Skip to main content
PeerJ logoLink to PeerJ
. 2019 Sep 25;7:e7721. doi: 10.7717/peerj.7721

Soil warming increases soil temperature sensitivity in subtropical Forests of SW China

Chaoxiang Yuan 1, Guiqing Zhu 1, Shuangna Yang 1, Gang Xu 1, Yingyun Li 1, Hede Gong 1,, Chuansheng Wu 2,
Editor: Yunting Fang
PMCID: PMC6765358  PMID: 31579603

Abstract

Background

Soil respiration (RS) plays an important role in the concentration of atmospheric CO2 and thus in global climate patterns. Due to the feedback between RS and climate, it is important to investigate RS responses to climate warming.

Methods

A soil warming experiment was conducted to explore RS responses and temperature sensitivity (Q10) to climate warming in subtropical forests in Southwestern China, and infrared radiators were used to simulate climate warming.

Results

Warming treatment increased the soil temperature and RS value by 1.4 °C and 7.3%, respectively, and decreased the soil water level by 4.2% (%/%). Both one- and two-factor regressions showed that warming increased the Q10 values by 89.1% and 67.4%, respectively. The effects of water on Q10show a parabolic relationship to the soil water sensitivity coefficient. Both RS and Q10 show no acclimation to climate warming, suggesting that global warming will accelerate soil carbon release.

Keywords: Global warming, Soil carbon efflux, Soil water sensitivity coefficient

Introduction

Soil is the largest pool of organic carbon in the terrestrial ecosystem, playing a crucial role in the global carbon cycle. RS serves as a significant source of atmospheric CO2 (Friedlingstein et al., 2006; Bond-Lamberty & Thomson, 2010) and is regulated by temperature (Giardina et al., 2014). Therefore, slight changes in RS due to global warming will increase levels of atmospheric CO2 and thereby be feed back into the global climate system.

Numerous studies have shown that RS rates typically increase over the course of short-term soil warming experiments (Gonzalez-Meler et al., 2017; Xue & Tang, 2018; Zhao et al., 2018) and long-term warming experiments (Noh et al., 2016; Zhou et al., 2016) and likely due to the promotion of soil microbial activity and a lack of restrictions on soil organic matter during warming treatment periods. Some studies also report that warming decreases RS levels during long-term warming experiments (Melillo et al., 2002; Marañón Jiménez et al., 2017; García-Palacios et al., 2018) and mainly due to the excessive consumption of carbon pools. Some studies show that short-term warming treatment can also decrease RS levels (Schindlbacher et al., 2012; Liu et al., 2016) due to droughts caused by climate warming. Warming treatment also has no significant effect on RS (Wang et al., 2017). Therefore, RS responses to warming remain unclear and must be studied further.

The Q10 of RS is an important parameter of how RS responds to warming. Some studies show that warming treatment reduces the Q10 value (Boone et al., 1998; Luo et al., 2001; Wang et al., 2016; Noh et al., 2017) due to soil microorganism adaptation to warming. This adaptation may be due to a decrease in soil microbial carbon utilization and enzyme activity (Allison, Wallenstein & Bradford, 2010) and to changes in soil microbial community structures (Ziegler et al., 2013). Simultaneously, the Q10 level exhibits no adaptive response to climate warming (Reth et al., 2009) and even increases under warming conditions (Cao et al., 2018; Zhao et al., 2018).

Acclimatization has been found to decrease for RS and Q10 under warming conditions (Luo et al., 2001; Melillo et al., 2002). However, a previous study shows that heterotrophic respiration in subtropical forests of Southwestern China show no acclimation to warming (Wu et al., 2016). While it is important to identify effects of warming on subtropical forests (Wu et al., 2016), RS and Q10 responses to warming in such forests remain unclear. We hypothesized that RS and Q10 show no acclimation to warming in the forests. To test this hypothesis, we conducted control and warming experiments on subtropical forests of the Ailao Mountains to identify the effects of warming on RS and Q10 levels in these forests.

