2374, 1662, 1164, 1056, 738; 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.2 Hz, 2H), 7.34–7.31 (m, 2H), 7.24–7.22 (m, 5H), 6.90 (s, 1H), 6.37 (s, 1H), 5.98 (s, 1H), 4.51 (d, J = 15.9 Hz, 1H), 4.40 (d, J = 15.9 Hz, 1H), 2.41 (s, 3H), 1.84 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 143.8, 136.5, 136.3, 129.4, 129.2, 128.9, 128.0, 127.8, 127.4, 102.5, 84.7, 48.0, 21.5, 20.3. HRMS (ESI) m/z: calcd for C19H20INO4SNa+ (M + Na)+, 508.0050; found, 508.0052.

1-(N-Benzyl-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4la)

Yield 91% (45.6 mg); Rf = 0.35 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 109.9–110.5 °C; IR (neat, cm–1): 3439, 2965, 2385, 1756, 1634, 1165, 1101, 744; 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.0 Hz, 2H), 7.25–7.18 (m, 4H), 7.05 (d, J = 7.5 Hz, 2H), 6.89 (s, 1H), 6.38 (s, 1H), 5.98 (s, 1H), 4.46 (d, J = 15.8 Hz, 1H), 4.35 (d, J = 15.9 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H), 1.85 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 143.7, 137.0, 136.5, 133.1, 129.4, 129.2, 128.9, 128.6, 127.8, 102.6, 84.7, 47.8, 21.5, 21.1, 20.3. HRMS (ESI) m/z: calcd for C20H22INO4SNa+ (M + Na)+, 522.0206; found, 522.0208.

2-Iodo-1-(N-(4-methoxybenzyl)-4-methylphenylsulfonamido)allyl Acetate (4ma)

Yield 67% (35.0 mg); Rf = 0.16 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 114.2–116.2 °C; IR (neat, cm–1): 3469, 2939, 2383, 1629, 1166, 1028, 756, 669; 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 4.4 Hz, 1H), 7.15 (d, J = 7.3 Hz, 3H), 6.81 (s, 1H), 6.69 (d, J = 8.2 Hz, 2H), 6.30 (s, 1H), 5.91 (s, 1H), 4.36 (d, J = 15.6 Hz, 1H), 4.27 (d, J = 15.7 Hz, 1H), 3.72 (s, 3H), 2.33 (s, 3H), 1.79 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 159.0, 143.7, 136.6, 130.4, 129.3, 129.1, 128.2, 127.7, 113.3, 102.7, 84.7, 55.2, 47.5, 21.5, 20.3. HRMS (ESI) m/z: calcd for C20H22INO5SNa+ (M + Na)+, 538.0156; found, 538.0159.

1-(N-(4-Fluorobenzyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4na)

Yield 68% (34.2 mg); Rf = 0.18 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 58.4–59.6 °C; IR (neat, cm–1): 3458, 2382, 1635, 1273, 1056, 752; 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.1 Hz, 2H), 7.34–7.30 (m, 2H), 7.26 (s, 1H), 7.24 (s, 1H), 6.93 (t, J = 8.6 Hz, 2H), 6.88 (s, 1H), 6.37 (s, 1H), 5.97 (s, 1H), 4.44 (d, J = 15.9 Hz, 1H), 4.38 (d, J = 15.9 Hz, 1H), 2.41 (s, 3H), 1.85 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 162.1 (d, J = 244.6 Hz), 143.9, 136.3, 132.0 (d, J = 3.2 Hz), 131.0, 130.7, 129.4, 129.2, 127.6 (d, J = 12.5 Hz), 114.9, 114.7, 102.5, 84.6, 47.2, 21.5, 20.2. HRMS (ESI) m/z: calcd for C19H19FINO4SNa+ (M + Na)+, 525.9956; found, 525.9959.

1-(N-(4-Chlorobenzyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4oa)

Yield 62% (32 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 135.6–136.2 °C; IR (neat, cm–1): 3458, 2937, 2383, 1653, 1363, 1166, 1061, 1016, 822, 745; 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.19–7.13 (m, 4H), 6.82 (s, 1H), 6.30 (s, 1H), 5.91 (s, 1H), 4.35 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 16.0 Hz, 1H), 2.35 (s, 3H), 1.79 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 144.1, 136.2, 135.4, 131.0, 130.6, 129.5, 129.3, 127.7, 121.4, 102.3, 84.7, 47.3, 21.5, 20.3. HRMS (ESI) m/z: calcd for C19H19ClINO4SNa+ (M + Na)+, 541.9660; found, 541.9660.

