The title high-spin iron(II) complex is six-coordinated with two trifluoromethanesulfonato and four tetrahydrofuran ligands. It is isostructural with the corresponding Co, Ni and Zn complexes known from the literature.
Keywords: crystal structure, high-spin iron(II), split-mosaic model
Abstract
The title compound, [Fe(CF3SO3)2(C4H8O)4], is octahedral with two trifluoromethanesulfonate ligands in trans positions and four tetrahydrofurane molecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke space group P212121 and is enantiomerically pure. The packing of the molecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin.
Chemical context
The trifluoromethanesulfonato anion is usually weakly coordinating to metals, and the salts thereof are consequently important starting compounds for the exchange with other ligands. In an attempt of such a synthesis on iron(II) we obtained the starting material back with tetrahydrofuran (THF) molecules from the solvent completing the sixfold coordination environment. The overall composition of the title compound (I) is then [Fe(CF3SO3)2(C4H8O)4].
Structural commentary
A molecular plot of (I) is shown in Fig. 1 ▸ with selected bond lengths and bond angles given in Table 1 ▸. The present Fe compound is isostructural to the corresponding Co, Ni and Zn compounds known from the literature (Amel’chenkova et al., 2006 ▸). An isostructural Cu compound is mentioned in the same publication but no further details are given. An overlay of the isostructural compounds is presented in Fig. 2 ▸. The comparison of metal–oxygen distances in Table 2 ▸ follows the trend of effective ionic radii (Shannon, 1976 ▸) with 0.92 Å for octahedral Fe2+ (high-spin), 0.885 Å for Co2+ (high-spin), 0.83 Å for Ni2+ and 0.88 Å for Zn2+. From this comparison we can conclude that the Fe ion in (I) has a high-spin electronic configuration. It should also be noted that there are no significant differences in metal–oxygen distances between the partially negative triflate and the neutral THF.
Figure 1.
A view of the molecular structure of (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.
Table 1. Selected geometric parameters (Å, °).
| S1—O2 | 1.4325 (16) | S2—O6 | 1.4290 (17) |
| S1—O3 | 1.4346 (15) | S2—O5 | 1.4329 (16) |
| S1—O1 | 1.4608 (14) | S2—O4 | 1.4608 (14) |
| O8—Fe1—O10 | 177.82 (6) | O9—Fe1—O7 | 175.98 (6) |
| O8—Fe1—O4 | 87.98 (5) | O8—Fe1—O1 | 89.70 (5) |
| O10—Fe1—O4 | 89.99 (6) | O10—Fe1—O1 | 92.31 (5) |
| O8—Fe1—O9 | 87.53 (6) | O4—Fe1—O1 | 177.54 (6) |
| O10—Fe1—O9 | 93.31 (5) | O9—Fe1—O1 | 89.86 (5) |
| O4—Fe1—O9 | 90.86 (6) | O7—Fe1—O1 | 88.90 (5) |
| O8—Fe1—O7 | 88.64 (6) | S1—O1—Fe1 | 135.31 (9) |
| O10—Fe1—O7 | 90.57 (5) | S2—O4—Fe1 | 142.51 (9) |
| O4—Fe1—O7 | 90.22 (6) |
Figure 2.
Overlay plot of the isostructural Co, Ni, and Zn complexes (Amel’chenkova et al., 2006 ▸) with respect to the Fe complex (I). The coordinates of the Ni and Zn complexes have been inverted for this comparison. Hydrogen atoms are omitted for clarity. The quaternion fit algorithm (Mackay, 1984 ▸) as implemented in PLATON (Spek, 2009 ▸) was used for the preparation of the plot. Color scheme: Fe complex (blue),Co complex (green), Ni complex (red), and Zn complex (black).
Table 2. Comparison between the metal–oxygen distances of the Fe compound (I) and the isostructural Co, Ni and Zn compounds from the literature (Amel’chenkova et al., 2006 ▸).
The atom names of the Co and Ni complexes have been changed for consistency.
| M = Fe | M = Co | Δ Fe/Co | M = Ni | Δ Fe/Ni | M = Zn | Δ Fe/Zn | |
|---|---|---|---|---|---|---|---|
| M—O1 | 2.1279 (14) | 2.115 (3) | 0.013 (3) | 2.034 (3) | 0.094 (3) | 2.078 (3) | 0.050 (3) |
| M—O4 | 2.1179 (14) | 2.098 (3) | 0.020 (3) | 2.031 (3) | 0.087 (3) | 2.080 (3) | 0.038 (3) |
| M—O7 | 2.1239 (12) | 2.088 (3) | 0.036 (3) | 2.054 (2) | 0.070 (2) | 2.087 (3) | 0.037 (3) |
| M—O8 | 2.1024 (13) | 2.076 (3) | 0.026 (3) | 2.036 (2) | 0.066 (2) | 2.088 (3) | 0.014 (3) |
| M—O9 | 2.1187 (13) | 2.093 (3) | 0.026 (3) | 2.051 (2) | 0.068 (2) | 2.092 (3) | 0.027 (3) |
| M—O10 | 2.1153 (13) | 2.103 (3) | 0.012 (3) | 2.039 (3) | 0.076 (3) | 2.084 (3) | 0.031 (3) |
In the octahedral compound (I), the triflate ligands are in trans positions and the equatorial plane is formed by O atoms of THF. The Fe atom is approximately in the equatorial plane at a distance of 0.0079 (3) Å from the least-squares plane of the THF oxygen atoms. The FeO6 octahedron is nearly undistorted with a quadratic elongation of 1.001 and an angle variance of 2.79°2 (Robinson et al., 1971 ▸). To the best of our knowledge, the crystal structure of compound (I) is the first of a trans triflate Fe complex with an FeO6 chromophore. Similar complexes with N atoms in the equatorial plane are known from the literature. In the acetonitrile complex [Fe(CF3SO3)2(CH3CN)4], the core octahedron is similarly undistorted (Hagen, 2000 ▸), while the pyridine complex [Fe(CF3SO3)2(C5H5N)4] is slightly tetragonally compressed (Haynes et al., 1986 ▸).