Materials & Methods

Site description

The experimental field is located at site of the Ailaoshan Station for Subtropical Forest Ecosystem Studies (24°32′N, 101°01′E; 2,480 m above sea level) of the Chinese Ecological Research Network. According to monitoring data for 2002 to 2011, the annual average air temperature was 11.3 °C; the maximum air temperature was 15.6 °C (July); the minimum temperature was 5.7 °C (January); the annual average precipitation level was 1,778 mm, and rainfall levels reached close to 85% of total annual rainfall for the rainy season (May–October) (Wu et al., 2014). The main type of soil found in the area yellowish-brown with a pH value of 4.5; soil organic carbon levels reach 303.8 g kg−1 and total nitrogen levels reach 18.38 g kg−1 in the humus horizon (Chan et al., 2006). The main species found in the area include Lithocarpus hancei, Castanopsis wattii, Schima noronhae, and Lithocarpus xylocarpus (Wu et al., 2014).

Experimental design

In the subtropical forest, six plots of 1 m × 1 m were randomly selected, and two treatments were established, including control and warming treatments with three replicates. A carbonizing infrared radiator was applied as the heat radiation source for the warming treatment, and a 200-watt carbon infrared radiant heating lamp (each lamp was 90 cm long and each lampshade was 100 cm long, 15 cm wide, and 10 cm deep) was placed approximately 1.0 m above the sample side of each plot. A continuous heating mode was adopted from June 2016 to May 2017, supplying continuous power except during power outages. In each plot, a PVC pipe (inner diameter of 20 cm and soil depth of two cm) was placed to directly couple with an external PVC pipe (outer diameter of 20 cm, upper seal base opening and height of 20 cm) for further measurements of RS.

Data collection and calculations

Soil CO2 efflux was measured monthly using a gas analyser (Li-820; Li-Cor, Lincoln, NE, USA) between 9:00 and 11:00 AM (Beijing Time) to measure RS levels. Soil temperatures (T, °C) were measured with a digital thermometer (6310; Spectrum, Illinois, USA), and soil water content (W, %) was measured via time domain reflectometry (MP-KIT; Beijing Channel, Beijing, China) at a depth of 50 mm. The RS rate was calculated as follows:

RS=VPRSTadcdt (1)

where RS is the soil CO2 efflux value (µmol m−2 s−1); V is the chamber volume (m3); S is the chamber area (m2); R is the gas constant (8.314 Pa m3 k−1 mol−1); T a is air temperature (K); P is air pressure (Pa), and dc/dt is the slope of variations in CO2 concentrations overtime for the measurement period.

We used a one-factor regression to determine the relationship between RS and T and a two-factor regression to determine relationships of RS with T and W. The regression equations applied are as follows (Xu & Qi, 2001a; Liu et al., 2018):

RS=aebT (2)
RS=aebTWc. (3)

Where a, b and c are estimated from the regressions; b is the soil Q10 coefficient, and c is the soil water sensitivity coefficient.

Q10 is calculated using the following equation (Luo et al., 2001):

Q10=e10b. (4)

Where b is derived from Eqs. (2) and (3).

Different Q10 values derived from the one- and two-factor regressions are attributable to soil water effects, and the effect on Q10 (WEQ10) was calculated with the following equation:

WEQ10=Q10onefactorQ10twofactorQ10twofactor×100% (5)

The parameters were estimated from the models listed above using the nonlinear regression dynamic fit wizard, and t tests were used to test differences in the RS, T, W, and Q10 values of the control and warming treatments (Version 12; Systat Software, Inc., Point Richmond, California, USA).

Results

Effect of warming on soil environment factors

The warming treatment increased the soil temperature but did not change seasonal variation patterns (Fig. 1A). Mean annual soil temperatures measured from the control and warming treatments were recorded as 11.1 ± 0.1 °C and 12.5 ± 0.1 °C, respectively, and warming significantly increased the soil temperature by 1.4 °C (Fig. 1B). During the measurement period, the warming treatment significantly affected soil temperatures during both the dry and rainy seasons (Fig. 1B). However, warming did not change soil water content levels, and in terms of seasonal variations, we found no significant differences between dry season, rainy season and yearly trends (Figs. 1C & 1D). Mean annual soil water levels measured from the control and warming treatments were recorded as 30.3 ± 3.0% (v/v) and 29.0 ± 2.8% (v/v), respectively, reduced by 4.2% (%/%) (Fig. 1D).

