Abstract
Experimental specific heats for saturated liquid propane, along the coexistence path, have been determined from the triple-point temperature (~ 85 K) to 289 K. Specific heats for the compressed liquid at constant molal volume have been determined along isochores at nine different densities ranging from near the triple-point liquid density to about twice the critical-point density (at pressures up to 300 bar). Comparisons with previous experimental- and/or derived-data show agreement within combined uncertainties of about three percent.
Keywords: Constant volume, heat capacities, liquid, propane, saturated liquid, specific heats
List of Symbols
Subscript c refers to the critical point
| C0(T) | heat capacity of the empty calorimeter, J/K. |
| Cσ(T) | specific heat for saturated liquid, J/mol/K |
| Cv0(T) | specific heat in ideal gas states, J/mol/K |
| Cv(ρ,T) | isochoric specific heat, J/mol/K |
| Cp(ρ,T) | isobaric specific heat, J/mol/K |
| J | the joule, 1 N − m |
| L | the liter, 10−3 m3 |
| mol | 44.09721 grams of propane (C12 scale) |
| total moles of fluid in bomb plus capillary | |
| moles of fluid in the calorimeter (bomb) | |
| P | pressure in bars, 1 bar ≡ 105 N/m2 (1 atm = 1.01325 bar |
| Q | calorimetric heat input, J |
| Q/ΔT | gross heat capacity (bomb + sample), J/K |
| R | the gas constant, 8.31434 (J/mol)/K |
| ρ | density, mol/L |
| T | temperature, K (1968) |
| ΔT | calorimeter temperature increment, K |
| Vb(T, P) | volume of the calorimeter, cm3 |
1. Introduction
In a recent report on the thermodynamic properties of propane, we indicated the desirability for more accurate data for virtually all physical and thermal properties [8].1 The present specific heat measurements serve to broaden the experimental data base and to confirm the work in [8] to within combined uncertainties of about three percent in specific heat data. They serve also in comparisons utilizing an equation of state for interpolations. It is anticipated that the present measurements will be incorporated with other new properties measurements in a revision of the thermodynamic tables in [8].
Symbols and units are given in a list. Fixed-point constants, used in computations, are given in table 1. Figure 1 shows the densities, and temperature ranges of the nine experimental runs.
Table 1.
Fixed-points used for propane
| Triple Point | Boiling Point | Critical Point | |
|---|---|---|---|
| Temperature, K | 85.47 | 231.0679 | 369.80 |
| Pressure, bar | 1.6609·10−9 | 1.01325 | 42.3974 |
| Density, mol/L | |||
| Vapor | 2.3373·10−10 | 0.05479 | 4.96 |
| Liquid | 16.620 | 13.1687 | 4.96 |
Figure 1.
The ρ-T loci of experimental runs.
2. Experimental
Apparatus, technique, and computational procedures have been fully described so often, in work on other substances, that we refer the reader to these publications, to avoid unnecessary repetition [4, 5, 6, 7, 11, 12, 14, 15, 16].
In [5], for example, we gave an accounting of sources of uncertainty. For the present work we have considered only the sources of gross uncertainties, concluding that total uncertainty in each specific heat measurement must be set at about two percent. Nearly all comparisons, reported below, fall well within this figure.
For the present work on propane we have employed the same apparatus, methods, and computational procedures described in detail by Roder in his prior work on ethane [12], except for replacing the platinum resistance thermometer.
The propane is a commercial “research grade,” specified to be 99.99 percent pure, with a trace of ethane. No further analysis was made.
For computation of saturated liquid specific heats, from observations on a two-phase sample at constant volume, it is necessary to have accurate formulations of the vapor pressures, and of the saturated liquid densities. Because experimental specific heats at constant pressure are available from another source [13], comparisons with our results demand use of an equation of state. The equation of state used here [9] is a slight modification of that reported in [8], obtained by use of the new vapor pressures below the boiling point, derived at the end of that report.
3. Heat Capacity of the Empty Calorimeter
The heat capacity of the empty calorimeter must be subtracted from all observations on a sample. Data on the empty calorimeter are presented in table 2, because they indicate the precision obtained over the very long temperature range of the propane measurements. A new formulation for these data has been developed, and a “best” value has been selected for the number of terms, in the expression
| (1) |
where x ≡ 100/T, and −
This formula yields a constant for C0 at very high temperatures, and a behavior approaching T5 as T → 0.
Table 2.
Heat capacity of the empty calorimeter
| Run no. | Tav, K | ΔT, K | Power, watt | Time, sec | Heat, joule | Heat Capy., Exptl. | J/K, Calcd. | Diff., % |
|---|---|---|---|---|---|---|---|---|
| 701 | 80.338 | 2.556 | .16301 | 606.59 | 98.88 | 38.677 | 38.664 | .03 |
| 702 | 82.844 | 2.455 | .16261 | 605.95 | 98.53 | 40.138 | 40.146 | −.02 |
| 101 | 83.566 | 3.759 | .25234 | 604.15 | 152.45 | 40.559 | 40.564 | −.01 |
| 703 | 85.555 | 2.972 | .20591 | 601.68 | 123.89 | 41.685 | 41.692 | −.02 |
| 102 | 87.228 | 3.580 | .25197 | 605.37 | 152.53 | 42.603 | 42.617 | −.03 |
| 704 | 88.798 | 3.524 | .25418 | 602.72 | 153.20 | 43.471 | 43.465 | .01 |
| 103 | 91.529 | 5.042 | .37435 | 604.78 | 226.40 | 44.901 | 44.899 | 0.00 |
| 705 | 92.988 | 4.871 | .36651 | 606.73 | 222.37 | 45.650 | 45.643 | .02 |
| 104 | 97.307 | 6.539 | .51730 | 603.62 | 312.26 | 47.752 | 47.759 | −.01 |
| 706 | 98.526 | 6.230 | .49924 | 603.32 | 301.20 | 48.344 | 48.334 | .02 |
| 105 | 103.637 | 6.170 | .51713 | 604.19 | 312.44 | 50.640 | 50.641 | 0.00 |
| 801 | 105.231 | 5.851 | .49698 | 604.37 | 300.36 | 51.331 | 51.327 | .01 |
| 106 | 109.624 | 5.859 | .51672 | 602.45 | 311.30 | 53.132 | 53.140 | −.02 |
| 802 | 111.358 | 6.458 | .57453 | 605.22 | 347.71 | 53.846 | 53.826 | .04 |
| 107 | 115.329 | 5.621 | .51600 | 602.68 | 310.98 | 55.323 | 55.334 | −.02 |
| 803 | 117.650 | 6.186 | .57406 | 605.50 | 347.60 | 56.189 | 56.177 | .02 |
| 108 | 120.821 | 5.441 | .51562 | 604.71 | 311.80 | 57.308 | 57.285 | .04 |
| 804 | 123.681 | 5.945 | .57394 | 603.57 | 346.41 | 58.268 | 58.242 | .04 |
| 201 | 127.052 | 5.236 | .51380 | 604.54 | 310.61 | 59.318 | 59.322 | −.01 |
| 805 | 129.504 | 5.771 | .57362 | 604.76 | 346.91 | 60.108 | 60.076 | .05 |
| 202 | 132.158 | 5.077 | .51313 | 602.00 | 308.91 | 60.848 | 60.863 | −.03 |
| 806 | 135.156 | 5.615 | .57339 | 604.48 | 346.60 | 61.725 | 61.719 | .01 |
| 203 | 137.118 | 4.955 | .51266 | 601.46 | 308.35 | 62.232 | 62.259 | −.04 |
| 807 | 140.655 | 5.481 | .57314 | 604.37 | 346.39 | 63.194 | 63.198 | −.01 |
| 204 | 141.960 | 4.848 | .51196 | 601.05 | 307.72 | 63.477 | 63.533 | −.09 |
| 808 | 146.029 | 5.379 | .57288 | 606.25 | 347.31 | 64.564 | 64.541 | .03 |
| 205 | 146.696 | 4.759 | .51189 | 601.15 | 307.72 | 64.666 | 64.701 | −.05 |
| 206 | 151.345 | 4.680 | .51149 | 601.59 | 307.71 | 65.744 | 65.779 | −.05 |
| 901 | 155.708 | 7.479 | .82540 | 604.43 | 498.90 | 66.704 | 66.733 | −.04 |
| 207 | 155.924 | 4.637 | .51113 | 605.41 | 309.44 | 66.740 | 66.779 | −.06 |
| 208 | 161.159 | 6.001 | .67697 | 601.59 | 407.26 | 67.867 | 67.853 | .02 |
| 902 | 163.013 | 7.288 | .82402 | 603.21 | 497.06 | 68.205 | 68.216 | −.02 |
| 209 | 167.036 | 5.933 | .67651 | 604.96 | 409.26 | 68.977 | 68.979 | 0.00 |
| 903 | 170.156 | 7.169 | .82288 | 606.18 | 498.81 | 69.575 | 69.545 | .04 |
| 301 | 175.056 | 5.811 | .67894 | 602.19 | 408.85 | 70.355 | 70.394 | −.05 |
| 904 | 177.155 | 7.006 | .82346 | 601.90 | 495.64 | 70.749 | 70.743 | .01 |
| 302 | 181.421 | 7.166 | .85042 | 601.72 | 511.71 | 71.413 | 71.428 | −.02 |
| 905 | 184.033 | 6.955 | .82342 | 606.98 | 499.80 | 71.863 | 71.833 | .04 |
| 303 | 188.400 | 7.051 | .84965 | 601.40 | 510.98 | 72.471 | 72.484 | −.02 |
| 906 | 190.824 | 6.851 | .82311 | 606.56 | 499.26 | 72.871 | 72.833 | .05 |
| 304 | 195.261 | 6.975 | .84912 | 603.09 | 512.10 | 73.423 | 73.450 | −.04 |
| 907 | 197.541 | 6.816 | .82945 | 606.54 | 503.09 | 73.814 | 73.756 | .08 |
| 305 | 202.027 | 6.871 | .84849 | 602.03 | 510.82 | 74.344 | 74.340 | .01 |
| 908 | 204.197 | 6.734 | .82923 | 606.28 | 502.75 | 74.657 | 74.614 | .06 |
| 401 | 210.602 | 6.700 | .83869 | 602.26 | 505.11 | 75.385 | 75.390 | −.01 |
| 909 | 210.749 | 6.651 | .82845 | 605.75 | 501.83 | 75.458 | 75.408 | .07 |
| 402 | 217.173 | 6.808 | .86062 | 602.82 | 518.80 | 76.210 | 76.143 | .09 |
| 1001 | 217.761 | 6.601 | .82893 | 606.95 | 503.12 | 76.213 | 76.208 | .01 |
| 403 | 223.805 | 6.841 | .87126 | 603.18 | 525.53 | 76.824 | 76.862 | −.05 |
| 1002 | 224.611 | 7.303 | .92427 | 607.84 | 561.81 | 76.928 | 76.947 | −.02 |
| 404 | 230.399 | 6.766 | .87076 | 602.42 | 524.56 | 77.534 | 77.540 | −.01 |
| 1003 | 231.761 | 7.202 | .92299 | 606.18 | 559.50 | 77.690 | 77.675 | .02 |
| 405 | 236.925 | 6.702 | .87011 | 602.12 | 523.91 | 78.167 | 78.178 | −.01 |
| 1004 | 238.818 | 7.131 | .92259 | 605.94 | 559.03 | 78.390 | 78.357 | .04 |
| 406 | 243.368 | 6.649 | .86944 | 602.18 | 523.56 | 78.742 | 78.779 | −.05 |
| 1005 | 245.800 | 7.059 | .92145 | 605.37 | 557.81 | 79.022 | 78.998 | .03 |
| 407 | 249.749 | 6.588 | .86869 | 601.46 | 522.48 | 79.313 | 79.348 | −.04 |
| 1006 | 252.712 | 7.002 | .92116 | 605.91 | 558.14 | 79.710 | 79.604 | .13 |
| 408 | 256.060 | 6.547 | .86835 | 602.43 | 523.12 | 79.902 | 79.888 | .02 |
| 1007 | 259.571 | 6.952 | .92034 | 606.06 | 557.78 | 80.228 | 80.179 | .06 |
| 409 | 262.315 | 6.495 | .86799 | 602.34 | 522.83 | 80.498 | 80.402 | .12 |
| 1008 | 266.382 | 6.902 | .91995 | 605.97 | 557.46 | 80.771 | 80.726 | .06 |
| 410 | 268.499 | 6.464 | .86746 | 603.34 | 523.37 | 80.967 | 80.891 | .09 |
| 1101 | 271.535 | 6.878 | .92054 | 605.61 | 557.49 | 81.051 | 81.125 | −.09 |
| 501 | 274.806 | 6.438 | .86515 | 606.30 | 524.54 | 81.476 | 81.372 | .13 |
| 1102 | 278.340 | 6.822 | .91902 | 605.91 | 556.85 | 81.619 | 81.634 | −.02 |
| 502 | 280.917 | 6.366 | .86434 | 602.10 | 520.42 | 81.748 | 81.823 | −.09 |
| 1103 | 285.105 | 6.771 | .91753 | 605.82 | 555.86 | 82.093 | 82.123 | −.04 |
| 503 | 286.958 | 6.315 | .86384 | 601.14 | 519.29 | 82.224 | 82.253 | −.04 |
| 1104 | 291.872 | 6.829 | .92910 | 606.76 | 563.74 | 82.556 | 82.594 | −.05 |
| 504 | 292.930 | 6.272 | .86347 | 600.25 | 518.30 | 82.633 | 82.666 | −.04 |
| 1105 | 298.640 | 6.788 | .92785 | 607.05 | 563.25 | 82.979 | 83.049 | −.08 |
| 505 | 298.868 | 6.244 | .86290 | 600.99 | 518.59 | 83.052 | 83.064 | −.02 |
| 601 | 299.023 | 7.821 | 1.07086 | 605.85 | 648.78 | 82.951 | 83.075 | −.15 |
| 506 | 304.748 | 6.213 | .86255 | 601.32 | 518.67 | 83.476 | 83.448 | .03 |
| 1106 | 305.362 | 6.742 | .92764 | 606.38 | 562.51 | 83.433 | 83.487 | −.06 |
| 602 | 306.746 | 7.721 | 1.06883 | 602.60 | 644.07 | 83.422 | 83.575 | −.18 |
| 1107 | 312.788 | 8.200 | 1.13382 | 606.91 | 688.12 | 83.916 | 83.955 | −.05 |
| 603 | 313.758 | 6.412 | .88694 | 606.46 | 537.89 | 83.889 | 84.015 | −.15 |
| 604 | 320.100 | 6.375 | .88655 | 605.95 | 537.20 | 84.269 | 84.400 | −.16 |
| 1108 | 320.907 | 8.126 | 1.13317 | 605.79 | 686.46 | 84.477 | 84.449 | .03 |
| 605 | 326.414 | 6.350 | .88603 | 606.14 | 537.06 | 84.578 | 84.774 | −.23 |
| 1109 | 328.976 | 8.077 | 1.13242 | 606.02 | 686.27 | 84.969 | 84.923 | .05 |
| 606 | 332.705 | 6.317 | .88560 | 606.68 | 537.27 | 85.049 | 85.137 | −.10 |
| 1201 | 335.011 | 6.544 | .92627 | 603.17 | 558.70 | 85.369 | 85.267 | .12 |
| 607 | 339.007 | 6.274 | .88521 | 606.58 | 536.95 | 85.578 | 85.491 | .10 |
| 1202 | 341.557 | 6.533 | .92553 | 605.75 | 560.64 | 85.821 | 85.631 | .22 |
| 608 | 345.347 | 6.228 | .88462 | 606.32 | 536.36 | 86.115 | 85.838 | .32 |
NP = 88, RMSPCT = .078
4. Results for Saturated Liquid
The calorimeter (T, P) loading conditions for the sample in each experimental run are presented in table 3. The density is obtained from the equation of state given in [9]. The total amount of sample, , includes the relatively small amount residing in the capillary tube. The equation of state originates on the saturated liquid boundary, and is extrapolated at temperatures below 170 K where P-ρ-T compressibility data exist. In this region the density is relatively insensitive to pressure, but derivatives of the P(ρ,T) surface, used to intercompare Cv with Cp data, must become increasingly uncertain with diminishing temperature.
Table 3.
Loading conditions for the samples
| Run | T, K | P, bar | ρ,mol/L | Vb,cm3 | , mol | Coexistence Conditionsa | |
|---|---|---|---|---|---|---|---|
| T.K | ρ,mol/L | ||||||
| 1 | 294.976 | 11.442 | 11.292 | 73.324 | 0.8288 | 294.150 | 11.303 |
| 2 | 254.544 | 15.372 | 12.577 | 73.196 | 0.9213 | 252.415 | 12.591 |
| 3 | 214.940 | 16.541 | 13.620 | 73.071 | 0.9960 | 212.889 | 13.635 |
| 4 | 187.209 | 18.600 | 14.302 | 72.988 | 1.0447 | 185.051 | 14.318 |
| 5 | 155.086 | 20.047 | 15.051 | 72.896 | 1.0980 | 153.309 | 15.067 |
| 6 | 125.098 | 19.598 | 15.736 | 72.814 | 1.1467 | 123.602 | 15.752 |
| 7 | 99.123 | 19.463 | 16.325 | 72.753 | 1.1885 | 97.825 | 16.340 |
| 8 | 275.574 | 14.372 | 11.954 | 73.263 | 0.8766 | 273.712 | 11.967 |
| 9 | 236.045 | 10.535 | 13.064 | 73.131 | 0.9562 | 234.541 | 13.077 |
For calorimeter full of liquid.
Results for specific heats of saturated liquid propane (Cσ) in experimental runs numbers 1 and 2 are presented in table 4 and in figure 2. Pressures here are the vapor pressures. The corrections in columns 10 and 11 are: A, for work done in expanding the calorimeter and in pumping fluid into the capillary tube and B, for the heat of vaporization and heat absorbed by the vapor [5]. Column 12 gives the experimental results. The “calculated” value in column 13 is from a formulation of older experimental and recently derived data in [8]. The last two columns give Cv and Cp derived from the Cσ data of column 12 by methods of [8] with the equation of state of [9].
Table 4.
Experimental data for saturated liquid
| Run no. | Tav, K | ρℓ, mol/L | P, bar | , mol | Vb, cm3 | ΔT, K | Q/ΔT, J/K | Co, J/K | Corr., A | J/mol/K, B | Cσ, Exptl. | J/mol/K, Calcd. | Diff., % | Cv J/mol/K | Cp J/mol/K |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 101 | 81.053 | 16.720 | 0.000 | .8288 | 72.702 | .486 | 107.756 | 39.092 | 0.000 | 0.000 | 82.85 | 83.82 | −1.17 | 58.76 | 82.85 |
| 102 | 81.756 | 16.704 | 0.000 | .8288 | 72.703 | .930 | 108.802 | 39.509 | 0.000 | 0.000 | 83.61 | 83.86 | −.30 | 59.45 | 83.61 |
| 103 | 82.677 | 16.683 | 0.000 | .8288 | 72.705 | .923 | 109.372 | 40.049 | 0.000 | 0.000 | 83.65 | 83.90 | −.31 | 59.40 | 83.65 |
| 104 | 83.593 | 16.663 | 0.000 | .8288 | 72.707 | .920 | 109.621 | 40.579 | 0.000 | 0.000 | 83.31 | 83.95 | −.77 | 58.98 | 83.31 |
| 105 | 84.568 | 16.640 | 0.000 | .8288 | 72.708 | 1.039 | 110.624 | 41.136 | 0.000 | 0.000 | 83.84 | 84.00 | −.18 | 59.43 | 83.84 |
| 106 | 85.598 | 16.617 | 0.000 | .8288 | 72.710 | 1.033 | 111.290 | 41.716 | 0.000 | 0.000 | 83.95 | 84.05 | −.12 | 59.44 | 83.95 |
| 107 | 86.622 | 16.594 | 0.000 | .8288 | 72.712 | 1.024 | 112.143 | 42.284 | 0.000 | 0.000 | 84.29 | 84.10 | .23 | 59.70 | 84.29 |
| 108 | 86.836 | 16.589 | 0.000 | .8288 | 72.713 | 1.030 | 111.863 | 42.402 | 0.000 | 0.000 | 83.81 | 84.11 | −.36 | 59.20 | 83.81 |
| 109 | 87.856 | 16.566 | 0.000 | .8288 | 72.715 | 1.022 | 112.699 | 42.959 | 0.000 | 0.000 | 84.15 | 84.16 | −.02 | 59.45 | 84.15 |
| 110 | 88.871 | 16.543 | 0.000 | .8288 | 72.716 | 1.016 | 113.262 | 43.505 | 0.000 | 0.000 | 84.17 | 84.22 | −.05 | 59.38 | 84.17 |
| 111 | 89.879 | 16.520 | 0.000 | .8288 | 72.718 | 1.008 | 114.052 | 44.039 | 0.000 | 0.000 | 84.48 | 84.27 | .25 | 59.60 | 84.48 |
| 112 | 91.366 | 16.486 | 0.000 | .8288 | 72.721 | 1.970 | 114.875 | 44.815 | 0.000 | 0.000 | 84.54 | 84.34 | .23 | 59.54 | 84.54 |
| 113 | 93.321 | 16.442 | 0.000 | .8288 | 72.725 | 1.950 | 116.033 | 45.811 | 0.000 | 0.000 | 84.73 | 84.45 | .34 | 59.58 | 84.73 |
| 114 | 95.750 | 16.387 | 0.000 | .8288 | 72.730 | 3.708 | 117.236 | 47.011 | 0.000 | 0.000 | 84.73 | 84.57 | .19 | 59.39 | 84.73 |
| 115 | 99.797 | 16.295 | 0.000 | .8288 | 72.739 | 4.400 | 119.322 | 48.923 | 0.000 | 0.000 | 84.94 | 84.79 | .18 | 59.30 | 84.94 |
| 116 | 104.646 | 16.185 | 0.000 | .8288 | 72.749 | 5.317 | 121.726 | 51.076 | 0.000 | 0.000 | 85.25 | 85.06 | .22 | 59.26 | 85.25 |
| 117 | 110.300 | 16.056 | 0.000 | .8288 | 72.762 | 6.008 | 124.296 | 53.409 | 0.000 | 0.000 | 85.53 | 85.39 | .17 | 59.18 | 85.53 |
| 118 | 116.889 | 15.905 | 0.000 | .8288 | 72.777 | 7.194 | 127.025 | 55.904 | 0.000 | 0.000 | 85.81 | 85.79 | .03 | 59.06 | 85.81 |
| 119 | 124.009 | 15.742 | 0.000 | .8288 | 72.795 | 7.084 | 129.793 | 58.349 | 0.000 | −.001 | 86.20 | 86.25 | −.05 | 59.04 | 86.20 |
| 120 | 131.003 | 15.582 | 0.000 | .8288 | 72.812 | 6.947 | 132.369 | 60.524 | 0.000 | −.001 | 86.69 | 86.73 | −.05 | 59.15 | 86.69 |
| 121 | 137.870 | 15.424 | .001 | .8288 | 72.830 | 6.830 | 134.681 | 62.463 | 0.000 | −.003 | 87.14 | 87.23 | −.11 | 59.25 | 87.14 |
| 122 | 145.757 | 15.242 | .002 | .8288 | 72.851 | 6.679 | 137.151 | 64.476 | 0.000 | −.007 | 87.68 | 87.85 | −.19 | 59.41 | 87.68 |
| 123 | 152.350 | 15.089 | .004 | .8288 | 72.869 | 6.569 | 139.075 | 66.004 | 0.000 | −.013 | 88.16 | 88.41 | −.29 | 59.57 | 88.16 |
| 124 | 158.858 | 14.937 | .008 | .8288 | 72.888 | 6.524 | 140.980 | 67.389 | 0.000 | −.022 | 88.77 | 89.00 | −.25 | 59.88 | 88.77 |
| 125 | 165.298 | 14.786 | .014 | .8288 | 72.906 | 6.440 | 142.693 | 68.654 | 0.000 | −.034 | 89.30 | 89.62 | −.35 | 60.10 | 89.30 |
| 126 | 171.647 | 14.637 | .025 | .8288 | 72.924 | 6.356 | 144.530 | 69.808 | 0.000 | −.051 | 90.11 | 90.27 | −.18 | 60.60 | 90.11 |
| 127 | 179.354 | 14.454 | .048 | .8288 | 72.947 | 6.273 | 146.499 | 71.100 | −.001 | −.076 | 90.90 | 91.13 | −.25 | 61.01 | 90.91 |
| 128 | 185.534 | 14.306 | .077 | .8288 | 72.965 | 6.203 | 148.120 | 72.060 | −.001 | −.101 | 91.67 | 91.86 | −.21 | 61.46 | 91.68 |
| 129 | 191.643 | 14.159 | .117 | .8288 | 72.983 | 6.132 | 149.703 | 72.949 | −.001 | −.129 | 92.48 | 92.64 | −.17 | 61.93 | 92.50 |
| 130 | 197.686 | 14.012 | .174 | .8288 | 73.001 | 6.076 | 151.161 | 73.775 | −.002 | −.159 | 93.21 | 93.46 | −.26 | 62.31 | 93.24 |
| 131 | 204.154 | 13.853 | .258 | .8288 | 73.021 | 7.001 | 152.785 | 74.608 | −.002 | −.192 | 94.13 | 94.39 | −.27 | 62.83 | 94.17 |
| 132 | 211.041 | 13.681 | .380 | .8288 | 73.042 | 6.923 | 154.688 | 75.442 | −.003 | −.226 | 95.39 | 95.45 | −.06 | 63.62 | 95.45 |
| 133 | 217.854 | 13.510 | .543 | .8288 | 73.064 | 6.859 | 156.350 | 76.219 | −.004 | −.255 | 96.43 | 96.58 | −.16 | 64.16 | 96.51 |
| 134 | 224.592 | 13.337 | .754 | .8288 | 73.085 | 6.787 | 158.027 | 76.945 | −.005 | −.274 | 97.55 | 97.77 | −.22 | 64.75 | 97.67 |
| 135 | 231.245 | 13.164 | 1.021 | .8288 | 73.106 | 6.693 | 159.827 | 77.624 | −.007 | −.281 | 98.90 | 99.04 | −.14 | 65.52 | 99.06 |
| 136 | 238.095 | 12.983 | 1.368 | .8288 | 73.128 | 6.615 | 161.527 | 78.289 | −.009 | −.268 | 100.16 | 100.43 | −.27 | 66.12 | 100.37 |
| 137 | 244.560 | 12.808 | 1.773 | .8288 | 73.149 | 6.510 | 163.412 | 78.887 | −.011 | −.232 | 101.75 | 101.84 | −.10 | 67.03 | 102.03 |
| 138 | 250.946 | 12.632 | 2.257 | .8288 | 73.170 | 6.443 | 165.130 | 79.452 | −.014 | −.168 | 103.20 | 103.33 | −.13 | 67.74 | 103.57 |
| 139 | 257.248 | 12.454 | 2.828 | .8288 | 73.191 | 6.366 | 166.868 | 79.987 | −.016 | −.068 | 104.75 | 104.91 | −.15 | 68.49 | 105.22 |
| 140 | 263.551 | 12.271 | 3.502 | .8288 | 73.212 | 6.491 | 168.526 | 80.501 | −.020 | .075 | 106.27 | 106.59 | −.31 | 69.13 | 106.87 |
| 141 | 269.931 | 12.082 | 4.300 | .8288 | 73.234 | 6.499 | 170.427 | 81.002 | −.024 | .274 | 108.15 | 108.42 | −.25 | 70.02 | 108.92 |
| 142 | 276.292 | 11.887 | 5.224 | .8288 | 73.255 | 6.457 | 172.202 | 81.483 | −.028 | .540 | 109.98 | 110.38 | −.37 | 70.75 | 110.95 |
| 143 | 282.595 | 11.688 | 6.278 | .8288 | 73.277 | 6.377 | 174.026 | 81.944 | −.033 | .885 | 111.96 | 112.48 | −.46 | 71.53 | 113.19 |
| 144 | 288.813 | 11.484 | 7.464 | .8287 | 73.299 | 6.300 | 175.873 | 82.383 | −.039 | 1.322 | 114.09 | 114.71 | −.55 | 72.33 | 115.63 |
| 236 | 83.132 | 16.673 | 0.000 | .9213 | 72.706 | 1.056 | 117.630 | 40.313 | 0.000 | 0.000 | 83.92 | 83.93 | −.01 | 59.63 | 83.92 |
| 237 | 83.995 | 16.653 | 0.000 | .9213 | 72.707 | .678 | 118.126 | 40.809 | 0.000 | 0.000 | 83.92 | 83.97 | −.06 | 59.56 | 83.92 |
| 238 | 84.860 | 16.634 | 0.000 | .9213 | 72.709 | 1.057 | 118.728 | 41.301 | 0.000 | 0.000 | 84.04 | 84.01 | .03 | 59.60 | 84.04 |
| 239 | 85.723 | 16.614 | 0.000 | .9213 | 72.711 | .679 | 119.024 | 41.786 | 0.000 | 0.000 | 83.83 | 84.06 | −.27 | 59.32 | 83.83 |
| 240 | 86.395 | 16.599 | 0.000 | .9213 | 72.712 | .675 | 119.482 | 42.159 | 0.000 | 0.000 | 83.93 | 84.09 | −.20 | 59.35 | 83.93 |
| 201 | 86.763 | 16.591 | 0.000 | .9213 | 72.712 | 2.941 | 120.048 | 42.362 | 0.000 | 0.000 | 84.32 | 84.11 | .25 | 59.71 | 84.32 |
| 241 | 87.064 | 16.584 | 0.000 | .9213 | 72.713 | .670 | 119.955 | 42.527 | 0.000 | 0.000 | 84.04 | 84.12 | −.10 | 59.40 | 84.04 |
| 242 | 87.870 | 16.566 | 0.000 | .9213 | 72.715 | .950 | 120.662 | 42.966 | 0.000 | 0.000 | 84.33 | 84.16 | .20 | 59.63 | 84.33 |
| 243 | 88.931 | 16.542 | 0.000 | .9213 | 72.717 | 1.178 | 121.183 | 43.537 | 0.000 | 0.000 | 84.28 | 84.22 | .07 | 59.48 | 84.28 |
| 202 | 90.366 | 16.509 | 0.000 | .9213 | 72.719 | 4.280 | 122.177 | 44.295 | 0.000 | 0.000 | 84.53 | 84.29 | .28 | 59.62 | 84.53 |
| 203 | 95.166 | 16.400 | 0.000 | .9213 | 72.729 | 5.333 | 124.834 | 46.726 | 0.000 | 0.000 | 84.78 | 84.54 | .28 | 59.48 | 84.78 |
| 204 | 101.406 | 16.258 | 0.000 | .9213 | 72.742 | 7.163 | 128.059 | 49.654 | 0.000 | 0.000 | 85.10 | 84.88 | .26 | 59.34 | 85.10 |
| 205 | 108.461 | 16.098 | 0.000 | .9213 | 72.758 | 6.966 | 131.385 | 52.671 | 0.000 | 0.000 | 85.43 | 85.28 | .18 | 59.20 | 85.43 |
| 206 | 115.393 | 15.939 | 0.000 | .9213 | 72.774 | 6.823 | 134.400 | 55.358 | 0.000 | 0.000 | 85.79 | 85.70 | .11 | 59.12 | 85.79 |
| 207 | 122.132 | 15.785 | 0.000 | .9213 | 72.790 | 6.683 | 137.126 | 57.728 | 0.000 | 0.000 | 86.18 | 86.12 | .06 | 59.12 | 86.18 |
| 208 | 128.738 | 15.634 | 0.000 | .9213 | 72.807 | 6.566 | 139.549 | 59.843 | 0.000 | −.001 | 86.51 | 86.57 | −.07 | 59.09 | 86.51 |
| 209 | 135.238 | 15.485 | 0.000 | .9213 | 72.823 | 6.479 | 141.825 | 61.741 | 0.000 | −.001 | 86.92 | 87.03 | −.13 | 59.17 | 86.92 |
| 210 | 141.629 | 15.337 | .001 | .9213 | 72.840 | 6.352 | 143.934 | 63.449 | 0.000 | −.003 | 87.35 | 87.52 | −.19 | 59.28 | 87.35 |
| 211 | 147.902 | 15.192 | .002 | .9213 | 72.857 | 6.256 | 145.949 | 64.987 | 0.000 | −.005 | 87.87 | 88.03 | −.18 | 59.50 | 87.87 |
| 212 | 154.093 | 15.048 | .005 | .9213 | 72.874 | 6.190 | 147.768 | 66.386 | 0.000 | −.009 | 88.32 | 88.56 | −.27 | 59.66 | 88.32 |
| 213 | 160.343 | 14.902 | .009 | .9213 | 72.892 | 6.108 | 149.670 | 67.690 | 0.000 | −.013 | 88.97 | 89.14 | −.19 | 60.00 | 88.97 |
| 214 | 166.378 | 14.761 | .016 | .9213 | 72.909 | 6.042 | 151.409 | 68.856 | 0.000 | −.020 | 89.58 | 89.73 | −.16 | 60.33 | 89.58 |
| 215 | 172.363 | 14.620 | .027 | .9213 | 72.926 | 6.011 | 153.069 | 69.933 | 0.000 | −.027 | 90.21 | 90.35 | −.16 | 60.67 | 90.21 |
| 216 | 178.276 | 14.480 | .044 | .9213 | 72.943 | 5.914 | 154.638 | 70.926 | 0.000 | −.035 | 90.82 | 91.00 | −.20 | 60.99 | 90.83 |
| 217 | 184.114 | 14.340 | .069 | .9213 | 72.961 | 5.861 | 156.153 | 71.845 | −.001 | −.044 | 91.46 | 91.69 | −.25 | 61.32 | 91.47 |
| 218 | 189.882 | 14.201 | .104 | .9213 | 72.978 | 5.790 | 157.688 | 72.698 | −.001 | −.052 | 92.19 | 92.41 | −.24 | 61.74 | 92.21 |
| 219 | 195.603 | 14.062 | .153 | .9213 | 72.995 | 5.767 | 159.243 | 73.496 | −.001 | −.059 | 93.01 | 93.17 | −.17 | 62.23 | 93.03 |
| 220 | 202.405 | 13.896 | .233 | .9213 | 73.016 | 7.003 | 160.816 | 74.388 | −.002 | −.063 | 93.74 | 94.13 | −.41 | 62.55 | 93.78 |
| 221 | 209.358 | 13.723 | .347 | .9213 | 73.037 | 6.971 | 162.868 | 75.243 | −.003 | −.061 | 95.04 | 95.18 | −.15 | 63.39 | 95.10 |
| 222 | 216.234 | 13.551 | .500 | .9213 | 73.059 | 6.845 | 164.767 | 76.038 | −.003 | −.048 | 96.25 | 96.30 | −.05 | 64.11 | 96.33 |
| 223 | 222.998 | 13.378 | .699 | .9213 | 73.080 | 6.752 | 166.481 | 76.777 | −.005 | −.021 | 97.34 | 97.48 | −.15 | 64.67 | 97.45 |
| 224 | 229.651 | 13.206 | .951 | .9213 | 73.101 | 6.626 | 168.233 | 77.464 | −.006 | .023 | 98.54 | 98.73 | −.19 | 65.30 | 98.68 |
| 225 | 236.231 | 13.032 | 1.266 | .9213 | 73.122 | 6.614 | 169.990 | 78.111 | −.007 | .089 | 99.81 | 100.04 | −.24 | 65.95 | 100.00 |
| 226 | 242.764 | 12.857 | 1.652 | .9213 | 73.143 | 6.534 | 171.848 | 78.723 | −.009 | .183 | 101.25 | 101.44 | −.19 | 66.73 | 101.51 |
Figure 2.
Specific heats for saturated liquid.
In the present work we did not succeed in freezing the sample at temperatures below the reported triple point of 85.47 K, due possibly to the viscous behavior of the fluid, the small temperature difference of only 5 K below the triple-point, and a time of no more than six hours at this temperature. Deviations in column 14 of table 4 are within our anticipated uncertainties.
The following fitting function for Cσ(T) was developed for all available data (x ≡ T/Tc),
| (2) |
in which ϵ = 0.7, and n = 5. In table 5, however, we apply it only to our results, finding −
The rms relative deviation for our selected 76 data points is 0.13%. Because A1 is negative, this formulation should not be extrapolated above 290 K.
Table 5.
Representation of present Cσ data
| Run | Wt. | T, K | J/mol/K | Calcd. | Pcnt. |
|---|---|---|---|---|---|
| 101 | 0.000 | 81.053 | 82.850 | 83.798 | −1.13 |
| 102 | 1.000 | 81.756 | 83.610 | 83.838 | −.27 |
| 103 | 1.000 | 82.677 | 83.650 | 83.890 | −.29 |
| 236 | 1.000 | 83.132 | 83.920 | 83.916 | .00 |
| 104 | 0.000 | 83.593 | 83.310 | 83.942 | −.75 |
| 237 | 1.000 | 83.995 | 83.920 | 83.965 | −.05 |
| 105 | 1.000 | 84.568 | 83.840 | 83.997 | −.19 |
| 238 | 1.000 | 84.860 | 84.040 | 84.014 | .03 |
| 106 | 1.000 | 85.598 | 83.950 | 84.055 | −.13 |
| 239 | 1.000 | 85.723 | 83.830 | 84.062 | −.28 |
| 240 | 1.000 | 86.395 | 83.930 | 84.100 | −.20 |
| 107 | 1.000 | 86.622 | 84.290 | 84.113 | .21 |
| 201 | 1.000 | 86.763 | 84.320 | 84.121 | .24 |
| 108 | 1.000 | 86.836 | 83.810 | 84.125 | −.37 |
| 241 | 1.000 | 87.064 | 84.040 | 84.137 | −.12 |
| 109 | 1.000 | 87.856 | 84.150 | 84.182 | −.04 |
| 242 | 1.000 | 87.870 | 84.330 | 84.183 | .18 |
| 110 | 1.000 | 88.871 | 84.170 | 84.238 | −.08 |
| 243 | 1.000 | 88.931 | 84.280 | 84.242 | .05 |
| 111 | 1.000 | 89.879 | 84.480 | 84.295 | .22 |
| 202 | 1.000 | 90.366 | 84.530 | 84.322 | .25 |
| 112 | 1.000 | 91.366 | 84.540 | 84.378 | .19 |
| 113 | 1.000 | 93.321 | 84.730 | 84.487 | .29 |
| 203 | 1.000 | 95.166 | 84.780 | 84.589 | .23 |
| 114 | 1.000 | 95.750 | 84.730 | 84.622 | .13 |
| 115 | 1.000 | 99.797 | 84.940 | 84.848 | .11 |
| 204 | 1.000 | 101.406 | 85.100 | 84.938 | .19 |
| 116 | 1.000 | 104.646 | 85.250 | 85.121 | .15 |
| 205 | 1.000 | 108.461 | 85.430 | 85.338 | .11 |
| 117 | 1.000 | 110.300 | 85.530 | 85.444 | .10 |
| 206 | 1.000 | 115.393 | 85.790 | 85.743 | .06 |
| 118 | 1.000 | 116.889 | 85.810 | 85.832 | −.03 |
| 207 | 1.000 | 122.132 | 86.180 | 86.151 | .03 |
| 119 | 1.000 | 124.009 | 86.200 | 86.269 | −.08 |
| 208 | 1.000 | 128.738 | 86.510 | 86.572 | −.07 |
| 120 | 1.000 | 131.003 | 86.690 | 86.721 | −.04 |
| 209 | 1.000 | 135.238 | 86.920 | 87.008 | −.10 |
| 121 | 1.000 | 137.870 | 87.140 | 87.193 | −.06 |
| 210 | 1.000 | 141.629 | 87.350 | 87.465 | −.13 |
| 122 | 1.000 | 145.757 | 87.680 | 87.775 | −.11 |
| 211 | 1.000 | 147.902 | 87.870 | 87.942 | −.08 |
| 123 | 1.000 | 152.350 | 88.160 | 88.300 | −.16 |
| 212 | 1.000 | 154.093 | 88.320 | 88.446 | −.14 |
| 124 | 1.000 | 158.858 | 88.770 | 88.858 | −.10 |
| 213 | 1.000 | 160.343 | 88.970 | 88.990 | −.02 |
| 125 | 1.000 | 165.298 | 89.300 | 89.451 | −.17 |
| 214 | 1.000 | 166.378 | 89.580 | 89.555 | .03 |
| 126 | 1.000 | 171.647 | 90.110 | 90.081 | .03 |
| 215 | 1.000 | 172.363 | 90.210 | 90.155 | .06 |
| 216 | 1.000 | 178.276 | 90.820 | 90.790 | .03 |
| 127 | 1.000 | 179.354 | 90.900 | 90.911 | −.01 |
| 217 | 1.000 | 184.114 | 91.460 | 91.462 | −.00 |
| 128 | 1.000 | 185.534 | 91.670 | 91.632 | .04 |
| 218 | 1.000 | 189.882 | 92.190 | 92.172 | .02 |
| 129 | 1.000 | 191.643 | 92.480 | 92.398 | .09 |
| 219 | 1.000 | 195.603 | 93.010 | 92.924 | .09 |
| 130 | 1.000 | 197.686 | 93.210 | 93.211 | −.00 |
| 220 | 1.000 | 202.405 | 93.740 | 93.885 | −.15 |
| 131 | 1.000 | 204.154 | 94.130 | 94.144 | −.02 |
| 221 | 1.000 | 209.358 | 95.040 | 94.946 | .10 |
| 132 | 1.000 | 211.041 | 95.390 | 95.215 | .18 |
| 222 | 1.000 | 216.234 | 96.250 | 96.078 | .18 |
| 133 | 1.000 | 217.854 | 96.430 | 96.357 | .08 |
| 223 | 1.000 | 222.998 | 97.340 | 97.275 | .07 |
| 134 | 1.000 | 224.592 | 97.550 | 97.570 | −.02 |
| 224 | 1.000 | 229.651 | 98.540 | 98.539 | .00 |
| 135 | 1.000 | 231.245 | 98.900 | 98.855 | .05 |
| 225 | 1.000 | 236.231 | 99.810 | 99.875 | −.07 |
| 136 | 1.000 | 238.095 | 100.160 | 100.270 | −.11 |
| 226 | 1.000 | 242.764 | 101.250 | 101.291 | −.04 |
| 137 | 1.000 | 244.560 | 101.750 | 101.696 | .05 |
| 138 | 1.000 | 250.946 | 103.200 | 103.193 | .01 |
| 139 | 1.000 | 257.248 | 104.750 | 104.759 | −.01 |
| 140 | 1.000 | 263.551 | 106.270 | 106.415 | −.14 |
| 141 | 1.000 | 269.931 | 108.150 | 108.184 | −.03 |
| 142 | 1.000 | 276.292 | 109.980 | 110.042 | −.06 |
| 143 | 1.000 | 282.595 | 111.960 | 111.975 | −.01 |
| 144 | 1.000 | 288.813 | 114.090 | 113.970 | .11 |
NP = 78, RMSPCT = .13
In table 6, we give all available data for equation (2). These include: ID = 1, Dana [2]; ID = 2, Kemp [10]; ID = 8, Cutler [1]; and ID = 30 for data derived from Cp data of Yesavage [13] via our equation of state in [8]. The coefficients for this extended data set are −
The rms relative deviation for 133 selected data is 0.29 percent. In tables 5 and 6 the column “Wt.” gives the least-squares weighting for that point.
Table 6.
Representation of all Cσ data
| Run | Wt. | T, K | J/mol/K | Calcd. | Pcnt. |
|---|---|---|---|---|---|
| 101 | 0.000 | 81.053 | 82.850 | 83.892 | −1.24 |
| 102 | 1.000 | 81.756 | 83.610 | 83.924 | −.37 |
| 103 | 1.000 | 82.677 | 83.650 | 83.965 | −.37 |
| 236 | 1.000 | 83.132 | 83.920 | 83.985 | −.08 |
| 104 | 0.000 | 83.593 | 83.310 | 84.006 | −.83 |
| 237 | 1.000 | 83.995 | 83.920 | 84.024 | −.12 |
| 105 | 1.000 | 84.568 | 83.840 | 84.050 | −.25 |
| 238 | 1.000 | 84.860 | 84.040 | 84.063 | −.03 |
| 106 | 1.000 | 85.598 | 83.950 | 84.097 | −.17 |
| 239 | 1.000 | 85.723 | 83.830 | 84.103 | −.32 |
| 240 | 1.000 | 86.395 | 83.930 | 84.134 | −.24 |
| 107 | 1.000 | 86.622 | 84.290 | 84.144 | .17 |
| 201 | 1.000 | 86.763 | 84.320 | 84.151 | .20 |
| 108 | 1.000 | 86.836 | 83.810 | 84.154 | −.41 |
| 241 | 1.000 | 87.864 | 84.040 | 84.165 | −.15 |
| 109 | 1.000 | 87.856 | 84.150 | 84.201 | −.06 |
| 242 | 1.000 | 87.870 | 84.330 | 84.202 | .15 |
| 110 | 1.000 | 88.871 | 84.170 | 84.249 | −.09 |
| 243 | 1.000 | 88.931 | 84.280 | 84.252 | .03 |
| 2 | 1.000 | 89.720 | 84.547 | 84.289 | .31 |
| 111 | 1.000 | 89.879 | 84.480 | 84.297 | .22 |
| 30 | 1.000 | 90.000 | 84.040 | 84.302 | −.31 |
| 202 | 1.000 | 90.366 | 84.530 | 84.320 | .25 |
| 8 | 1.000 | 91.060 | 83.973 | 84.353 | −.45 |
| 112 | 1.000 | 91.366 | 84.540 | 84.367 | .20 |
| 113 | 1.000 | 93.321 | 84.730 | 84.462 | .32 |
| 8 | 1.000 | 93.430 | 84.224 | 84.467 | −.29 |
| 203 | 1.000 | 95.166 | 84.780 | 84.553 | .27 |
| 2 | 1.000 | 95.530 | 84.756 | 84.571 | .22 |
| 114 | 1.000 | 95.750 | 84.730 | 84.582 | .17 |
| 8 | 1.000 | 95.760 | 84.475 | 84.582 | −.13 |
| 8 | 1.000 | 98.060 | 84.140 | 84.698 | −.66 |
| 115 | 1.000 | 99.797 | 84.940 | 84.787 | .18 |
| 30 | 1.000 | 100.000 | 84.860 | 84.798 | .07 |
| 8 | 1.000 | 100.330 | 84.057 | 84.815 | −.89 |
| 204 | 1.000 | 101.406 | 85.100 | 84.871 | .27 |
| 2 | 1.000 | 101.960 | 85.091 | 84.900 | .22 |
| 8 | 1.000 | 102.570 | 84.726 | 84.933 | −.24 |
| 116 | 1.000 | 104.646 | 85.250 | 85.044 | .24 |
| 8 | 1.000 | 104.780 | 85.061 | 85.051 | .01 |
| 205 | 1.000 | 108.461 | 85.430 | 85.254 | .21 |
| 2 | 1.000 | 108.500 | 85.426 | 85.256 | .20 |
| 30 | 1.000 | 110.000 | 85.850 | 85.341 | .60 |
| 117 | 1.000 | 110.300 | 85.530 | 85.358 | .20 |
| 2 | 1.000 | 115.160 | 85.803 | 85.641 | .19 |
| 206 | 1.000 | 115.393 | 85.790 | 85.655 | .16 |
| 118 | 1.000 | 116.889 | 85.810 | 85.746 | .08 |
| 30 | 1.000 | 120.000 | 86.720 | 85.938 | .91 |
| 2 | 1.000 | 121.970 | 86.179 | 86.062 | .14 |
| 207 | 1.000 | 122.132 | 86.180 | 86.073 | .12 |
| 119 | 1.000 | 124.009 | 86.200 | 86.194 | .01 |
| 208 | 1.000 | 128.738 | 86.510 | 86.510 | −.00 |
| 2 | 1.000 | 128.900 | 86.556 | 86.521 | .04 |
| 30 | 1.000 | 130.000 | 87.420 | 86.597 | .95 |
| 120 | 1.000 | 131.003 | 86.690 | 86.667 | .03 |
| 209 | 1.000 | 135.238 | 86.920 | 86.970 | −.06 |
| 2 | 1.000 | 135.950 | 87.226 | 87.022 | .23 |
| 121 | 1.000 | 137.870 | 87.140 | 87.165 | −.03 |
| 30 | 1.000 | 140.000 | 88.040 | 87.327 | .82 |
| 210 | 1.000 | 141.629 | 87.350 | 87.453 | −.12 |
| 2 | 1.000 | 142.790 | 87.435 | 87.545 | −.13 |
| 122 | 1.000 | 145.757 | 87.680 | 87.783 | −.12 |
| 211 | 1.000 | 147.982 | 87.870 | 87.960 | −.10 |
| 2 | 1.000 | 149.740 | 88.147 | 88.114 | .04 |
| 30 | 1.000 | 150.000 | 88.670 | 88.136 | .61 |
| 123 | 1.000 | 152.350 | 88.160 | 88.339 | −.20 |
| 212 | 1.000 | 154.093 | 88.320 | 88.492 | −.19 |
| 2 | 1.000 | 156.850 | 88.691 | 88.741 | −.06 |
| 124 | 1.000 | 158.858 | 88.770 | 88.926 | −.18 |
| 30 | 1.000 | 160.000 | 89.380 | 89.034 | .39 |
| 213 | 1.000 | 160.343 | 88.970 | 89.066 | −.11 |
| 2 | 1.000 | 164.390 | 89.360 | 89.458 | −.11 |
| 125 | 1.000 | 165.298 | 89.300 | 89.548 | −.28 |
| 214 | 1.000 | 166.378 | 89.580 | 89.656 | −.08 |
| 30 | 1.000 | 170.000 | 90.240 | 90.028 | .24 |
| 126 | 1.000 | 171.647 | 90.110 | 90.202 | −.10 |
| 2 | 1.000 | 172.020 | 89.863 | 90.242 | −.42 |
| 215 | 1.000 | 172.363 | 90.210 | 90.278 | −.08 |
| 216 | 1.000 | 178.276 | 90.820 | 90.932 | −.12 |
| 2 | 1.000 | 179.090 | 90.742 | 91.025 | −.31 |
| 127 | 1.000 | 179.354 | 90.900 | 91.056 | −.17 |
| 30 | 1.000 | 180.000 | 91.260 | 91.130 | .14 |
| 217 | 1.000 | 184.114 | 91.460 | 91.617 | −.17 |
| 128 | 1.000 | 185.534 | 91.670 | 91.790 | −.13 |
| 2 | 1.000 | 185.900 | 91.662 | 91.835 | −.19 |
| 218 | 1.000 | 189.882 | 92.190 | 92.336 | −.16 |
| 30 | 1.000 | 190.000 | 92.460 | 92.351 | .12 |
| 129 | 1.000 | 191.643 | 92.480 | 92.563 | −.09 |
| 2 | 1.000 | 194.280 | 92.792 | 92.912 | −.13 |
| 219 | 1.000 | 195.603 | 93.010 | 93.091 | −.09 |
| 130 | 1.000 | 197.686 | 93.210 | 93.377 | −.18 |
| 30 | 1.000 | 200.000 | 93.830 | 93.702 | .14 |
| 2 | 1.000 | 200.940 | 93.839 | 93.836 | .00 |
| 220 | 1.000 | 202.405 | 93.740 | 94.047 | −.33 |
| 131 | 1.000 | 204.154 | 94.130 | 94.304 | −.18 |
| 2 | 1.000 | 207.090 | 94.257 | 94.745 | −.52 |
| 221 | 1.000 | 209.358 | 95.040 | 95.095 | −.06 |
| 30 | 1.000 | 210.000 | 95.350 | 95.196 | .16 |
| 132 | 1.000 | 211.041 | 95.390 | 95.360 | .03 |
| 2 | 1.000 | 213.100 | 95.429 | 95.691 | −.27 |
| 222 | 1.000 | 216.234 | 96.250 | 96.207 | .05 |
| 133 | 1.000 | 217.854 | 96.430 | 96.480 | −.05 |
| 2 | 1.000 | 219.250 | 96.266 | 96.719 | −.47 |
| 30 | 1.000 | 220.000 | 97.040 | 96.849 | .20 |
| 223 | 1.000 | 222.998 | 97.340 | 97.378 | −.04 |
| 134 | 1.000 | 224.592 | 97.550 | 97.665 | −.12 |
| 2 | 1.000 | 224.960 | 97.480 | 97.732 | −.26 |
| 224 | 1.000 | 229.651 | 98.540 | 98.610 | −.07 |
| 2 | 1.000 | 229.810 | 98.275 | 98.641 | −.37 |
| 30 | 1.000 | 230.000 | 98.920 | 98.677 | .25 |
| 135 | 1.000 | 231.245 | 98.900 | 98.918 | −.02 |
| 225 | 1.000 | 236.231 | 99.810 | 99.914 | −.10 |
| 136 | 1.000 | 238.095 | 100.160 | 100.300 | −.14 |
| 30 | 1.000 | 240.000 | 100.990 | 100.702 | .29 |
| 1 | 0.000 | 241.760 | 99.820 | 101.080 | −1.25 |
| 226 | 1.000 | 242.764 | 101.250 | 101.299 | −.05 |
| 137 | 1.000 | 244.560 | 101.750 | 101.697 | .05 |
| 1 | 0.000 | 246.880 | 96.490 | 102.221 | −5.61 |
| 30 | 1.000 | 250.000 | 103.310 | 102.947 | .35 |
| 138 | 1.000 | 250.946 | 103.200 | 103.172 | .03 |
| 1 | 0.000 | 252.820 | 100.550 | 103.624 | −2.97 |
| 1 | 0.000 | 255.330 | 100.740 | 104.244 | −3.36 |
| 139 | 1.000 | 257.248 | 104.750 | 104.729 | .02 |
| 30 | 1.000 | 260.000 | 105.890 | 105.444 | .42 |
| 1 | 0.000 | 261.550 | 105.720 | 105.856 | −.13 |
| 140 | 1.000 | 263.551 | 106.270 | 106.398 | −.12 |
| 1 | 0.000 | 264.740 | 97.790 | 106.726 | −8.37 |
| 1 | 0.000 | 266.440 | 106.270 | 107.203 | −.87 |
| 1 | 0.000 | 269.060 | 107.200 | 107.956 | −.70 |
| 141 | 1.000 | 269.931 | 108.150 | 108.211 | −.06 |
| 30 | 1.000 | 270.000 | 108.770 | 108.232 | .50 |
| 142 | 1.000 | 276.292 | 109.980 | 110.158 | −.16 |
| 1 | 0.000 | 276.430 | 107.010 | 110.202 | −2.90 |
| 1 | 0.000 | 276.780 | 111.440 | 110.314 | 1.02 |
| 30 | 1.000 | 280.000 | 111.980 | 111.364 | .55 |
| 143 | 1.000 | 282.595 | 111.960 | 112.241 | −.25 |
| 1 | 0.000 | 287.550 | 107.750 | 114.001 | −5.48 |
| 144 | 1.000 | 288.813 | 114.090 | 114.468 | −.33 |
| 30 | 1.000 | 290.000 | 115.570 | 114.915 | .57 |
| 1 | 0.000 | 291.590 | 110.890 | 115.524 | −4.01 |
| 30 | 1.000 | 300.000 | 119.600 | 118.994 | .51 |
| 30 | 1.000 | 310.000 | 124.220 | 123.774 | .36 |
| 30 | 1.000 | 320.000 | 129.700 | 129.545 | .12 |
| 30 | 1.000 | 330.000 | 136.630 | 136.853 | −.16 |
| 30 | 1.000 | 340.000 | 146.280 | 146.884 | −.41 |
| 30 | 1.000 | 350.000 | 162.170 | 162.894 | −.44 |
| 30 | 1.000 | 360.000 | 199.630 | 199.194 | .22 |
NP = 147, RMSPCT = .29
5. Results for Compressed Liquid
Table 7 presents results in column 11 for the single-phase specific heats Cv(ρ, T) of propane in nine experimental runs. These are shown in figure 3. The smooth curve corresponds to extrapolation to the coexistence boundary. As the derivative (∂P/∂ρ)T for compressed liquid is large, the estimated pressures in column 4 become increasingly uncertain with decreasing temperatures. The correction in column 10 is for work done in expanding the calorimeter. The “calculated” value in column 12 is from the specific heats Cp of Yesavage [13] via our equation of state [9] by the methods of [8]. Deviations in the last column fall within our estimate of combined uncertainties of about 3 percent. Our anticipated increase of deviations at the lowest temperatures is seen at the bottom of table 7.
Table 7.
Experimental data for compressed liquid
| Run no. | Tav, K | ρ, mol/L | P, bar |
, mol |
Vb, cm3 | ΔT, K | Q/ΔT, J/K | Co, J/K | Corr., J/mol/K | Cv, Exptl. | J/mol/K, Calcd. | Diff., % |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 145 | 296.740 | 11.290 | 20.564 | .8280 | 73.340 | 3.531 | 145.85 | 82.92 | −1.75 | 74.25 | 74.16 | .12 |
| 146 | 301.507 | 11.283 | 45.144 | .8280 | 73.385 | 6.057 | 146.14 | 83.24 | −1.76 | 74.20 | 74.94 | −1.00 |
| 147 | 307.514 | 11.274 | 75.945 | .8280 | 73.441 | 6.022 | 147.44 | 83.62 | −1.79 | 75.28 | 75.94 | −.87 |
| 148 | 313.479 | 11.265 | 106.338 | .8280 | 73.497 | 5.959 | 148.65 | 84.00 | −1.82 | 76.27 | 76.96 | −.91 |
| 149 | 319.395 | 11.257 | 136.292 | .8280 | 73.553 | 5.914 | 149.90 | 84.36 | −1.85 | 77.31 | 77.99 | −.89 |
| 150 | 325.273 | 11.248 | 165.870 | .8280 | 73.609 | 5.857 | 150.96 | 84.71 | −1.88 | 78.14 | 79.03 | −1.14 |
| 151 | 331.118 | 11.239 | 195.101 | .8279 | 73.665 | 5.814 | 152.22 | 85.05 | −1.91 | 79.22 | 80.08 | −1.09 |
| 152 | 336.944 | 11.231 | 224.054 | .8279 | 73.721 | 5.750 | 153.43 | 85.38 | −1.94 | 80.26 | 81.13 | −1.08 |
| 801 | 278.582 | 11.949 | 33.044 | .8758 | 73.294 | 6.106 | 145.44 | 81.65 | −2.05 | 70.78 | 71.51 | −1.03 |
| 802 | 284.558 | 11.938 | 69.935 | .8758 | 73.356 | 6.045 | 146.75 | 82.08 | −2.09 | 71.75 | 72.40 | −.90 |
| 803 | 290.462 | 11.928 | 106.244 | .8758 | 73.418 | 5.995 | 148.13 | 82.50 | −2.12 | 72.82 | 73.31 | −.68 |
| 804 | 296.874 | 11.917 | 145.139 | .8757 | 73.485 | 7.017 | 149.61 | 82.93 | −2.16 | 73.98 | 74.33 | −.48 |
| 805 | 303.743 | 11.905 | 186.559 | .8757 | 73.557 | 6.929 | 151.19 | 83.38 | −2.20 | 75.23 | 75.46 | −.30 |
| 806 | 310.524 | 11.894 | 227.186 | .8757 | 73.629 | 6.867 | 152.74 | 83.81 | −2.24 | 76.47 | 76.60 | −.18 |
| 807 | 317.249 | 11.882 | 267.113 | .8757 | 73.701 | 6.796 | 154.24 | 84.23 | −2.28 | 77.67 | 77.77 | −.13 |
| 808 | 322.550 | 11.873 | 298.351 | .8757 | 73.757 | 4.008 | 155.49 | 84.55 | −2.32 | 78.69 | 78.71 | −.02 |
| 228 | 256.127 | 12.573 | 27.046 | .9205 | 73.214 | 2.809 | 144.21 | 79.89 | −2.36 | 67.50 | 68.52 | −1.52 |
| 229 | 258.863 | 12.568 | 47.300 | .9205 | 73.245 | 2.793 | 144.95 | 80.12 | −2.38 | 68.04 | 68.88 | −1.23 |
| 230 | 262.933 | 12.560 | 76.936 | .9205 | 73.292 | 5.389 | 146.02 | 80.45 | −2.40 | 68.83 | 69.42 | −.86 |
| 231 | 268.252 | 12.549 | 115.610 | .9205 | 73.353 | 5.336 | 147.34 | 80.87 | −2.44 | 69.77 | 70.15 | −.54 |
| 232 | 273.524 | 12.539 | 153.660 | .9205 | 73.414 | 5.301 | 148.46 | 81.28 | −2.48 | 70.50 | 70.89 | −.55 |
| 233 | 278.769 | 12.528 | 191.247 | .9205 | 73.475 | 5.287 | 149.64 | 81.67 | −2.52 | 71.33 | 71.66 | −.46 |
| 234 | 283.978 | 12.518 | 228.306 | .9205 | 73.535 | 5.237 | 150.91 | 82.04 | −2.55 | 72.26 | 72.44 | −.25 |
| 235 | 289.142 | 12.507 | 264.777 | .9205 | 73.596 | 5.195 | 152.30 | 82.41 | −2.59 | 73.34 | 73.24 | .13 |
| 901 | 238.172 | 13.059 | 28.490 | .9554 | 73.158 | 4.296 | 144.06 | 78.30 | −2.61 | 66.22 | 66.41 | −.29 |
| 902 | 242.833 | 13.449 | 67.640 | .9554 | 73.215 | 5.194 | 144.57 | 78.73 | −2.64 | 66.28 | 66.95 | −1.02 |
| 903 | 248.482 | 13.036 | 114.066 | .9554 | 73.284 | 6.120 | 145.97 | 79.23 | −2.69 | 67.18 | 67.63 | −.67 |
| 904 | 254.481 | 13.023 | 163.629 | .9553 | 73.359 | 6.049 | 147.47 | 79.75 | −2.74 | 68.15 | 68.38 | −.33 |
| 905 | 260.329 | 13.010 | 212.165 | .9553 | 73.433 | 5.992 | 148.90 | 80.24 | −2.79 | 69.08 | 69.16 | −.12 |
| 906 | 265.728 | 12.997 | 255.975 | .9553 | 73.501 | 4.993 | 150.36 | 80.67 | −2.84 | 70.11 | 69.89 | .31 |
| 907 | 270.590 | 12.987 | 295.110 | .9553 | 73.563 | 4.932 | 151.61 | 81.05 | −2.87 | 70.98 | 70.57 | .57 |
| 301 | 216.834 | 13.615 | 35.254 | .9952 | 73.097 | 3.893 | 142.73 | 76.11 | −2.92 | 64.02 | 64.22 | −.31 |
| 302 | 220.658 | 13.606 | 72.870 | .9952 | 73.148 | 3.857 | 143.21 | 76.53 | −2.96 | 64.05 | 64.60 | −.86 |
| 303 | 224.436 | 13.596 | 109.774 | .9952 | 73.200 | 3.848 | 143.87 | 76.93 | −3.00 | 64.27 | 64.98 | −1.11 |
| 304 | 228.198 | 13.586 | 146.288 | .9952 | 73.251 | 3.833 | 144.90 | 77.32 | −3.04 | 64.87 | 65.38 | −.79 |
| 305 | 231.931 | 13.577 | 182.282 | .9952 | 73.302 | 3.791 | 145.89 | 77.69 | −3.07 | 65.45 | 65.79 | −.51 |
| 306 | 235.624 | 13.567 | 217.641 | .9952 | 73.352 | 3.753 | 146.90 | 78.05 | −3.11 | 66.07 | 66.20 | −.19 |
| 307 | 239.291 | 13.558 | 252.530 | .9952 | 73.403 | 3.734 | 147.87 | 78.40 | −3.15 | 66.66 | 66.62 | .05 |
| 401 | 188.878 | 14.297 | 40.935 | 1.0439 | 73.016 | 3.751 | 140.20 | 72.55 | −3.32 | 61.48 | 61.89 | −.67 |
| 402 | 192.681 | 14.285 | 86.602 | 1.0439 | 73.073 | 3.966 | 141.16 | 73.09 | −3.37 | 61.84 | 62.18 | −.54 |
| 403 | 196.572 | 14.273 | 132.941 | 1.0438 | 73.132 | 3.930 | 142.15 | 73.63 | −3.41 | 62.23 | 62.48 | −.40 |
| 404 | 200.428 | 14.262 | 178.490 | 1.0438 | 73.191 | 3.899 | 143.28 | 74.14 | −3.46 | 62.78 | 62.80 | −.04 |
| 405 | 204.255 | 14.250 | 223.308 | 1.0438 | 73.250 | 3.869 | 144.32 | 74.62 | −3.51 | 63.27 | 63.13 | .21 |
| 406 | 207.852 | 14.239 | 265.092 | 1.0438 | 73.305 | 3.441 | 145.40 | 75.06 | −3.56 | 63.83 | 63.46 | .59 |
| 501 | 156.982 | 15.044 | 48.949 | 1.0971 | 72.928 | 3.807 | 137.04 | 67.00 | −3.76 | 60.08 | 60.02 | .09 |
| 502 | 160.668 | 15.081 | 104.699 | 1.0971 | 72.992 | 3.629 | 138.16 | 67.76 | −3.82 | 60.36 | 60.20 | .26 |
| 503 | 164.253 | 15.018 | 158.389 | 1.0971 | 73.054 | 3.592 | 139.41 | 68.46 | −3.88 | 60.80 | 60.38 | .68 |
| 504 | 167.862 | 15.005 | 211.015 | 1.0971 | 73.115 | 3.563 | 140.52 | 69.12 | −3.93 | 61.15 | 60.58 | .93 |
| 505 | 171.318 | 14.992 | 262.630 | 1.0971 | 73.177 | 3.528 | 141.71 | 69.75 | −3.99 | 61.60 | 60.78 | 1.33 |
| 601 | 126.412 | 15.731 | 44.790 | 1.1458 | 72.840 | 2.642 | 132.33 | 59.12 | −4.12 | 59.78 | 59.12 | 1.11 |
| 602 | 129.030 | 15.720 | 94.654 | 1.1458 | 72.891 | 2.621 | 133.49 | 59.93 | −4.17 | 60.02 | 59.16 | 1.44 |
| 603 | 131.699 | 15.708 | 144.995 | 1.1458 | 72.942 | 2.743 | 134.57 | 60.73 | −4.22 | 60.22 | 59.21 | 1.67 |
| 604 | 134.418 | 15.697 | 195.789 | 1.1458 | 72.996 | 2.724 | 135.64 | 61.51 | −4.28 | 60.41 | 59.28 | 1.88 |
| 605 | 137.115 | 15.685 | 245.672 | 1.1458 | 73.048 | 2.701 | 136.66 | 62.26 | −4.34 | 60.60 | 59.35 | 2.06 |
| 701 | 100.334 | 16.319 | 48.227 | 1.1877 | 72.779 | 2.423 | 126.15 | 49.17 | −4.32 | 60.49 | 59.14 | 2.23 |
| 702 | 102.729 | 16.307 | 104.627 | 1.1876 | 72.830 | 2.373 | 127.62 | 50.24 | −4.39 | 60.76 | 59.11 | 2.73 |
| 703 | 105.095 | 16.295 | 159.753 | 1.1876 | 72.881 | 2.365 | 128.83 | 51.27 | −4.45 | 60.85 | 59.08 | 2.91 |
| 704 | 117.444 | 16.284 | 213.892 | 1.1876 | 72.932 | 2.343 | 130.05 | 52.25 | −4.52 | 60.99 | 59.07 | 3.15 |
Figure 3.

Specific heats for compressed liquid.
Table 8 serves as an extension of table 7 to give “experimental” Cp(ρ, T) data computed from the Cv(ρ, T) data of table 7, column 11, by means of the equation of state [9]. The “calculated” results in table 8 again are from Yesavage Cp(ρ, T) data [13], interpolated by means of the equation of state [9].
Table 8.
Derived experimental and calculated CP, J/mol/K
| Run no. | Cp, Exptl. | J/mol/K, Calcd. | Diff., % |
|---|---|---|---|
| 145 | 118.54 | 118.45 | .07 |
| 146 | 117.12 | 117.86 | −.63 |
| 147 | 116.63 | 117.29 | −.56 |
| 148 | 116.21 | 116.91 | −.60 |
| 149 | 115.99 | 116.68 | −.59 |
| 150 | 115.68 | 116.57 | −.77 |
| 151 | 115.71 | 116.58 | −.74 |
| 152 | 115.80 | 116.66 | −.75 |
| 801 | 109.57 | 110.30 | −.66 |
| 802 | 109.43 | 110.07 | −.59 |
| 803 | 109.47 | 109.96 | −.45 |
| 804 | 109.62 | 109.97 | −.32 |
| 805 | 109.88 | 110.11 | −.21 |
| 806 | 110.22 | 110.35 | −.12 |
| 807 | 110.60 | 110.70 | −.09 |
| 808 | 111.02 | 111.04 | −.02 |
| 228 | 103.08 | 104.11 | −.99 |
| 229 | 103.23 | 104.07 | −.81 |
| 230 | 103.47 | 104.06 | −.57 |
| 231 | 103.72 | 104.10 | −.36 |
| 232 | 103.82 | 104.21 | −.38 |
| 233 | 104.06 | 104.39 | −.32 |
| 234 | 104.44 | 104.62 | −.17 |
| 235 | 105.01 | 104.90 | .09 |
| 901 | 99.75 | 99.95 | −.19 |
| 902 | 99.28 | 99.96 | −.68 |
| 903 | 99.59 | 100.04 | −.45 |
| 904 | 99.97 | 100.20 | −.23 |
| 905 | 100.35 | 100.43 | −.08 |
| 906 | 100.91 | 100.69 | .21 |
| 907 | 101.38 | 100.97 | .40 |
| 301 | 95.69 | 95.89 | −.21 |
| 302 | 95.38 | 95.93 | −.58 |
| 303 | 95.27 | 95.99 | −.75 |
| 304 | 95.56 | 96.08 | −.54 |
| 305 | 95.85 | 96.19 | −.35 |
| 306 | 96.19 | 96.32 | −.13 |
| 307 | 96.51 | 96.48 | .04 |
| 401 | 91.47 | 91.88 | −.45 |
| 402 | 91.58 | 91.91 | −.37 |
| 403 | 91.72 | 91.97 | −.27 |
| 404 | 92.03 | 92.05 | −.03 |
| 405 | 92.29 | 92.16 | .15 |
| 406 | 92.65 | 92.27 | .41 |
| 501 | 88.58 | 88.53 | .06 |
| 502 | 88.70 | 88.55 | .18 |
| 503 | 88.99 | 88.58 | .46 |
| 504 | 89.19 | 88.62 | .64 |
| 505 | 89.51 | 88.69 | .92 |
| 601 | 86.90 | 86.24 | .76 |
| 602 | 87.10 | 86.23 | .99 |
| 603 | 87.24 | 86.24 | 1.15 |
| 604 | 87.38 | 86.25 | 1.30 |
| 605 | 87.51 | 86.27 | 1.42 |
| 701 | 86.05 | 84.70 | 1.57 |
| 702 | 86.35 | 84.69 | 1.92 |
| 703 | 86.46 | 84.69 | 2.05 |
| 704 | 86.61 | 84.69 | 2.22 |
6. Behavior of Reduced Cv Data
Diller has presented an examination of the behavior of available Cv data for many substances, in a search for criteria of consistency [3]. In particular, he extrapolated data to the coexistence boundary and plotted reduced specific heats vs. reduced density. Additional data for various substances subsequently were plotted in these coordinates by Younglove [16].
As a consistency test for present results on propane we present the reduced specific heats in table 9. Ideal gas specific heats are from the formulation in [8]. The first line for each run in table 9 gives results extrapolated to the coexistence boundary.
Table 9.
Reduced specific heats, , J/mol/K
| Run | T, K | ρ, mol/L | Cv | |||
|---|---|---|---|---|---|---|
| 1 | 294.150 | 11.303 | 73.68 | 64.68 | 9.00 | 1.083 |
| 145 | 296.740 | 11.290 | 74.25 | 65.19 | 9.06 | 1.090 |
| 146 | 301.507 | 11.283 | 74.20 | 66.12 | 8.08 | .971 |
| 147 | 307.514 | 11.274 | 75.28 | 67.31 | 7.97 | .958 |
| 148 | 313.479 | 11.265 | 76.27 | 68.49 | 7.78 | .935 |
| 149 | 319.395 | 11.257 | 77.31 | 69.67 | 7.64 | .919 |
| 150 | 325.273 | 11.248 | 78.14 | 70.84 | 7.30 | .878 |
| 151 | 331.118 | 11.239 | 79.22 | 72.01 | 7.21 | .868 |
| 152 | 336.944 | 11.231 | 80.26 | 73.17 | 7.09 | .853 |
| 2 | 252.415 | 12.591 | 66.96 | 56.69 | 10.27 | 1.235 |
| 228 | 256.127 | 12.573 | 67.50 | 57.38 | 10.12 | 1.217 |
| 229 | 258.883 | 12.568 | 68.04 | 57.90 | 10.14 | 1.220 |
| 230 | 262.933 | 12.560 | 68.83 | 58.66 | 10.17 | 1.223 |
| 231 | 268.252 | 12.549 | 69.77 | 59.67 | 10.10 | 1.215 |
| 232 | 273.524 | 12.539 | 70.50 | 60.67 | 9.83 | 1.182 |
| 233 | 278.769 | 12.528 | 71.33 | 61.68 | 9.65 | 1.160 |
| 234 | 283.978 | 12.518 | 72.26 | 62.69 | 9.57 | 1.151 |
| 235 | 289.142 | 12.507 | 73.34 | 63.70 | 9.64 | 1.160 |
| 3 | 212.889 | 13.635 | 63.88 | 49.73 | 14.15 | 1.702 |
| 301 | 216.834 | 13.615 | 64.02 | 50.39 | 13.63 | 1.639 |
| 302 | 220.658 | 13.606 | 64.05 | 51.04 | 13.01 | 1.565 |
| 303 | 224.436 | 13.596 | 64.27 | 51.69 | 12.58 | 1.514 |
| 304 | 228.198 | 13.586 | 64.87 | 52.34 | 12.53 | 1.507 |
| 305 | 231.931 | 13.577 | 65.45 | 52.99 | 12.46 | 1.499 |
| 306 | 235.624 | 13.567 | 66.07 | 53.64 | 12.43 | 1.494 |
| 307 | 239.291 | 13.558 | 66.66 | 54.30 | 12.36 | 1.487 |
| 4 | 185.051 | 14.318 | 61.17 | 45.33 | 15.84 | 1.905 |
| 401 | 188.878 | 14.297 | 61.48 | 45.91 | 15.57 | 1.873 |
| 402 | 192.681 | 14.285 | 61.84 | 46.49 | 15.35 | 1.846 |
| 403 | 196.572 | 14.273 | 62.23 | 47.10 | 15.13 | 1.820 |
| 404 | 200.428 | 14.262 | 62.78 | 47.71 | 15.07 | 1.813 |
| 405 | 204.255 | 14.250 | 63.27 | 48.32 | 14.95 | 1.798 |
| 406 | 207.852 | 14.239 | 63.83 | 48.90 | 14.93 | 1.795 |
| 5 | 153.309 | 15.067 | 59.78 | 40.81 | 18.97 | 2.282 |
| 510 | 156.982 | 15.044 | 60.08 | 41.31 | 18.77 | 2.257 |
| 502 | 160.668 | 15.031 | 60.36 | 41.82 | 18.54 | 2.229 |
| 503 | 164.253 | 15.018 | 60.80 | 42.32 | 18.48 | 2.222 |
| 504 | 167.802 | 15.005 | 61.15 | 42.82 | 18.33 | 2.204 |
| 505 | 171.318 | 14.992 | 61.60 | 43.32 | 18.28 | 2.198 |
| 6 | 123.602 | 15.752 | 59.52 | 36.73 | 22.79 | 2.742 |
| 601 | 126.412 | 15.731 | 59.78 | 37.13 | 22.65 | 2.725 |
| 602 | 129.030 | 15.720 | 60.02 | 37.49 | 22.53 | 2.709 |
| 603 | 131.699 | 15.708 | 60.22 | 37.86 | 22.36 | 2.689 |
| 604 | 134.418 | 15.697 | 60.41 | 38.24 | 22.17 | 2.667 |
| 605 | 137.115 | 15.685 | 60.60 | 38.61 | 21.99 | 2.645 |
| 7 | 97.825 | 16.340 | 60.20 | 32.79 | 27.40 | 3.296 |
| 701 | 100.334 | 16.319 | 60.49 | 33.21 | 27.28 | 3.282 |
| 702 | 102.729 | 16.307 | 60.76 | 33.59 | 27.17 | 3.268 |
| 703 | 105.095 | 16.295 | 60.85 | 33.97 | 26.88 | 3.233 |
| 704 | 107.444 | 16.284 | 60.99 | 34.34 | 26.65 | 3.206 |
| 8 | 273.712 | 11.967 | 69.91 | 60.71 | 9.20 | 1.107 |
| 801 | 278.582 | 11.949 | 70.78 | 61.65 | 9.13 | 1.099 |
| 802 | 284.558 | 11.938 | 71.75 | 62.80 | 8.95 | 1.076 |
| 803 | 290.482 | 11.928 | 72.82 | 63.96 | 8.86 | 1.066 |
| 804 | 296.874 | 11.917 | 73.98 | 65.21 | 8.77 | 1.055 |
| 805 | 303.743 | 11.905 | 75.23 | 66.57 | 8.66 | 1.042 |
| 806 | 210.524 | 11.894 | 76.47 | 67.91 | 8.56 | 1.030 |
| 807 | 317.249 | 11.882 | 77.67 | 69.24 | 8.43 | 1.013 |
| 808 | 322.550 | 11.873 | 78.69 | 70.30 | 8.39 | 1.009 |
| 9 | 234.541 | 13.077 | 65.74 | 53.45 | 12.28 | 1.477 |
| 901 | 238.172 | 13.059 | 66.22 | 54.10 | 12.12 | 1.458 |
| 902 | 242.833 | 13.049 | 66.28 | 54.94 | 11.34 | 1.364 |
| 903 | 248.402 | 13.036 | 67.18 | 55.95 | 11.23 | 1.350 |
| 904 | 254.401 | 13.023 | 68.15 | 57.06 | 11.09 | 1.334 |
| 905 | 260.329 | 13.010 | 69.08 | 58.17 | 10.91 | 1.313 |
| 906 | 265.728 | 12.997 | 70.11 | 59.19 | 10.92 | 1.314 |
| 907 | 270.590 | 12.987 | 70.98 | 60.11 | 10.87 | 1.307 |
Figure 4 shows present results. Open circles and the upper curve are for propane. The lower curve, marked A, is taken from figure 6 by Younglove [16]. It represents data for argon, krypton, oxygen, fluorine, and methane within experimental uncertainties. The points symbolized by x are for ethane, as computed but not published by Roder [12]. At a reduced density near 3.0 (run number 5), the difference of about 0.5 in between propane and curve A corresponds to 4 J/mol/K, or a difference of about 7% in the value Cv = 59.78 J/mol/K for propane (run number 5) in table 9. As our comparisons with Yesavage Cp data [13] are much closer than 7%, the higher values for propane in figure 4 probably are real.
Figure 4.

Reduced specific heats at coexistence.
The uniform increase of these residual specific heats with increasing asymmetry of molecular shape, from methane through propane, suggests hindered rotation of the asymmetric molecules in the dense (and viscous) liquid at low temperatures.
Acknowledgments
This work was supported by the American Gas Association, Inc., 1515 Wilson Boulevard, Arlington, VA 22209.
Footnotes
Figures in brackets indicate the literature references at the end of the paper.
7. References
- [1].Cutler A. J. B., and Morrison J. A., Trans. Faraday Soc. 61, 429 (1965). [Google Scholar]
- [2].Dana L. I., Jenkins A. C., Burdick J. N., and Timm R. C., Refrig. Eng. 12, No. 12, 387 (June 1926). [Google Scholar]
- [3].Diller D. E., Cryogenics 11, No. 3, 180 (June 1971). [Google Scholar]
- [4].Goodwin R. D., J. Res. Nat. Bur. Stand. (U.S.) 65C, (Eng. and Instr.), No. 4, 231–243 (Oct-Dec 1961). [Google Scholar]
- [5].Goodwin R. D., and Weber L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 1–13 (Jan-Feb 1969). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Goodwin R. D., and Weber L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 15–24 (Jan-Feb 1969). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Goodwin R. D., and Prydz R., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 4, 499–505 (Jul-Aug 1970). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Goodwin R. D., Provisional Thermodynamic Functions of Propane, from 85 to 700 K at Pressures to 700 Bar, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 77–860 (July 1977). [Google Scholar]
- [9].Goodwin R. D., The Nonanalytic Equation of State for Pure Fluids Applied to Propane, to be presented at Symp. on Equations of State in Engineering and Research, 176th National Meeting, American Chemical Society, Miami Beach, Florida, September 10–15, 1978. [Google Scholar]
- [10].Kemp J. D., and Egan C. J., J. Am. Chem. Soc. 60, No. 7, 1521 (July 1938). [Google Scholar]
- [11].Prydz R., and Goodwin R. D., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 5, 661–665 (Sep-Oct 1970). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Roder H. M., J. Res. Nat. Bur. Stand. (U.S.) 80A, (Phys. and Chem.), No. 5, 6, 739–759 (Sep-Dec 1976). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Yesavage V. F., Katz D. L., and Powers J. E., J. Chem. Eng. Data 14, No. 2, 197 (April 1969). [Google Scholar]
- [14].Younglove B. A., and Diller D. E., Cryogenics 2, No. 5, 283 (September 1962). [Google Scholar]
- [15].Younglove B. A., and Diller D. E., Cryogenics 2, No. 6, 348 (December 1962). [Google Scholar]
- [16].Younglove B. A., J. Res. Nat. Bur. Stand. (U.S.) 78A, (Phys. and Chem.), No. 3, 401–410 (May-Jun 1974). [DOI] [PMC free article] [PubMed] [Google Scholar]


