Skip to main content
Journal of Research of the National Bureau of Standards logoLink to Journal of Research of the National Bureau of Standards
. 1978 Sep-Oct;83(5):449–458. doi: 10.6028/jres.083.031

Specific Heats of Saturated and Compressed Liquid Propane

Robert D Goodwin 1
PMCID: PMC6764504  PMID: 34565999

Abstract

Experimental specific heats for saturated liquid propane, along the coexistence path, have been determined from the triple-point temperature (~ 85 K) to 289 K. Specific heats for the compressed liquid at constant molal volume have been determined along isochores at nine different densities ranging from near the triple-point liquid density to about twice the critical-point density (at pressures up to 300 bar). Comparisons with previous experimental- and/or derived-data show agreement within combined uncertainties of about three percent.

Keywords: Constant volume, heat capacities, liquid, propane, saturated liquid, specific heats

List of Symbols

Subscript c refers to the critical point

C0(T) heat capacity of the empty calorimeter, J/K.
Cσ(T) specific heat for saturated liquid, J/mol/K
Cv0(T) specific heat in ideal gas states, J/mol/K
Cv(ρ,T) isochoric specific heat, J/mol/K
Cp(ρ,T) isobaric specific heat, J/mol/K
J the joule, 1 Nm
L the liter, 103 m3
mol 44.09721 grams of propane (C12 scale)
N¯ total moles of fluid in bomb plus capillary
N¯b moles of fluid in the calorimeter (bomb)
P pressure in bars, 1 bar ≡ 105 N/m2 (1 atm = 1.01325 bar
Q calorimetric heat input, J
QT gross heat capacity (bomb + sample), J/K
R the gas constant, 8.31434 (J/mol)/K
ρ density, mol/L
T temperature, K (1968)
ΔT calorimeter temperature increment, K
Vb(T, P) volume of the calorimeter, cm3

1. Introduction

In a recent report on the thermodynamic properties of propane, we indicated the desirability for more accurate data for virtually all physical and thermal properties [8].1 The present specific heat measurements serve to broaden the experimental data base and to confirm the work in [8] to within combined uncertainties of about three percent in specific heat data. They serve also in comparisons utilizing an equation of state for interpolations. It is anticipated that the present measurements will be incorporated with other new properties measurements in a revision of the thermodynamic tables in [8].

Symbols and units are given in a list. Fixed-point constants, used in computations, are given in table 1. Figure 1 shows the densities, and temperature ranges of the nine experimental runs.

Table 1.

Fixed-points used for propane

Triple Point Boiling Point Critical Point
Temperature, K 85.47 231.0679 369.80
Pressure, bar 1.6609·10−9 1.01325 42.3974
Density, mol/L
Vapor 2.3373·10−10 0.05479 4.96
Liquid 16.620 13.1687 4.96

Figure 1.

Figure 1.

The ρ-T loci of experimental runs.

2. Experimental

Apparatus, technique, and computational procedures have been fully described so often, in work on other substances, that we refer the reader to these publications, to avoid unnecessary repetition [4, 5, 6, 7, 11, 12, 14, 15, 16].

In [5], for example, we gave an accounting of sources of uncertainty. For the present work we have considered only the sources of gross uncertainties, concluding that total uncertainty in each specific heat measurement must be set at about two percent. Nearly all comparisons, reported below, fall well within this figure.

For the present work on propane we have employed the same apparatus, methods, and computational procedures described in detail by Roder in his prior work on ethane [12], except for replacing the platinum resistance thermometer.

The propane is a commercial “research grade,” specified to be 99.99 percent pure, with a trace of ethane. No further analysis was made.

For computation of saturated liquid specific heats, from observations on a two-phase sample at constant volume, it is necessary to have accurate formulations of the vapor pressures, and of the saturated liquid densities. Because experimental specific heats at constant pressure are available from another source [13], comparisons with our results demand use of an equation of state. The equation of state used here [9] is a slight modification of that reported in [8], obtained by use of the new vapor pressures below the boiling point, derived at the end of that report.

3. Heat Capacity of the Empty Calorimeter

The heat capacity of the empty calorimeter must be subtracted from all observations on a sample. Data on the empty calorimeter are presented in table 2, because they indicate the precision obtained over the very long temperature range of the propane measurements. A new formulation for these data has been developed, and a “best” value has been selected for the number of terms, in the expression

100/C0=i=1nAix(i1),n=6, (1)

where x ≡ 100/T, and −

A1=0.81790976A4=4.50479912A2=1.78932156A5=2.51928428A3=3.14762021A6=0.59502531

This formula yields a constant for C0 at very high temperatures, and a behavior approaching T5 as T → 0.

Table 2.