Figure 1. Seasonal variations of soil temperature (A) and soil water content (C), and comparisons of soil temperature (B) and soil water content (D) between control and warming treatment.

Figure 1

Effect of warming on soil respiration

Soil warming increased RS levels in the rainy season but suppressed them in the dry season (Fig. 2A). No significant differences in means of the control and warming treatments were observed across dry season, rainy season, and annual period (Fig. 2B). In the dry season, mean values of the two treatments were recorded as 2.68 ± 0.47 µmol m−2s−1 and 2.27 ± 0.28 µmol m−2s−1, respectively, with the warming treatments showing a reduction of 15.0%. In the rainy season, mean values for the two treatments were recorded as 5.50 ± 0.79 µmol m−2s−1 and 6.50 ± 0.32 µmol m−2s−1, respectively, with the warming treatments showing an increase of 18.1%. The mean annual RS for the two treatments was recorded as 4.09 ± 0.28 µmol m−2s−1 and 4.39 ± 0.25 µmol m−2s−1 where values increased by 7.3% during the warming treatment.

Figure 2. Seasonal variations (A) and comparison (B) of soil respiration between control and warming treatment.

Figure 2

Effect of warming on temperature sensitivity

From one-factor regression model results, the Q10 values of the control and warming treatments were recorded as 2.6 ± 0.7 and 4.9 ± 0.3, respectively, and warming significantly increased the Q10 value by 89.1%. According to two-factor regression model results, the Q10 values reached 2.0 ± 0.5 and 3.3 ± 0.2, respectively, and warming significantly increased the Q10 values by 67.4% (Fig. 3). One- and two-factor regression parameters are given in Table 1. WEQ10 increased when the c values fell below 0.779 and decreased when the c values exceeded 0.779 (Fig. 4).

Figure 3. Comparison of temperature sensitivity between control and warming treatment.

Figure 3

Table 1. Parameters of one-factor and two-factor regressions.

Treatments RS = aebTWc RS = aebT
a b c R2 p a b R2 p
Control 0.0197 0.0864 1.2078 0.86 <0.001 0.9823 0.1212 0.61 <0.001
0.3139 0.0369 0.5743 0.55 <0.001 1.5024 0.0785 0.48 <0.001
1.4718 0.0724 0.0599 0.62 <0.001 1.6548 0.0793 0.62 <0.001
Warming 0.0370 0.1119 0.9139 0.96 <0.001 0.5697 0.1553 0.78 <0.001
0.1080 0.1191 0.5672 0.84 <0.001 0.4224 0.1664 0.80 <0.001
0.3484 0.1251 0.2896 0.89 <0.001 0.6023 0.1542 0.87 <0.001

Figure 4. Relationship between soil water sensitivity and effect of soil water on temperature sensitivity.

Figure 4

Discussion

Warming treatment can effectively increase soil temperatures (Wang et al., 2019; Li et al., 2018) and thereby decrease soil water levels (Wang et al., 2014; Chen et al., 2018). In our experiment, warming treatment resulted in higher soil temperatures than those observed in the control treatment (Figs. 1A & 1B), and the soil water levels were found to be lower than those of the control treatment (Figs. 1C & 1D). A number of previous studies show that warming experiments significantly increase RS levels (Zheng et al., 2009; Zhao et al., 2018; Zou et al., 2018). In our experiment, the warming treatment resulted in an increase in the average RS by 7.3% due to soil warming of 1.4 °C. These findings are less significant than others reported. For instance, RS has been found to increase by 32% with 4 °C of warming (Noh et al., 2016), by 28% with 2.5 °C of warming (Bamminger, Poll & Marhan, 2018), and even by 7.1% with 0.47 °C of warming (Xia et al., 2009). Wu et al. (2016) found the warming effects on soil carbon flux to be positively related to the warming effects on soil temperature. The warming effects on soil temperature observed in the present study are less significant (or stronger) than those reported above, leading to lesser (or stronger) warming effects on RS. In the present study, warming treatment was found to have no significant effect on RS, agreeing with the results found for another subtropical forest in Guangxi, China (Wang et al., 2017). However, 1.7 °C warmer temperatures significantly increase heterotrophic respiration in subtropical forests in Guangxi, China, corroborating results reported for our study region (Wu et al., 2016). Therefore, our results showing no significant effects are likely attributable to the fact that warming suppresses autotrophic respiration (Wang et al., 2017).