As expected, all four coordinated THF molecules are puckered. The rings at O7 and O8 are best described as having an envelope conformation, the rings at O9 and O10 as being in a twist conformation. The O atoms are coordinated to the metal in a trigonal geometry with angle sums of 358.7 (2)–360.0 (2)°.
The two triflate ligands adopt a staggered conformation with O—S—C—F torsion angles between 56.6 (2) and 64.11 (19)°. The S—O distances to the coordinating oxygen atoms are significantly longer than to the non-coordinating oxygen atoms (Table 1 ▸). A search in the Cambridge Structural Database (update May 2019; Groom et al., 2016 ▸) shows a large variation between 99.3 and 178.2° in S—O—metal bond angles for the weakly coordinating triflate ligand (1501 observations, non-disordered structures). The angles of 135.31 (9) and 142.51 (9)° in compound (I) are well within this range.
The octahedral symmetry of the inner-sphere coordination environment (see above) is reduced to approximate C 2 symmetry by the arrangement of the triflate anion (Fig. 3 ▸). If the THF molecules are considered as well, the overall symmetry reduces to C 1. Despite the achiral ligands, the metal complex is thus chiral in the crystal.
Figure 3.
The approximate Oh symmetry of the FeO6 polyhedron (left, r.m.s.d. 0.0489 Å) is reduced by the trifluoromethanesulfonate coordination in the second coordination shell to approximate C 2 (center, r.m.s.d. 0.1460 Å). If the coordinated THF molecules are taken into consideration, the symmetry is only C 1 (right). The algorithm of Pilati & Forni (1998 ▸) was used to calculate the r.m.s.d. values.
Supramolecular features
The crystal structure of (I) has a packing index (Kitajgorodskij, 1973 ▸) of only 68.7%, which is at the lower end of the 65–75% range expected for organic solids (Dunitz, 1995 ▸). Indeed, the packing is determined by only weak C—H⋯O interactions with the THF atoms as donors and the non-coordinated triflate oxygen atoms as acceptors (Table 3 ▸). Every molecule of (I) is the donor and acceptor of three intermolecular C—H⋯O hydrogen bonds and has thus a coordination number of six. This results in a three-dimensional network.
Table 3. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3B⋯O2i | 0.99 | 2.55 | 3.514 (3) | 164 |
| C11—H11B⋯O5 | 0.99 | 2.59 | 3.412 (3) | 140 |
| C12—H12A⋯O3ii | 0.99 | 2.49 | 3.388 (3) | 151 |
| C14—H14A⋯O2 | 0.99 | 2.51 | 3.429 (3) | 155 |
| C16—H16B⋯O6iii | 0.99 | 2.56 | 3.476 (3) | 154 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Synthesis and crystallization
The title compound was obtained from an experiment aimed at synthesizing an iron coordination compound based on an oxazine ligand. In a glovebox under a dinitrogen atmosphere, 4a,8a-dimethyloctahydro-[1,4]oxazino[3,2-b][1,4]oxazine (159 mg, 0.923 mmol) and Fe(OTf)2·2MeCN (400 mg, 0.917 mmol) were placed in separate vials. The ligand was dissolved in THF (about 12 mL) and added to the vial containing Fe(OTf)2·2MeCN under gentle stirring. The color of the solution turned from black to dark red and stirring was maintained overnight at room temperature. The resulting compound was precipitated twice by dropwise addition of a concentrated THF solution into hexane. The slightly pink-colored supernatants were removed by decantation. The precipitated solids were washed with hexanes and dried under vacuum. The decanted solutions were stored in a freezer at 238 K and over a month light-pink crystals slowly grew.
A second crystallization starting from the isolated precipitate in an 1:1 THF:hexane solution grew similar crystals over several months at 238 K. 1H-NMR in d 3-MeCN showed no paramagnetic peaks but small diamagnetic peaks of THF (3.64, 1.79 ppm) and hexane (1.28, 0.89 ppm). 19F-NMR showed a single sharp peak at −79.36 ppm.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. H atoms were placed in calculated positions (C—H = 0.99 Å) and refined as riding with U iso(H) = 1.2U eq(C).
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | [Fe(CF3O3S)2(C4H8O)4] |
| M r | 642.40 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 150 |
| a, b, c (Å) | 8.6618 (3), 16.2610 (6), 19.0572 (4) |
| V (Å3) | 2684.20 (14) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.81 |
| Crystal size (mm) | 0.43 × 0.32 × 0.18 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.652, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 43720, 6166, 6027 |
| R int | 0.020 |
| (sin θ/λ)max (Å−1) | 0.649 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.019, 0.051, 1.07 |
| No. of reflections | 6166 |
| No. of parameters | 335 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.33, −0.28 |
| Absolute structure | Refined as an inversion twin |
| Absolute structure parameter | −0.001 (10) |
The reflection profiles in Eval15 (Schreurs et al., 2010 ▸) were based on a split-mosaic model. Two fragments were rotated by 0.56° with respect to each other. An example for a reflection profile is shown in Fig. 4 ▸.
Figure 4.
Height plot of the pixel intensities of reflection hkl = (5,
,
). The central frame (scan width 0.3°) is shown. Observed intensities (left) and model intensities (right). A split-mosaic model was assumed for the prediction of the profile.
Because (I) crystallizes in the Sohncke space group P212121 without second kind symmetry operations, it is susceptible for an absolute structure determination. A full-matrix refinement as inversion twin results in a Flack parameter of x = −0.001 (10) (Flack, 1983 ▸). Within standard uncertainties, the crystal structure can consequently be considered as enantiomerically pure. The standard uncertainty is corrected for the different number of observations in the point group versus the Laue group symmetry (Sheldrick, 2015 ▸). If this correction is not applied (program SHELXL97, Sheldrick, 2008 ▸), the Flack parameter is x = −0.001 (8). Analysis of 2590 intensity quotients (Parsons et al. 2013 ▸) results in an absolute structure parameter of z = −0.001 (2). Similarly, a likelihood analysis on Bijvoet differences (Hooft et al., 2008 ▸) gives an absolute structure parameter y = −0.000 (1). This analysis uses a t-value of 99, resulting in a slope of 0.885 and an intercept of −0.037. The student-t probability plot is linear with a correlation coefficient of 1.000. All of these different methods give a consistent result for the present crystal. The measurement of a second crystal results in x = 0.015 (11) from an inversion twin refinement, but very low standard uncertainties in the values of z = 0.015 (2) and y = 0.0012 (1) leave reasons for doubt concerning its enantiopurity, although the Bijvoet difference related probabilities P2/P3 (true) are 1.000 and the probability P3 (false) is 0.000 in both crystals, suggesting that both crystals are enantiopure.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153Isup2.hkl
CCDC reference: 1955192
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).
supplementary crystallographic information
Crystal data
| [Fe(CF3O3S)2(C4H8O)4] | Dx = 1.590 Mg m−3 |
| Mr = 642.40 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P212121 | Cell parameters from 40729 reflections |
| a = 8.6618 (3) Å | θ = 1.6–27.5° |
| b = 16.2610 (6) Å | µ = 0.81 mm−1 |