Heat capacity of the empty calorimeter

Run no. Tav, K ΔT, K Power, watt Time, sec Heat, joule Heat Capy., Exptl. J/K, Calcd. Diff., %
701 80.338 2.556 .16301 606.59 98.88 38.677 38.664 .03
702 82.844 2.455 .16261 605.95 98.53 40.138 40.146 −.02
101 83.566 3.759 .25234 604.15 152.45 40.559 40.564 −.01
703 85.555 2.972 .20591 601.68 123.89 41.685 41.692 −.02
102 87.228 3.580 .25197 605.37 152.53 42.603 42.617 −.03
704 88.798 3.524 .25418 602.72 153.20 43.471 43.465 .01
103 91.529 5.042 .37435 604.78 226.40 44.901 44.899 0.00
705 92.988 4.871 .36651 606.73 222.37 45.650 45.643 .02
104 97.307 6.539 .51730 603.62 312.26 47.752 47.759 −.01
706 98.526 6.230 .49924 603.32 301.20 48.344 48.334 .02
105 103.637 6.170 .51713 604.19 312.44 50.640 50.641 0.00
801 105.231 5.851 .49698 604.37 300.36 51.331 51.327 .01
106 109.624 5.859 .51672 602.45 311.30 53.132 53.140 −.02
802 111.358 6.458 .57453 605.22 347.71 53.846 53.826 .04
107 115.329 5.621 .51600 602.68 310.98 55.323 55.334 −.02
803 117.650 6.186 .57406 605.50 347.60 56.189 56.177 .02
108 120.821 5.441 .51562 604.71 311.80 57.308 57.285 .04
804 123.681 5.945 .57394 603.57 346.41 58.268 58.242 .04
201 127.052 5.236 .51380 604.54 310.61 59.318 59.322 −.01
805 129.504 5.771 .57362 604.76 346.91 60.108 60.076 .05
202 132.158 5.077 .51313 602.00 308.91 60.848 60.863 −.03
806 135.156 5.615 .57339 604.48 346.60 61.725 61.719 .01
203 137.118 4.955 .51266 601.46 308.35 62.232 62.259 −.04
807 140.655 5.481 .57314 604.37 346.39 63.194 63.198 −.01
204 141.960 4.848 .51196 601.05 307.72 63.477 63.533 −.09
808 146.029 5.379 .57288 606.25 347.31 64.564 64.541 .03
205 146.696 4.759 .51189 601.15 307.72 64.666 64.701 −.05
206 151.345 4.680 .51149 601.59 307.71 65.744 65.779 −.05
901 155.708 7.479 .82540 604.43 498.90 66.704 66.733 −.04
207 155.924 4.637 .51113 605.41 309.44 66.740 66.779 −.06
208 161.159 6.001 .67697 601.59 407.26 67.867 67.853 .02
902 163.013 7.288 .82402 603.21 497.06 68.205 68.216 −.02
209 167.036 5.933 .67651 604.96 409.26 68.977 68.979 0.00
903 170.156 7.169 .82288 606.18 498.81 69.575 69.545 .04
301 175.056 5.811 .67894 602.19 408.85 70.355 70.394 −.05
904 177.155 7.006 .82346 601.90 495.64 70.749 70.743 .01
302 181.421 7.166 .85042 601.72 511.71 71.413 71.428 −.02
905 184.033 6.955 .82342 606.98 499.80 71.863 71.833 .04
303 188.400 7.051 .84965 601.40 510.98 72.471 72.484 −.02
906 190.824 6.851 .82311 606.56 499.26 72.871 72.833 .05
304 195.261 6.975 .84912 603.09 512.10 73.423 73.450 −.04
907 197.541 6.816 .82945 606.54 503.09 73.814 73.756 .08
305 202.027 6.871 .84849 602.03 510.82 74.344 74.340 .01
908 204.197 6.734 .82923 606.28 502.75 74.657 74.614 .06
401 210.602 6.700 .83869 602.26 505.11 75.385 75.390 −.01
909 210.749 6.651 .82845 605.75 501.83 75.458 75.408 .07
402 217.173 6.808 .86062 602.82 518.80 76.210 76.143 .09
1001 217.761 6.601 .82893 606.95 503.12 76.213 76.208 .01
403 223.805 6.841 .87126 603.18 525.53 76.824 76.862 −.05
1002 224.611 7.303 .92427 607.84 561.81 76.928 76.947 −.02
404 230.399 6.766 .87076 602.42 524.56 77.534 77.540 −.01
1003 231.761 7.202 .92299 606.18 559.50 77.690 77.675 .02
405 236.925 6.702 .87011 602.12 523.91 78.167 78.178 −.01
1004 238.818 7.131 .92259 605.94 559.03 78.390 78.357 .04
406 243.368 6.649 .86944 602.18 523.56 78.742 78.779 −.05
1005 245.800 7.059 .92145 605.37 557.81 79.022 78.998 .03
407 249.749 6.588 .86869 601.46 522.48 79.313 79.348 −.04
1006 252.712 7.002 .92116 605.91 558.14 79.710 79.604 .13
408 256.060 6.547 .86835 602.43 523.12 79.902 79.888 .02
1007 259.571 6.952 .92034 606.06 557.78 80.228 80.179 .06
409 262.315 6.495 .86799 602.34 522.83 80.498 80.402 .12
1008 266.382 6.902 .91995 605.97 557.46 80.771 80.726 .06
410 268.499 6.464 .86746 603.34 523.37 80.967 80.891 .09
1101 271.535 6.878 .92054 605.61 557.49 81.051 81.125 −.09
501 274.806 6.438 .86515 606.30 524.54 81.476 81.372 .13
1102 278.340 6.822 .91902 605.91 556.85 81.619 81.634 −.02
502 280.917 6.366 .86434 602.10 520.42 81.748 81.823 −.09
1103 285.105 6.771 .91753 605.82 555.86 82.093 82.123 −.04
503 286.958 6.315 .86384 601.14 519.29 82.224 82.253 −.04
1104 291.872 6.829 .92910 606.76 563.74 82.556 82.594 −.05
504 292.930 6.272 .86347 600.25 518.30 82.633 82.666 −.04
1105 298.640 6.788 .92785 607.05 563.25 82.979 83.049 −.08
505 298.868 6.244 .86290 600.99 518.59 83.052 83.064 −.02
601 299.023 7.821 1.07086 605.85 648.78 82.951 83.075 −.15
506 304.748 6.213 .86255 601.32 518.67 83.476 83.448 .03
1106 305.362 6.742 .92764 606.38 562.51 83.433 83.487 −.06
602 306.746 7.721 1.06883 602.60 644.07 83.422 83.575 −.18
1107 312.788 8.200 1.13382 606.91 688.12 83.916 83.955 −.05
603 313.758 6.412 .88694 606.46 537.89 83.889 84.015 −.15
604 320.100 6.375 .88655 605.95 537.20 84.269 84.400 −.16
1108 320.907 8.126 1.13317 605.79 686.46 84.477 84.449 .03
605 326.414 6.350 .88603 606.14 537.06 84.578 84.774 −.23
1109 328.976 8.077 1.13242 606.02 686.27 84.969 84.923 .05
606 332.705 6.317 .88560 606.68 537.27 85.049 85.137 −.10
1201 335.011 6.544 .92627 603.17 558.70 85.369 85.267 .12
607 339.007 6.274 .88521 606.58 536.95 85.578 85.491 .10
1202 341.557 6.533 .92553 605.75 560.64 85.821 85.631 .22
608 345.347 6.228 .88462 606.32 536.36 86.115 85.838 .32

NP = 88, RMSPCT = .078

4. Results for Saturated Liquid

The calorimeter (T, P) loading conditions for the sample in each experimental run are presented in table 3. The density is obtained from the equation of state given in [9]. The total amount of sample, N¯, includes the relatively small amount residing in the capillary tube. The equation of state originates on the saturated liquid boundary, and is extrapolated at temperatures below 170 K where P-ρ-T compressibility data exist. In this region the density is relatively insensitive to pressure, but derivatives of the P(ρ,T) surface, used to intercompare Cv with Cp data, must become increasingly uncertain with diminishing temperature.

Table 3.

Loading conditions for the samples

Run T, K P, bar ρ,mol/L Vb,cm3 N¯, mol Coexistence Conditionsa
T.K ρ,mol/L
1 294.976 11.442 11.292 73.324 0.8288 294.150 11.303
2 254.544 15.372 12.577 73.196 0.9213 252.415 12.591
3 214.940 16.541 13.620 73.071 0.9960 212.889 13.635
4 187.209 18.600 14.302 72.988 1.0447 185.051 14.318
5 155.086 20.047 15.051 72.896 1.0980 153.309 15.067
6 125.098 19.598 15.736 72.814 1.1467 123.602 15.752
7 99.123 19.463 16.325 72.753 1.1885 97.825 16.340
8 275.574 14.372 11.954 73.263 0.8766 273.712 11.967
9 236.045 10.535 13.064 73.131 0.9562 234.541 13.077
a

For calorimeter full of liquid.

Results for specific heats of saturated liquid propane (Cσ) in experimental runs numbers 1 and 2 are presented in table 4 and in figure 2. Pressures here are the vapor pressures. The corrections in columns 10 and 11 are: A, for work done in expanding the calorimeter and in pumping fluid into the capillary tube and B, for the heat of vaporization and heat absorbed by the vapor [5]. Column 12 gives the experimental results. The “calculated” value in column 13 is from a formulation of older experimental and recently derived data in [8]. The last two columns give Cv and Cp derived from the Cσ data of column 12 by methods of [8] with the equation of state of [9].

Table 4.

Experimental data for saturated liquid

Run no. Tav, K ρ, mol/L P, bar N¯b, mol Vb, cm3 ΔT, K Q/ΔT, J/K Co, J/K Corr., A J/mol/K, B Cσ, Exptl. J/mol/K, Calcd. Diff., % Cv J/mol/K Cp J/mol/K
101 81.053 16.720 0.000 .8288 72.702 .486 107.756 39.092 0.000 0.000 82.85 83.82 −1.17 58.76 82.85
102 81.756 16.704 0.000 .8288 72.703 .930 108.802 39.509 0.000 0.000 83.61 83.86 −.30 59.45 83.61
103 82.677 16.683 0.000 .8288 72.705 .923 109.372 40.049 0.000 0.000 83.65 83.90 −.31 59.40 83.65
104 83.593 16.663 0.000 .8288 72.707 .920 109.621 40.579 0.000 0.000 83.31 83.95 −.77 58.98 83.31
105 84.568 16.640 0.000 .8288 72.708 1.039 110.624 41.136 0.000 0.000 83.84 84.00 −.18 59.43 83.84
106 85.598 16.617 0.000 .8288 72.710 1.033 111.290 41.716 0.000 0.000 83.95 84.05 −.12 59.44 83.95
107 86.622 16.594 0.000 .8288 72.712 1.024 112.143 42.284 0.000 0.000 84.29 84.10 .23 59.70 84.29
108 86.836 16.589 0.000 .8288 72.713 1.030 111.863 42.402 0.000 0.000 83.81 84.11 −.36 59.20 83.81
109 87.856 16.566 0.000 .8288 72.715 1.022 112.699 42.959 0.000 0.000 84.15 84.16 −.02 59.45 84.15
110 88.871 16.543 0.000 .8288 72.716 1.016 113.262 43.505 0.000 0.000 84.17 84.22 −.05 59.38 84.17
111 89.879 16.520 0.000 .8288 72.718 1.008 114.052 44.039 0.000 0.000 84.48 84.27 .25 59.60 84.48
112 91.366 16.486 0.000 .8288 72.721 1.970 114.875 44.815 0.000 0.000 84.54 84.34 .23 59.54 84.54
113 93.321 16.442 0.000 .8288 72.725 1.950 116.033 45.811 0.000 0.000 84.73 84.45 .34 59.58 84.73
114 95.750 16.387 0.000 .8288 72.730 3.708 117.236 47.011 0.000 0.000 84.73 84.57 .19 59.39 84.73
115 99.797 16.295 0.000 .8288 72.739 4.400 119.322 48.923 0.000 0.000 84.94 84.79 .18 59.30 84.94
116 104.646 16.185 0.000 .8288 72.749 5.317 121.726 51.076 0.000 0.000 85.25 85.06 .22 59.26 85.25
117 110.300 16.056 0.000 .8288 72.762 6.008 124.296 53.409 0.000 0.000 85.53 85.39 .17 59.18 85.53
118 116.889 15.905 0.000 .8288 72.777 7.194 127.025 55.904 0.000 0.000 85.81 85.79 .03 59.06 85.81
119 124.009 15.742 0.000 .8288 72.795 7.084 129.793 58.349 0.000 −.001 86.20 86.25 −.05 59.04 86.20
120 131.003 15.582 0.000 .8288 72.812 6.947 132.369 60.524 0.000 −.001 86.69 86.73 −.05 59.15 86.69
121 137.870 15.424 .001 .8288 72.830 6.830 134.681 62.463 0.000 −.003 87.14 87.23 −.11 59.25 87.14
122 145.757 15.242 .002 .8288 72.851 6.679 137.151 64.476 0.000 −.007 87.68 87.85 −.19 59.41 87.68
123 152.350 15.089 .004 .8288 72.869 6.569 139.075 66.004 0.000 −.013 88.16 88.41 −.29 59.57 88.16
124 158.858 14.937 .008 .8288 72.888 6.524 140.980 67.389 0.000 −.022 88.77 89.00 −.25 59.88 88.77
125 165.298 14.786 .014 .8288 72.906 6.440 142.693 68.654 0.000 −.034 89.30 89.62 −.35 60.10 89.30
126 171.647 14.637 .025 .8288 72.924 6.356 144.530 69.808 0.000 −.051 90.11 90.27 −.18 60.60 90.11
127 179.354 14.454 .048 .8288 72.947 6.273 146.499 71.100 −.001 −.076 90.90 91.13 −.25 61.01 90.91
128 185.534 14.306 .077 .8288 72.965 6.203 148.120 72.060 −.001 −.101 91.67 91.86 −.21 61.46 91.68
129 191.643 14.159 .117 .8288 72.983 6.132 149.703 72.949 −.001 −.129 92.48 92.64 −.17 61.93 92.50
130 197.686 14.012 .174 .8288 73.001 6.076 151.161 73.775 −.002 −.159 93.21 93.46 −.26 62.31 93.24
131 204.154 13.853 .258 .8288 73.021 7.001 152.785 74.608 −.002 −.192 94.13 94.39 −.27 62.83 94.17
132 211.041 13.681 .380 .8288 73.042 6.923 154.688 75.442 −.003 −.226 95.39 95.45 −.06 63.62 95.45
133 217.854 13.510 .543 .8288 73.064 6.859 156.350 76.219 −.004 −.255 96.43 96.58 −.16 64.16 96.51
134 224.592 13.337 .754 .8288 73.085 6.787 158.027 76.945 −.005 −.274 97.55 97.77 −.22 64.75 97.67
135 231.245 13.164 1.021 .8288 73.106 6.693 159.827 77.624 −.007 −.281 98.90 99.04 −.14 65.52 99.06
136 238.095 12.983 1.368 .8288 73.128 6.615 161.527 78.289 −.009 −.268 100.16 100.43 −.27 66.12 100.37
137 244.560 12.808 1.773 .8288 73.149 6.510 163.412 78.887 −.011 −.232 101.75 101.84 −.10 67.03 102.03
138 250.946 12.632 2.257 .8288 73.170 6.443 165.130 79.452 −.014 −.168 103.20 103.33 −.13 67.74 103.57
139 257.248 12.454 2.828 .8288 73.191 6.366 166.868 79.987 −.016 −.068 104.75 104.91 −.15 68.49 105.22
140 263.551 12.271 3.502 .8288 73.212 6.491 168.526 80.501 −.020 .075 106.27 106.59 −.31 69.13 106.87
141 269.931 12.082 4.300 .8288 73.234 6.499 170.427 81.002 −.024 .274 108.15 108.42 −.25 70.02 108.92
142 276.292 11.887 5.224 .8288 73.255 6.457 172.202 81.483 −.028 .540 109.98 110.38 −.37 70.75 110.95
143 282.595 11.688 6.278 .8288 73.277 6.377 174.026 81.944 −.033 .885 111.96 112.48 −.46 71.53 113.19
144 288.813 11.484 7.464 .8287 73.299 6.300 175.873 82.383 −.039 1.322 114.09 114.71 −.55 72.33 115.63
236 83.132 16.673 0.000 .9213 72.706 1.056 117.630 40.313 0.000 0.000 83.92 83.93 −.01 59.63 83.92
237 83.995 16.653 0.000 .9213 72.707 .678 118.126 40.809 0.000 0.000 83.92 83.97 −.06 59.56 83.92
238 84.860 16.634 0.000 .9213 72.709 1.057 118.728 41.301 0.000 0.000 84.04 84.01 .03 59.60 84.04
239 85.723 16.614 0.000 .9213 72.711 .679 119.024 41.786 0.000 0.000 83.83 84.06 −.27 59.32 83.83
240 86.395 16.599 0.000 .9213 72.712 .675 119.482 42.159 0.000 0.000 83.93 84.09 −.20 59.35 83.93
201 86.763 16.591 0.000 .9213 72.712 2.941 120.048 42.362 0.000 0.000 84.32 84.11 .25 59.71 84.32
241 87.064 16.584 0.000 .9213 72.713 .670 119.955 42.527 0.000 0.000 84.04 84.12 −.10 59.40 84.04
242 87.870 16.566 0.000 .9213 72.715 .950 120.662 42.966 0.000 0.000 84.33 84.16 .20 59.63 84.33
243 88.931 16.542 0.000 .9213 72.717 1.178 121.183 43.537 0.000 0.000 84.28 84.22 .07 59.48 84.28
202 90.366 16.509 0.000 .9213 72.719 4.280 122.177 44.295 0.000 0.000 84.53 84.29 .28 59.62 84.53
203 95.166 16.400 0.000 .9213 72.729 5.333 124.834 46.726 0.000 0.000 84.78 84.54 .28 59.48 84.78
204 101.406 16.258 0.000 .9213 72.742 7.163 128.059 49.654 0.000 0.000 85.10 84.88 .26 59.34 85.10
205 108.461 16.098 0.000 .9213 72.758 6.966 131.385 52.671 0.000 0.000 85.43 85.28 .18 59.20 85.43
206 115.393 15.939 0.000 .9213 72.774 6.823 134.400 55.358 0.000 0.000 85.79 85.70 .11 59.12 85.79
207 122.132 15.785 0.000 .9213 72.790 6.683 137.126 57.728 0.000 0.000 86.18 86.12 .06 59.12 86.18
208 128.738 15.634 0.000 .9213 72.807 6.566 139.549 59.843 0.000 −.001 86.51 86.57 −.07 59.09 86.51
209 135.238 15.485 0.000 .9213 72.823 6.479 141.825 61.741 0.000 −.001 86.92 87.03 −.13 59.17 86.92
210 141.629 15.337 .001 .9213 72.840 6.352 143.934 63.449 0.000 −.003 87.35 87.52 −.19 59.28 87.35
211 147.902 15.192 .002 .9213 72.857 6.256 145.949 64.987 0.000 −.005 87.87 88.03 −.18 59.50 87.87
212 154.093 15.048 .005 .9213 72.874 6.190 147.768 66.386 0.000 −.009 88.32 88.56 −.27 59.66 88.32
213 160.343 14.902 .009 .9213 72.892 6.108 149.670 67.690 0.000 −.013 88.97 89.14 −.19 60.00 88.97
214 166.378 14.761 .016 .9213 72.909 6.042 151.409 68.856 0.000 −.020 89.58 89.73 −.16 60.33 89.58
215 172.363 14.620 .027 .9213 72.926 6.011 153.069 69.933 0.000 −.027 90.21 90.35 −.16 60.67 90.21
216 178.276 14.480 .044 .9213 72.943 5.914 154.638 70.926 0.000 −.035 90.82 91.00 −.20 60.99 90.83
217 184.114 14.340 .069 .9213 72.961 5.861 156.153 71.845 −.001 −.044 91.46 91.69 −.25 61.32 91.47
218 189.882 14.201 .104 .9213 72.978 5.790 157.688 72.698 −.001 −.052 92.19 92.41 −.24 61.74 92.21
219 195.603 14.062 .153 .9213 72.995 5.767 159.243 73.496 −.001 −.059 93.01 93.17 −.17 62.23 93.03
220 202.405 13.896 .233 .9213 73.016 7.003 160.816 74.388 −.002 −.063 93.74 94.13 −.41 62.55 93.78
221 209.358 13.723 .347 .9213 73.037 6.971 162.868 75.243 −.003 −.061 95.04 95.18 −.15 63.39 95.10
222 216.234 13.551 .500 .9213 73.059 6.845 164.767 76.038 −.003 −.048 96.25 96.30 −.05 64.11 96.33
223 222.998 13.378 .699 .9213 73.080 6.752 166.481 76.777 −.005 −.021 97.34 97.48 −.15 64.67 97.45
224 229.651 13.206 .951 .9213 73.101 6.626 168.233 77.464 −.006 .023 98.54 98.73 −.19 65.30 98.68
225 236.231 13.032 1.266 .9213 73.122 6.614 169.990 78.111 −.007 .089 99.81 100.04 −.24 65.95 100.00
226 242.764 12.857 1.652 .9213 73.143 6.534 171.848 78.723 −.009 .183 101.25 101.44 −.19 66.73 101.51