1-(N-(4-Bromobenzyl)-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4pa)

Yield 84% (47.1 mg); Rf = 0.21 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 112.7–114.6 °C; IR (neat, cm–1): 3457, 2936, 2835, 1758, 1361, 1165, 745, 699; 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.26–7.20 (m, 4H), 6.89 (s, 1H), 6.38 (s, 1H), 5.98 (s, 1H), 4.43 (d, J = 16.0 Hz, 1H), 4.35 (d, J = 16.1 Hz, 1H), 2.43 (s, 3H), 1.87 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.9, 144.1, 136.2, 135.4, 131.1, 130.6, 129.5, 129.3, 127.7, 121.4, 102.4, 84.7, 47.3, 21.5, 20.3. HRMS (ESI) m/z: calcd for C19H19BrINO4SNa+ (M + Na)+, 581.9135; found, 581.9145.

2-Iodo-1-(4-methyl-N-phenethylphenylsulfonamido)allyl Acetate (4qa)

Yield 72% (36.1 mg); Rf = 0.35 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 81.5–82.4 °C; IR (neat, cm–1): 3457, 2383, 1755, 1635, 1272, 1166, 756; 1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.6 Hz, 2H), 7.29 (t, J = 7.1 Hz, 4H), 7.23 (d, J = 6.9 Hz, 1H), 7.16 (d, J = 7.4 Hz, 2H), 6.87 (s, 1H), 6.51 (s, 1H), 6.14 (s, 1H), 3.43–3.29 (m, 2H), 3.07–2.96 (m, 2H), 2.42 (s, 3H), 1.91 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.1, 144.0, 138.7, 136.2, 129.6, 128.7, 128.69, 128.6, 127.7, 126.5, 102.9, 84.7, 46.2, 37.3, 21.5, 20.4. HRMS (ESI) m/z: calcd for C20H22INO4SNa+ (M + Na)+, 522.0206; found, 522.0208.

1-(N-Butyl-4-methylphenylsulfonamido)-2-iodoallyl Acetate (4ra)

Yield 48% (21.7 mg); Rf = 0.28 (SiO2; hexanes/ethyl acetate, 10:1); yellow liquid; IR (neat, cm–1): 3466, 2991, 2389, 1644, 1164, 752; 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 6.75 (s, 1H), 6.37 (s, 1H), 5.98 (s, 1H), 3.18–3.11 (m, 1H), 3.06–2.98 (m, 1H), 2.36 (s, 3H), 1.85 (s, 3H), 1.64–1.52 (m, 2H), 1.24–1.14 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.2, 143.8, 136.4, 129.5, 128.5, 127.7, 102.8, 84.7, 44.4, 32.5, 21.5, 20.4, 20.2, 13.6. HRMS (ESI) m/z: calcd for C16H22INO4SNa+ (M + Na)+, 474.0206; found, 474.0207.

2-Iodo-1-(N-phenylmethylsulfonamido)allyl Acetate (4sa)

Yield 74% (29.3 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 113.1–114.4 °C; IR (neat, cm–1): 3760, 3448, 2939, 2384, 1756, 1653, 1216, 1020, 746, 701; 1H NMR (400 MHz, CDCl3): δ 7.51–7.47 (m, 2H), 7.42–7.40 (m, 3H), 7.12 (s, 1H), 6.14 (s, 1H), 5.80 (s, 1H), 3.04 (s, 3H), 2.23 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.2, 134.2, 131.2, 129.5, 129.2, 129.0, 101.2, 85.1, 39.9, 20.8. HRMS (ESI) m/z: calcd for C12H14INO4Na+ (M + Na)+, 417.9580; found, 417.9592.

2-Iodo-1-(N-phenylacetamido)allyl Acetate (4ta)

Yield 81% (29.0 mg); Rf = 0.13 (SiO2; hexanes/ethyl acetate, 10:1); brown liquid; IR (neat, cm–1): 3460, 2934, 2380, 1687, 1272, 1219, 1096, 1014, 823, 705; 1H NMR (400 MHz, CDCl3): δ 7.64 (s, 1H), 7.41 (s, 3H), 7.33 (s, 2H), 6.13 (s, 1H), 5.81 (s, 1H), 2.15 (s, 3H), 1.88 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 171.2, 168.1, 137.6, 129.9, 129.1, 128.9, 128.4, 102.4, 80.3, 23.2, 20.7. HRMS (ESI) m/z: calcd for C13H14INO3Na+ (M + Na)+, 381.9911; found, 381.9914.