| c = 19.0572 (4) Å | T = 150 K |
| V = 2684.20 (14) Å3 | Block, light pink |
| Z = 4 | 0.43 × 0.32 × 0.18 mm |
| F(000) = 1328 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 6027 reflections with I > 2σ(I) |
| Radiation source: sealed tube | Rint = 0.020 |
| φ and ω scans | θmax = 27.5°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
| Tmin = 0.652, Tmax = 0.746 | k = −21→21 |
| 43720 measured reflections | l = −24→24 |
| 6166 independent reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
| wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0277P)2 + 0.6586P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max = 0.001 |
| 6166 reflections | Δρmax = 0.33 e Å−3 |
| 335 parameters | Δρmin = −0.28 e Å−3 |
| 0 restraints | Absolute structure: Refined as an inversion twin |
| Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (10) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refined as a two-component inversion twin |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Fe1 | 0.50772 (3) | 0.48861 (2) | 0.86831 (2) | 0.01643 (6) | |
| S1 | 0.81595 (5) | 0.57825 (3) | 0.93928 (2) | 0.02277 (10) | |
| S2 | 0.32496 (6) | 0.31474 (3) | 0.81507 (2) | 0.02265 (10) | |
| F1 | 0.9574 (2) | 0.68741 (12) | 1.01554 (11) | 0.0680 (6) | |
| F2 | 0.7121 (2) | 0.68477 (9) | 1.03052 (7) | 0.0470 (4) | |
| F3 | 0.8062 (3) | 0.73954 (9) | 0.93805 (9) | 0.0590 (5) | |
| F4 | 0.06455 (18) | 0.35905 (12) | 0.75689 (10) | 0.0558 (4) | |
| F5 | 0.14957 (18) | 0.24184 (9) | 0.72262 (9) | 0.0480 (4) | |
| F6 | 0.2551 (2) | 0.35272 (10) | 0.68562 (7) | 0.0508 (4) | |
| O1 | 0.65973 (16) | 0.57880 (9) | 0.91040 (7) | 0.0240 (3) | |
| O2 | 0.93533 (19) | 0.58245 (12) | 0.88737 (9) | 0.0406 (4) | |
| O3 | 0.83890 (17) | 0.52029 (9) | 0.99506 (8) | 0.0324 (3) | |
| O4 | 0.34877 (17) | 0.40267 (8) | 0.82643 (8) | 0.0274 (3) | |
| O5 | 0.45752 (17) | 0.27184 (10) | 0.78893 (9) | 0.0353 (4) | |
| O6 | 0.2398 (2) | 0.27486 (11) | 0.86955 (9) | 0.0428 (4) | |
| O7 | 0.38706 (15) | 0.48776 (10) | 0.96533 (6) | 0.0238 (3) | |
| O8 | 0.35941 (17) | 0.58263 (8) | 0.83381 (7) | 0.0256 (3) | |
| O9 | 0.62129 (17) | 0.49769 (8) | 0.77015 (7) | 0.0264 (3) | |
| O10 | 0.64976 (15) | 0.39087 (8) | 0.90293 (7) | 0.0235 (3) | |
| C1 | 0.8230 (3) | 0.67820 (14) | 0.98276 (12) | 0.0350 (5) | |
| C2 | 0.1914 (3) | 0.31710 (13) | 0.74133 (11) | 0.0296 (4) | |
| C3 | 0.2234 (2) | 0.46794 (15) | 0.97287 (10) | 0.0305 (5) | |
| H3A | 0.203548 | 0.410133 | 0.959313 | 0.037* | |
| H3B | 0.159680 | 0.504403 | 0.943011 | 0.037* | |
| C4 | 0.1865 (2) | 0.48144 (16) | 1.05024 (11) | 0.0354 (5) | |
| H4A | 0.115020 | 0.438696 | 1.067968 | 0.042* | |
| H4B | 0.139912 | 0.536288 | 1.058032 | 0.042* | |
| C5 | 0.3443 (2) | 0.47496 (15) | 1.08559 (10) | 0.0308 (4) | |
| H5A | 0.346138 | 0.504546 | 1.130987 | 0.037* | |
| H5B | 0.374432 | 0.416917 | 1.093207 | 0.037* | |
| C6 | 0.4466 (2) | 0.51605 (14) | 1.03204 (9) | 0.0272 (4) | |
| H6A | 0.439699 | 0.576664 | 1.035736 | 0.033* | |
| H6B | 0.555633 | 0.499216 | 1.038254 | 0.033* | |
| C7 | 0.2531 (3) | 0.57493 (15) | 0.77512 (11) | 0.0349 (5) | |
| H7A | 0.159543 | 0.544020 | 0.789144 | 0.042* | |
| H7B | 0.302789 | 0.546152 | 0.735315 | 0.042* | |
| C8 | 0.2128 (3) | 0.66148 (15) | 0.75551 (12) | 0.0358 (5) | |
| H8A | 0.107456 | 0.664582 | 0.735575 | 0.043* | |
| H8B | 0.287162 | 0.683703 | 0.720896 | 0.043* | |
| C9 | 0.2226 (3) | 0.70770 (13) | 0.82393 (12) | 0.0318 (5) | |
| H9A | 0.250509 | 0.765977 | 0.815906 | 0.038* | |
| H9B | 0.123089 | 0.705398 | 0.849438 | 0.038* | |
| C10 | 0.3467 (3) | 0.66399 (13) | 0.86392 (13) | 0.0417 (6) | |
| H10A | 0.445941 | 0.693786 | 0.859551 | 0.050* | |
| H10B | 0.319250 | 0.660390 | 0.914247 | 0.050* | |
| C11 | 0.6152 (3) | 0.44132 (13) | 0.71141 (10) | 0.0274 (4) | |
| H11A | 0.518112 | 0.448247 | 0.684649 | 0.033* | |
| H11B | 0.622800 | 0.383601 | 0.727581 | 0.033* | |
| C12 | 0.7528 (3) | 0.46439 (15) | 0.66738 (12) | 0.0393 (5) | |
| H12A | 0.738428 | 0.447800 | 0.617830 | 0.047* | |
| H12B | 0.848683 | 0.439136 | 0.685716 | 0.047* | |
| C13 | 0.7560 (4) | 0.55698 (18) | 0.67491 (16) | 0.0593 (9) | |
| H13A | 0.863015 | 0.577957 | 0.671068 | 0.071* | |
| H13B | 0.692138 | 0.583316 | 0.638162 | 0.071* | |
| C14 | 0.6920 (4) | 0.57395 (14) | 0.74568 (11) | 0.0407 (6) | |
| H14A | 0.775102 | 0.591301 | 0.778098 | 0.049* | |
| H14B | 0.613879 | 0.618318 | 0.743218 | 0.049* | |
| C15 | 0.6119 (3) | 0.33496 (14) | 0.95980 (11) | 0.0316 (4) | |
| H15A | 0.502945 | 0.317000 | 0.956510 | 0.038* | |
| H15B | 0.628145 | 0.361845 | 1.005821 | 0.038* | |
| C16 | 0.7192 (3) | 0.26300 (15) | 0.95120 (13) | 0.0376 (5) | |
| H16A | 0.677552 | 0.222297 | 0.917507 | 0.045* | |
| H16B | 0.739603 | 0.235545 | 0.996623 | 0.045* | |
| C17 | 0.8638 (3) | 0.30493 (17) | 0.92264 (14) | 0.0417 (6) | |
| H17A | 0.922310 | 0.332764 | 0.960436 | 0.050* | |
| H17B | 0.932237 | 0.265169 | 0.898545 | 0.050* | |
| C18 | 0.7963 (2) | 0.36611 (13) | 0.87176 (12) | 0.0292 (4) | |
| H18A | 0.865616 | 0.414073 | 0.866134 | 0.035* | |
| H18B | 0.779706 | 0.340471 | 0.825253 | 0.035* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Fe1 | 0.01825 (11) | 0.01659 (11) | 0.01444 (10) | 0.00166 (10) | 0.00053 (9) | −0.00065 (8) |
| S1 | 0.0182 (2) | 0.0244 (2) | 0.0257 (2) | −0.00151 (17) | 0.00011 (18) | −0.00155 (17) |
| S2 | 0.0229 (2) | 0.0189 (2) | 0.0261 (2) | −0.00106 (17) | −0.00181 (18) | −0.00144 (16) |
| F1 | 0.0548 (10) | 0.0586 (11) | 0.0907 (14) | −0.0162 (8) | −0.0327 (10) | −0.0222 (10) |
| F2 | 0.0648 (10) | 0.0402 (8) | 0.0360 (7) | 0.0033 (7) | 0.0047 (7) | −0.0135 (6) |
| F3 | 0.0976 (14) | 0.0258 (7) | 0.0536 (9) | −0.0106 (8) | −0.0009 (10) | 0.0063 (7) |
| F4 | 0.0342 (7) | 0.0635 (11) | 0.0697 (11) | 0.0195 (7) | −0.0173 (7) | −0.0151 (9) |
| F5 | 0.0478 (9) | 0.0322 (7) | 0.0640 (9) | −0.0105 (6) | −0.0218 (7) | −0.0118 (7) |
| F6 | 0.0648 (10) | 0.0564 (9) | 0.0311 (7) | −0.0160 (8) | −0.0116 (7) | 0.0056 (7) |
| O1 | 0.0226 (6) | 0.0237 (7) | 0.0256 (6) | −0.0001 (5) | −0.0033 (5) | −0.0029 (5) |
| O2 | 0.0279 (7) | 0.0495 (10) | 0.0443 (10) | −0.0002 (7) | 0.0124 (7) | −0.0004 (8) |
| O3 | 0.0293 (7) | 0.0315 (7) | 0.0364 (7) | 0.0018 (6) | −0.0072 (6) | 0.0046 (6) |
| O4 | 0.0284 (7) | 0.0211 (7) | 0.0326 (7) | 0.0000 (5) | −0.0059 (6) | −0.0067 (6) |
| O5 | 0.0274 (7) | 0.0271 (8) | 0.0514 (9) | 0.0054 (6) | −0.0033 (7) | −0.0092 (7) |
| O6 | 0.0478 (10) | 0.0439 (9) | 0.0368 (8) | −0.0087 (8) | 0.0054 (8) | 0.0099 (8) |
| O7 | 0.0173 (6) | 0.0382 (8) | 0.0160 (5) | −0.0010 (6) | 0.0006 (4) | −0.0031 (6) |