Figure 2.

Figure 2.

Specific heats for saturated liquid.

In the present work we did not succeed in freezing the sample at temperatures below the reported triple point of 85.47 K, due possibly to the viscous behavior of the fluid, the small temperature difference of only 5 K below the triple-point, and a time of no more than six hours at this temperature. Deviations in column 14 of table 4 are within our anticipated uncertainties.

The following fitting function for Cσ(T) was developed for all available data (xT/Tc),

Cσ(T)=A1x/(1x)+i=2nAixi2 (2)

in which ϵ = 0.7, and n = 5. In table 5, however, we apply it only to our results, finding −

A1=1.77942A4=100.24355A2=77.12878A5=135.42504A3=48.01034

The rms relative deviation for our selected 76 data points is 0.13%. Because A1 is negative, this formulation should not be extrapolated above 290 K.

Table 5.

Representation of present Cσ data

Run Wt. T, K J/mol/K Calcd. Pcnt.
101 0.000 81.053 82.850 83.798 −1.13
102 1.000 81.756 83.610 83.838 −.27
103 1.000 82.677 83.650 83.890 −.29
236 1.000 83.132 83.920 83.916 .00
104 0.000 83.593 83.310 83.942 −.75
237 1.000 83.995 83.920 83.965 −.05
105 1.000 84.568 83.840 83.997 −.19
238 1.000 84.860 84.040 84.014 .03
106 1.000 85.598 83.950 84.055 −.13
239 1.000 85.723 83.830 84.062 −.28
240 1.000 86.395 83.930 84.100 −.20
107 1.000 86.622 84.290 84.113 .21
201 1.000 86.763 84.320 84.121 .24
108 1.000 86.836 83.810 84.125 −.37
241 1.000 87.064 84.040 84.137 −.12
109 1.000 87.856 84.150 84.182 −.04
242 1.000 87.870 84.330 84.183 .18
110 1.000 88.871 84.170 84.238 −.08
243 1.000 88.931 84.280 84.242 .05
111 1.000 89.879 84.480 84.295 .22
202 1.000 90.366 84.530 84.322 .25
112 1.000 91.366 84.540 84.378 .19
113 1.000 93.321 84.730 84.487 .29
203 1.000 95.166 84.780 84.589 .23
114 1.000 95.750 84.730 84.622 .13
115 1.000 99.797 84.940 84.848 .11
204 1.000 101.406 85.100 84.938 .19
116 1.000 104.646 85.250 85.121 .15
205 1.000 108.461 85.430 85.338 .11
117 1.000 110.300 85.530 85.444 .10
206 1.000 115.393 85.790 85.743 .06
118 1.000 116.889 85.810 85.832 −.03
207 1.000 122.132 86.180 86.151 .03
119 1.000 124.009 86.200 86.269 −.08
208 1.000 128.738 86.510 86.572 −.07
120 1.000 131.003 86.690 86.721 −.04
209 1.000 135.238 86.920 87.008 −.10
121 1.000 137.870 87.140 87.193 −.06
210 1.000 141.629 87.350 87.465 −.13
122 1.000 145.757 87.680 87.775 −.11
211 1.000 147.902 87.870 87.942 −.08
123 1.000 152.350 88.160 88.300 −.16
212 1.000 154.093 88.320 88.446 −.14
124 1.000 158.858 88.770 88.858 −.10
213 1.000 160.343 88.970 88.990 −.02
125 1.000 165.298 89.300 89.451 −.17
214 1.000 166.378 89.580 89.555 .03
126 1.000 171.647 90.110 90.081 .03
215 1.000 172.363 90.210 90.155 .06
216 1.000 178.276 90.820 90.790 .03
127 1.000 179.354 90.900 90.911 −.01
217 1.000 184.114 91.460 91.462 −.00
128 1.000 185.534 91.670 91.632 .04
218 1.000 189.882 92.190 92.172 .02
129 1.000 191.643 92.480 92.398 .09
219 1.000 195.603 93.010 92.924 .09
130 1.000 197.686 93.210 93.211 −.00
220 1.000 202.405 93.740 93.885 −.15
131 1.000 204.154 94.130 94.144 −.02
221 1.000 209.358 95.040 94.946 .10
132 1.000 211.041 95.390 95.215 .18
222 1.000 216.234 96.250 96.078 .18
133 1.000 217.854 96.430 96.357 .08
223 1.000 222.998 97.340 97.275 .07
134 1.000 224.592 97.550 97.570 −.02
224 1.000 229.651 98.540 98.539 .00
135 1.000 231.245 98.900 98.855 .05
225 1.000 236.231 99.810 99.875 −.07
136 1.000 238.095 100.160 100.270 −.11
226 1.000 242.764 101.250 101.291 −.04
137 1.000 244.560 101.750 101.696 .05
138 1.000 250.946 103.200 103.193 .01
139 1.000 257.248 104.750 104.759 −.01
140 1.000 263.551 106.270 106.415 −.14
141 1.000 269.931 108.150 108.184 −.03
142 1.000 276.292 109.980 110.042 −.06
143 1.000 282.595 111.960 111.975 −.01
144 1.000 288.813 114.090 113.970 .11

