Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 20;75(Pt 10):1511–1514. doi: 10.1107/S205698901901274X

Crystal structure and Hirshfeld surface analysis of 2,2′′′,6,6′′′-tetra­meth­oxy-3,2′:5′,3′′:6′′,3′′′-quaterpyridine

Suk-Hee Moon a, Jinho Kim b, Ki-Min Park c,*, Youngjin Kang b,*
PMCID: PMC6775728  PMID: 31636984

The title 2,3′-bi­pyridine-based quaterpyridine derivative has a linear geometry. The pyridine rings are tilted slightly with respect to each other. In the crystal, π–π stacking and weak C—H⋯π inter­actions lead to formation of a two-dimensional layer structure.

Keywords: crystal structure, quaterpyridine derivative, π–π inter­action, C—H⋯π inter­action, Hirshfeld surface analysis

Abstract

In the title compound, C24H22N4O4, the four pyridine rings are tilted slightly with respect to each other. The dihedral angles between the inner and outer pyridine rings are 12.51 (8) and 9.67 (9)°, while that between inner pyridine rings is 20.10 (7)°. Within the mol­ecule, intra­molecular C—H⋯O and C—H⋯N contacts are observed. In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings and weak C—H⋯π inter­actions between a methyl H atom and the centroid of a pyridine ring, forming a two-dimensional layer structure extending parallel to the ac plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (52.9%) and H⋯C/C⋯H (17.3%) contacts.

Chemical context  

Polypyridines are considered to be strong and versatile chelating ligands for transition-metal ions (Adamski et al., 2014). This chelating nature provides complexes with diverse architectures possessing unique and useful photophysical properties (Zhong et al., 2013). Many structural studies of bi- and terpyridine-based metal complexes have been undertaken over the last decades (Kaes et al., 2000). When bi- or terpyridines are used as building blocks, sophisticated architectures such as helicates and cages can be obtained by self-assembly (Yeung et al., 2011; Glasson et al., 2008b ). Although there are number of examples of bi- and terpyridine-based metal complexes with different geometries, structural reports of linear-type quaterpyridines are still scarce (Glasson et al., 2011b ). Organic compounds bearing 2,3′-bi­pyridine have attracted much inter­est because of their unique properties such as proper coordination modes to late transition-metal ions and high triplet energy. As a result of these characteristics, they are widely used as ligands to develop blue phospho­rescent materials (Zaen et al., 2019; Lee et al., 2018). However, no reports of a 2,3′-bi­pyridine-based quaterpyridine with a linear geometry have been published to date. Herein, we describe the mol­ecular and crystal structures of the title compound, which can act as a potential multidentate ligand to various transition-metal ions. The mol­ecular packing of the title compound was further examined with the aid of a Hirshfeld surface analysis.graphic file with name e-75-01511-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. Within the mol­ecule, short intra­molecular C—H⋯O and C—H⋯N contacts (Table 1) enclose S(6) and S(5) rings, respectively, and may contribute to the planarity between outer and inner pyridine rings. The dihedral angles between the outer and inner pyridine rings are 12.51 (8)° (between rings N1/C1–C5 and N2/C6-C10) and 9.67 (9)° (between rings N3/C11–C15 and N4/C16–C20). However the two inner pyridine rings (N2/C6–C10 and N3/C11–C15) are slightly tilted by 20.10 (7)° with respect to each other. This may be due to the steric hindrance between atoms H8 and H11 and between H10 and H13.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯O/N contacts are shown as yellow dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the N3/C11–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.94 2.20 2.808 (2) 122
C4—H4⋯N2 0.94 2.41 2.760 (2) 102
C14—H14⋯O4 0.94 2.16 2.808 (2) 125
C17—H17⋯N3 0.94 2.40 2.752 (2) 102
C22—H22CCg3i 0.97 2.78 3.579 (2) 140

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, adjacent mol­ecules are linked by π–π stacking inter­actions between pyridine rings [Cg1⋯Cg3iii = 3.6600 (10) Å; Cg1⋯Cg4ii = 3.8249 (10) Å; Cg2⋯Cg4iii = 3.9270 (10) Å; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, and N4/C16–C20 rings, respectively; symmetry codes: (ii) x + 1, −y + Inline graphic, z − Inline graphic, (iii) x, −y + Inline graphic, z − Inline graphic], resulting in the formation of a two-dimensional layer structure extending parallel to the ac plane, as shown in Fig. 2. The layer is further stabilized by weak C—H⋯π inter­actions (Table 1, yellow dashed lines in Fig. 2) between (meth­yl)H22CCg3i [Cg3 is the centroid of the N3/C11–C15 ring; symmetry code as in Table 1]. No inter­actions between the layers are observed.