| O8 | 0.0334 (8) | 0.0201 (6) | 0.0233 (6) | 0.0088 (6) | −0.0091 (6) | −0.0057 (5) |
| O9 | 0.0397 (7) | 0.0196 (7) | 0.0199 (6) | −0.0031 (6) | 0.0099 (5) | −0.0025 (5) |
| O10 | 0.0199 (7) | 0.0233 (6) | 0.0273 (6) | 0.0039 (5) | 0.0045 (5) | 0.0053 (5) |
| C1 | 0.0411 (12) | 0.0290 (10) | 0.0351 (11) | −0.0086 (10) | −0.0066 (10) | −0.0027 (9) |
| C2 | 0.0285 (10) | 0.0247 (9) | 0.0356 (10) | −0.0027 (8) | −0.0070 (9) | −0.0049 (8) |
| C3 | 0.0171 (9) | 0.0492 (13) | 0.0253 (9) | −0.0037 (8) | 0.0017 (7) | 0.0003 (9) |
| C4 | 0.0244 (9) | 0.0533 (14) | 0.0284 (9) | 0.0015 (10) | 0.0073 (8) | 0.0001 (10) |
| C5 | 0.0309 (10) | 0.0433 (12) | 0.0183 (8) | −0.0017 (9) | 0.0034 (7) | 0.0006 (8) |
| C6 | 0.0274 (9) | 0.0374 (11) | 0.0169 (8) | −0.0044 (8) | 0.0002 (7) | −0.0043 (8) |
| C7 | 0.0416 (12) | 0.0330 (11) | 0.0301 (10) | 0.0088 (10) | −0.0163 (9) | −0.0054 (9) |
| C8 | 0.0390 (12) | 0.0357 (12) | 0.0325 (11) | 0.0092 (10) | −0.0090 (9) | 0.0042 (9) |
| C9 | 0.0362 (11) | 0.0213 (9) | 0.0379 (11) | 0.0063 (8) | −0.0023 (9) | 0.0022 (8) |
| C10 | 0.0577 (15) | 0.0241 (10) | 0.0432 (12) | 0.0170 (10) | −0.0213 (12) | −0.0150 (10) |
| C11 | 0.0372 (10) | 0.0255 (10) | 0.0195 (8) | −0.0029 (8) | 0.0047 (8) | −0.0057 (7) |
| C12 | 0.0488 (14) | 0.0415 (13) | 0.0275 (10) | −0.0022 (10) | 0.0154 (10) | −0.0072 (9) |
| C13 | 0.084 (2) | 0.0427 (15) | 0.0515 (16) | −0.0202 (15) | 0.0368 (16) | −0.0027 (12) |
| C14 | 0.0679 (17) | 0.0247 (10) | 0.0295 (10) | −0.0127 (11) | 0.0150 (11) | 0.0011 (8) |
| C15 | 0.0301 (10) | 0.0353 (11) | 0.0294 (10) | 0.0062 (9) | 0.0039 (8) | 0.0126 (8) |
| C16 | 0.0424 (12) | 0.0317 (11) | 0.0386 (11) | 0.0109 (10) | 0.0024 (10) | 0.0136 (9) |
| C17 | 0.0284 (11) | 0.0489 (14) | 0.0479 (13) | 0.0154 (10) | 0.0012 (10) | 0.0088 (11) |
| C18 | 0.0245 (9) | 0.0269 (9) | 0.0363 (10) | 0.0057 (7) | 0.0080 (9) | 0.0020 (9) |
Geometric parameters (Å, º)
| Fe1—O8 | 2.1024 (13) | C5—H5B | 0.9900 |
| Fe1—O10 | 2.1153 (13) | C6—H6A | 0.9900 |
| Fe1—O4 | 2.1179 (14) | C6—H6B | 0.9900 |
| Fe1—O9 | 2.1187 (13) | C7—C8 | 1.497 (3) |
| Fe1—O7 | 2.1239 (12) | C7—H7A | 0.9900 |
| Fe1—O1 | 2.1279 (14) | C7—H7B | 0.9900 |
| S1—O2 | 1.4325 (16) | C8—C9 | 1.507 (3) |
| S1—O3 | 1.4346 (15) | C8—H8A | 0.9900 |
| S1—O1 | 1.4608 (14) | C8—H8B | 0.9900 |
| S1—C1 | 1.825 (2) | C9—C10 | 1.497 (3) |
| S2—O6 | 1.4290 (17) | C9—H9A | 0.9900 |
| S2—O5 | 1.4329 (16) | C9—H9B | 0.9900 |
| S2—O4 | 1.4608 (14) | C10—H10A | 0.9900 |
| S2—C2 | 1.821 (2) | C10—H10B | 0.9900 |
| F1—C1 | 1.329 (3) | C11—C12 | 1.505 (3) |
| F2—C1 | 1.328 (3) | C11—H11A | 0.9900 |
| F3—C1 | 1.320 (3) | C11—H11B | 0.9900 |
| F4—C2 | 1.327 (3) | C12—C13 | 1.513 (4) |
| F5—C2 | 1.325 (2) | C12—H12A | 0.9900 |
| F6—C2 | 1.330 (3) | C12—H12B | 0.9900 |
| O7—C6 | 1.447 (2) | C13—C14 | 1.484 (3) |
| O7—C3 | 1.461 (2) | C13—H13A | 0.9900 |
| O8—C10 | 1.446 (2) | C13—H13B | 0.9900 |
| O8—C7 | 1.454 (2) | C14—H14A | 0.9900 |
| O9—C11 | 1.448 (2) | C14—H14B | 0.9900 |
| O9—C14 | 1.459 (3) | C15—C16 | 1.503 (3) |
| O10—C15 | 1.452 (2) | C15—H15A | 0.9900 |
| O10—C18 | 1.458 (2) | C15—H15B | 0.9900 |
| C3—C4 | 1.525 (3) | C16—C17 | 1.527 (3) |
| C3—H3A | 0.9900 | C16—H16A | 0.9900 |
| C3—H3B | 0.9900 | C16—H16B | 0.9900 |
| C4—C5 | 1.528 (3) | C17—C18 | 1.507 (3) |
| C4—H4A | 0.9900 | C17—H17A | 0.9900 |