NP = 78, RMSPCT = .13

In table 6, we give all available data for equation (2). These include: ID = 1, Dana [2]; ID = 2, Kemp [10]; ID = 8, Cutler [1]; and ID = 30 for data derived from Cp data of Yesavage [13] via our equation of state in [8]. The coefficients for this extended data set are −

A1=6.63584A4=19.92150A2=80.76732A5=51.18785A3=8.27472

The rms relative deviation for 133 selected data is 0.29 percent. In tables 5 and 6 the column “Wt.” gives the least-squares weighting for that point.

Table 6.

Representation of all Cσ data

Run Wt. T, K J/mol/K Calcd. Pcnt.
101 0.000 81.053 82.850 83.892 −1.24
102 1.000 81.756 83.610 83.924 −.37
103 1.000 82.677 83.650 83.965 −.37
236 1.000 83.132 83.920 83.985 −.08
104 0.000 83.593 83.310 84.006 −.83
237 1.000 83.995 83.920 84.024 −.12
105 1.000 84.568 83.840 84.050 −.25
238 1.000 84.860 84.040 84.063 −.03
106 1.000 85.598 83.950 84.097 −.17
239 1.000 85.723 83.830 84.103 −.32
240 1.000 86.395 83.930 84.134 −.24
107 1.000 86.622 84.290 84.144 .17
201 1.000 86.763 84.320 84.151 .20
108 1.000 86.836 83.810 84.154 −.41
241 1.000 87.864 84.040 84.165 −.15
109 1.000 87.856 84.150 84.201 −.06
242 1.000 87.870 84.330 84.202 .15
110 1.000 88.871 84.170 84.249 −.09
243 1.000 88.931 84.280 84.252 .03
2 1.000 89.720 84.547 84.289 .31
111 1.000 89.879 84.480 84.297 .22
30 1.000 90.000 84.040 84.302 −.31
202 1.000 90.366 84.530 84.320 .25
8 1.000 91.060 83.973 84.353 −.45
112 1.000 91.366 84.540 84.367 .20
113 1.000 93.321 84.730 84.462 .32
8 1.000 93.430 84.224 84.467 −.29
203 1.000 95.166 84.780 84.553 .27
2 1.000 95.530 84.756 84.571 .22
114 1.000 95.750 84.730 84.582 .17
8 1.000 95.760 84.475 84.582 −.13
8 1.000 98.060 84.140 84.698 −.66
115 1.000 99.797 84.940 84.787 .18
30 1.000 100.000 84.860 84.798 .07
8 1.000 100.330 84.057 84.815 −.89
204 1.000 101.406 85.100 84.871 .27
2 1.000 101.960 85.091 84.900 .22
8 1.000 102.570 84.726 84.933 −.24
116 1.000 104.646 85.250 85.044 .24
8 1.000 104.780 85.061 85.051 .01
205 1.000 108.461 85.430 85.254 .21
2 1.000 108.500 85.426 85.256 .20
30 1.000 110.000 85.850 85.341 .60
117 1.000 110.300 85.530 85.358 .20
2 1.000 115.160 85.803 85.641 .19
206 1.000 115.393 85.790 85.655 .16
118 1.000 116.889 85.810 85.746 .08
30 1.000 120.000 86.720 85.938 .91
2 1.000 121.970 86.179 86.062 .14
207 1.000 122.132 86.180 86.073 .12
119 1.000 124.009 86.200 86.194 .01
208 1.000 128.738 86.510 86.510 −.00
2 1.000 128.900 86.556 86.521 .04
30 1.000 130.000 87.420 86.597 .95
120 1.000 131.003 86.690 86.667 .03
209 1.000 135.238 86.920 86.970 −.06
2 1.000 135.950 87.226 87.022 .23
121 1.000 137.870 87.140 87.165 −.03
30 1.000 140.000 88.040 87.327 .82
210 1.000 141.629 87.350 87.453 −.12
2 1.000 142.790 87.435 87.545 −.13
122 1.000 145.757 87.680 87.783 −.12
211 1.000 147.982 87.870 87.960 −.10
2 1.000 149.740 88.147 88.114 .04
30 1.000 150.000 88.670 88.136 .61
123 1.000 152.350 88.160 88.339 −.20
212 1.000 154.093 88.320 88.492 −.19
2 1.000 156.850 88.691 88.741 −.06
124 1.000 158.858 88.770 88.926 −.18
30 1.000 160.000 89.380 89.034 .39
213 1.000 160.343 88.970 89.066 −.11
2 1.000 164.390 89.360 89.458 −.11
125 1.000 165.298 89.300 89.548 −.28
214 1.000 166.378 89.580 89.656 −.08
30 1.000 170.000 90.240 90.028 .24
126 1.000 171.647 90.110 90.202 −.10
2 1.000 172.020 89.863 90.242 −.42
215 1.000 172.363 90.210 90.278 −.08
216 1.000 178.276 90.820 90.932 −.12
2 1.000 179.090 90.742 91.025 −.31
127 1.000 179.354 90.900 91.056 −.17
30 1.000 180.000 91.260 91.130 .14
217 1.000 184.114 91.460 91.617 −.17
128 1.000 185.534 91.670 91.790 −.13
2 1.000 185.900 91.662 91.835 −.19
218 1.000 189.882 92.190 92.336 −.16
30 1.000 190.000 92.460 92.351 .12
129 1.000 191.643 92.480 92.563 −.09
2 1.000 194.280 92.792 92.912 −.13
219 1.000 195.603 93.010 93.091 −.09
130 1.000 197.686 93.210 93.377 −.18
30 1.000 200.000 93.830 93.702 .14
2 1.000 200.940 93.839 93.836 .00
220 1.000 202.405 93.740 94.047 −.33
131 1.000 204.154 94.130 94.304 −.18
2 1.000 207.090 94.257 94.745 −.52
221 1.000 209.358 95.040 95.095 −.06
30 1.000 210.000 95.350 95.196 .16
132 1.000 211.041 95.390 95.360 .03
2 1.000 213.100 95.429 95.691 −.27
222 1.000 216.234 96.250 96.207 .05
133 1.000 217.854 96.430 96.480 −.05
2 1.000 219.250 96.266 96.719 −.47
30 1.000 220.000 97.040 96.849 .20
223 1.000 222.998 97.340 97.378 −.04
134 1.000 224.592 97.550 97.665 −.12
2 1.000 224.960 97.480 97.732 −.26
224 1.000 229.651 98.540 98.610 −.07
2 1.000 229.810 98.275 98.641 −.37
30 1.000 230.000 98.920 98.677 .25
135 1.000 231.245 98.900 98.918 −.02
225 1.000 236.231 99.810 99.914 −.10
136 1.000 238.095 100.160 100.300 −.14
30 1.000 240.000 100.990 100.702 .29
1 0.000 241.760 99.820 101.080 −1.25
226 1.000 242.764 101.250 101.299 −.05
137 1.000 244.560 101.750 101.697 .05
1 0.000 246.880 96.490 102.221 −5.61
30 1.000 250.000 103.310 102.947 .35
138 1.000 250.946 103.200 103.172 .03
1 0.000 252.820 100.550 103.624 −2.97
1 0.000 255.330 100.740 104.244 −3.36
139 1.000 257.248 104.750 104.729 .02
30 1.000 260.000 105.890 105.444 .42
1 0.000 261.550 105.720 105.856 −.13
140 1.000 263.551 106.270 106.398 −.12
1 0.000 264.740 97.790 106.726 −8.37
1 0.000 266.440 106.270 107.203 −.87
1 0.000 269.060 107.200 107.956 −.70
141 1.000 269.931 108.150 108.211 −.06
30 1.000 270.000 108.770 108.232 .50
142 1.000 276.292 109.980 110.158 −.16
1 0.000 276.430 107.010 110.202 −2.90
1 0.000 276.780 111.440 110.314 1.02
30 1.000 280.000 111.980 111.364 .55
143 1.000 282.595 111.960 112.241 −.25
1 0.000 287.550 107.750 114.001 −5.48
144 1.000 288.813 114.090 114.468 −.33
30 1.000 290.000 115.570 114.915 .57
1 0.000 291.590 110.890 115.524 −4.01
30 1.000 300.000 119.600 118.994 .51
30 1.000 310.000 124.220 123.774 .36
30 1.000 320.000 129.700 129.545 .12
30 1.000 330.000 136.630 136.853 −.16
30 1.000 340.000 146.280 146.884 −.41
30 1.000 350.000 162.170 162.894 −.44
30 1.000 360.000 199.630 199.194 .22