Figure 2.

Figure 2

The two-dimensional supra­molecular network formed through π–π stacking inter­actions (black dashed lines) and inter­molecular C—H⋯π inter­actions (yellow dashed lines). For clarity, H atoms not involved in the inter­molecular inter­actions have been omitted.

Hirshfeld surface analysis  

Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017) to qu­antify and visualize the various inter­molecular close contacts in the mol­ecular packing of the title compound. The Hirshfeld surface shown in Fig. 3 was calculated using a standard (high) surface resolution with the three-dimensional d norm surface mapped over a fixed colour scale of −0.1883 (red) to 1.2065 (blue) a.u.. In Fig. 3, except for three light-red spots, the overall surface mapped over d norm is covered by white and blue colours, indicating that the distances between the contact atoms in inter­molecular contacts are nearly the same as the sum of their van der Waals radii or longer. The light-red spots on the surface indicate the closest inter­molecular H⋯H and C⋯H contacts [H14⋯H18(−x + 1, y − Inline graphic, −z + Inline graphic) = 2.19 Å, C6⋯H24C(x + 1, −y + Inline graphic, z − Inline graphic) = 2.78 Å.

Figure 3.

Figure 3

A view of the Hirshfeld surfaced of the title compound mapped over d norm showing inter­molecular H⋯H and C⋯H contacts using a fixed colour scale of −0.1883 (red) to 1.2065 (blue) a.u. [Symmetry codes: (i) −x + 1, y − Inline graphic, −z + Inline graphic; (ii) −x + 1, y + Inline graphic, −z + Inline graphic; (iii) x + 1, −y + Inline graphic, z − Inline graphic.]

The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, and C⋯N/N⋯C contacts are shown in Fig. 4 af, respectively. The most widely scattered points in the fingerprint plot are related to H⋯H contacts, Fig. 4 b, which make a 52.9% contribution to the Hirshfeld surface. The second largest contribution (17.3%) is by H⋯C/C⋯H contacts (Fig. 4 c). The H⋯O/O⋯H (9.4%), C⋯C (6.4%), C⋯N/N⋯C (5.4%), H⋯N/N⋯H (5.0%), and C⋯O/O⋯C (2.2%) contacts also make significant contributions to the Hirshfeld surface while the N⋯O/O⋯N (0.7%), O⋯O (0.7%), and N⋯N (0.1%) contacts have a negligible influence on the mol­ecular packing.

Figure 4.

Figure 4

(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H···O/O⋯H, (e) C⋯C, and (f) C⋯N/N⋯C contacts. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Database survey  

Although a search of the Cambridge Structural Database (CSD Version 5.40, last update Feb 2019; Groom et al., 2016) for 3,2′:5′,3′′:6′′,3′′′-quaterpyridine, which is the title compound without the meth­oxy substituents, and 4,2′:5′,3′′:6′′,4′′′-quaterpyridine gave no hits, that for 2,2′:5′,3′′:6′′,2′′′-quaterpyridine gave ten hits. One (CIHJUB: Luis et al., 2018) is 2,2′:5′,3′′:6′′,2′′′-quaterpyridine and eight are AgI (GIWKAY: Baxter et al., 1999), CuI (WAHKOF: Baxter et al., 1993), RuII (TOMROD: Glasson et al., 2008a ), or FeII [(OMAMEV: Glasson et al., 2011a; RIXYON, RIXZAA and RIXYUT: Glasson et al., 2008b ) complexes involving the 2,2′:5′,3′′:6′′,2′′′-quaterpyridine ligand with methyl substituents. The remaining one (REHVAB: Baxter et al., 1997) is a CuI complex involving the ligand 2,2′:5′,3′′:6′′,2′′′-quaterpyridine with phenyl substituents.