2-Iodo-1-(2-oxooxazolidin-3-yl)allyl Acetate (4ua)

Yield 48% (15.1 mg); Rf = 0.1 (SiO2; hexanes/ethyl acetate, 10:1); colorless liquid; IR (neat, cm–1): 2354, 2934, 2384, 1751, 1652, 1422, 1258, 1038, 927, 757; 1H NMR (400 MHz, CDCl3): δ 6.76 (s, 1H), 6.55 (s, 1H), 6.12 (s, 1H), 4.41 (t, J = 7.7 Hz, 2H), 3.60 (t, J = 7.8 Hz, 2H), 2.16 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.0, 156.8, 128.7, 101.3, 80.6, 62.5, 39.9, 20.5. HRMS (ESI) m/z: calcd for C8H10INO4Na+ (M + Na)+, 333.9547; found, 333.9542.

(Z)-2-Iodo-3-(N-mesityl-4-methylphenylsulfonamido)allyl Acetate (5)

Yield 56% (28.6 mg); Rf = 0.26 (SiO2; hexanes/ethyl acetate, 10:1); white solid; mp 132.9–133.6 °C; IR (neat, cm–1): 3454, 2937, 2382, 1625, 1088, 757; 1H NMR (400 MHz, CDCl3): δ 7.60 (d, J = 8.0 Hz, 2H), 7.56 (s, 1H), 7.31 (d, J = 7.9 Hz, 2H), 6.84 (s, 2H), 4.83 (s, 2H), 2.45 (s, 3H), 2.29 (s, 3H), 2.07 (s, 3H), 1.82 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.5, 144.6, 140.3, 139.6, 135.9, 133.0, 129.9, 129.5, 129.2, 128.9, 127.9, 73.6, 67.9, 21.6, 21.1, 21.0, 19.1. HRMS (ESI) m/z: calcd for C21H24INO4SNa+ (M + Na)+, 536.0363; found, 536.0366.

(2S)-2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 2-((tert-Butoxycarbonyl)amino)-3-phenylpropanoate (6, dr = 1:1)

Yield 51% (34.4 mg); Rf = 0.2 (SiO2; hexanes/ethyl acetate, 10:1); colorless liquid; IR (neat, cm–1): 3438, 2991, 1718, 1500, 1368, 1169, 1084, 703, 666; 1H NMR (400 MHz, CDCl3): δ 7.57 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.34–7.26 (m, 12H), 7.23 (d, J = 5.1 Hz, 6H), 7.15 (t, J = 7.3 Hz, 6H), 5.99 (s, 1H), 5.85 (s, 1H), 5.67 (s, 1H), 5.65 (s, 1H), 5.30 (s, 2H), 4.85 (d, J = 7.9 Hz, 1H), 4.76 (d, J = 7.9 Hz, 1H), 4.49 (s, 2H), 3.14–3.05 (m, 2H), 3.04–2.96 (m, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 1.43 (s, 9H), 1.36 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3): δ 169.9, 169.7, 154.9, 144.3, 144.2, 136.0, 135.8, 135.7, 135.6, 134.2, 131.5, 131.48, 129.9, 129.8, 129.5, 129.43, 129.4, 129.3, 129.2, 129.1, 128.8, 128.7, 128.69, 128.6, 128.2, 128.1, 127.2, 127.1, 99.9, 99.8, 86.1, 86.0, 80.2, 60.4, 54.2, 53.9, 53.5, 37.8, 37.6, 28.3, 28.2, 21.7, 21.6, 14.2. HRMS (ESI) m/z: calcd for C30H33IN2O6SNa+ (M + Na)+, 699.0996; found, 699.1002.

(2S)-2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 2-Acetamido-3-phenylpropanoate (7, dr = 1:1)

Yield 47% (28.8 mg); Rf = 0.25 (SiO2; hexanes/ethyl acetate, 3:1); yellow liquid; IR (neat, cm–1): 3403, 3303, 3075, 1760, 1688, 1500, 1082, 714, 703; 1H NMR (400 MHz, CDCl3): δ 7.59 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.37–7.30 (m, 4H), 7.30–7.22 (m, 12H), 7.17 (t, J = 7.5 Hz, 4H), 7.14–7.07 (m, 4H), 6.08–6.00 (m, 3H), 5.77 (s, 1H), 5.68 (s, 1H), 5.62 (s, 1H), 5.27 (s, 1H), 4.79 (dt, J = 14.4, 7.2 Hz, 2H), 3.13 (dd, J = 14.2, 5.2 Hz, 1H), 3.05 (d, J = 6.3 Hz, 2H), 3.02–2.97 (m, 1H), 2.40 (s, 3H), 2.37 (s, 3H), 1.95 (s, 3H), 1.88 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.1, 169.9, 169.7, 169.6, 144.4, 144.3, 135.9, 135.6, 135.5, 135.4, 134.1, 133.99, 131.6, 131.4, 130.0, 129.5, 129.4, 129.3, 129.29, 129.25, 129.2, 128.84, 128.8, 128.7, 128.6, 128.2, 128.1, 127.32, 127.3, 99.8, 99.5, 86.3, 86.2, 62.8, 52.9, 52.6, 37.4, 37.2, 22.9, 22.8, 21.7. HRMS (ESI) m/z: calcd for C27H27IN2O5SNa+ (M + Na)+, 641.0578; found, 641.0575.

(2S)-2-Iodo-1-(4-methyl-N-phenylphenylsulfonamido)allyl 2-((tert-Butoxycarbonyl)amino)-3-(4-hydroxyphenyl)propanoate (8, dr = 1:1)

Yield 51% (35.4 mg); Rf = 0.2 (SiO2; hexanes/ethyl acetate, 3:1); colorless liquid; IR (neat, cm–1): 3402, 2991, 1700, 1520, 1168, 1068, 736, 701; 1H NMR (400 MHz, CDCl3): δ 7.56 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.7 Hz, 2H), 7.33–7.30 (m, 3H), 7.26 (d, J = 7.5 Hz, 4H), 7.23–7.11 (m, 8H), 7.05 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 7.8 Hz, 2H), 6.79–6.70 (m, 4H), 6.02 (br, 1H), 5.99 (s, 1H), 5.87 (s, 1H), 5.65 (s, 2H), 4.91–4.84 (m, 2H), 4.46–4.41 (m, 2H), 3.03–2.96 (m, 2H), 2.94–2.88 (m, 2H), 2.39 (s, 3H), 2.37 (s, 3H), 1.41 (s, 9H), 1.35 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.0, 169.8, 155.1, 144.3, 144.28, 135.9, 135.8, 134.1, 131.6, 131.5, 130.5, 130.4, 130.0, 129.9, 129.6, 129.5, 129.4, 129.3, 129.2, 128.7, 128.6, 128.2, 128.1, 127.9, 127.8, 127.3, 127.23, 127.2, 121.7, 115.7, 99.9, 99.8, 86.1, 80.3, 60.5, 54.4, 54.2, 37.1, 36.8, 28.3, 28.2, 21.6, 21.58, 14.1. HRMS (ESI) m/z: calcd for C30H33IN2O7SNa+ (M + Na)+, 715.0945; found, 715.0949.

Acknowledgments

This work was financially supported by the Project of Science and Technology Department of Sichuan Province (2018JY0226) and the Fundamental Research Funds of Central Universities, Southwest Minzu University (2018NZD05).

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b02712.

  • Copies of 1H and 13C NMR spectra for all products and X-ray structural information for 4ia (PDF)

  • Crystal data for 4ia (CIF)

The authors declare no competing financial interest.

Supplementary Material

ao9b02712_si_001.pdf (9.9MB, pdf)
ao9b02712_si_002.cif (451.5KB, cif)

References

  1. a Ankisetty S.; ElSohly H. N.; Li X.-C.; Khan S. I.; Tekwani B. L.; Smillie T.; Walker L. Aromatic constituents of Uvaria grandiflora. J. Nat. Prod. 2006, 69, 692–694. 10.1021/np050500b. [DOI] [PubMed] [Google Scholar]; b Jogalekar A. S.; Kriel F. H.; Shi Q.; Cornett B.; Cicero D.; Snyder J. P. The Discodermolide Hairpin Structure Flows from Conformationally Stable Modular Motifs. J. Med. Chem. 2010, 53, 155–165. 10.1021/jm9015284. [DOI] [PubMed] [Google Scholar]; c Macabeo A. P. G.; Letada A. G.; Budde S.; Faderl C.; Dahse H. M.; Franzblau S. G.; Alejandro G. J. D.; Pierens G. K.; Garso M. J. Antitubercular and Cytotoxic Chlorinated seco-Cyclohexenes from Uvaria alba. J. Nat. Prod. 2017, 80, 3319–3323. 10.1021/acs.jnatprod.7b00679. [DOI] [PubMed] [Google Scholar]
  2. Selected examples:; a Chen S.; Wei W.-X.; Wang J.; Xia Y.; Shen Y.; Wu X.-X.; Jing H.; Liang Y.-M. Palladium-Catalyzed Isocyanide Insertion with Allylic Esters: Synthesis of N-(But-2-enoyl)-N-(tert-butyl)benzamide Derivatives via Intramolecular Acyl Transfer Termination. Adv. Synth. Catal. 2017, 359, 3538–3544. 10.1002/adsc.201700765. [DOI] [Google Scholar]; b Kim S. W.; Wurm T.; Brito G. A.; Jung W.-O.; Zbieg J. R.; Stivala C. E.; Krische M. J. Hydroamination versus Allylic Amination in Iridium-Catalyzed Reactions of Allylic Acetates with Amines: 1,3-Aminoalcohols via Ester-Directed Regioselectivity. J. Am. Chem. Soc. 2018, 140, 9087–9090. 10.1021/jacs.8b05683. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Liu Y.-J.; Ding Y.-L.; Niu S.-S.; Ma J.-T.; Cheng Y. N-Heterocyclic Carbene/Palladium Cascade Catalysis: Construction of 2,2-Disubstitiuted Benzofuranones from the Reaction of 3-(2-Formylphenoxy) propenoates with Allylic Esters. J. Org. Chem. 2018, 83, 1913–1923. 10.1021/acs.joc.7b02849. [DOI] [PubMed] [Google Scholar]; d Zhou Y.; Wang H.; Liu Y.; Zhao Y.; Zhang C.; Qu J. Iron-catalyzed boration of allylic esters: an efficient approach to allylic boronates. Org. Chem. Front. 2017, 4, 1580–1585. 10.1039/c7qo00228a. [DOI] [Google Scholar]
  3. a Cannon J. S.; Kirsch S. F.; Overman L. E. Catalytic Asymmetric Synthesis of Chiral Allylic Esters. J. Am. Chem. Soc. 2010, 132, 15185–15191. 10.1021/ja106685w. [DOI] [PubMed] [Google Scholar]; b Geurts K.; Fletcher S. P.; Feringa B. L. Copper catalyzed asymmetric synthesis of chiral allylic esters. J. Am. Chem. Soc. 2006, 128, 15572–15573. 10.1021/ja065780b. [DOI] [PubMed] [Google Scholar]; c Kanbayashi N.; Onitsuka K. Enantioselective Synthesis of Allylic Esters via Asymmetric Allylic Substitution with Metal Carboxylates Using Planar-Chiral Cyclopentadienyl Ruthenium Catalysts. J. Am. Chem. Soc. 2010, 132, 1206–1207. 10.1021/ja908456b. [DOI] [PubMed] [Google Scholar]; d Tang J.; Zhao S.; Wei Y.; Quan Z.; Huo C. CBr4 promoted intramolecular aerobic oxidative dehydrogenative arylation of aldehydes: application in the synthesis of xanthones and fluorenones. Org. Biomol. Chem. 2017, 15, 1589–1592. 10.1039/c7ob00080d. [DOI] [PubMed] [Google Scholar]; e Xiang J.; Orita A.; Otera J. Fluorous biphasic esterification directed towards ultimate atom efficiency. Angew. Chem., Int. Ed. 2002, 41, 4117–4119. . [DOI] [PubMed] [Google Scholar]
  4. Selected examples:; a Chen M. S.; Prabagaran N.; Labenz N. A.; White M. C. Serial ligand catalysis: A highly selective allylic C-H oxidation. J. Am. Chem. Soc. 2005, 127, 6970–6971. 10.1021/ja0500198. [DOI] [PubMed] [Google Scholar]; b Chen M. S.; White M. C. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J. Am. Chem. Soc. 2004, 126, 1346–1347. 10.1021/ja039107n. [DOI] [PubMed] [Google Scholar]; c Gormisky P. E.; White M. C. Synthetic Versatility in C-H Oxidation: A Rapid Approach to Differentiated Diols and Pyrans from Simple Olefins. J. Am. Chem. Soc. 2011, 133, 12584–12589. 10.1021/ja206013j. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Kondo H.; Yu F.; Yamaguchi J.; Liu G.; Itami K. Branch-Selective Allylic C-H Carboxylation of Terminal Alkenes by Pd/sox Catalyst. Org. Lett. 2014, 16, 4212–4215. 10.1021/ol5019135. [DOI] [PubMed] [Google Scholar]; e Takenaka K.; Akita M.; Tanigaki Y.; Takizawa S.; Sasai H. Enantioselective Cyclization of 4-Alkenoic Acids via an Oxidative Allylic C-H Esterification. Org. Lett. 2011, 13, 3506–3509. 10.1021/ol201314m. [DOI] [PubMed] [Google Scholar]; f Fraunhoffer K. J.; Prabagaran N.; Sirois L. E.; White M. C. Macrolactonization via hydrocarbon oxidation. J. Am. Chem. Soc. 2006, 128, 9032–9033. 10.1021/ja063096r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Selected examples:; a García-Cabeza A. L.; Marín-Barrios R.; Moreno-Dorado F. J.; Ortega M. J.; Massanet G. M.; Guerra F. M. Allylic Oxidation of Alkenes Catalyzed by a Copper-Aluminum Mixed Oxide. Org. Lett. 2014, 16, 1598–1601. 10.1021/ol500198c. [DOI] [PubMed] [Google Scholar]; b Sadjadi S.; Samadi S.; Samadi M. Cu(CH3CN)(4)PF6 immobilized on halloysite as efficient heterogeneous catalyst for oxidation of allylic C-H bonds in olefins under mild reaction condition. Res. Chem. Intermed. 2019, 45, 2441–2455. 10.1007/s11164-019-03745-z. [DOI] [Google Scholar]; c Tan Q.; Hayashi M. Novel N,N-Bidentate Ligands for Enantioselective Copper(I)-Catalyzed Allylic Oxidation of Cyclic Olefins. Adv. Synth. Catal. 2008, 350, 2639–2644. 10.1002/adsc.200800457. [DOI] [Google Scholar]; d Wang C.-Y.; Song R.-J.; Wei W.-T.; Fan J.-H.; Li J.-H. Copper-catalyzed oxidative coupling of acids with alkanes involving dehydrogenation: facile access to allylic esters and alkyl alkenes. Chem. Commun. 2015, 51, 2361–2363. 10.1039/c4cc09393c. [DOI] [PubMed] [Google Scholar]; e Xiong M.-F.; Ali A.; Akram W.; Zhang H.; Si L.-P.; Liu H.-Y. Copper porphyrin as efficient catalysts for esterification of allyl sp(3) C-H bond with carboxylic acid. Catal. Commun. 2019, 125, 93–97. 10.1016/j.catcom.2019.04.001. [DOI] [Google Scholar]; f Zhang B.; Zhu S.-F.; Zhou Q.-L. Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Lett. 2013, 54, 2665–2668. 10.1016/j.tetlet.2013.03.046. [DOI] [Google Scholar]; g Zhou J.; Jin C.; Li X.; Su W. Copper-catalyzed oxidative esterification of unactivated C(sp(3))-H bonds with carboxylic acids via cross dehydrogenative coupling. RSC Adv. 2015, 5, 7232–7236. 10.1039/c4ra14586k. [DOI] [Google Scholar]; h Zhu N.; Qian B.; Xiong H.; Bao H. Copper-catalyzed regioselective allylic oxidation of olefins via C-H activation. Tetrahedron Lett. 2017, 58, 4125–4128. 10.1016/j.tetlet.2017.09.047. [DOI] [Google Scholar]
  6. Lu B.; Zhu F.; Wang D.; Sun H.; Shen Q. Iron-catalyzed esterification of allylic sp(3) C-H bonds with carboxylic acids: Facile access to allylic esters. Tetrahedron Lett. 2017, 58, 2490–2494. 10.1016/j.tetlet.2017.05.039. [DOI] [Google Scholar]
  7. a Koschker P.; Kähny M.; Breit B. Enantioselective Redox-Neutral Rh-Catalyzed Coupling of Terminal Alkynes with Carboxylic Acids Toward Branched Allylic Esters. J. Am. Chem. Soc. 2015, 137, 3131–3137. 10.1021/jacs.5b01131. [DOI] [PubMed] [Google Scholar]; b Lumbroso A.; Abermil N.; Breit B. Atom economic macrolactonization and lactonization via redox-neutral rhodium-catalyzed coupling of terminal alkynes with carboxylic acids. Chem. Sci. 2012, 3, 789–793. 10.1039/c2sc00812b. [DOI] [Google Scholar]; c Lumbroso A.; Koschker P.; Vautravers N. R.; Breit B. Redox-Neutral Atom-Economic Rhodium-Catalyzed Coupling of Terminal Alkynes with Carboxylic Acids Toward Branched Allylic Esters. J. Am. Chem. Soc. 2011, 133, 2386–2389. 10.1021/ja1108613. [DOI] [PubMed] [Google Scholar]
  8. Al-Masum M.; Yamamoto Y. Palladium-catalyzed hydrocarboxylation of allenes. J. Am. Chem. Soc. 1998, 120, 3809–3810. 10.1021/ja974223+. [DOI] [Google Scholar]
  9. Kim I. S.; Krische M. J. Iridium-catalyzed hydrocarboxylation of 1,1-dimethylallene: Byproduct-free reverse prenylation of carboxylic acids. Org. Lett. 2008, 10, 513–515. 10.1021/ol702914p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koschker P.; Lumbroso A.; Breit B. Enantioselective Synthesis of Branched Allylic Esters via Rhodium-Catalyzed Coupling of Allenes with Carboxylic Acids. J. Am. Chem. Soc. 2011, 133, 20746–20749. 10.1021/ja210149g. [DOI] [PubMed] [Google Scholar]
  11. Shi E.; Shao Y.; Chen S.; Hu H.; Liu Z.; Zhang J.; Wan X. Tetrabutylammonium Iodide Catalyzed Synthesis of Allylic Ester with tert-Butyl Hydroperoxide as an Oxidant. Org. Lett. 2012, 14, 3384–3387. 10.1021/ol3013606. [DOI] [PubMed] [Google Scholar]
  12. a Lu T.; Hayashi R.; Hsung R. P.; DeKorver K. A.; Lohse A. G.; Song Z.; Tang Y. Synthesis of amido-spiro 2.2 pentanes via Simmons-Smith cyclopropanation of allenamides. Org. Biomol. Chem. 2009, 7, 3331–3337. 10.1039/b908205k. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Lu T.; Lu Z.; Ma Z.-X.; Zhang Y.; Hsung R. P. Allenamides: A Powerful and Versatile Building Block in Organic Synthesis. Chem. Rev. 2013, 113, 4862–4904. 10.1021/cr400015d. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Standen P. E.; Kimber M. C. Cycloaddition chemistry of allenamides. Curr. Opin. Drug Discovery Dev. 2010, 13, 645–657. [PubMed] [Google Scholar]; d Wei L.-l.; Xiong H.; Hsung R. P. The emergence of allenamides in organic synthesis. Acc. Chem. Res. 2003, 36, 773–782. 10.1021/ar030029i. [DOI] [PubMed] [Google Scholar]
  13. a Li H.-H.; Li X.-X.; Zhao Z.-G.; Lin C.-B.; Ma T.; Sun C.-Y.; Yang B.-W.; Fu X.-L. An intermolecular iodoamination of allenamides with sulfonamides mediated by N-iodosuccinimide. Tetrahedron Lett. 2016, 57, 4640–4644. 10.1016/j.tetlet.2016.09.020. [DOI] [Google Scholar]; b Li H.; Li X.; Zhao Z.; Ma T.; Sun C.; Yang B. Intermolecular iodofunctionalization of allenamides with indoles, pyrroles, and furans: synthesis of iodine-substituted Z-enamides. Chem. Commun. 2016, 52, 10167–10170. 10.1039/c6cc05046h. [DOI] [PubMed] [Google Scholar]; c Li H.-H.; Li X.-X.; Zhao Z.-G.; Yuan X.; Sun C.-Y. Regioselective 1,2-addition of allenamides with N-haloimides: synthesis of 2-halo allylic aminal derivatives. Org. Biomol. Chem. 2017, 15, 4005–4013. 10.1039/c7ob00882a. [DOI] [PubMed] [Google Scholar]; d Li Y.; Luo G. L.; Li X. X.; Zhao Z. G. NIS-Mediated intermolecular hydroamination of allenamides with imidazole heterocycles: a facile protocol for the synthesis of allylic N,N-acetals. New J. Chem. 2018, 42, 16940–16947. 10.1039/c8nj03641a. [DOI] [Google Scholar]
  14. Yuan X.; Re He Man X. J. A. T.; Li X.-X.; Zhao Z.-G. Regioselective 1,2-additions of alcohols to allenamides mediated by N-Iodosuccinimide: Synthesis of N,O-aminals. Tetrahedron 2018, 74, 5674–5682. 10.1016/j.tet.2018.07.045. [DOI] [Google Scholar]
  15. 4ia’s molecular structure was confirmed by its X-ray diffraction. Other product’s structure was also deduced from 4ia. CCDC 1937962 contains the supplementary crystallographic data for compound 4ia.
  16. a Suárez-Pantiga S.; Hernández-Díaz C.; Rubio E.; González J. M. Intermolecular [2+2] reaction of N-allenylsulfonamides with vinylarenes: enantioselective gold(I)-catalyzed synthesis of cyclobutane derivatives. Angew. Chem., Int. Ed. 2012, 51, 11552–11555. 10.1002/anie.201206461. [DOI] [PubMed] [Google Scholar]; b Li X.; Zhao Z.; Ma T.; Li H.; Sun C. Intermolecular Hydroalkoxylation of N-Allenyl Sulfonamides with Oximes Catalyzed by Cationic Gold(I) Salts. Synthesis 2016, 48, 1011–1018. 10.1055/s-0035-1560399. [DOI] [Google Scholar]; c Chakrabarty I.; Inamdar S. M.; Akram M. O.; Gade A. B.; Banerjee S.; Bera S.; Patil N. T. [3+2]-Annulation of platinum-bound azomethine ylides with distal C=C bonds of N-allenamides. Chem. Commun. 2017, 53, 196–199. 10.1039/c6cc07874e. [DOI] [PubMed] [Google Scholar]; d Yang B.; Zhai X.; Feng S.; Hu D.; Deng Y.; Shao Z. Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both alpha- and beta-Naphthols. Org. Lett. 2019, 21, 330–334. 10.1021/acs.orglett.8b03934. [DOI] [PubMed] [Google Scholar]; e Jia M.; Cera G.; Perrotta D.; Monari M.; Bandini M. Taming gold(I)-counterion interplay in the de-aromatization of indoles with allenamides. Chemistry 2014, 20, 9875–9878. 10.1002/chem.201403155. [DOI] [PubMed] [Google Scholar]; f Li X.-X.; Zhu L.-L.; Zhou W.; Chen Z. Formal Intermolecular [2+2] Cycloaddition Reaction of Alleneamides with Alkenes via Gold Catalysis. Org. Lett. 2012, 14, 436–439. 10.1021/ol202703a. [DOI] [PubMed] [Google Scholar]; g Zheng W. F.; Sun G. J.; Chen L.; Kang Q. Enantioselective Synthesis of trans-Vicinal Diamines viaRhodium-Catalyzed [2+2] Cycloaddition of Allenamides. Adv. Synth. Catal. 2018, 360, 1790–1794. 10.1002/adsc.201800021. [DOI] [Google Scholar]; h Zheng W.-F.; Bora P. P.; Sun G.-J.; Kang Q. Rhodium-Catalyzed Regio- and Stereoselective [2+2] Cycloaddition of Allenamides. Org. Lett. 2016, 18, 3694–3697. 10.1021/acs.orglett.6b01731. [DOI] [PubMed] [Google Scholar]; i Li Y.; Chen J.; Qiu R.; Wang X.; Long J.; Zhu L.; Au C.-T.; Xu X. Cesium hydroxide-catalyzed isomerization of terminal alkynes for the synthesis of O-allenes and N-allenes. Tetrahedron Lett. 2015, 56, 5504–5507. 10.1016/j.tetlet.2015.08.016. [DOI] [Google Scholar]; j Wei L.-L.; Mulder J. A.; Xiong H.; Zificsak C. A.; Douglas C. J.; Hsung R. P. Efficient preparations of novel ynamides and allenamides. Tetrahedron 2001, 57, 459–466. 10.1016/s0040-4020(00)01014-0. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ao9b02712_si_001.pdf (9.9MB, pdf)
ao9b02712_si_002.cif (451.5KB, cif)

Articles from ACS Omega are provided here courtesy of American Chemical Society

RESOURCES