NP = 147, RMSPCT = .29

5. Results for Compressed Liquid

Table 7 presents results in column 11 for the single-phase specific heats Cv(ρ, T) of propane in nine experimental runs. These are shown in figure 3. The smooth curve corresponds to extrapolation to the coexistence boundary. As the derivative (∂P/∂ρ)T for compressed liquid is large, the estimated pressures in column 4 become increasingly uncertain with decreasing temperatures. The correction in column 10 is for work done in expanding the calorimeter. The “calculated” value in column 12 is from the specific heats Cp of Yesavage [13] via our equation of state [9] by the methods of [8]. Deviations in the last column fall within our estimate of combined uncertainties of about 3 percent. Our anticipated increase of deviations at the lowest temperatures is seen at the bottom of table 7.

Table 7.

Experimental data for compressed liquid

Run no. Tav, K ρ, mol/L P, bar N¯b, mol
Vb, cm3 ΔT, K Q/ΔT, J/K Co, J/K Corr., J/mol/K Cv, Exptl. J/mol/K, Calcd. Diff., %
145 296.740 11.290 20.564 .8280 73.340 3.531 145.85 82.92 −1.75 74.25 74.16 .12
146 301.507 11.283 45.144 .8280 73.385 6.057 146.14 83.24 −1.76 74.20 74.94 −1.00
147 307.514 11.274 75.945 .8280 73.441 6.022 147.44 83.62 −1.79 75.28 75.94 −.87
148 313.479 11.265 106.338 .8280 73.497 5.959 148.65 84.00 −1.82 76.27 76.96 −.91
149 319.395 11.257 136.292 .8280 73.553 5.914 149.90 84.36 −1.85 77.31 77.99 −.89
150 325.273 11.248 165.870 .8280 73.609 5.857 150.96 84.71 −1.88 78.14 79.03 −1.14
151 331.118 11.239 195.101 .8279 73.665 5.814 152.22 85.05 −1.91 79.22 80.08 −1.09
152 336.944 11.231 224.054 .8279 73.721 5.750 153.43 85.38 −1.94 80.26 81.13 −1.08
801 278.582 11.949 33.044 .8758 73.294 6.106 145.44 81.65 −2.05 70.78 71.51 −1.03
802 284.558 11.938 69.935 .8758 73.356 6.045 146.75 82.08 −2.09 71.75 72.40 −.90
803 290.462 11.928 106.244 .8758 73.418 5.995 148.13 82.50 −2.12 72.82 73.31 −.68
804 296.874 11.917 145.139 .8757 73.485 7.017 149.61 82.93 −2.16 73.98 74.33 −.48
805 303.743 11.905 186.559 .8757 73.557 6.929 151.19 83.38 −2.20 75.23 75.46 −.30
806 310.524 11.894 227.186 .8757 73.629 6.867 152.74 83.81 −2.24 76.47 76.60 −.18
807 317.249 11.882 267.113 .8757 73.701 6.796 154.24 84.23 −2.28 77.67 77.77 −.13
808 322.550 11.873 298.351 .8757 73.757 4.008 155.49 84.55 −2.32 78.69 78.71 −.02
228 256.127 12.573 27.046 .9205 73.214 2.809 144.21 79.89 −2.36 67.50 68.52 −1.52
229 258.863 12.568 47.300 .9205 73.245 2.793 144.95 80.12 −2.38 68.04 68.88 −1.23
230 262.933 12.560 76.936 .9205 73.292 5.389 146.02 80.45 −2.40 68.83 69.42 −.86
231 268.252 12.549 115.610 .9205 73.353 5.336 147.34 80.87 −2.44 69.77 70.15 −.54
232 273.524 12.539 153.660 .9205 73.414 5.301 148.46 81.28 −2.48 70.50 70.89 −.55
233 278.769 12.528 191.247 .9205 73.475 5.287 149.64 81.67 −2.52 71.33 71.66 −.46
234 283.978 12.518 228.306 .9205 73.535 5.237 150.91 82.04 −2.55 72.26 72.44 −.25
235 289.142 12.507 264.777 .9205 73.596 5.195 152.30 82.41 −2.59 73.34 73.24 .13
901 238.172 13.059 28.490 .9554 73.158 4.296 144.06 78.30 −2.61 66.22 66.41 −.29
902 242.833 13.449 67.640 .9554 73.215 5.194 144.57 78.73 −2.64 66.28 66.95 −1.02
903 248.482 13.036 114.066 .9554 73.284 6.120 145.97 79.23 −2.69 67.18 67.63 −.67
904 254.481 13.023 163.629 .9553 73.359 6.049 147.47 79.75 −2.74 68.15 68.38 −.33
905 260.329 13.010 212.165 .9553 73.433 5.992 148.90 80.24 −2.79 69.08 69.16 −.12
906 265.728 12.997 255.975 .9553 73.501 4.993 150.36 80.67 −2.84 70.11 69.89 .31
907 270.590 12.987 295.110 .9553 73.563 4.932 151.61 81.05 −2.87 70.98 70.57 .57
301 216.834 13.615 35.254 .9952 73.097 3.893 142.73 76.11 −2.92 64.02 64.22 −.31
302 220.658 13.606 72.870 .9952 73.148 3.857 143.21 76.53 −2.96 64.05 64.60 −.86
303 224.436 13.596 109.774 .9952 73.200 3.848 143.87 76.93 −3.00 64.27 64.98 −1.11
304 228.198 13.586 146.288 .9952 73.251 3.833 144.90 77.32 −3.04 64.87 65.38 −.79
305 231.931 13.577 182.282 .9952 73.302 3.791 145.89 77.69 −3.07 65.45 65.79 −.51
306 235.624 13.567 217.641 .9952 73.352 3.753 146.90 78.05 −3.11 66.07 66.20 −.19
307 239.291 13.558 252.530 .9952 73.403 3.734 147.87 78.40 −3.15 66.66 66.62 .05
401 188.878 14.297 40.935 1.0439 73.016 3.751 140.20 72.55 −3.32 61.48 61.89 −.67
402 192.681 14.285 86.602 1.0439 73.073 3.966 141.16 73.09 −3.37 61.84 62.18 −.54
403 196.572 14.273 132.941 1.0438 73.132 3.930 142.15 73.63 −3.41 62.23 62.48 −.40
404 200.428 14.262 178.490 1.0438 73.191 3.899 143.28 74.14 −3.46 62.78 62.80 −.04
405 204.255 14.250 223.308 1.0438 73.250 3.869 144.32 74.62 −3.51 63.27 63.13 .21
406 207.852 14.239 265.092 1.0438 73.305 3.441 145.40 75.06 −3.56 63.83 63.46 .59
501 156.982 15.044 48.949 1.0971 72.928 3.807 137.04 67.00 −3.76 60.08 60.02 .09
502 160.668 15.081 104.699 1.0971 72.992 3.629 138.16 67.76 −3.82 60.36 60.20 .26
503 164.253 15.018 158.389 1.0971 73.054 3.592 139.41 68.46 −3.88 60.80 60.38 .68
504 167.862 15.005 211.015 1.0971 73.115 3.563 140.52 69.12 −3.93 61.15 60.58 .93
505 171.318 14.992 262.630 1.0971 73.177 3.528 141.71 69.75 −3.99 61.60 60.78 1.33
601 126.412 15.731 44.790 1.1458 72.840 2.642 132.33 59.12 −4.12 59.78 59.12 1.11
602 129.030 15.720 94.654 1.1458 72.891 2.621 133.49 59.93 −4.17 60.02 59.16 1.44
603 131.699 15.708 144.995 1.1458 72.942 2.743 134.57 60.73 −4.22 60.22 59.21 1.67
604 134.418 15.697 195.789 1.1458 72.996 2.724 135.64 61.51 −4.28 60.41 59.28 1.88
605 137.115 15.685 245.672 1.1458 73.048 2.701 136.66 62.26 −4.34 60.60 59.35 2.06
701 100.334 16.319 48.227 1.1877 72.779 2.423 126.15 49.17 −4.32 60.49 59.14 2.23
702 102.729 16.307 104.627 1.1876 72.830 2.373 127.62 50.24 −4.39 60.76 59.11 2.73
703 105.095 16.295 159.753 1.1876 72.881 2.365 128.83 51.27 −4.45 60.85 59.08 2.91
704 117.444 16.284 213.892 1.1876 72.932 2.343 130.05 52.25 −4.52 60.99 59.07 3.15

Figure 3.

Figure 3.

Specific heats for compressed liquid.

Table 8 serves as an extension of table 7 to give “experimental” Cp(ρ, T) data computed from the Cv(ρ, T) data of table 7, column 11, by means of the equation of state [9]. The “calculated” results in table 8 again are from Yesavage Cp(ρ, T) data [13], interpolated by means of the equation of state [9].

Table 8.

Derived experimental and calculated CP, J/mol/K

Run no. Cp, Exptl. J/mol/K, Calcd. Diff., %
145 118.54 118.45 .07
146 117.12 117.86 −.63
147 116.63 117.29 −.56
148 116.21 116.91 −.60
149 115.99 116.68 −.59
150 115.68 116.57 −.77
151 115.71 116.58 −.74
152 115.80 116.66 −.75
801 109.57 110.30 −.66
802 109.43 110.07 −.59
803 109.47 109.96 −.45
804 109.62 109.97 −.32
805 109.88 110.11 −.21
806 110.22 110.35 −.12
807 110.60 110.70 −.09
808 111.02 111.04 −.02
228 103.08 104.11 −.99
229 103.23 104.07 −.81
230 103.47 104.06 −.57
231 103.72 104.10 −.36
232 103.82 104.21 −.38
233 104.06 104.39 −.32
234 104.44 104.62 −.17
235 105.01 104.90 .09
901 99.75 99.95 −.19
902 99.28 99.96 −.68
903 99.59 100.04 −.45
904 99.97 100.20 −.23
905 100.35 100.43 −.08
906 100.91 100.69 .21
907 101.38 100.97 .40
301 95.69 95.89 −.21
302 95.38 95.93 −.58
303 95.27 95.99 −.75
304 95.56 96.08 −.54
305 95.85 96.19 −.35
306 96.19 96.32 −.13
307 96.51 96.48 .04
401 91.47 91.88 −.45
402 91.58 91.91 −.37
403 91.72 91.97 −.27
404 92.03 92.05 −.03
405 92.29 92.16 .15
406 92.65 92.27 .41
501 88.58 88.53 .06
502 88.70 88.55 .18
503 88.99 88.58 .46
504 89.19 88.62 .64
505 89.51 88.69 .92
601 86.90 86.24 .76
602 87.10 86.23 .99
603 87.24 86.24 1.15
604 87.38 86.25 1.30
605 87.51 86.27 1.42
701 86.05 84.70 1.57
702 86.35 84.69 1.92
703 86.46 84.69 2.05
704 86.61 84.69 2.22

6. Behavior of Reduced Cv Data

Diller has presented an examination of the behavior of available Cv data for many substances, in a search for criteria of consistency [3]. In particular, he extrapolated data to the coexistence boundary and plotted reduced specific heats [CvCv0]/R vs. reduced density. Additional data for various substances subsequently were plotted in these coordinates by Younglove [16].

As a consistency test for present results on propane we present the reduced specific heats in table 9. Ideal gas specific heats Cv0 are from the formulation in [8]. The first line for each run in table 9 gives results extrapolated to the coexistence boundary.

Table 9.

Reduced specific heats, (CvCv0), J/mol/K

Run T, K ρ, mol/L Cv Cv0 CvCv0 (CvCv0)/R
1 294.150 11.303 73.68 64.68 9.00 1.083
145 296.740 11.290 74.25 65.19 9.06 1.090
146 301.507 11.283 74.20 66.12 8.08 .971
147 307.514 11.274 75.28 67.31 7.97 .958
148 313.479 11.265 76.27 68.49 7.78 .935
149 319.395 11.257 77.31 69.67 7.64 .919
150 325.273 11.248 78.14 70.84 7.30 .878
151 331.118 11.239 79.22 72.01 7.21 .868
152 336.944 11.231 80.26 73.17 7.09 .853
2 252.415 12.591 66.96 56.69 10.27 1.235
228 256.127 12.573 67.50 57.38 10.12 1.217
229 258.883 12.568 68.04 57.90 10.14 1.220
230 262.933 12.560 68.83 58.66 10.17 1.223
231 268.252 12.549 69.77 59.67 10.10 1.215
232 273.524 12.539 70.50 60.67 9.83 1.182
233 278.769 12.528 71.33 61.68 9.65 1.160
234 283.978 12.518 72.26 62.69 9.57 1.151
235 289.142 12.507 73.34 63.70 9.64 1.160
3 212.889 13.635 63.88 49.73 14.15 1.702
301 216.834 13.615 64.02 50.39 13.63 1.639
302 220.658 13.606 64.05 51.04 13.01 1.565
303 224.436 13.596 64.27 51.69 12.58 1.514
304 228.198 13.586 64.87 52.34 12.53 1.507
305 231.931 13.577 65.45 52.99 12.46 1.499
306 235.624 13.567 66.07 53.64 12.43 1.494
307 239.291 13.558 66.66 54.30 12.36 1.487
4 185.051 14.318 61.17 45.33 15.84 1.905
401 188.878 14.297 61.48 45.91 15.57 1.873
402 192.681 14.285 61.84 46.49 15.35 1.846
403 196.572 14.273 62.23 47.10 15.13 1.820
404 200.428 14.262 62.78 47.71 15.07 1.813
405 204.255 14.250 63.27 48.32 14.95 1.798
406 207.852 14.239 63.83 48.90 14.93 1.795
5 153.309 15.067 59.78 40.81 18.97 2.282
510 156.982 15.044 60.08 41.31 18.77 2.257
502 160.668 15.031 60.36 41.82 18.54 2.229
503 164.253 15.018 60.80 42.32 18.48 2.222
504 167.802 15.005 61.15 42.82 18.33 2.204
505 171.318 14.992 61.60 43.32 18.28 2.198
6 123.602 15.752 59.52 36.73 22.79 2.742
601 126.412 15.731 59.78 37.13 22.65 2.725
602 129.030 15.720 60.02 37.49 22.53 2.709
603 131.699 15.708 60.22 37.86 22.36 2.689
604 134.418 15.697 60.41 38.24 22.17 2.667
605 137.115 15.685 60.60 38.61 21.99 2.645
7 97.825 16.340 60.20 32.79 27.40 3.296
701 100.334 16.319 60.49 33.21 27.28 3.282
702 102.729 16.307 60.76 33.59 27.17 3.268
703 105.095 16.295 60.85 33.97 26.88 3.233
704 107.444 16.284 60.99 34.34 26.65 3.206
8 273.712 11.967 69.91 60.71 9.20 1.107
801 278.582 11.949 70.78 61.65 9.13 1.099
802 284.558 11.938 71.75 62.80 8.95 1.076
803 290.482 11.928 72.82 63.96 8.86 1.066
804 296.874 11.917 73.98 65.21 8.77 1.055
805 303.743 11.905 75.23 66.57 8.66 1.042
806 210.524 11.894 76.47 67.91 8.56 1.030
807 317.249 11.882 77.67 69.24 8.43 1.013
808 322.550 11.873 78.69 70.30 8.39 1.009
9 234.541 13.077 65.74 53.45 12.28 1.477
901 238.172 13.059 66.22 54.10 12.12 1.458
902 242.833 13.049 66.28 54.94 11.34 1.364
903 248.402 13.036 67.18 55.95 11.23 1.350
904 254.401 13.023 68.15 57.06 11.09 1.334
905 260.329 13.010 69.08 58.17 10.91 1.313
906 265.728 12.997 70.11 59.19 10.92 1.314
907 270.590 12.987 70.98 60.11 10.87 1.307

Figure 4 shows present results. Open circles and the upper curve are for propane. The lower curve, marked A, is taken from figure 6 by Younglove [16]. It represents data for argon, krypton, oxygen, fluorine, and methane within experimental uncertainties. The points symbolized by x are for ethane, as computed but not published by Roder [12]. At a reduced density near 3.0 (run number 5), the difference of about 0.5 in [CvCv0]/R between propane and curve A corresponds to 4 J/mol/K, or a difference of about 7% in the value Cv = 59.78 J/mol/K for propane (run number 5) in table 9. As our comparisons with Yesavage Cp data [13] are much closer than 7%, the higher values for propane in figure 4 probably are real.

Figure 4.

Figure 4.

Reduced specific heats at coexistence.

The uniform increase of these residual specific heats with increasing asymmetry of molecular shape, from methane through propane, suggests hindered rotation of the asymmetric molecules in the dense (and viscous) liquid at low temperatures.

Acknowledgments

This work was supported by the American Gas Association, Inc., 1515 Wilson Boulevard, Arlington, VA 22209.

Footnotes

1

Figures in brackets indicate the literature references at the end of the paper.

7. References

  • [1].Cutler A. J. B., and Morrison J. A., Trans. Faraday Soc. 61, 429 (1965). [Google Scholar]
  • [2].Dana L. I., Jenkins A. C., Burdick J. N., and Timm R. C., Refrig. Eng. 12, No. 12, 387 (June 1926). [Google Scholar]
  • [3].Diller D. E., Cryogenics 11, No. 3, 180 (June 1971). [Google Scholar]
  • [4].Goodwin R. D., J. Res. Nat. Bur. Stand. (U.S.) 65C, (Eng. and Instr.), No. 4, 231–243 (Oct-Dec 1961). [Google Scholar]
  • [5].Goodwin R. D., and Weber L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 1–13 (Jan-Feb 1969). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Goodwin R. D., and Weber L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 15–24 (Jan-Feb 1969). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Goodwin R. D., and Prydz R., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 4, 499–505 (Jul-Aug 1970). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Goodwin R. D., Provisional Thermodynamic Functions of Propane, from 85 to 700 K at Pressures to 700 Bar, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 77–860 (July 1977). [Google Scholar]
  • [9].Goodwin R. D., The Nonanalytic Equation of State for Pure Fluids Applied to Propane, to be presented at Symp. on Equations of State in Engineering and Research, 176th National Meeting, American Chemical Society, Miami Beach, Florida, September 10–15, 1978. [Google Scholar]
  • [10].Kemp J. D., and Egan C. J., J. Am. Chem. Soc. 60, No. 7, 1521 (July 1938). [Google Scholar]
  • [11].Prydz R., and Goodwin R. D., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 5, 661–665 (Sep-Oct 1970). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Roder H. M., J. Res. Nat. Bur. Stand. (U.S.) 80A, (Phys. and Chem.), No. 5, 6, 739–759 (Sep-Dec 1976). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Yesavage V. F., Katz D. L., and Powers J. E., J. Chem. Eng. Data 14, No. 2, 197 (April 1969). [Google Scholar]
  • [14].Younglove B. A., and Diller D. E., Cryogenics 2, No. 5, 283 (September 1962). [Google Scholar]
  • [15].Younglove B. A., and Diller D. E., Cryogenics 2, No. 6, 348 (December 1962). [Google Scholar]
  • [16].Younglove B. A., J. Res. Nat. Bur. Stand. (U.S.) 78A, (Phys. and Chem.), No. 3, 401–410 (May-Jun 1974). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Research of the National Bureau of Standards are provided here courtesy of National Institute of Standards and Technology

RESOURCES