We also found the warming treatment to have different effects during the dry and rainy seasons (Figs. 2A and 2B). The study area is located in a monsoon region where temperature and humidity levels are synchronized and where RS is affected by effects of interactions between soil temperature and soil water content (Table 1). In the rainy season, soil water levels were high while decreases in soil water content due to warming were limited (3.2%, %/%). Therefore, soil water content had no restrictive effects. However, in the dry season, soil water levels and soil temperatures were both low and positive effects of soil warming were less significant than negative effects of soil water content due to warming, as soil drought due to warming can offset warming effects (Schindlbacher et al., 2012). Therefore, RS levels were found to be lower under the warming treatment than under the control treatment in the dry season.

While warming has been widely shown to decrease the Q10 values (Luo et al., 2001; Li et al., 2016; Noh et al., 2017), we found warming to increase Q10 values consistent with previous studies (Teramoto et al., 2018; Zhao et al., 2018). Warming treatment decreased basal respiration in the dry season and increased respiration in the rainy season, thereby increasing seasonal amplitudes (Fig. 2). However, warming did not change seasonal amplitudes of soil temperature (Fig. 1A), leading to higher Q10 values from regression models. Soil is intrinsically sensitive to temperature as determined by substrate properties and initial temperature conditions (Davidson & Janssens, 2006). Q10 levels of RS calculated from equation models show Q10 affected by intrinsic Q10 and environmental factors (e.g., soil water conditions) (Davidson & Janssens, 2006). RS is directly influenced by substrate supplies, soil temperatures, and effects of soil temperature and soil water content on substrate diffusion and availability (Davidson, Janssens & Luo, 2006). Therefore, both soil temperature and soil water content affect Q10 values, explaining 93% of seasonal variations in Q10 (Xu & Qi, 2001b).

In this study, two models (Eqs. (2) and (3)) were used to reflect the relationship between RS and soil temperature and to calculate the Q10 values. GLM analysis suggests that both the treatment and model had significant effects on the Q10 values (Table 2). The one-factor model only considers relationship between RS and soil temperature, while the two-factor model considers the effects of both soil temperature and soil water content on RS. As the Q10values were calculated from these models, any factors affecting RS would affect them. Therefore, soil water availability affects Q10 (Zhong, Shen & Fu, 2016). The Q10 values derived from the one-factor model are significantly higher than those derived from the two-factor model, as the Q10 value calculated from the one-factor model covers soil water effects. In comparing the two models, we measured the effects of water on Q10 (WEQ10) and found the relationship between WEQ10 and the soil water sensitivity coefficient (c value in Eq. (3)) (Fig. 4). WEQ10 exhibits a parabolic regression relationship with the c value (peak value of 0.779).

Table 2. Result of GLM analysis on temperature sensitivity.

Source t value p value
Treatment 5.961 <0.01
Method −3.664 <0.01

Soil respiration is driven by soil microbial rhizosphere activities and is affected by soil temperature and the soil water content. Therefore, warming effects on RS and Q10 are affected by the above factors. Warming treatment can change substrate supplies and microbial activities or communities (Wang et al., 2019; Li et al., 2018). Therefore, soil aggregate protection and microbial communities can also affect the Q10 values (Qin et al., 2019). In the present study, we focused on warming effects on RS and Q10. More studies on soil properties and microbial communities should be conducted.

Conclusions

In summary, our warming experiment increased the soil temperature by 1.4 °C, decreased the soil water level by 4.2% (%/%), and increased the RS value by 7.3%. Both one- and two-factor regressions show that warming increased the Q10 values by 89.1% and 67.4%, respectively. Both RS and its Q10 show no acclimation to climate warming, suggesting that global warming will accelerate soil carbon release.

Supplemental Information

Data S1. Raw data.
DOI: 10.7717/peerj.7721/supp-1

Acknowledgments

This work is a research contribution from the Ailaoshan Station for Subtropical Forest Ecosystem Studies.

Funding Statement

This work was supported by the National Natural Science Foundation of China (No. 31560189, 31600390). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Contributor Information

Hede Gong, Email: gonghede3@163.com.

Chuansheng Wu, Email: wwccss521@163.com.

Additional Information and Declarations

Competing Interests

The authors declare there are no competing interests.

Author Contributions

Chaoxiang Yuan conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the paper, approved the final draft.

Guiqing Zhu prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Shuangna Yang, Gang Xu and Yingyun Li prepared figures and/or tables, approved the final draft.

Hede Gong contributed reagents/materials/analysis tools, approved the final draft.

Chuansheng Wu conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The raw measurements are available in Data S1.

References

  • Allison, Wallenstein & Bradford (2010).Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience. 2010;3(5):336–340. doi: 10.1038/ngeo846. [DOI] [Google Scholar]
  • Bamminger, Poll & Marhan (2018).Bamminger C, Poll C, Marhan S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Global Change Biology. 2018;24(1):e318–e334. doi: 10.1111/gcb.13871. [DOI] [PubMed] [Google Scholar]
  • Bond-Lamberty & Thomson (2010).Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature. 2010;464(7288):579–582. doi: 10.1038/nature08930. [DOI] [PubMed] [Google Scholar]
  • Boone et al. (1998).Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature. 1998;396(6711):570–572. doi: 10.1038/25119. [DOI] [Google Scholar]
  • Cao et al. (2018).Cao J, Zhao B, Gao L, Li J, Li Z, Zhao X. Increasing temperature sensitivity caused by climate warming, evidence from Northeastern China. Dendrochronologia. 2018;51:101–111. doi: 10.1016/j.dendro.2018.06.007. [DOI] [Google Scholar]
  • Chan et al. (2006).Chan OC, Yang X, Fu Y, Feng Z, Sha L, Casper P, Zou X. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiology Ecology. 2006;58(2):247–259. doi: 10.1111/j.1574-6941.2006.00156. [DOI] [PubMed] [Google Scholar]
  • Chen et al. (2018).Chen H, Zou J, Cui J, Nie M, Fang C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biology and Biochemistry. 2018;120:24–27. doi: 10.1016/j.soilbio.2018.01.035. [DOI] [Google Scholar]
  • Davidson & Janssens (2006).Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440(7081):165–173. doi: 10.1038/nature04514. [DOI] [PubMed] [Google Scholar]
  • Davidson, Janssens & Luo (2006).Davidson EA, Janssens IA, Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology. 2006;12(2):154–164. doi: 10.1111/j.1365-2486.2005.01065. [DOI] [Google Scholar]
  • Friedlingstein et al. (2006).Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate. 2006;19(14):3337–3353. doi: 10.1175/JCLI3800.1. [DOI] [Google Scholar]
  • García-Palacios et al. (2018).García-Palacios P, Escolar C, Dacal M, Delgado-Baquerizo M, Gozalo B, Ochoa V, Maestre FT. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Global Change Biology. 2018;24(10):4645–4656. doi: 10.1111/gcb.14399. [DOI] [PubMed] [Google Scholar]
  • Giardina et al. (2014).Giardina CP, Litton CM, Crow SE, Asner GP. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change. 2014;4(9):822–827. doi: 10.1038/nclimate2322. [DOI] [Google Scholar]
  • Gonzalez-Meler et al. (2017).Gonzalez-Meler MA, Silva LB, Dias-De-Oliveira E, Flower CE, Martinez CA. Experimental air warming of a Stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Frontiers in Plant Science. 2017;8:46. doi: 10.3389/fpls.2017.00046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Li et al. (2018).Li Y, Qing Y, Lyu M, Chen S, Yang Z, Lin C, Yang Y. Effects of artificial warming on different soil organic carbon and nitrogen pools in a subtropical plantation. Soil Biology and Biochemistry. 2018;124:161–167. doi: 10.1016/j.soilbio.2018.06.007. [DOI] [Google Scholar]
  • Li et al. (2016).Li Y, Zhou G, Huang W, Liu J, Fang X. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant and Soil. 2016;409(1–2):247–257. doi: 10.1007/s11104-016-2966-2. [DOI] [Google Scholar]
  • Liu et al. (2018).Liu Y, Li J, Jin Y, Zhang Y, Li Sha, John G, Song Q, Zhou W, Chen A, Li P, Zhang S. The influence of drought strength on soil respiration in a woody savanna ecosystem, southwest China. Plant and Soil. 2018;428(1–2):321–333. doi: 10.1007/s11104-018-3678-6. [DOI] [Google Scholar]
  • Liu et al. (2016).Liu T, Xu ZZ, Hou YH, Zhou GS. Effects of warming and changing precipitation rates on soil respiration over two years in a desert steppe of northern China. Plant and Soil. 2016;400(1–2):15–27. doi: 10.1007/s11104-015-2705-0. [DOI] [Google Scholar]
  • Luo et al. (2001).Luo Y, Wan S, Hui D, Wallace LL. Acclimatization of soil respiration to warming in a tall grass prairie. Nature. 2001;413(6856):622–625. doi: 10.1038/35098065. [DOI] [PubMed] [Google Scholar]
  • Marañón Jiménez et al. (2017).Marañón Jiménez S, Soong JL, Leblans NI, Sigurdsson BD, Dauwe S, Fransen E, Janssens IA. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration. EGU general assembly conference abstracts, vol. 19; 2017. p. 16746. [Google Scholar]
  • Melillo et al. (2002).Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. Soil warming and carbon-cycle feedbacks to the climate system. Science. 2002;298(5601):2173–2176. doi: 10.1126/science.1074153. [DOI] [PubMed] [Google Scholar]
  • Noh et al. (2017).Noh NJ, Kuribayashi M, Saitoh TM, Muraoka H. Different responses of soil, heterotrophic and autotrophic respirations to a 4-year soil warming experiment in a cool-temperate deciduous broadleaved forest in central Japan. Agricultural and Forest Meteorology. 2017;247:560–570. doi: 10.1016/j.agrformet.2017.09.002. [DOI] [Google Scholar]
  • Noh et al. (2016).Noh NJ, Kuribayashi M, Saitoh TM, Nakaji T, Nakamura M, Hiura T, Muraoka H. Responses of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest. Ecosystems. 2016;19(3):504–520. doi: 10.1007/s10021-015-9948-8. [DOI] [Google Scholar]
  • Qin et al. (2019).Qin S, Chen L, Fang K, Fang K, Zhang Q, Wang J, F LIU, Yu J, Yang Y. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances. 2019;5(7):eaau1218. doi: 10.1126/sciadv.aau1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Reth et al. (2009).Reth S, Graf W, Reichstein M, Munch JC. Sustained stimulation of soil respiration after 10 years of experimental warming. Environmental Research Letters. 2009;4(2):024005. doi: 10.1088/1748-9326/4/2/024005. [DOI] [Google Scholar]
  • Schindlbacher et al. (2012).Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Global Change Biology. 2012;18(7):2270–2279. doi: 10.1111/j.1365-2486.2012.02696. [DOI] [Google Scholar]
  • Teramoto et al. (2018).Teramoto M, Liang N, Ishida S, Zeng J. Long-term stimulatory warming effect on soil heterotrophic respiration in a cool-temperate broad-leaved deciduous forest in Northern Japan. Journal of Geophysical Research: Biogeosciences. 2018;123(4):1161–1177. doi: 10.1002/2018JG004432. [DOI] [Google Scholar]
  • Wang et al. (2016).Wang Q, He N, Yu G, Gao Y, Wen X, Wang R, Koerner SE, Yu Q. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: patterns and influencing factors. Journal of Geophysical Research: Biogeosciences. 2016;121(2):399–410. doi: 10.1002/2015JG003217. [DOI] [Google Scholar]
  • Wang et al. (2014).Wang X, Liu L, Piao S, Janssens IA, Tang J, Liu W, Chi Y, Wang J, Xu S. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology. 2014;20(10):3229–3237. doi: 10.1111/gcb.12620. [DOI] [PubMed] [Google Scholar]
  • Wang et al. (2019).Wang H, Liu S, Schindlbacher A, Wang J, Yang Y, Song Z, You Y, Shi Z, Li Z, Chen L, Ming A, Lu L, Cai D. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biology and Biochemistry. 2019;133:155–164. doi: 10.1016/j.soilbio.2019.03.004. [DOI] [Google Scholar]
  • Wang et al. (2017).Wang H, Liu S, Wang J, Li D, Shi Z, Liu Y, Jia X, Hong P, Yu H, Zhang Z. Contrasting responses of heterotrophic and root-dependent respiration to soil warming in a subtropical plantation. Agricultural & Forest Meteorology. 2017;247:221–228. doi: 10.1016/j.agrformet.2017.07.025. [DOI] [Google Scholar]
  • Wu et al. (2016).Wu C, Liang N, Sha L, Xu X, Zhang Y, Lu H, Song L, Song Q, Xie Y. Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest. Scientific Reports. 2016;6:21561. doi: 10.1038/srep21561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Wu et al. (2014).Wu C, Zhang Y, Xu X, Sha L, You G, Liu Y, Xie Y. Influence of interactions between litter decomposition and rhizosphere activity on soil respiration and on the temperature sensitivity in a subtropical montane forest in SW China. Plant and Soil. 2014;381(1–2):215–224. doi: 10.1007/s11104-014-2106-9. [DOI] [Google Scholar]
  • Xia et al. (2009).Xia J, Han Y, Zhang Z, Wan S. Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences. 2009;6(8):1361–1370. doi: 10.5194/bg-6-1361-2009. [DOI] [Google Scholar]
  • Xu & Qi (2001a).Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology. 2001a;7(6):667–677. doi: 10.1046/j.1354-1013.2001.0043. [DOI] [Google Scholar]
  • Xu & Qi (2001b).Xu M, Qi Y. Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles. 2001b;15(3):687–696. doi: 10.1029/2000GB001365. [DOI] [Google Scholar]
  • Xue & Tang (2018).Xue H, Tang H. Responses of soil respiration to soil management changes in an agropastoral ecotone in Inner Mongolia, China. Ecology and Evolution. 2018;8(1):220–230. doi: 10.1002/ece3.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Zhao et al. (2018).Zhao S, Chen K, Wu C, Mao Y. Effects of simulated warming on soil respiration to XiaoPo lake. IOP conference series: earth and environmental science, vol. 113, no. 1; 2018. p. 012219. [Google Scholar]
  • Zheng et al. (2009).Zheng ZM, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology and Biochemistry. 2009;41(7):1531–1540. doi: 10.1016/j.soilbio.2009.04.013. [DOI] [Google Scholar]
  • Zhong, Shen & Fu (2016).Zhong ZM, Shen ZX, Fu G. Response of soil respiration to experimental warming in a highland barley of the Tibet. SpringerPlus. 2016;5(1):137. doi: 10.1186/s40064-016-1761-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Zhou et al. (2016).Zhou L, Zhou X, Shao J, Nie Y, He Y, Jiang L, Wu Z, Hosseini BS. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology. 2016;22(9):3157–3169. doi: 10.1111/gcb.13253. [DOI] [PubMed] [Google Scholar]
  • Ziegler et al. (2013).Ziegler SE, Billings SA, Lane CS, Li J, Fogel ML. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry. 2013;60:23–32. doi: 10.1016/j.soilbio.2013.01.001. [DOI] [Google Scholar]
  • Zou et al. (2018).Zou J, Tobin B, Luo Y, Osborne B. Response of soil respiration and its components to experimental warming and water addition in a temperate Sitka spruce forest ecosystem. Agricultural and Forest Meteorology. 2018;260–261:204–215. doi: 10.1016/j.agrformet.2018.06.020. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data S1. Raw data.
DOI: 10.7717/peerj.7721/supp-1

Data Availability Statement

The following information was supplied regarding data availability:

The raw measurements are available in Data S1.


Articles from PeerJ are provided here courtesy of PeerJ, Inc

RESOURCES