| C4—H4B | 0.9900 | C17—H17B | 0.9900 |
| C5—C6 | 1.508 (3) | C18—H18A | 0.9900 |
| C5—H5A | 0.9900 | C18—H18B | 0.9900 |
| O8—Fe1—O10 | 177.82 (6) | C5—C6—H6B | 110.9 |
| O8—Fe1—O4 | 87.98 (5) | H6A—C6—H6B | 109.0 |
| O10—Fe1—O4 | 89.99 (6) | O8—C7—C8 | 104.97 (17) |
| O8—Fe1—O9 | 87.53 (6) | O8—C7—H7A | 110.8 |
| O10—Fe1—O9 | 93.31 (5) | C8—C7—H7A | 110.8 |
| O4—Fe1—O9 | 90.86 (6) | O8—C7—H7B | 110.8 |
| O8—Fe1—O7 | 88.64 (6) | C8—C7—H7B | 110.8 |
| O10—Fe1—O7 | 90.57 (5) | H7A—C7—H7B | 108.8 |
| O4—Fe1—O7 | 90.22 (6) | C7—C8—C9 | 103.87 (17) |
| O9—Fe1—O7 | 175.98 (6) | C7—C8—H8A | 111.0 |
| O8—Fe1—O1 | 89.70 (5) | C9—C8—H8A | 111.0 |
| O10—Fe1—O1 | 92.31 (5) | C7—C8—H8B | 111.0 |
| O4—Fe1—O1 | 177.54 (6) | C9—C8—H8B | 111.0 |
| O9—Fe1—O1 | 89.86 (5) | H8A—C8—H8B | 109.0 |
| O7—Fe1—O1 | 88.90 (5) | C10—C9—C8 | 104.11 (18) |
| O2—S1—O3 | 116.30 (10) | C10—C9—H9A | 110.9 |
| O2—S1—O1 | 114.09 (9) | C8—C9—H9A | 110.9 |
| O3—S1—O1 | 114.30 (9) | C10—C9—H9B | 110.9 |
| O2—S1—C1 | 104.29 (11) | C8—C9—H9B | 110.9 |
| O3—S1—C1 | 104.11 (10) | H9A—C9—H9B | 109.0 |
| O1—S1—C1 | 101.34 (10) | O8—C10—C9 | 106.67 (17) |
| O6—S2—O5 | 116.43 (11) | O8—C10—H10A | 110.4 |
| O6—S2—O4 | 114.17 (10) | C9—C10—H10A | 110.4 |
| O5—S2—O4 | 114.51 (10) | O8—C10—H10B | 110.4 |
| O6—S2—C2 | 104.02 (11) | C9—C10—H10B | 110.4 |
| O5—S2—C2 | 104.55 (10) | H10A—C10—H10B | 108.6 |
| O4—S2—C2 | 100.57 (9) | O9—C11—C12 | 104.14 (17) |
| S1—O1—Fe1 | 135.31 (9) | O9—C11—H11A | 110.9 |
| S2—O4—Fe1 | 142.51 (9) | C12—C11—H11A | 110.9 |
| C6—O7—C3 | 109.25 (14) | O9—C11—H11B | 110.9 |
| C6—O7—Fe1 | 125.96 (11) | C12—C11—H11B | 110.9 |
| C3—O7—Fe1 | 124.38 (11) | H11A—C11—H11B | 108.9 |
| C10—O8—C7 | 109.61 (15) | C11—C12—C13 | 102.1 (2) |
| C10—O8—Fe1 | 125.99 (12) | C11—C12—H12A | 111.3 |
| C7—O8—Fe1 | 124.39 (12) | C13—C12—H12A | 111.3 |
| C11—O9—C14 | 107.83 (14) | C11—C12—H12B | 111.3 |
| C11—O9—Fe1 | 128.44 (12) | C13—C12—H12B | 111.3 |
| C14—O9—Fe1 | 122.42 (12) | H12A—C12—H12B | 109.2 |
| C15—O10—C18 | 109.12 (15) | C14—C13—C12 | 105.3 (2) |
| C15—O10—Fe1 | 124.88 (12) | C14—C13—H13A | 110.7 |
| C18—O10—Fe1 | 125.93 (11) | C12—C13—H13A | 110.7 |
| F3—C1—F2 | 107.6 (2) | C14—C13—H13B | 110.7 |
| F3—C1—F1 | 108.4 (2) | C12—C13—H13B | 110.7 |
| F2—C1—F1 | 107.59 (19) | H13A—C13—H13B | 108.8 |
| F3—C1—S1 | 112.09 (16) | O9—C14—C13 | 106.82 (18) |
| F2—C1—S1 | 111.02 (15) | O9—C14—H14A | 110.4 |
| F1—C1—S1 | 110.05 (18) | C13—C14—H14A | 110.4 |
| F5—C2—F4 | 108.00 (19) | O9—C14—H14B | 110.4 |
| F5—C2—F6 | 107.51 (18) | C13—C14—H14B | 110.4 |
| F4—C2—F6 | 107.37 (19) | H14A—C14—H14B | 108.6 |
| F5—C2—S2 | 111.21 (15) | O10—C15—C16 | 105.46 (17) |
| F4—C2—S2 | 111.38 (15) | O10—C15—H15A | 110.7 |
| F6—C2—S2 | 111.18 (15) | C16—C15—H15A | 110.7 |
| O7—C3—C4 | 105.50 (16) | O10—C15—H15B | 110.7 |
| O7—C3—H3A | 110.6 | C16—C15—H15B | 110.7 |
| C4—C3—H3A | 110.6 | H15A—C15—H15B | 108.8 |
| O7—C3—H3B | 110.6 | C15—C16—C17 | 101.44 (19) |
| C4—C3—H3B | 110.6 | C15—C16—H16A | 111.5 |
| H3A—C3—H3B | 108.8 | C17—C16—H16A | 111.5 |
| C3—C4—C5 | 103.22 (16) | C15—C16—H16B | 111.5 |
| C3—C4—H4A | 111.1 | C17—C16—H16B | 111.5 |
| C5—C4—H4A | 111.1 | H16A—C16—H16B | 109.3 |
| C3—C4—H4B | 111.1 | C18—C17—C16 | 101.86 (17) |
| C5—C4—H4B | 111.1 | C18—C17—H17A | 111.4 |
| H4A—C4—H4B | 109.1 | C16—C17—H17A | 111.4 |
| C6—C5—C4 | 101.37 (16) | C18—C17—H17B | 111.4 |
| C6—C5—H5A | 111.5 | C16—C17—H17B | 111.4 |
| C4—C5—H5A | 111.5 | H17A—C17—H17B | 109.3 |
| C6—C5—H5B | 111.5 | O10—C18—C17 | 104.95 (17) |
| C4—C5—H5B | 111.5 | O10—C18—H18A | 110.8 |
| H5A—C5—H5B | 109.3 | C17—C18—H18A | 110.8 |
| O7—C6—C5 | 104.12 (16) | O10—C18—H18B | 110.8 |
| O7—C6—H6A | 110.9 | C17—C18—H18B | 110.8 |
| C5—C6—H6A | 110.9 | H18A—C18—H18B | 108.8 |
| O7—C6—H6B | 110.9 | ||
| O2—S1—O1—Fe1 | 83.66 (14) | O7—C3—C4—C5 | −21.8 (2) |
| O3—S1—O1—Fe1 | −53.60 (15) | C3—C4—C5—C6 | 37.3 (2) |
| C1—S1—O1—Fe1 | −164.91 (12) | C3—O7—C6—C5 | 27.1 (2) |
| O6—S2—O4—Fe1 | 93.74 (17) | Fe1—O7—C6—C5 | −160.09 (13) |
| O5—S2—O4—Fe1 | −44.07 (19) | C4—C5—C6—O7 | −39.6 (2) |
| C2—S2—O4—Fe1 | −155.53 (15) | C10—O8—C7—C8 | 18.0 (3) |
| O2—S1—C1—F3 | 56.6 (2) | Fe1—O8—C7—C8 | −161.93 (14) |
| O3—S1—C1—F3 | 178.93 (19) | O8—C7—C8—C9 | −30.8 (2) |
| O1—S1—C1—F3 | −62.2 (2) | C7—C8—C9—C10 | 32.0 (3) |
| O2—S1—C1—F2 | 176.88 (16) | C7—O8—C10—C9 | 2.3 (3) |
| O3—S1—C1—F2 | −60.75 (18) | Fe1—O8—C10—C9 | −177.78 (14) |
| O1—S1—C1—F2 | 58.15 (17) | C8—C9—C10—O8 | −21.4 (3) |
| O2—S1—C1—F1 | −64.11 (19) | C14—O9—C11—C12 | 30.3 (2) |
| O3—S1—C1—F1 | 58.26 (19) | Fe1—O9—C11—C12 | −162.73 (15) |
| O1—S1—C1—F1 | 177.16 (17) | O9—C11—C12—C13 | −37.2 (3) |
| O6—S2—C2—F5 | −60.00 (19) | C11—C12—C13—C14 | 30.6 (3) |
| O5—S2—C2—F5 | 62.60 (18) | C11—O9—C14—C13 | −10.8 (3) |
| O4—S2—C2—F5 | −178.42 (16) | Fe1—O9—C14—C13 | −178.7 (2) |
| O6—S2—C2—F4 | 60.52 (19) | C12—C13—C14—O9 | −13.0 (4) |
| O5—S2—C2—F4 | −176.87 (16) | C18—O10—C15—C16 | −13.7 (2) |
| O4—S2—C2—F4 | −57.89 (18) | Fe1—O10—C15—C16 | 163.46 (14) |
| O6—S2—C2—F6 | −179.78 (16) | O10—C15—C16—C17 | 33.9 (2) |
| O5—S2—C2—F6 | −57.17 (17) | C15—C16—C17—C18 | −41.0 (2) |
| O4—S2—C2—F6 | 61.81 (17) | C15—O10—C18—C17 | −12.8 (2) |
| C6—O7—C3—C4 | −3.0 (2) | Fe1—O10—C18—C17 | 170.13 (15) |
| Fe1—O7—C3—C4 | −175.97 (14) | C16—C17—C18—O10 | 33.4 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3B···O2i | 0.99 | 2.55 | 3.514 (3) | 164 |
| C11—H11B···O5 | 0.99 | 2.59 | 3.412 (3) | 140 |
| C12—H12A···O3ii | 0.99 | 2.49 | 3.388 (3) | 151 |
| C14—H14A···O2 | 0.99 | 2.51 | 3.429 (3) | 155 |
| C16—H16B···O6iii | 0.99 | 2.56 | 3.476 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, −y+1, z−1/2; (iii) x+1/2, −y+1/2, −z+2.
Funding Statement
This work was funded by Nederlandse Organisatie voor Wetenschappelijk Onderzoek grant .
References
- Amel’chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218–1263.
- Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.
- Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hagen, K. S. (2000). Inorg. Chem. 39, 5867–5869. [DOI] [PubMed]
- Haynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429–441.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
- Kitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Mackay, A. L. (1984). Acta Cryst. A40, 165–166.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
- Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.
- Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.
- Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153Isup2.hkl
CCDC reference: 1955192
Additional supporting information: crystallographic information; 3D view; checkCIF report