Synthesis and crystallization  

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The two starting materials, 5-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine and 2′,6′-dimeth­oxy-5-(4,4,5,5,-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2,3′-bi­pyridine were synthesized according to a slight modification of the previous synthetic methodology reported by our group (Zaen et al., 2019). Details of the synthetic procedures and reagents are presented in Fig. 5.

Figure 5.

Figure 5

Synthetic routes and reagents to obtain the title compound: (i) Pd(PPh3)4 (5 mol%), K3PO4 (6 eq), THF/H2O, 373 K, 24 h.

To a 100 ml Schlenk flask were added 5-bromo-2′,6′-dimeth­oxy-2,3′-bi­pyridine (0.46 g, 1.55 mmol), 2′,6′-dimeth­oxy-5-(4,4,5,5,-tetra­methyl-1,3,2-dioxaborolan-2-yl)-2,3′-bi­pyridine (0.64 g, 1.86 mmol), Pd(PPh3)4 (0.09 g, 0.08 mmol), and K3PO4 (2.13 g, 9.28 mmol). The flask was evacuated and back-filled with nitro­gen and THF/H2O (12 ml/9.8 ml) was added under an N2 atmosphere, and the reaction mixture was stirred at 373 K under nitro­gen for 24 h. After cooling to room temperature, the mixture was poured into 100 ml of water and extracted with ethyl acetate (50 ml × 3). The organic layers were combined and then dried with anhydrous MgSO4 and concentrated under reduced pressure. Purification by column chromatography (ethyl­acetate:hexane 1:1, v/v) afford the desired product as a yellow solid (0.33 g, 50%). Pale-yellow crystals were obtained by slow evaporation of a di­chloro­methane/hexane solution of the title compound. 1H NMR (400 MHz, CDCl3) δ 8.91 (dd, J = 2.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 2H), 8.10 (d, J = 7.6 Hz, 2H), 7.93 (dd, J = 8.4, 2.4 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 6.47 (d, J = 8.0 Hz, 2H), 4.06 (s, 3H), 3.99 (s, 3H); 13C NMR(100 MHz, CDCl3) δ 163.3, 160.2, 153.8, 147.5, 142.2, 134.2, 130.9, 123.9, 113.8, 102.2, 53.8, 53.6. Analysis calculated for C24H22N4O4: C 66.97, H 5.15, N 13.02%; found: C 66.93, H 5.12, N 13.06%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.94–0.97 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C24H22N4O4
M r 430.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 7.9556 (6), 14.8583 (11), 17.3362 (12)
β (°) 95.556 (4)
V3) 2039.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.24 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19298, 5090, 3739
R int 0.030
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.160, 1.04
No. of reflections 5090
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901901274X/su5516sup1.cif

e-75-01511-sup1.cif (587.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901274X/su5516Isup2.hkl

e-75-01511-Isup2.hkl (405.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901901274X/su5516Isup3.cml

