Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2019 Sep 19;7(9):e11286. doi: 10.1002/aps3.11286

Primers for complete chloroplast genome sequencing in Magnolia

Eunji Song 1,, Suhyeon Park 1,, Sangtae Kim 1,
PMCID: PMC6764489  PMID: 31572627

Abstract

Premise

A new set of primers was developed for sequencing of whole chloroplast genomes of Magnolia species and gap‐filling of unfinished genomes.

Methods and Results

Two hundred and fifty primers were newly designed based on two previously reported chloroplast genomes from two different genera in Magnoliaceae. A total of 134 primer pairs, including the ones developed in this study and 18 previously reported ones, were enough to cover the entire chloroplast genome sequences in Magnoliaceae. Four species from different sections of Magnolia (M. dealbata, M. fraseri var. pyramidata, M. liliiflora, and M. odora) were used to show the general application of these primers to chloroplast genome sequencing in Magnolia.

Conclusions

Using the developed primers, four Magnolia chloroplast genomes were successfully assembled. These results show the utility of these primers across Magnolia and their potential use for phylogenetic studies, DNA barcoding, and population genetics in this group.

Keywords: chloroplast genome, Magnolia, Magnoliaceae, Sanger sequencing


The family Magnoliaceae is characterized by the presence of (1) numerous stamens and carpels that are spirally arranged on an elongated floral axis, and (2) an undifferentiated perianth (except for some species in Magnolia L. section Yulania (Spach) Dandy) (Figlar and Nooteboom, 2004). In this family, 298 species are distributed mainly in Southeast Asia (ranging from India to the Kuril Islands including New Guinea) and the Americas (ranging from eastern Canada to Brazil including the Caribbean) (Govaerts et al., 2017). The current classification system of Magnoliaceae includes only two genera, Liriodendron L. with only two species and Magnolia comprising 296 species divided into three subgenera and 12 sections (Figlar and Nooteboom, 2004). A comprehensive phylogenetic study using 10 chloroplast regions (both genes and intron/intergenic spacers) suggests 12 major clades in Magnoliaceae with a basal polytomy in Magnolia (Kim and Suh, 2013).

The reliability of phylogenetic inferences is heavily dependent upon the number of phylogenetically informative characters (Dong et al., 2013). To elucidate the relationships among major clades in Magnolia, a comparative genome analysis that provides more phylogenetically informative characters is needed. The chloroplast genome sequence is an essential resource in the study of plant phylogeny, and several approaches have been suggested for the completion of chloroplast genome sequences. Currently, next‐generation sequencing–based genome skimming is commonly used for the de novo assembly of chloroplast genomes. Although techniques such as organelle isolation, hybrid capture, and methylation enrichment have been developed to improve the efficiency of this work, there are still challenges in the completion of chloroplast genome sequences, particularly for genomes assembled from herbarium material or for structurally divergent genomes (Twyford and Ness, 2017). In some cases, assembly using next‐generation sequencing data generates incomplete genomes and critical parts of the assembly need to be resequenced. Therefore, short‐range PCR in combination with traditional Sanger sequencing is still used as an alternative, complementary method to assemble complete chloroplast genomes (Dong et al., 2013). For example, a set of universal primers designed in Saxifragales was successfully applied in the phylogenetic study of that family (Dong et al., 2013).

In this study, we report and test 134 sequencing primer pairs to cover entire chloroplast genomes in Magnolia. These primers can be used for de novo sequencing or finishing incomplete chloroplast genomes, as well as for phylogenetic, DNA barcoding, and population genetic studies in Magnoliaceae. Additionally, these primers will be a useful resource for chloroplast microsatellite development. The utility of chloroplast microsatellites in Magnoliaceae has been well demonstrated by Kuang et al. (2011).

METHODS AND RESULTS

We designed 116 pairs of csly reported chloroplast genomes in Magnoliaceae: M. kobus DC. (Song et al., 2018; NC_023237) and L. tulipifera L. (Cai et al., 2006; NC_008326). These sequences were aligned using CLUSTALW (Higgins et al., 1994), and primers were designed in the shared sequence regions of two chloroplast genomes using Primer3 (with default settings; Untergasser et al., 2012) or OLIGO (version 5.0; National Biosciences Inc., Plymouth, Minnesota, USA) (Table 1). PCR products generated from these primers along with the previously reported 18 primers (Kim and Suh, 2013 and references therein) covered the entire chloroplast genome in Magnoliaceae (Fig. 1). Four species from different subgenera and sections of Magnolia (M. dealbata Zucc., M. fraseri Walter var. pyramidata (W. Bartram) Torr. & A. Gray, M. liliiflora Desr., and M. odora (Chun) Figlar & Noot.) were used to determine the broad applicability of these primers to chloroplast genome sequencing in Magnolia (Appendix 1).

Table 1.

Primer pairs used for chloroplast genome sequencing in Magnolia

Primer pair Forward primera Reverse primerb Size in M. kobus (bp) T a (°C) PCR successc
Mde Mfr Mli Mod
1 M1 ATAAGCCAGATGACGGAACG M2 CATTTCTTCCTAGCCGCTTG 1417 55 + + + +
2 M3 (=TRHFd) CGCATGGTGGATTCACAATC M4 GCCCTTGGATTGCTGTTG 1077 55 + + + +
3 M5 AGGCATACCATCAGAGAAGC M6 (=MK9d) CTTCGACTTTCGTGTGCTAG 1314 55 + + + +
4 M7 ATCCAAATACCAAATCCGTT M8 (=MK5d) CACTGCTGGATACAAGATGC 990 52 + + + +
5 M9 (=MK4Rd) TTTACGGAGAAACACTAATACG M10 (=MK1d) ACGAATGTGTAGAAGAAACGG 960 55 + + + +
6 M11 CCTCTCTCTTTCCATCCAAT M12 GGGGGCATTGTTCATCTA 1503 55 + + + +
7 M13 AAGAGATTGGATTGCCCTAC M14 AGGGTTAGTGCCAGTCAATA 1450 55 + + + +
8 M15 GCCGTCTCTAACCTCTTTTG M16 CGACTTGTTGATTTGATTGATT 1211 55 + + + +
9 M17 CGGAAAAGTCGCAAGTGA M18 GGTTTTGGTCCCGTTACT 1570 52 + + + +
10 M19 CACCCCAGTCTTAGGAGC M20 CAAACAAGGGCTAAGAGAAA 1083 55 + + + +
11 M21 TTACCCGAGGCTTATGCT M22 CGAAAGACCCCCTAACTATT 1590 52 + + + +
12 M23 TATGTTCCGACTTCAATGGC M24 GTTTCATTCGGCTCCTTTAT 1056 55 + + +
13 M25 CTCCCTTTTTCCATACATCG M26 GCTTATCGCCAAATGTCTCT 1262 55 + + + +
14 M27 GGAGACGGAAATACCCACAT M28 CGAGTTACATTTACGCACCA 1235 55 + + + +
15 M29 TTCCCCTGCCATTACTTC M30 GAGTGTGTGCGAGTTGTGTATT 1350 52 + + + +
16 M31 GCGAGACACCCATTTTTC M32 GCTTGCTTCTATTGGACCTG 1184 55 + + +
17 M33 CCATAAAAGCCAGACTAAGC M34 CAACCAACCCCAATACTTTTAC 1514 55 + + + +
18 M35 AATCCCGCTTGTGAATAATC M36 GCAGGAGTTCATTTTGGTCA 1554 52 + + + +
19 M37 TTTCCCCGTCTTTTGTTC M38 GAAAAGAGGATTGAAGGTTG 1276 52 + + +
20 M39 GATGCCCTCGTTATTCCC M40 GGAATCAAAAAAATGGAAAAAT 1557 51 + + + +
21 M41 GGCATTCCTTATTTCTATTCAG M42 GAAAGAACTAATGCCCCG 1034 52 + + + +
22 M43 CGGGAATGAAAAAAAATCG M44 CTGTAGATTATGTTATGGTCGG 1112 51 + + + +
23 M45 GCGAATCTCAGCAATCACTT M46 GCCACTGCTACATCCATTTC 1122 55 + + + +
24 M47 TGTTGTTCAGCATCTTGGAC M48 CATTTGTCATTCGTGGTCTA 1215 52 + + + +
25 M49 GGTGGGTGCTCTATTCAG M50 ATTAGCCATTCCATTTCTTTTA 1440 52 + + + +
26 M51 ACACCAAATAAAGAAAGGGG M52 GGAGAAGTGACAAAACCCTA 988 52 + + + +
27 M53 CGACCCCGCATTGTTCAC M54 CGAACACGAGGGAAAGAT 1774 52 + + +
28 M55 ATGCGGTATTTCGTTAGTGA M56 ATTGGCTCTGGTTCGTTTAG 1156 52 + + +
29 M57 TTGAGATAAAGGGTGTAGGC M58 GATGGAAATGAGGGAATGTCTA 1119 55 + + + +
30 M59 CAATGAACCTACAAAATCCCTC M60 CCAAAACAAAAAGAAATCCC 1193 52 + + + +
31 M61 TTTTGGATTCTGTAACTGGA M62 CATTCTTGGCGGGGTTAC 1015 52 + + + +
32 M63 ATTGGATGGGTGATTGGC M64 TCCATTTGTATTGATTCCGA 1048 52 + + + +
33 M65 TACAATGAGGAGCAACCAAC M66 TTTCTTCCTATTTTACCCCATC 1113 55 + + + +
34 M67 CTCATTTCCACTCTTTCTTTTC M68 GTCTACGCTGGTTCAAATCC 1399 55 + + +
35 M69 GTGCTCTGACCGATTGAACT M70 TAGGGGGCTCATTCAAGA 1274 52 + + + +
36 M71 AACTCGTAAATCTGGGAAGG M72 CTTTCTCGCATTCGCTCT 1244 52 + + + +
37 M73 TTTATTCCGAGTCACAAGAGC M74 GCGAAATAAGCACAAGGAAA 1022 52 + + +
38 M75 TTCGGAAATGGTTGAAGTAG M76 TGATAAGTCGGGCATTCC 1177 52 + + + +
39 M77 CGGTTTATGGATGAGTGCTA M78 GCGATGAAACCAAAGACAGA 1033 55 + + + +
40 M79 GGGGAGAAGGATGGATTG M80 ATTCCCACTTTATTTTTATTCG 1303 52 + + + +
41 M81 ATCTCTATTTTATTCCCCCG M82 TTCGTCCATTAGTTCTCAGTTC 1156 52 + + + +
42 M83 CCTCCTCTTTTCCTCCCA M84 CTTGTTTGGGCTACTGGATT 983 55 + + + +
43 M85 GTAGAGGCAATCAAGAAAGC M86 ATCACCAATACATCGCAGGA 1066 55 + + + +
44 M87 GAACCCCAGAAACAGGCT M88 CAATCGGCTTACGCACTA 917 52 + + + +
45 M89 TCGGCATTTTTGAACCAC M90 GCAGTCAGATGTTTGGGG 958 51 + + + +
46 M91 CACCCAGGAAAAAAAGGC M92 GCTTTTTGCTGGTTGGTT 1511 51 + + + +
47 M93 CTCGGCAAAACTGGGATA M94 ATTGACCCACCTATTCCG 1622 52 + + + +
48 M95 TACCAGATGAGATAGAACGATG M96 CAACGGAGAACATACGAAGG 1137 55 + + + +
49 M97 TCGGCTCGTATGAAGTCTCT M98 GAGATGGTGCGATTTGATTC 1125 55 + + +
50 M99 GGGATACACGACAGAAGGAA M100 GACTTTTCACTCATCCCAAT 1195 52 + + + +
51 M101 CGGAAAGAGTGGAAAAGAAT M102 ACAGAACAAATCAAGAAAAGGA 955 52 + + + +
52 M103 CTGAACTAAACGATAAACGAAG M104 CAATCCAATCAAGTCCGTAG 1190 55 + + + +
53 M105 (=CFd) CGAAATCGGTAGACGCTACG M106 (=FRd) ATTGAACTGGTGACACGAG 987 55 + + + +
54 M107 (=EF*) GGTTCAAGTCCCTCTATCCC M108 GGGCTAATAAAAGAAAGGGG 1075 55 + + + +
55 M109 TTTCTATTTCTTTACTCCCTCC M110 TGGGTCTCAACAGGAAAATC 1043 55 + + + +
56 M111 CACAAACACACCCTGCCT M112 ATGACCCACAGCAAACAAAC 1250 55 + + + +
57 M113 AATGCCAAAATAGGAATAACAC M114 GAATCCCCCAACTCATCACT 1230 52 + + + +
58 M115 GGTTAGGCTTCGTGACAATA M116 GTGCCAAATAGAACCCATCA 1371 55 + + + +
59 M117 TTGACAGGAAGATAACGAGATG M118 GATGGTCTTCCCGAGCAG 1467 55 + + + +
60 M119 TACGGCTGTGGCAATAGG M120 TACCAACGAAATCAAGCG 1751 51 + + + +
61 M121 (=AT1d) AGAACCAGAAGTAGTAGGAT M122 (=ML2Rd) TTCAATTTATCTCTCTCAACTTGG 1276 52 + + + +
62 M123 (=Z1d) ATGTCACCACAAACAGAAACTAAAGCAAGT M124 (=3’d) CGGCTCAACCTTTTAGTAAAAGATTGGGCCGAG 1508 55 + + + +
63 M125 (=ML7d) GGAGGAACTTTAGGACACCC M126 TCCCTGACACCTAAAAAATGAT 1096 55 + + + +
64 M127 CAAATAGGGGGCAGGAAG M128 GTTGTAGGAGATGTAAGGATTG 1204 55 + + + +
65 M129 GGTGTGTGCTTCTGGAGGAG M130 CGTTCGGATTGCCAGTTC 1620 55 +
66 M131 TTACCCTCTATTTTTGTGCC M132 CGAGTCAAGGGAATGGCT 1017 52 + + + +
67 M133 GTGTGTATTTTTCGTTGGGG M134 TTATCATTTCGTCCAACAGG 1424 52 + + + +
68 M135 GATTCAAAGTGCCAAAAAAG M136 ACAGTATCAGGAAGCACAGC 1137 52 + + + +
69 M137 TGGGTAAAGGAACAGATGAC M138 TATTCTCCTCCTACTTATGCCT 1279 55 + + + +
70 M139 TGTTTTGCTTGCTTTGTTTA M140 ACCCGAACGAACAAAATG 1439 50 + + +
71 M141 CTATCAGCCAAAGAGGAATC M142 TGCTCAGACCAATCAATAGA 1299 52 + +
72 M143 GTTCTCCCGTGCTTCCAG M144 AAAGACCCAAACCATAGAGTAG 1784 55 + + + +
73 M145 ATCCCTGTCTTGTTTTCCAC M146 CGAACAAAACATCAATCAATCT 1586 52 + + + +
74 M147 CTTTTCGTAGGCGTTTGC M148 AAGAAGCAGAAAGATTATG 1420 52 + + + +
75 M149 CACACTCTTTGGCTCTACCC M150 CCTTTTTGCTTCCACACC 1331 52 + + + +
76 M151 GACAAATAGAATCCATCAGACC M152 GTCGTAGCAAAAAGAAGTGG 1149 55 + + + +
77 M153 TTTTGACTTGACTTGCTTCC M154 ACAGAAAGCAACCGACCG 1165 52 + + + +
78 M155 CTGCTTCTCTTTGTTCCTACGA M156 AATAATCCCCCTTTCGCC 1148 52 + + + +
79 M157 GCTTTCGTTGTTGCTGGA M158 ATAGAGCCATTGCGACAC 1516 52 + + + +
80 M159 CGAACTATTACAGGGGATTT M160 AAAAAGTCATAGCAAAACCG 1250 52 + + + +
81 M161 CGAGATTCAGGCGATTGC M162 AGCCTCCGTTCTTCCTTA 1159 52 + + + +
82 M163 GAGGATAGGCTGGTTCGC M164 TGCGGAGGAACAGGACAT 1578 55 +
83 M165 CTAAGGAAGAACGGAGGC M166 GGACACCATTTGCTGCTC 2345 55 + + + +
84 M167 CGTCTTTTTTTAGGAGGTCT M168 TTGGAGGAGAAGTTTTGTGT 1141 52 + + + +
85 M169 TTTTGTTCTTTCATTCCAGG M170 GAAATGGGCGGAGTATCG 1303 52 + + + +
86 M171 AATGGGTCTGAGGTTGAATC M172 AAAAGGCAGTGTGATAAAGC 1208 52 + + + +
87 M173 TTGGTTCCTGGTTGGTTC M174 GCAAAACCTTATGGACAACC 1049 52 + + + +
88 M175 CCTTTTGTATCCGCTTGTTC M176 GGAGAAGGTGGAAGAAGGTC 989 55 + + + +
89 M177 CTCATAGGAACGCCCACG M178 ATAAGCCAGATGACGGAACG 1195 55 + + + +
90 M179 ATCAATAAAAACCCCTTCCC M180 ATCATTACGCTTCAACCG 1109 51 + + + +
91 M181 CGACCTTTACCACAATGATG M182 CCCCAGTTAGATTCAGGC 1269 55 + + + +
92 M183 TTTGATGGGGCTTCTTCC M184 TGTCAGAGAAAAAAGAACGAAT 1196 52 + + + +
93 M185 CAAACGGAACGAACAGAG M186 CCCGATACTCACAAAGAAAA 1362 52 + + + +
94 M187 CCGTTTTCAAGTAGTGTTCG M188 AGCACTATCTCGTTGAAAGG 1165 55 + + + +
95 M189 ACTTATTGTCAGCCTCTTTCAG M190 TCTCTTTCTTCATCATCAATCG 1115 55 + + + +
96 M191 CATACCAAATCCCATCAATC M192 GCAACAGCCCTTCCTATC 1329 52 + + + +
97 M193 GGCTTCTTATTCCACAACAA M194 TCGGATGGAGTATTAGAACG 1324 52 + + + +
98 M195 CCCTTTGTCTCTGTGTTTTC M196 GTTTTAGGGATTGGCGAC 1048 52 + + + +
99 M197 TGGATTCTCTTTCGGATAGG M198 CGAAACCAAGAAATAACCCC 1282 55 + + + +
100 M199 CATAACCCCAGCCCATTC M200 TTTCTGACTTGCTCCTACGG 1129 55 + + + +
101 M201 GACTTTCATCTCGCACGG M202 CCGATGGAGAGAAGAACCTA 1191 55 + + + +
102 M203 AGGTAGGAGCATAAACTGAAAC M204 AAAAGGAGGGAAACGGATAC 1530 55 + + + +
103 M205 CACTTATTTTGGCTTTTTGACC M206 TGGGATAGGGATAGAGGAAGAG 1391 55 + + + +
104 M207 TTACCAAAATGTGCGGAT M208 GAAGCAGAACCAAGTCAAGA 1262 55 + + + +
105 M209 AGGCAAGAGGATAGCAAGTTAC M210 GCCGTGTCTCAGTCCCAG 1243 55 + + + +
106 M211 GGACGGGAAGTGGTGTTT M212 CGGGTTTTTGGAGTTAGC 1177 52 + + + +
107 M213 TCGTGCCGTAAGGTGTTG M214 CCGTCACCCCAGAATAAAAG 1208 55 + + + +
108 M215 TCAGGAGGATAGATGGGG M216 CCGCCGACTCCAACTATC 1157 55 + + + +
109 M217 GCGATTACGGGTTGGATG M218 GGTTGTCTCTTGCCTGCC 1145 55 + + + +
110 M219 CCTTCCATTTAGCAGCAC M220 GCATTTTTACATCCCACAGC 1253 52 + + + +
111 M221 GAGACGATGGGGGATAAG M222 CGCCCCATAGAAACTGTC 1306 55 + + + +
112 M223 GTAAGTTCCGACCCGCAC M224 TAGAGAGGGAGGGCAGAG 1154 55 + + + +
113 M225 GGGATGGAGCGACAGAAG M226 GAATCACCGTCAATACCTCG 1268 55 + + + +
114 M227 TTTGTGTTTTACTCCCCG M228 AGAAATGAAACAAAAGATACGG 1148 52 + + + +
115 M229 CGGACTCTATTATGGATTTCTG M230 CGAAAAGAAGAGTCACAAGAGG 932 55 + + + +
116 M231 TACCGTCGCCTATTGTCAC M232 GTCCTATTTACTTTGTTTGTTG 1215 52 + + + +
117 M233(=MF1861Rd) TGAAAAGATGAATAAACAGACCC M234 (=MF561d) TGGTTTATTATTAGGAATCTTAGG 1323 55 + + + +
118 M235 (=972Rd) CATAATATAACCCAATTGAGAC M236 ATCGCCGTAATAGTGGAATG 1298 52 + + + +
119 M237 (=MF256Rd) TGGGTCGATCAAGTGGCC M238 TCTACGAATACGCTTTTTTG 1468 52 + + + +
120 M239 GTAGCGGACCTCATAGACATAG M240 GTGTGAGGATTTACCGAACC 1250 55 + + + +
121 M241 GACTTTGCTTTGTAACTCTCCG M242 GACTAATGACACGATAACTCCA 1616 55 + + + +
122 M243 GTGCCTGCTCTACAATCC M244 TTTTCTCCCTGGTTGATG 1479 52 + + + +
123 M245 CCATTGAGTCCCGTATCG M246 TGCTCCTGCTCCAAGAAC 1241 55 + + + +
124 M247 ACCAAGGAAAATAACTCGTG M248 GCCGTGTTTTGTTCTGTGTT 1185 52 + + + +
125 M249 CCGATAGAAAATAAATAGGCAC M250 GGATAACCCCCTTGATTC 1229 52 + + + +
126 M251 ATCCCGCTTTTGTATCCG M252 CTTTACTTGGGCGGATGG 1072 52 +
127 M253 ATAGGAATGAACAGGAACAAAT M254 AGTAAACATAAGCAGTGGAAAC 1284 52 + + + +
128 M255 CGTTCCCGATAGTCATTTCT M256 AATGGCAAAAAGAAGGAGAC 1527 52 + + + +
129 M257 TCCTTTTGGGGCTTCTACTC M258 TGACTGGCATTATTATTATTCC 1470 52 + + + +
130 M259 CCAAATGTGAAGTAAGTCTCCG M260 CACGAAACCGACAAAAAG 1346 52 + + + +
131 M261 ATCCATTGTCCATCCCAT M262 TGATGAAAGAAATAAAGAAGGA 1638 52 + +
132 M263 CTCTATTTCGCCATTTTTGC M264 GAGGATTGGAAGGAGTGG 1351 52 + + + +
133 M265 TTTTTCCTTTCTTTTTCATTCG M266 TCAGAAAATCAAACGAAATG 1015 52 + + + +
134 M267 ATTCTTCCTCATTTTCTTGCTC M268 (=350‐2Rd) GGAAGAAAAGGAGGATCCGG 1001 55 + + + +

— = unsuccessful amplification; + = successful amplification.

a

Primers above the line in Figure 1.

b

Primers below the line in Figure 1.

c

Mde = M. dealbata (JX280393); Mfr = M. fraseri var. pyramidata (JX280395); Mli = M. liliiflora (JX280397); Mod = M. odora (JX280398).

d

Previously reported primers (references are in Kim and Suh, 2013).

Figure 1.

Figure 1

Sequencing primer positions (arrows) along the linearized chloroplast genome map of Magnolia kobus. One inverted repeat region is not shown. The genes above the line are transcribed in the reverse direction, whereas the genes below the line are transcribed in the forward direction. IR = inverted repeat; LSC = large single‐copy region; SSC = small single‐copy region.

PCR was performed in a final reaction volume of 20 μL containing 1 μL of template DNA, 10 μL of 2× AmpMaster Taq (GeneAll, Seoul, Korea), 1 μL of each primer (10 μM), and 7 μL of distilled water, using a S1000 thermal cycler (BioRad, Hercules, California, USA). PCR conditions were 5 min at 95°C for pre‐denaturation, 30 cycles of 30 s at 95°C for denaturation, 30 s at 51–55°C for annealing (see Table 1), and 30 s at 72°C for extension with a final extension step of 7 min at 72°C. PCR products were checked by 1.5% agarose gel electrophoresis, stained with 0.001% ethidium bromide, and visualized under ultraviolet light using a Gel Doc XR+ System (BioRad). Each pair of primers generated 0.9–2.3 kbp of amplicons (Table 1, Fig. 1), and 27.38% of a genome overlapped with these products. The success or failure of each PCR is shown in Table 1; the overall success rate was 95%. For gap‐filling, species‐specific primers were designed outside PCR‐failed regions in each genome (data not shown). PCR products were sequenced by the Sanger method from both directions. For sequencing, PCR products were purified with a commercial purification kit (PCR SV; GeneAll) and sequenced with an ABI 3700 sequencer (Applied Biosystems, Carlsbad, California, USA). Sequence reads obtained from each PCR product were edited and aligned with Sequencher 4.9 (Gene Codes Corporation, Ann Arbor, Michigan, USA). Genome annotation was carried out with DOGMA (Wyman et al., 2004). The gene map of the chloroplast genome was created using GenomeVx (Conant and Wolfe, 2008).

Four chloroplast genomes in Magnolia were successfully assembled and deposited in GenBank (JX280393, JX280395, JX280397, and JX280398; Appendix S1). The size of these chloroplast genomes ranged from 158,177 to 160,070 bp. The four chloroplast genomes showed a typical circular chromosome with a quadripartite structure including inverted repeat regions ranging from 25,651 bp (M. liliiflora) to 26,597 bp (M. fraseri var. pyramidata), separated by large single‐copy regions ranging from 88,043 bp (M. fraseri var. pyramidata) to 88,133 bp (M. liliiflora) and small single‐copy regions ranging from 18,740 bp (M. dealbata) to 18,800 bp (M. odora). Overall, the gene number was 113 (79 unique genes, four rRNAs, and 30 tRNAs) in each species except for M. liliiflora (112 genes, 29 tRNAs). TrnV‐GAC is missing in the M. liliiflora inverted repeat region. The mean value of GC content in the four species was 39.22%.

CONCLUSIONS

For chloroplast genome studies in Magnolia, we designed 250 new primers based on the chloroplast genomes of M. kobus and L. tulipifera. PCR products derived from 134 primer pairs, including 18 previously reported primers, successfully covered the entire chloroplast genomes of four Magnolia species from different sections within the genus. This study demonstrates that these primers will facilitate the de novo assembly of chloroplast genomes and assist with the completion of incomplete genomes.

AUTHOR CONTRIBUTIONS

S.K. conceived and designed the project, supervised the lab and field work, and wrote the manuscript. E.S. designed the primers and completed the chloroplast genomes. S.P. wrote the first version of the manuscript.

Supporting information

APPENDIX S1. Gene maps of the chloroplast genomes in (A) Magnolia dealbata, (B) M. fraseri var. pyramidata, (C) M. liliiflora, and (D) M. odora.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF‐2017R1D1A1B03034952) to S.K.

Appendix 1. Chloroplast genome sequences used and generated in this study and their voucher information. The classification system by Figlar and Nooteboom (2004) was followed.

Taxa Voucher (Herbarium) Collection site NCBI accession no. Reference
Family Magnoliaceae
Subfamily Magnolioideae
Genus Magnolia
Subgenus Magnolia
Section Rytidospermum
M. dealbata S. Kim 1008 (NPRI) Chollipo Arboretum, Korea JX280393 This study
Section Auriculata
M. fraseri var. pyramidata S. Kim 1011 (NPRI) Chollipo Arboretum, Korea JX280395 This study
Subgenus Yulania
Section Yulania
M. kobus NC_023237 Song et al., 2018
M. liliiflora S. Kim 1014 (NPRI) Chollipo Arboretum, Korea JX280397 This study
Section Michelia
M. odora S. Kim 1099 (NPRI) South China Botanical Garden, China JX280398 This study
Subfamily Liriodendroidae
Genus Liriodendron
L. tulipifera NC_008326 Cai et al., 2006

Song, E. , Park S., and Kim S.. 2019. Primers for complete chloroplast genome sequencing in Magnolia . Applications in Plant Sciences 7(9): e11286.

DATA AVAILABILITY

Chloroplast genome sequences have been deposited at GenBank (Appendix 1), and voucher specimens for each chloroplast genome have been deposited at the herbarium of the Natural Products Research Institute (NPRI) in the Department of Pharmacology, Seoul National University (Appendix 1).

LITERATURE CITED

  1. Cai, Z. , Penaflor C., Kuehl J. V., Leebens‐Mack J., Carlson J. E., Boore J. L., and Jansen R. K.. 2006. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: Implications for the phylogenetic relationships of magnoliids. BMC Evolutionary Biology 6: 77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conant, G. C. , and Wolfe K. H.. 2008. GenomeVx: Simple web‐based creation of editable circular chromosome maps. Bioinformatics 24: 861–862. [DOI] [PubMed] [Google Scholar]
  3. Dong, W. , Xu C., Cheng T., Lin K., and Zhou S.. 2013. Sequencing angiosperm plastid genomes made easy: A complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biology and Evolution 5: 989–997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Figlar, R. B. , and Nooteboom H. P.. 2004. Notes on Magnoliaceae IV. Blumea‐Biodiversity, Evolution and Biogeography of Plants 49: 87–100. [Google Scholar]
  5. Govaerts, R. , Figlar R., Nooteboom H., and Spongberg S.. 2017. World checklist of Magnoliaceae. Facilitated by the Royal Botanic Gardens, Kew. Website http://wcsp.science.kew.org [accessed 7 October 2017].
  6. Higgins, J. D. , Thompson D. J., and Gibson T. J.. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4674–4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kim, S. , and Suh Y.. 2013. Phylogeny of Magnoliaceae based on ten chloroplast DNA regions. Journal of Plant Biology 56: 290–305. [Google Scholar]
  8. Kuang, D. Y. , Wu H., Wang Y. L., Gao L. M., Zhang S. Z., and Lu L.. 2011. Complete chloroplast genome sequence of Magnolia kwangsinensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome 54: 663–673. [DOI] [PubMed] [Google Scholar]
  9. Song, E. , Park S., Park J., and Kim S.. 2018. The chloroplast genome sequence of Magnolia kobus DC. (Magnoliaceae). Mitochondrial DNA Part B: Resources 3: 342–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Twyford, A. D. , and Ness R. W.. 2017. Strategies for complete plastid genome sequencing. Molecular Ecology Resources 17: 858–868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Untergasser, A. , Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., and Rozen S. G.. 2012. Primer3—New capabilities and interfaces. Nucleic Acids Research 40: e115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wyman, S. K. , Jansen R. K., and Boore J. L.. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

APPENDIX S1. Gene maps of the chloroplast genomes in (A) Magnolia dealbata, (B) M. fraseri var. pyramidata, (C) M. liliiflora, and (D) M. odora.

Data Availability Statement

Chloroplast genome sequences have been deposited at GenBank (Appendix 1), and voucher specimens for each chloroplast genome have been deposited at the herbarium of the Natural Products Research Institute (NPRI) in the Department of Pharmacology, Seoul National University (Appendix 1).


Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES