Abstract
Premise
A new set of primers was developed for sequencing of whole chloroplast genomes of Magnolia species and gap‐filling of unfinished genomes.
Methods and Results
Two hundred and fifty primers were newly designed based on two previously reported chloroplast genomes from two different genera in Magnoliaceae. A total of 134 primer pairs, including the ones developed in this study and 18 previously reported ones, were enough to cover the entire chloroplast genome sequences in Magnoliaceae. Four species from different sections of Magnolia (M. dealbata, M. fraseri var. pyramidata, M. liliiflora, and M. odora) were used to show the general application of these primers to chloroplast genome sequencing in Magnolia.
Conclusions
Using the developed primers, four Magnolia chloroplast genomes were successfully assembled. These results show the utility of these primers across Magnolia and their potential use for phylogenetic studies, DNA barcoding, and population genetics in this group.
Keywords: chloroplast genome, Magnolia, Magnoliaceae, Sanger sequencing
The family Magnoliaceae is characterized by the presence of (1) numerous stamens and carpels that are spirally arranged on an elongated floral axis, and (2) an undifferentiated perianth (except for some species in Magnolia L. section Yulania (Spach) Dandy) (Figlar and Nooteboom, 2004). In this family, 298 species are distributed mainly in Southeast Asia (ranging from India to the Kuril Islands including New Guinea) and the Americas (ranging from eastern Canada to Brazil including the Caribbean) (Govaerts et al., 2017). The current classification system of Magnoliaceae includes only two genera, Liriodendron L. with only two species and Magnolia comprising 296 species divided into three subgenera and 12 sections (Figlar and Nooteboom, 2004). A comprehensive phylogenetic study using 10 chloroplast regions (both genes and intron/intergenic spacers) suggests 12 major clades in Magnoliaceae with a basal polytomy in Magnolia (Kim and Suh, 2013).
The reliability of phylogenetic inferences is heavily dependent upon the number of phylogenetically informative characters (Dong et al., 2013). To elucidate the relationships among major clades in Magnolia, a comparative genome analysis that provides more phylogenetically informative characters is needed. The chloroplast genome sequence is an essential resource in the study of plant phylogeny, and several approaches have been suggested for the completion of chloroplast genome sequences. Currently, next‐generation sequencing–based genome skimming is commonly used for the de novo assembly of chloroplast genomes. Although techniques such as organelle isolation, hybrid capture, and methylation enrichment have been developed to improve the efficiency of this work, there are still challenges in the completion of chloroplast genome sequences, particularly for genomes assembled from herbarium material or for structurally divergent genomes (Twyford and Ness, 2017). In some cases, assembly using next‐generation sequencing data generates incomplete genomes and critical parts of the assembly need to be resequenced. Therefore, short‐range PCR in combination with traditional Sanger sequencing is still used as an alternative, complementary method to assemble complete chloroplast genomes (Dong et al., 2013). For example, a set of universal primers designed in Saxifragales was successfully applied in the phylogenetic study of that family (Dong et al., 2013).
In this study, we report and test 134 sequencing primer pairs to cover entire chloroplast genomes in Magnolia. These primers can be used for de novo sequencing or finishing incomplete chloroplast genomes, as well as for phylogenetic, DNA barcoding, and population genetic studies in Magnoliaceae. Additionally, these primers will be a useful resource for chloroplast microsatellite development. The utility of chloroplast microsatellites in Magnoliaceae has been well demonstrated by Kuang et al. (2011).
METHODS AND RESULTS
We designed 116 pairs of csly reported chloroplast genomes in Magnoliaceae: M. kobus DC. (Song et al., 2018; NC_023237) and L. tulipifera L. (Cai et al., 2006; NC_008326). These sequences were aligned using CLUSTALW (Higgins et al., 1994), and primers were designed in the shared sequence regions of two chloroplast genomes using Primer3 (with default settings; Untergasser et al., 2012) or OLIGO (version 5.0; National Biosciences Inc., Plymouth, Minnesota, USA) (Table 1). PCR products generated from these primers along with the previously reported 18 primers (Kim and Suh, 2013 and references therein) covered the entire chloroplast genome in Magnoliaceae (Fig. 1). Four species from different subgenera and sections of Magnolia (M. dealbata Zucc., M. fraseri Walter var. pyramidata (W. Bartram) Torr. & A. Gray, M. liliiflora Desr., and M. odora (Chun) Figlar & Noot.) were used to determine the broad applicability of these primers to chloroplast genome sequencing in Magnolia (Appendix 1).
Table 1.
Primer pairs used for chloroplast genome sequencing in Magnolia
| Primer pair | Forward primera | Reverse primerb | Size in M. kobus (bp) | T a (°C) | PCR successc | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mde | Mfr | Mli | Mod | |||||||
| 1 | M1 | ATAAGCCAGATGACGGAACG | M2 | CATTTCTTCCTAGCCGCTTG | 1417 | 55 | + | + | + | + |
| 2 | M3 (=TRHFd) | CGCATGGTGGATTCACAATC | M4 | GCCCTTGGATTGCTGTTG | 1077 | 55 | + | + | + | + |
| 3 | M5 | AGGCATACCATCAGAGAAGC | M6 (=MK9d) | CTTCGACTTTCGTGTGCTAG | 1314 | 55 | + | + | + | + |
| 4 | M7 | ATCCAAATACCAAATCCGTT | M8 (=MK5d) | CACTGCTGGATACAAGATGC | 990 | 52 | + | + | + | + |
| 5 | M9 (=MK4Rd) | TTTACGGAGAAACACTAATACG | M10 (=MK1d) | ACGAATGTGTAGAAGAAACGG | 960 | 55 | + | + | + | + |
| 6 | M11 | CCTCTCTCTTTCCATCCAAT | M12 | GGGGGCATTGTTCATCTA | 1503 | 55 | + | + | + | + |
| 7 | M13 | AAGAGATTGGATTGCCCTAC | M14 | AGGGTTAGTGCCAGTCAATA | 1450 | 55 | + | + | + | + |
| 8 | M15 | GCCGTCTCTAACCTCTTTTG | M16 | CGACTTGTTGATTTGATTGATT | 1211 | 55 | + | + | + | + |
| 9 | M17 | CGGAAAAGTCGCAAGTGA | M18 | GGTTTTGGTCCCGTTACT | 1570 | 52 | + | + | + | + |
| 10 | M19 | CACCCCAGTCTTAGGAGC | M20 | CAAACAAGGGCTAAGAGAAA | 1083 | 55 | + | + | + | + |
| 11 | M21 | TTACCCGAGGCTTATGCT | M22 | CGAAAGACCCCCTAACTATT | 1590 | 52 | + | + | + | + |
| 12 | M23 | TATGTTCCGACTTCAATGGC | M24 | GTTTCATTCGGCTCCTTTAT | 1056 | 55 | + | + | — | + |
| 13 | M25 | CTCCCTTTTTCCATACATCG | M26 | GCTTATCGCCAAATGTCTCT | 1262 | 55 | + | + | + | + |
| 14 | M27 | GGAGACGGAAATACCCACAT | M28 | CGAGTTACATTTACGCACCA | 1235 | 55 | + | + | + | + |
| 15 | M29 | TTCCCCTGCCATTACTTC | M30 | GAGTGTGTGCGAGTTGTGTATT | 1350 | 52 | + | + | + | + |
| 16 | M31 | GCGAGACACCCATTTTTC | M32 | GCTTGCTTCTATTGGACCTG | 1184 | 55 | + | + | — | + |
| 17 | M33 | CCATAAAAGCCAGACTAAGC | M34 | CAACCAACCCCAATACTTTTAC | 1514 | 55 | + | + | + | + |
| 18 | M35 | AATCCCGCTTGTGAATAATC | M36 | GCAGGAGTTCATTTTGGTCA | 1554 | 52 | + | + | + | + |
| 19 | M37 | TTTCCCCGTCTTTTGTTC | M38 | GAAAAGAGGATTGAAGGTTG | 1276 | 52 | + | + | + | — |
| 20 | M39 | GATGCCCTCGTTATTCCC | M40 | GGAATCAAAAAAATGGAAAAAT | 1557 | 51 | + | + | + | + |
| 21 | M41 | GGCATTCCTTATTTCTATTCAG | M42 | GAAAGAACTAATGCCCCG | 1034 | 52 | + | + | + | + |
| 22 | M43 | CGGGAATGAAAAAAAATCG | M44 | CTGTAGATTATGTTATGGTCGG | 1112 | 51 | + | + | + | + |
| 23 | M45 | GCGAATCTCAGCAATCACTT | M46 | GCCACTGCTACATCCATTTC | 1122 | 55 | + | + | + | + |
| 24 | M47 | TGTTGTTCAGCATCTTGGAC | M48 | CATTTGTCATTCGTGGTCTA | 1215 | 52 | + | + | + | + |
| 25 | M49 | GGTGGGTGCTCTATTCAG | M50 | ATTAGCCATTCCATTTCTTTTA | 1440 | 52 | + | + | + | + |
| 26 | M51 | ACACCAAATAAAGAAAGGGG | M52 | GGAGAAGTGACAAAACCCTA | 988 | 52 | + | + | + | + |
| 27 | M53 | CGACCCCGCATTGTTCAC | M54 | CGAACACGAGGGAAAGAT | 1774 | 52 | + | + | — | + |
| 28 | M55 | ATGCGGTATTTCGTTAGTGA | M56 | ATTGGCTCTGGTTCGTTTAG | 1156 | 52 | + | + | — | + |
| 29 | M57 | TTGAGATAAAGGGTGTAGGC | M58 | GATGGAAATGAGGGAATGTCTA | 1119 | 55 | + | + | + | + |
| 30 | M59 | CAATGAACCTACAAAATCCCTC | M60 | CCAAAACAAAAAGAAATCCC | 1193 | 52 | + | + | + | + |
| 31 | M61 | TTTTGGATTCTGTAACTGGA | M62 | CATTCTTGGCGGGGTTAC | 1015 | 52 | + | + | + | + |
| 32 | M63 | ATTGGATGGGTGATTGGC | M64 | TCCATTTGTATTGATTCCGA | 1048 | 52 | + | + | + | + |
| 33 | M65 | TACAATGAGGAGCAACCAAC | M66 | TTTCTTCCTATTTTACCCCATC | 1113 | 55 | + | + | + | + |
| 34 | M67 | CTCATTTCCACTCTTTCTTTTC | M68 | GTCTACGCTGGTTCAAATCC | 1399 | 55 | + | + | + | — |
| 35 | M69 | GTGCTCTGACCGATTGAACT | M70 | TAGGGGGCTCATTCAAGA | 1274 | 52 | + | + | + | + |
| 36 | M71 | AACTCGTAAATCTGGGAAGG | M72 | CTTTCTCGCATTCGCTCT | 1244 | 52 | + | + | + | + |
| 37 | M73 | TTTATTCCGAGTCACAAGAGC | M74 | GCGAAATAAGCACAAGGAAA | 1022 | 52 | + | + | + | — |
| 38 | M75 | TTCGGAAATGGTTGAAGTAG | M76 | TGATAAGTCGGGCATTCC | 1177 | 52 | + | + | + | + |
| 39 | M77 | CGGTTTATGGATGAGTGCTA | M78 | GCGATGAAACCAAAGACAGA | 1033 | 55 | + | + | + | + |
| 40 | M79 | GGGGAGAAGGATGGATTG | M80 | ATTCCCACTTTATTTTTATTCG | 1303 | 52 | + | + | + | + |
| 41 | M81 | ATCTCTATTTTATTCCCCCG | M82 | TTCGTCCATTAGTTCTCAGTTC | 1156 | 52 | + | + | + | + |
| 42 | M83 | CCTCCTCTTTTCCTCCCA | M84 | CTTGTTTGGGCTACTGGATT | 983 | 55 | + | + | + | + |
| 43 | M85 | GTAGAGGCAATCAAGAAAGC | M86 | ATCACCAATACATCGCAGGA | 1066 | 55 | + | + | + | + |
| 44 | M87 | GAACCCCAGAAACAGGCT | M88 | CAATCGGCTTACGCACTA | 917 | 52 | + | + | + | + |
| 45 | M89 | TCGGCATTTTTGAACCAC | M90 | GCAGTCAGATGTTTGGGG | 958 | 51 | + | + | + | + |
| 46 | M91 | CACCCAGGAAAAAAAGGC | M92 | GCTTTTTGCTGGTTGGTT | 1511 | 51 | + | + | + | + |
| 47 | M93 | CTCGGCAAAACTGGGATA | M94 | ATTGACCCACCTATTCCG | 1622 | 52 | + | + | + | + |
| 48 | M95 | TACCAGATGAGATAGAACGATG | M96 | CAACGGAGAACATACGAAGG | 1137 | 55 | + | + | + | + |
| 49 | M97 | TCGGCTCGTATGAAGTCTCT | M98 | GAGATGGTGCGATTTGATTC | 1125 | 55 | + | + | ‐ | + |
| 50 | M99 | GGGATACACGACAGAAGGAA | M100 | GACTTTTCACTCATCCCAAT | 1195 | 52 | + | + | + | + |
| 51 | M101 | CGGAAAGAGTGGAAAAGAAT | M102 | ACAGAACAAATCAAGAAAAGGA | 955 | 52 | + | + | + | + |
| 52 | M103 | CTGAACTAAACGATAAACGAAG | M104 | CAATCCAATCAAGTCCGTAG | 1190 | 55 | + | + | + | + |
| 53 | M105 (=CFd) | CGAAATCGGTAGACGCTACG | M106 (=FRd) | ATTGAACTGGTGACACGAG | 987 | 55 | + | + | + | + |
| 54 | M107 (=EF*) | GGTTCAAGTCCCTCTATCCC | M108 | GGGCTAATAAAAGAAAGGGG | 1075 | 55 | + | + | + | + |
| 55 | M109 | TTTCTATTTCTTTACTCCCTCC | M110 | TGGGTCTCAACAGGAAAATC | 1043 | 55 | + | + | + | + |
| 56 | M111 | CACAAACACACCCTGCCT | M112 | ATGACCCACAGCAAACAAAC | 1250 | 55 | + | + | + | + |
| 57 | M113 | AATGCCAAAATAGGAATAACAC | M114 | GAATCCCCCAACTCATCACT | 1230 | 52 | + | + | + | + |
| 58 | M115 | GGTTAGGCTTCGTGACAATA | M116 | GTGCCAAATAGAACCCATCA | 1371 | 55 | + | + | + | + |
| 59 | M117 | TTGACAGGAAGATAACGAGATG | M118 | GATGGTCTTCCCGAGCAG | 1467 | 55 | + | + | + | + |
| 60 | M119 | TACGGCTGTGGCAATAGG | M120 | TACCAACGAAATCAAGCG | 1751 | 51 | + | + | + | + |
| 61 | M121 (=AT1d) | AGAACCAGAAGTAGTAGGAT | M122 (=ML2Rd) | TTCAATTTATCTCTCTCAACTTGG | 1276 | 52 | + | + | + | + |
| 62 | M123 (=Z1d) | ATGTCACCACAAACAGAAACTAAAGCAAGT | M124 (=3’d) | CGGCTCAACCTTTTAGTAAAAGATTGGGCCGAG | 1508 | 55 | + | + | + | + |
| 63 | M125 (=ML7d) | GGAGGAACTTTAGGACACCC | M126 | TCCCTGACACCTAAAAAATGAT | 1096 | 55 | + | + | + | + |
| 64 | M127 | CAAATAGGGGGCAGGAAG | M128 | GTTGTAGGAGATGTAAGGATTG | 1204 | 55 | + | + | + | + |
| 65 | M129 | GGTGTGTGCTTCTGGAGGAG | M130 | CGTTCGGATTGCCAGTTC | 1620 | 55 | — | — | + | — |
| 66 | M131 | TTACCCTCTATTTTTGTGCC | M132 | CGAGTCAAGGGAATGGCT | 1017 | 52 | + | + | + | + |
| 67 | M133 | GTGTGTATTTTTCGTTGGGG | M134 | TTATCATTTCGTCCAACAGG | 1424 | 52 | + | + | + | + |
| 68 | M135 | GATTCAAAGTGCCAAAAAAG | M136 | ACAGTATCAGGAAGCACAGC | 1137 | 52 | + | + | + | + |
| 69 | M137 | TGGGTAAAGGAACAGATGAC | M138 | TATTCTCCTCCTACTTATGCCT | 1279 | 55 | + | + | + | + |
| 70 | M139 | TGTTTTGCTTGCTTTGTTTA | M140 | ACCCGAACGAACAAAATG | 1439 | 50 | — | + | + | + |
| 71 | M141 | CTATCAGCCAAAGAGGAATC | M142 | TGCTCAGACCAATCAATAGA | 1299 | 52 | — | + | — | + |
| 72 | M143 | GTTCTCCCGTGCTTCCAG | M144 | AAAGACCCAAACCATAGAGTAG | 1784 | 55 | + | + | + | + |
| 73 | M145 | ATCCCTGTCTTGTTTTCCAC | M146 | CGAACAAAACATCAATCAATCT | 1586 | 52 | + | + | + | + |
| 74 | M147 | CTTTTCGTAGGCGTTTGC | M148 | AAGAAGCAGAAAGATTATG | 1420 | 52 | + | + | + | + |
| 75 | M149 | CACACTCTTTGGCTCTACCC | M150 | CCTTTTTGCTTCCACACC | 1331 | 52 | + | + | + | + |
| 76 | M151 | GACAAATAGAATCCATCAGACC | M152 | GTCGTAGCAAAAAGAAGTGG | 1149 | 55 | + | + | + | + |
| 77 | M153 | TTTTGACTTGACTTGCTTCC | M154 | ACAGAAAGCAACCGACCG | 1165 | 52 | + | + | + | + |
| 78 | M155 | CTGCTTCTCTTTGTTCCTACGA | M156 | AATAATCCCCCTTTCGCC | 1148 | 52 | + | + | + | + |
| 79 | M157 | GCTTTCGTTGTTGCTGGA | M158 | ATAGAGCCATTGCGACAC | 1516 | 52 | + | + | + | + |
| 80 | M159 | CGAACTATTACAGGGGATTT | M160 | AAAAAGTCATAGCAAAACCG | 1250 | 52 | + | + | + | + |
| 81 | M161 | CGAGATTCAGGCGATTGC | M162 | AGCCTCCGTTCTTCCTTA | 1159 | 52 | + | + | + | + |
| 82 | M163 | GAGGATAGGCTGGTTCGC | M164 | TGCGGAGGAACAGGACAT | 1578 | 55 | — | — | + | — |
| 83 | M165 | CTAAGGAAGAACGGAGGC | M166 | GGACACCATTTGCTGCTC | 2345 | 55 | + | + | + | + |
| 84 | M167 | CGTCTTTTTTTAGGAGGTCT | M168 | TTGGAGGAGAAGTTTTGTGT | 1141 | 52 | + | + | + | + |
| 85 | M169 | TTTTGTTCTTTCATTCCAGG | M170 | GAAATGGGCGGAGTATCG | 1303 | 52 | + | + | + | + |
| 86 | M171 | AATGGGTCTGAGGTTGAATC | M172 | AAAAGGCAGTGTGATAAAGC | 1208 | 52 | + | + | + | + |
| 87 | M173 | TTGGTTCCTGGTTGGTTC | M174 | GCAAAACCTTATGGACAACC | 1049 | 52 | + | + | + | + |
| 88 | M175 | CCTTTTGTATCCGCTTGTTC | M176 | GGAGAAGGTGGAAGAAGGTC | 989 | 55 | + | + | + | + |
| 89 | M177 | CTCATAGGAACGCCCACG | M178 | ATAAGCCAGATGACGGAACG | 1195 | 55 | + | + | + | + |
| 90 | M179 | ATCAATAAAAACCCCTTCCC | M180 | ATCATTACGCTTCAACCG | 1109 | 51 | + | + | + | + |
| 91 | M181 | CGACCTTTACCACAATGATG | M182 | CCCCAGTTAGATTCAGGC | 1269 | 55 | + | + | + | + |
| 92 | M183 | TTTGATGGGGCTTCTTCC | M184 | TGTCAGAGAAAAAAGAACGAAT | 1196 | 52 | + | + | + | + |
| 93 | M185 | CAAACGGAACGAACAGAG | M186 | CCCGATACTCACAAAGAAAA | 1362 | 52 | + | + | + | + |
| 94 | M187 | CCGTTTTCAAGTAGTGTTCG | M188 | AGCACTATCTCGTTGAAAGG | 1165 | 55 | + | + | + | + |
| 95 | M189 | ACTTATTGTCAGCCTCTTTCAG | M190 | TCTCTTTCTTCATCATCAATCG | 1115 | 55 | + | + | + | + |
| 96 | M191 | CATACCAAATCCCATCAATC | M192 | GCAACAGCCCTTCCTATC | 1329 | 52 | + | + | + | + |
| 97 | M193 | GGCTTCTTATTCCACAACAA | M194 | TCGGATGGAGTATTAGAACG | 1324 | 52 | + | + | + | + |
| 98 | M195 | CCCTTTGTCTCTGTGTTTTC | M196 | GTTTTAGGGATTGGCGAC | 1048 | 52 | + | + | + | + |
| 99 | M197 | TGGATTCTCTTTCGGATAGG | M198 | CGAAACCAAGAAATAACCCC | 1282 | 55 | + | + | + | + |
| 100 | M199 | CATAACCCCAGCCCATTC | M200 | TTTCTGACTTGCTCCTACGG | 1129 | 55 | + | + | + | + |
| 101 | M201 | GACTTTCATCTCGCACGG | M202 | CCGATGGAGAGAAGAACCTA | 1191 | 55 | + | + | + | + |
| 102 | M203 | AGGTAGGAGCATAAACTGAAAC | M204 | AAAAGGAGGGAAACGGATAC | 1530 | 55 | + | + | + | + |
| 103 | M205 | CACTTATTTTGGCTTTTTGACC | M206 | TGGGATAGGGATAGAGGAAGAG | 1391 | 55 | + | + | + | + |
| 104 | M207 | TTACCAAAATGTGCGGAT | M208 | GAAGCAGAACCAAGTCAAGA | 1262 | 55 | + | + | + | + |
| 105 | M209 | AGGCAAGAGGATAGCAAGTTAC | M210 | GCCGTGTCTCAGTCCCAG | 1243 | 55 | + | + | + | + |
| 106 | M211 | GGACGGGAAGTGGTGTTT | M212 | CGGGTTTTTGGAGTTAGC | 1177 | 52 | + | + | + | + |
| 107 | M213 | TCGTGCCGTAAGGTGTTG | M214 | CCGTCACCCCAGAATAAAAG | 1208 | 55 | + | + | + | + |
| 108 | M215 | TCAGGAGGATAGATGGGG | M216 | CCGCCGACTCCAACTATC | 1157 | 55 | + | + | + | + |
| 109 | M217 | GCGATTACGGGTTGGATG | M218 | GGTTGTCTCTTGCCTGCC | 1145 | 55 | + | + | + | + |
| 110 | M219 | CCTTCCATTTAGCAGCAC | M220 | GCATTTTTACATCCCACAGC | 1253 | 52 | + | + | + | + |
| 111 | M221 | GAGACGATGGGGGATAAG | M222 | CGCCCCATAGAAACTGTC | 1306 | 55 | + | + | + | + |
| 112 | M223 | GTAAGTTCCGACCCGCAC | M224 | TAGAGAGGGAGGGCAGAG | 1154 | 55 | + | + | + | + |
| 113 | M225 | GGGATGGAGCGACAGAAG | M226 | GAATCACCGTCAATACCTCG | 1268 | 55 | + | + | + | + |
| 114 | M227 | TTTGTGTTTTACTCCCCG | M228 | AGAAATGAAACAAAAGATACGG | 1148 | 52 | + | + | + | + |
| 115 | M229 | CGGACTCTATTATGGATTTCTG | M230 | CGAAAAGAAGAGTCACAAGAGG | 932 | 55 | + | + | + | + |
| 116 | M231 | TACCGTCGCCTATTGTCAC | M232 | GTCCTATTTACTTTGTTTGTTG | 1215 | 52 | + | + | + | + |
| 117 | M233(=MF1861Rd) | TGAAAAGATGAATAAACAGACCC | M234 (=MF561d) | TGGTTTATTATTAGGAATCTTAGG | 1323 | 55 | + | + | + | + |
| 118 | M235 (=972Rd) | CATAATATAACCCAATTGAGAC | M236 | ATCGCCGTAATAGTGGAATG | 1298 | 52 | + | + | + | + |
| 119 | M237 (=MF256Rd) | TGGGTCGATCAAGTGGCC | M238 | TCTACGAATACGCTTTTTTG | 1468 | 52 | + | + | + | + |
| 120 | M239 | GTAGCGGACCTCATAGACATAG | M240 | GTGTGAGGATTTACCGAACC | 1250 | 55 | + | + | + | + |
| 121 | M241 | GACTTTGCTTTGTAACTCTCCG | M242 | GACTAATGACACGATAACTCCA | 1616 | 55 | + | + | + | + |
| 122 | M243 | GTGCCTGCTCTACAATCC | M244 | TTTTCTCCCTGGTTGATG | 1479 | 52 | + | + | + | + |
| 123 | M245 | CCATTGAGTCCCGTATCG | M246 | TGCTCCTGCTCCAAGAAC | 1241 | 55 | + | + | + | + |
| 124 | M247 | ACCAAGGAAAATAACTCGTG | M248 | GCCGTGTTTTGTTCTGTGTT | 1185 | 52 | + | + | + | + |
| 125 | M249 | CCGATAGAAAATAAATAGGCAC | M250 | GGATAACCCCCTTGATTC | 1229 | 52 | + | + | + | + |
| 126 | M251 | ATCCCGCTTTTGTATCCG | M252 | CTTTACTTGGGCGGATGG | 1072 | 52 | — | — | + | — |
| 127 | M253 | ATAGGAATGAACAGGAACAAAT | M254 | AGTAAACATAAGCAGTGGAAAC | 1284 | 52 | + | + | + | + |
| 128 | M255 | CGTTCCCGATAGTCATTTCT | M256 | AATGGCAAAAAGAAGGAGAC | 1527 | 52 | + | + | + | + |
| 129 | M257 | TCCTTTTGGGGCTTCTACTC | M258 | TGACTGGCATTATTATTATTCC | 1470 | 52 | + | + | + | + |
| 130 | M259 | CCAAATGTGAAGTAAGTCTCCG | M260 | CACGAAACCGACAAAAAG | 1346 | 52 | + | + | + | + |
| 131 | M261 | ATCCATTGTCCATCCCAT | M262 | TGATGAAAGAAATAAAGAAGGA | 1638 | 52 | — | — | + | + |
| 132 | M263 | CTCTATTTCGCCATTTTTGC | M264 | GAGGATTGGAAGGAGTGG | 1351 | 52 | + | + | + | + |
| 133 | M265 | TTTTTCCTTTCTTTTTCATTCG | M266 | TCAGAAAATCAAACGAAATG | 1015 | 52 | + | + | + | + |
| 134 | M267 | ATTCTTCCTCATTTTCTTGCTC | M268 (=350‐2Rd) | GGAAGAAAAGGAGGATCCGG | 1001 | 55 | + | + | + | + |
— = unsuccessful amplification; + = successful amplification.
Primers above the line in Figure 1.
Primers below the line in Figure 1.
Mde = M. dealbata (JX280393); Mfr = M. fraseri var. pyramidata (JX280395); Mli = M. liliiflora (JX280397); Mod = M. odora (JX280398).
Previously reported primers (references are in Kim and Suh, 2013).
Figure 1.

Sequencing primer positions (arrows) along the linearized chloroplast genome map of Magnolia kobus. One inverted repeat region is not shown. The genes above the line are transcribed in the reverse direction, whereas the genes below the line are transcribed in the forward direction. IR = inverted repeat; LSC = large single‐copy region; SSC = small single‐copy region.
PCR was performed in a final reaction volume of 20 μL containing 1 μL of template DNA, 10 μL of 2× AmpMaster Taq (GeneAll, Seoul, Korea), 1 μL of each primer (10 μM), and 7 μL of distilled water, using a S1000 thermal cycler (BioRad, Hercules, California, USA). PCR conditions were 5 min at 95°C for pre‐denaturation, 30 cycles of 30 s at 95°C for denaturation, 30 s at 51–55°C for annealing (see Table 1), and 30 s at 72°C for extension with a final extension step of 7 min at 72°C. PCR products were checked by 1.5% agarose gel electrophoresis, stained with 0.001% ethidium bromide, and visualized under ultraviolet light using a Gel Doc XR+ System (BioRad). Each pair of primers generated 0.9–2.3 kbp of amplicons (Table 1, Fig. 1), and 27.38% of a genome overlapped with these products. The success or failure of each PCR is shown in Table 1; the overall success rate was 95%. For gap‐filling, species‐specific primers were designed outside PCR‐failed regions in each genome (data not shown). PCR products were sequenced by the Sanger method from both directions. For sequencing, PCR products were purified with a commercial purification kit (PCR SV; GeneAll) and sequenced with an ABI 3700 sequencer (Applied Biosystems, Carlsbad, California, USA). Sequence reads obtained from each PCR product were edited and aligned with Sequencher 4.9 (Gene Codes Corporation, Ann Arbor, Michigan, USA). Genome annotation was carried out with DOGMA (Wyman et al., 2004). The gene map of the chloroplast genome was created using GenomeVx (Conant and Wolfe, 2008).
Four chloroplast genomes in Magnolia were successfully assembled and deposited in GenBank (JX280393, JX280395, JX280397, and JX280398; Appendix S1). The size of these chloroplast genomes ranged from 158,177 to 160,070 bp. The four chloroplast genomes showed a typical circular chromosome with a quadripartite structure including inverted repeat regions ranging from 25,651 bp (M. liliiflora) to 26,597 bp (M. fraseri var. pyramidata), separated by large single‐copy regions ranging from 88,043 bp (M. fraseri var. pyramidata) to 88,133 bp (M. liliiflora) and small single‐copy regions ranging from 18,740 bp (M. dealbata) to 18,800 bp (M. odora). Overall, the gene number was 113 (79 unique genes, four rRNAs, and 30 tRNAs) in each species except for M. liliiflora (112 genes, 29 tRNAs). TrnV‐GAC is missing in the M. liliiflora inverted repeat region. The mean value of GC content in the four species was 39.22%.
CONCLUSIONS
For chloroplast genome studies in Magnolia, we designed 250 new primers based on the chloroplast genomes of M. kobus and L. tulipifera. PCR products derived from 134 primer pairs, including 18 previously reported primers, successfully covered the entire chloroplast genomes of four Magnolia species from different sections within the genus. This study demonstrates that these primers will facilitate the de novo assembly of chloroplast genomes and assist with the completion of incomplete genomes.
AUTHOR CONTRIBUTIONS
S.K. conceived and designed the project, supervised the lab and field work, and wrote the manuscript. E.S. designed the primers and completed the chloroplast genomes. S.P. wrote the first version of the manuscript.
Supporting information
APPENDIX S1. Gene maps of the chloroplast genomes in (A) Magnolia dealbata, (B) M. fraseri var. pyramidata, (C) M. liliiflora, and (D) M. odora.
ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of Korea (NRF‐2017R1D1A1B03034952) to S.K.
Appendix 1. Chloroplast genome sequences used and generated in this study and their voucher information. The classification system by Figlar and Nooteboom (2004) was followed.
| Taxa | Voucher (Herbarium) | Collection site | NCBI accession no. | Reference |
|---|---|---|---|---|
| Family Magnoliaceae | ||||
| Subfamily Magnolioideae | ||||
| Genus Magnolia | ||||
| Subgenus Magnolia | ||||
| Section Rytidospermum | ||||
| M. dealbata | S. Kim 1008 (NPRI) | Chollipo Arboretum, Korea | JX280393 | This study |
| Section Auriculata | ||||
| M. fraseri var. pyramidata | S. Kim 1011 (NPRI) | Chollipo Arboretum, Korea | JX280395 | This study |
| Subgenus Yulania | ||||
| Section Yulania | ||||
| M. kobus | — | NC_023237 | Song et al., 2018 | |
| M. liliiflora | S. Kim 1014 (NPRI) | Chollipo Arboretum, Korea | JX280397 | This study |
| Section Michelia | ||||
| M. odora | S. Kim 1099 (NPRI) | South China Botanical Garden, China | JX280398 | This study |
| Subfamily Liriodendroidae | ||||
| Genus Liriodendron | ||||
| L. tulipifera | — | NC_008326 | Cai et al., 2006 |
Song, E. , Park S., and Kim S.. 2019. Primers for complete chloroplast genome sequencing in Magnolia . Applications in Plant Sciences 7(9): e11286.
DATA AVAILABILITY
Chloroplast genome sequences have been deposited at GenBank (Appendix 1), and voucher specimens for each chloroplast genome have been deposited at the herbarium of the Natural Products Research Institute (NPRI) in the Department of Pharmacology, Seoul National University (Appendix 1).
LITERATURE CITED
- Cai, Z. , Penaflor C., Kuehl J. V., Leebens‐Mack J., Carlson J. E., Boore J. L., and Jansen R. K.. 2006. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: Implications for the phylogenetic relationships of magnoliids. BMC Evolutionary Biology 6: 77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conant, G. C. , and Wolfe K. H.. 2008. GenomeVx: Simple web‐based creation of editable circular chromosome maps. Bioinformatics 24: 861–862. [DOI] [PubMed] [Google Scholar]
- Dong, W. , Xu C., Cheng T., Lin K., and Zhou S.. 2013. Sequencing angiosperm plastid genomes made easy: A complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biology and Evolution 5: 989–997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Figlar, R. B. , and Nooteboom H. P.. 2004. Notes on Magnoliaceae IV. Blumea‐Biodiversity, Evolution and Biogeography of Plants 49: 87–100. [Google Scholar]
- Govaerts, R. , Figlar R., Nooteboom H., and Spongberg S.. 2017. World checklist of Magnoliaceae. Facilitated by the Royal Botanic Gardens, Kew. Website http://wcsp.science.kew.org [accessed 7 October 2017].
- Higgins, J. D. , Thompson D. J., and Gibson T. J.. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4674–4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim, S. , and Suh Y.. 2013. Phylogeny of Magnoliaceae based on ten chloroplast DNA regions. Journal of Plant Biology 56: 290–305. [Google Scholar]
- Kuang, D. Y. , Wu H., Wang Y. L., Gao L. M., Zhang S. Z., and Lu L.. 2011. Complete chloroplast genome sequence of Magnolia kwangsinensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome 54: 663–673. [DOI] [PubMed] [Google Scholar]
- Song, E. , Park S., Park J., and Kim S.. 2018. The chloroplast genome sequence of Magnolia kobus DC. (Magnoliaceae). Mitochondrial DNA Part B: Resources 3: 342–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twyford, A. D. , and Ness R. W.. 2017. Strategies for complete plastid genome sequencing. Molecular Ecology Resources 17: 858–868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Untergasser, A. , Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., and Rozen S. G.. 2012. Primer3—New capabilities and interfaces. Nucleic Acids Research 40: e115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyman, S. K. , Jansen R. K., and Boore J. L.. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
APPENDIX S1. Gene maps of the chloroplast genomes in (A) Magnolia dealbata, (B) M. fraseri var. pyramidata, (C) M. liliiflora, and (D) M. odora.
Data Availability Statement
Chloroplast genome sequences have been deposited at GenBank (Appendix 1), and voucher specimens for each chloroplast genome have been deposited at the herbarium of the Natural Products Research Institute (NPRI) in the Department of Pharmacology, Seoul National University (Appendix 1).