CCDC reference: 1953451

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C24H22N4O4 F(000) = 904
Mr = 430.45 Dx = 1.402 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.9556 (6) Å Cell parameters from 5328 reflections
b = 14.8583 (11) Å θ = 2.6–27.8°
c = 17.3362 (12) Å µ = 0.10 mm1
β = 95.556 (4)° T = 223 K
V = 2039.6 (3) Å3 Plate, yellow
Z = 4 0.25 × 0.24 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 3739 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 28.4°, θmin = 1.8°
Tmin = 0.673, Tmax = 0.746 h = −10→10
19298 measured reflections k = −17→19
5090 independent reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.5757P] where P = (Fo2 + 2Fc2)/3
5090 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.95531 (17) 0.30630 (8) 0.18517 (7) 0.0449 (3)
O2 1.11979 (18) 0.05085 (9) 0.06420 (7) 0.0518 (3)
O3 0.3179 (2) 0.49944 (9) 0.92984 (8) 0.0598 (4)
O4 0.34148 (15) 0.25399 (7) 0.77125 (7) 0.0414 (3)
N1 1.03508 (18) 0.17731 (10) 0.12555 (8) 0.0393 (3)
N2 0.8189 (2) 0.15075 (10) 0.37266 (9) 0.0473 (4)
N3 0.5594 (2) 0.41616 (10) 0.60438 (8) 0.0446 (4)
N4 0.33254 (18) 0.37725 (10) 0.84952 (8) 0.0394 (3)
C1 0.9663 (2) 0.21499 (11) 0.18490 (9) 0.0384 (4)
C2 1.0519 (2) 0.08936 (12) 0.12445 (10) 0.0417 (4)
C3 1.0021 (2) 0.03287 (13) 0.18274 (11) 0.0464 (4)
H3 1.0169 −0.0299 0.1812 0.056*
C4 0.9309 (2) 0.07415 (11) 0.24195 (10) 0.0391 (4)
H4 0.8953 0.0382 0.2819 0.047*
C5 0.9084 (2) 0.16701 (12) 0.24608 (9) 0.0385 (4)
C6 0.8322 (2) 0.20736 (12) 0.31288 (9) 0.0378 (4)
C7 0.7761 (2) 0.29583 (12) 0.31670 (10) 0.0426 (4)
H7 0.7840 0.3347 0.2744 0.051*
C8 0.7093 (2) 0.32678 (12) 0.38209 (10) 0.0416 (4)
H8 0.6730 0.3868 0.3845 0.050*
C9 0.6954 (2) 0.26934 (11) 0.44454 (9) 0.0362 (4)
C10 0.7519 (2) 0.18211 (13) 0.43460 (10) 0.0461 (4)
H10 0.7420 0.1415 0.4755 0.055*
C11 0.6163 (2) 0.38702 (12) 0.53909 (10) 0.0454 (4)
H11 0.6530 0.4306 0.5052 0.055*
C12 0.6258 (2) 0.29739 (11) 0.51692 (9) 0.0352 (3)
C13 0.5675 (2) 0.23564 (12) 0.56830 (10) 0.0443 (4)
H13 0.5692 0.1739 0.5567 0.053*
C14 0.5075 (2) 0.26401 (12) 0.63572 (10) 0.0441 (4)
H14 0.4672 0.2217 0.6698 0.053*
C15 0.5059 (2) 0.35488 (11) 0.65387 (9) 0.0350 (3)
C16 0.4526 (2) 0.39106 (11) 0.72707 (9) 0.0363 (4)
C17 0.4828 (3) 0.48144 (12) 0.74535 (11) 0.0464 (4)
H17 0.5351 0.5179 0.7103 0.056*
C18 0.4387 (3) 0.51856 (13) 0.81250 (12) 0.0564 (5)
H18 0.4592 0.5796 0.8241 0.068*
C19 0.3625 (2) 0.46282 (12) 0.86309 (10) 0.0455 (4)
C20 0.3758 (2) 0.34235 (11) 0.78363 (9) 0.0350 (4)
C21 1.0326 (3) 0.35294 (14) 0.12610 (11) 0.0546 (5)
H21A 1.0169 0.4172 0.1320 0.082*
H21B 1.1524 0.3393 0.1304 0.082*
H21C 0.9813 0.3340 0.0757 0.082*
C22 1.1533 (3) 0.10987 (14) 0.00148 (10) 0.0497 (5)
H22A 1.2017 0.0755 −0.0385 0.075*
H22B 1.0487 0.1375 −0.0200 0.075*
H22C 1.2321 0.1563 0.0208 0.075*
C23 0.2306 (3) 0.44212 (15) 0.97894 (12) 0.0624 (6)
H23A 0.2054 0.4753 1.0246 0.094*
H23B 0.1261 0.4215 0.9510 0.094*
H23C 0.3010 0.3907 0.9945 0.094*
C24 0.2705 (2) 0.20561 (12) 0.83165 (11) 0.0444 (4)
H24A 0.2518 0.1435 0.8159 0.067*
H24B 0.3477 0.2077 0.8785 0.067*
H24C 0.1638 0.2328 0.8415 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0596 (8) 0.0332 (6) 0.0437 (7) −0.0006 (5) 0.0152 (6) 0.0045 (5)
O2 0.0633 (9) 0.0451 (7) 0.0486 (7) 0.0003 (6) 0.0136 (6) −0.0066 (6)
O3 0.0871 (11) 0.0448 (8) 0.0512 (8) −0.0013 (7) 0.0261 (7) −0.0053 (6)
O4 0.0477 (7) 0.0327 (6) 0.0458 (7) −0.0051 (5) 0.0141 (5) 0.0031 (5)
N1 0.0379 (8) 0.0435 (8) 0.0362 (7) 0.0006 (6) 0.0031 (6) −0.0048 (6)
N2 0.0558 (10) 0.0450 (9) 0.0424 (8) 0.0017 (7) 0.0119 (7) 0.0060 (6)
N3 0.0571 (9) 0.0351 (8) 0.0430 (8) −0.0065 (7) 0.0125 (7) 0.0027 (6)
N4 0.0404 (8) 0.0381 (8) 0.0402 (7) 0.0044 (6) 0.0060 (6) 0.0037 (6)
C1 0.0378 (9) 0.0381 (9) 0.0388 (8) −0.0010 (7) 0.0008 (7) 0.0019 (7)
C2 0.0391 (9) 0.0436 (10) 0.0422 (9) −0.0023 (7) 0.0028 (7) −0.0034 (7)
C3 0.0482 (10) 0.0397 (9) 0.0516 (10) 0.0002 (8) 0.0056 (8) −0.0033 (8)
C4 0.0404 (9) 0.0364 (9) 0.0409 (9) −0.0018 (7) 0.0062 (7) 0.0055 (7)
C5 0.0361 (9) 0.0390 (9) 0.0399 (9) −0.0020 (7) 0.0016 (7) 0.0026 (7)
C6 0.0319 (8) 0.0440 (9) 0.0371 (8) −0.0014 (7) 0.0021 (6) 0.0030 (7)
C7 0.0449 (10) 0.0464 (10) 0.0374 (8) −0.0006 (8) 0.0084 (7) 0.0101 (7)
C8 0.0433 (10) 0.0393 (9) 0.0433 (9) 0.0033 (7) 0.0100 (7) 0.0065 (7)
C9 0.0310 (8) 0.0426 (9) 0.0352 (8) −0.0032 (7) 0.0036 (6) 0.0041 (7)
C10 0.0547 (11) 0.0435 (10) 0.0412 (9) 0.0031 (8) 0.0111 (8) 0.0085 (7)
C11 0.0563 (11) 0.0381 (9) 0.0437 (9) −0.0079 (8) 0.0140 (8) 0.0069 (7)
C12 0.0313 (8) 0.0390 (9) 0.0353 (8) −0.0020 (6) 0.0025 (6) 0.0041 (6)
C13 0.0553 (11) 0.0335 (9) 0.0464 (9) −0.0007 (8) 0.0159 (8) 0.0032 (7)
C14 0.0549 (11) 0.0367 (9) 0.0429 (9) 0.0002 (8) 0.0158 (8) 0.0076 (7)
C15 0.0322 (8) 0.0363 (8) 0.0364 (8) −0.0005 (6) 0.0029 (6) 0.0043 (6)
C16 0.0364 (8) 0.0340 (8) 0.0383 (8) 0.0008 (7) 0.0029 (7) 0.0048 (6)
C17 0.0615 (12) 0.0349 (9) 0.0445 (9) −0.0049 (8) 0.0138 (8) 0.0045 (7)
C18 0.0851 (15) 0.0332 (9) 0.0532 (11) −0.0053 (9) 0.0175 (10) −0.0028 (8)
C19 0.0563 (11) 0.0398 (10) 0.0416 (9) 0.0041 (8) 0.0103 (8) 0.0008 (7)
C20 0.0318 (8) 0.0328 (8) 0.0402 (8) 0.0032 (6) 0.0023 (6) 0.0038 (6)
C21 0.0740 (14) 0.0475 (11) 0.0449 (10) −0.0004 (9) 0.0183 (9) 0.0089 (8)
C22 0.0585 (12) 0.0524 (11) 0.0399 (9) −0.0001 (9) 0.0129 (8) −0.0029 (8)
C23 0.0874 (16) 0.0519 (12) 0.0522 (11) 0.0038 (11) 0.0292 (11) 0.0029 (9)
C24 0.0453 (10) 0.0396 (9) 0.0500 (10) −0.0034 (8) 0.0134 (8) 0.0097 (7)

Geometric parameters (Å, º)

O1—C1 1.359 (2) C9—C12 1.480 (2)
O1—C21 1.425 (2) C10—H10 0.9400
O2—C2 1.349 (2) C11—C12 1.390 (2)
O2—C22 1.442 (2) C11—H11 0.9400
O3—C19 1.357 (2) C12—C13 1.389 (2)
O3—C23 1.431 (2) C13—C14 1.371 (2)
O4—C20 1.3538 (19) C13—H13 0.9400
O4—C24 1.4308 (19) C14—C15 1.387 (2)
N1—C2 1.314 (2) C14—H14 0.9400
N1—C1 1.334 (2) C15—C16 1.478 (2)
N2—C10 1.328 (2) C16—C17 1.395 (2)
N2—C6 1.347 (2) C16—C20 1.405 (2)
N3—C11 1.331 (2) C17—C18 1.364 (3)
N3—C15 1.348 (2) C17—H17 0.9400
N4—C19 1.311 (2) C18—C19 1.388 (3)
N4—C20 1.330 (2) C18—H18 0.9400
C1—C5 1.393 (2) C21—H21A 0.9700
C2—C3 1.400 (3) C21—H21B 0.9700
C3—C4 1.365 (2) C21—H21C 0.9700
C3—H3 0.9400 C22—H22A 0.9700
C4—C5 1.394 (2) C22—H22B 0.9700
C4—H4 0.9400 C22—H22C 0.9700
C5—C6 1.485 (2) C23—H23A 0.9700
C6—C7 1.392 (3) C23—H23B 0.9700
C7—C8 1.377 (2) C23—H23C 0.9700
C7—H7 0.9400 C24—H24A 0.9700
C8—C9 1.391 (2) C24—H24B 0.9700
C8—H8 0.9400 C24—H24C 0.9700
C9—C10 1.388 (3)
C1—O1—C21 116.78 (14) C12—C13—H13 119.7
C2—O2—C22 116.31 (14) C13—C14—C15 120.29 (16)
C19—O3—C23 116.79 (15) C13—C14—H14 119.9
C20—O4—C24 117.33 (13) C15—C14—H14 119.9
C2—N1—C1 118.58 (15) N3—C15—C14 120.19 (15)
C10—N2—C6 118.06 (15) N3—C15—C16 115.81 (14)
C11—N3—C15 118.40 (15) C14—C15—C16 123.97 (15)
C19—N4—C20 118.35 (15) C17—C16—C20 114.46 (15)
N1—C1—O1 116.91 (15) C17—C16—C15 119.20 (15)
N1—C1—C5 124.26 (16) C20—C16—C15 126.31 (15)
O1—C1—C5 118.82 (15) C18—C17—C16 122.02 (17)
N1—C2—O2 118.82 (16) C18—C17—H17 119.0
N1—C2—C3 123.33 (16) C16—C17—H17 119.0
O2—C2—C3 117.84 (16) C17—C18—C19 117.52 (17)
C4—C3—C2 116.12 (16) C17—C18—H18 121.2
C4—C3—H3 121.9 C19—C18—H18 121.2
C2—C3—H3 121.9 N4—C19—O3 118.96 (16)
C3—C4—C5 123.24 (16) N4—C19—C18 123.26 (17)
C3—C4—H4 118.4 O3—C19—C18 117.77 (17)
C5—C4—H4 118.4 N4—C20—O4 116.70 (14)
C1—C5—C4 114.45 (15) N4—C20—C16 124.38 (15)
C1—C5—C6 125.27 (16) O4—C20—C16 118.91 (14)
C4—C5—C6 120.26 (15) O1—C21—H21A 109.5
N2—C6—C7 120.26 (16) O1—C21—H21B 109.5
N2—C6—C5 114.61 (15) H21A—C21—H21B 109.5
C7—C6—C5 125.12 (15) O1—C21—H21C 109.5
C8—C7—C6 120.37 (16) H21A—C21—H21C 109.5
C8—C7—H7 119.8 H21B—C21—H21C 109.5
C6—C7—H7 119.8 O2—C22—H22A 109.5
C7—C8—C9 120.13 (16) O2—C22—H22B 109.5
C7—C8—H8 119.9 H22A—C22—H22B 109.5
C9—C8—H8 119.9 O2—C22—H22C 109.5
C10—C9—C8 115.14 (15) H22A—C22—H22C 109.5
C10—C9—C12 121.38 (15) H22B—C22—H22C 109.5
C8—C9—C12 123.48 (15) O3—C23—H23A 109.5
N2—C10—C9 126.02 (16) O3—C23—H23B 109.5
N2—C10—H10 117.0 H23A—C23—H23B 109.5
C9—C10—H10 117.0 O3—C23—H23C 109.5
N3—C11—C12 125.36 (16) H23A—C23—H23C 109.5
N3—C11—H11 117.3 H23B—C23—H23C 109.5
C12—C11—H11 117.3 O4—C24—H24A 109.5
C13—C12—C11 115.14 (15) O4—C24—H24B 109.5
C13—C12—C9 122.22 (15) H24A—C24—H24B 109.5
C11—C12—C9 122.63 (15) O4—C24—H24C 109.5
C14—C13—C12 120.59 (16) H24A—C24—H24C 109.5
C14—C13—H13 119.7 H24B—C24—H24C 109.5
C2—N1—C1—O1 178.19 (15) N3—C11—C12—C9 −178.07 (17)
C2—N1—C1—C5 −0.8 (2) C10—C9—C12—C13 −19.2 (3)
C21—O1—C1—N1 −5.8 (2) C8—C9—C12—C13 160.80 (17)
C21—O1—C1—C5 173.33 (16) C10—C9—C12—C11 159.83 (17)
C1—N1—C2—O2 179.34 (15) C8—C9—C12—C11 −20.2 (3)
C1—N1—C2—C3 −0.4 (3) C11—C12—C13—C14 −0.6 (3)
C22—O2—C2—N1 −6.0 (2) C9—C12—C13—C14 178.47 (17)
C22—O2—C2—C3 173.76 (16) C12—C13—C14—C15 −0.7 (3)
N1—C2—C3—C4 1.0 (3) C11—N3—C15—C14 −1.3 (3)
O2—C2—C3—C4 −178.75 (15) C11—N3—C15—C16 176.97 (15)
C2—C3—C4—C5 −0.4 (3) C13—C14—C15—N3 1.7 (3)
N1—C1—C5—C4 1.3 (2) C13—C14—C15—C16 −176.46 (17)
O1—C1—C5—C4 −177.71 (15) N3—C15—C16—C17 −9.1 (2)
N1—C1—C5—C6 179.71 (15) C14—C15—C16—C17 169.13 (18)
O1—C1—C5—C6 0.7 (2) N3—C15—C16—C20 172.75 (15)
C3—C4—C5—C1 −0.6 (2) C14—C15—C16—C20 −9.0 (3)
C3—C4—C5—C6 −179.12 (16) C20—C16—C17—C18 −0.7 (3)
C10—N2—C6—C7 −0.3 (3) C15—C16—C17—C18 −179.08 (18)
C10—N2—C6—C5 179.94 (16) C16—C17—C18—C19 0.3 (3)
C1—C5—C6—N2 −166.43 (16) C20—N4—C19—O3 179.54 (16)
C4—C5—C6—N2 11.9 (2) C20—N4—C19—C18 −0.7 (3)
C1—C5—C6—C7 13.8 (3) C23—O3—C19—N4 −3.8 (3)
C4—C5—C6—C7 −167.89 (17) C23—O3—C19—C18 176.41 (19)
N2—C6—C7—C8 1.1 (3) C17—C18—C19—N4 0.4 (3)
C5—C6—C7—C8 −179.12 (16) C17—C18—C19—O3 −179.80 (19)
C6—C7—C8—C9 −0.8 (3) C19—N4—C20—O4 −179.38 (15)
C7—C8—C9—C10 −0.3 (2) C19—N4—C20—C16 0.2 (2)
C7—C8—C9—C12 179.71 (16) C24—O4—C20—N4 −3.2 (2)
C6—N2—C10—C9 −1.0 (3) C24—O4—C20—C16 177.18 (15)
C8—C9—C10—N2 1.2 (3) C17—C16—C20—N4 0.5 (2)
C12—C9—C10—N2 −178.79 (17) C15—C16—C20—N4 178.68 (15)
C15—N3—C11—C12 0.0 (3) C17—C16—C20—O4 −179.93 (15)
N3—C11—C12—C13 1.0 (3) C15—C16—C20—O4 −1.7 (2)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the N3/C11–C15 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7···O1 0.94 2.20 2.808 (2) 122
C4—H4···N2 0.94 2.41 2.760 (2) 102
C14—H14···O4 0.94 2.16 2.808 (2) 125
C17—H17···N3 0.94 2.40 2.752 (2) 102
C22—H22C···Cg3i 0.97 2.78 3.579 (2) 140

Symmetry code: (i) x+1, −y+1/2, z−1/2.

Funding Statement

This work was funded by National Research Foundation of Korea grants NRF-2016R1D1A1B01012630 and NRF-2018R1D1A3A03000716. Kangwon National University grant 2018 Research Grant (PoINT).

References

  1. Adamski, A., Wałęsa-Chorab, M., Kubicki, M., Hnatejko, Z. & Patroniak, V. (2014). Polyhedron, 81, 188–195.
  2. Baxter, P., Lehn, J.-M., DeCian, A. & Fischer, J. (1993). Angew. Chem. Int. Ed. Engl. 32, 69–72.
  3. Baxter, P. N. W., Lehn, J.-M., Baum, G. & Fenske, D. (1999). Chem. Eur. J. 5, 102–112.
  4. Baxter, P. N. W., Lehn, J.-M. & Rissanen, K. (1997). Chem. Commun. pp. 1323–1324.
  5. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Glasson, C. R. K., Clegg, J. K., McMurtrie, J. C., Meehan, G. V., Lindoy, L. F., Motti, C. A., Moubaraki, B., Murray, K. S. & Cashion, J. D. (2011a). Chem. Sci. 2, 540–543.
  8. Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Smith, J. A., Keene, F. R. & Motti, C. (2008a). Chem. Eur. J. 14, 10535–10538. [DOI] [PubMed]
  9. Glasson, C. R. K., Meehan, G. V., Clegg, J. K., Lindoy, L. F., Turner, P., Duriska, M. B. & Willis, R. (2008b). Chem. Commun. pp. 1190–1192. [DOI] [PubMed]
  10. Glasson, C. R. K., Meehan, G. V., Motti, C. A., Clegg, J. K., Turner, P., Jensen, P. & Lindoy, L. F. (2011b). Dalton Trans. 40, 10481–10490. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. [DOI] [PubMed]
  13. Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647.
  14. Luis, E. T., Iranmanesh, H., Arachchige, K. S. A., Donald, W. A., Quach, G., Moore, E. G. & Beves, J. E. (2018). Inorg. Chem. 57, 8476–8486. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Yeung, H.-L., Sham, K.-C., Wong, W.-Y., Wong, C.-Y. & Kwong, H.-L. (2011). Eur. J. Inorg. Chem. pp. 5112–5124.
  20. Zaen, R., Kim, M., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Dalton Trans. 48, 9734–9743. [DOI] [PubMed]
  21. Zhong, Y.-W., Yao, C.-J. & Nie, H.-J. (2013). Coord. Chem. Rev. 257, 1357–1372.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901901274X/su5516sup1.cif

e-75-01511-sup1.cif (587.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901901274X/su5516Isup2.hkl

e-75-01511-Isup2.hkl (405.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901901274X/su5516Isup3.cml

CCDC reference: 1953451

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES