Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 27;75(Pt 10):1548–1551. doi: 10.1107/S2056989019013094

Crystal structure of tetra­kis­(tetra­hydro­furan-κO)bis­(tri­fluoro­methane­sulfonato-κO)iron(II)

Charl F Riemersma a, Emily C Monkcom a, Robertus J M Klein Gebbink a, Martin Lutz b,*
PMCID: PMC6775732  PMID: 31636992

The title high-spin iron(II) complex is six-coordinated with two tri­fluoro­methane­sulfonato and four tetra­hydro­furan ligands. It is isostructural with the corresponding Co, Ni and Zn complexes known from the literature.

Keywords: crystal structure, high-spin iron(II), split-mosaic model

Abstract

The title compound, [Fe(CF3SO3)2(C4H8O)4], is octa­hedral with two tri­fluoro­methane­sulfonate ligands in trans positions and four tetra­hydro­furane mol­ecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke space group P212121 and is enanti­omerically pure. The packing of the mol­ecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin.

Chemical context  

The tri­fluoro­methane­sulfonato anion is usually weakly coordinating to metals, and the salts thereof are consequently important starting compounds for the exchange with other ligands. In an attempt of such a synthesis on iron(II) we obtained the starting material back with tetra­hydro­furan (THF) mol­ecules from the solvent completing the sixfold coordination environment. The overall composition of the title compound (I) is then [Fe(CF3SO3)2(C4H8O)4].graphic file with name e-75-01548-scheme1.jpg

Structural commentary  

A mol­ecular plot of (I) is shown in Fig. 1 with selected bond lengths and bond angles given in Table 1. The present Fe compound is isostructural to the corresponding Co, Ni and Zn compounds known from the literature (Amel’chenkova et al., 2006). An isostructural Cu compound is mentioned in the same publication but no further details are given. An overlay of the isostructural compounds is presented in Fig. 2. The comparison of metal–oxygen distances in Table 2 follows the trend of effective ionic radii (Shannon, 1976) with 0.92 Å for octa­hedral Fe2+ (high-spin), 0.885 Å for Co2+ (high-spin), 0.83 Å for Ni2+ and 0.88 Å for Zn2+. From this comparison we can conclude that the Fe ion in (I) has a high-spin electronic configuration. It should also be noted that there are no significant differences in metal–oxygen distances between the partially negative triflate and the neutral THF.

Figure 1.

Figure 1

A view of the molecular structure of (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.

Table 1. Selected geometric parameters (Å, °).

S1—O2 1.4325 (16) S2—O6 1.4290 (17)
S1—O3 1.4346 (15) S2—O5 1.4329 (16)
S1—O1 1.4608 (14) S2—O4 1.4608 (14)
       
O8—Fe1—O10 177.82 (6) O9—Fe1—O7 175.98 (6)
O8—Fe1—O4 87.98 (5) O8—Fe1—O1 89.70 (5)
O10—Fe1—O4 89.99 (6) O10—Fe1—O1 92.31 (5)
O8—Fe1—O9 87.53 (6) O4—Fe1—O1 177.54 (6)
O10—Fe1—O9 93.31 (5) O9—Fe1—O1 89.86 (5)
O4—Fe1—O9 90.86 (6) O7—Fe1—O1 88.90 (5)
O8—Fe1—O7 88.64 (6) S1—O1—Fe1 135.31 (9)
O10—Fe1—O7 90.57 (5) S2—O4—Fe1 142.51 (9)
O4—Fe1—O7 90.22 (6)    

Figure 2.

Figure 2

Overlay plot of the isostructural Co, Ni, and Zn complexes (Amel’chenkova et al., 2006) with respect to the Fe complex (I). The coordinates of the Ni and Zn complexes have been inverted for this comparison. Hydrogen atoms are omitted for clarity. The quaternion fit algorithm (Mackay, 1984) as implemented in PLATON (Spek, 2009) was used for the preparation of the plot. Color scheme: Fe complex (blue),Co complex (green), Ni complex (red), and Zn complex (black).

Table 2. Comparison between the metal–oxygen distances of the Fe compound (I) and the isostructural Co, Ni and Zn compounds from the literature (Amel’chenkova et al., 2006).

The atom names of the Co and Ni complexes have been changed for consistency.

  M = Fe M = Co Δ Fe/Co M = Ni Δ Fe/Ni M = Zn Δ Fe/Zn
M—O1 2.1279 (14) 2.115 (3) 0.013 (3) 2.034 (3) 0.094 (3) 2.078 (3) 0.050 (3)
M—O4 2.1179 (14) 2.098 (3) 0.020 (3) 2.031 (3) 0.087 (3) 2.080 (3) 0.038 (3)
M—O7 2.1239 (12) 2.088 (3) 0.036 (3) 2.054 (2) 0.070 (2) 2.087 (3) 0.037 (3)
M—O8 2.1024 (13) 2.076 (3) 0.026 (3) 2.036 (2) 0.066 (2) 2.088 (3) 0.014 (3)
M—O9 2.1187 (13) 2.093 (3) 0.026 (3) 2.051 (2) 0.068 (2) 2.092 (3) 0.027 (3)
M—O10 2.1153 (13) 2.103 (3) 0.012 (3) 2.039 (3) 0.076 (3) 2.084 (3) 0.031 (3)

In the octa­hedral compound (I), the triflate ligands are in trans positions and the equatorial plane is formed by O atoms of THF. The Fe atom is approximately in the equatorial plane at a distance of 0.0079 (3) Å from the least-squares plane of the THF oxygen atoms. The FeO6 octa­hedron is nearly undistorted with a quadratic elongation of 1.001 and an angle variance of 2.79°2 (Robinson et al., 1971). To the best of our knowledge, the crystal structure of compound (I) is the first of a trans triflate Fe complex with an FeO6 chromophore. Similar complexes with N atoms in the equatorial plane are known from the literature. In the aceto­nitrile complex [Fe(CF3SO3)2(CH3CN)4], the core octa­hedron is similarly undistorted (Hagen, 2000), while the pyridine complex [Fe(CF3SO3)2(C5H5N)4] is slightly tetra­gonally compressed (Haynes et al., 1986).

As expected, all four coordinated THF mol­ecules are puckered. The rings at O7 and O8 are best described as having an envelope conformation, the rings at O9 and O10 as being in a twist conformation. The O atoms are coordinated to the metal in a trigonal geometry with angle sums of 358.7 (2)–360.0 (2)°.

The two triflate ligands adopt a staggered conformation with O—S—C—F torsion angles between 56.6 (2) and 64.11 (19)°. The S—O distances to the coordinating oxygen atoms are significantly longer than to the non-coordinating oxygen atoms (Table 1). A search in the Cambridge Structural Database (update May 2019; Groom et al., 2016) shows a large variation between 99.3 and 178.2° in S—O—metal bond angles for the weakly coordinating triflate ligand (1501 observations, non-disordered structures). The angles of 135.31 (9) and 142.51 (9)° in compound (I) are well within this range.

The octa­hedral symmetry of the inner-sphere coordination environment (see above) is reduced to approximate C 2 symmetry by the arrangement of the triflate anion (Fig. 3). If the THF mol­ecules are considered as well, the overall symmetry reduces to C 1. Despite the achiral ligands, the metal complex is thus chiral in the crystal.

Figure 3.

Figure 3

The approximate Oh symmetry of the FeO6 polyhedron (left, r.m.s.d. 0.0489 Å) is reduced by the tri­fluoro­methane­sulfonate coordination in the second coordination shell to approximate C 2 (center, r.m.s.d. 0.1460 Å). If the coordinated THF mol­ecules are taken into consideration, the symmetry is only C 1 (right). The algorithm of Pilati & Forni (1998) was used to calculate the r.m.s.d. values.

Supra­molecular features  

The crystal structure of (I) has a packing index (Kitajgorodskij, 1973) of only 68.7%, which is at the lower end of the 65–75% range expected for organic solids (Dunitz, 1995). Indeed, the packing is determined by only weak C—H⋯O inter­actions with the THF atoms as donors and the non-coordinated triflate oxygen atoms as acceptors (Table 3). Every mol­ecule of (I) is the donor and acceptor of three inter­molecular C—H⋯O hydrogen bonds and has thus a coordination number of six. This results in a three-dimensional network.

Table 3. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.99 2.55 3.514 (3) 164
C11—H11B⋯O5 0.99 2.59 3.412 (3) 140
C12—H12A⋯O3ii 0.99 2.49 3.388 (3) 151
C14—H14A⋯O2 0.99 2.51 3.429 (3) 155
C16—H16B⋯O6iii 0.99 2.56 3.476 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Synthesis and crystallization  

The title compound was obtained from an experiment aimed at synthesizing an iron coordination compound based on an oxazine ligand. In a glovebox under a di­nitro­gen atmosphere, 4a,8a-di­methyl­octa­hydro-[1,4]oxazino[3,2-b][1,4]oxazine (159 mg, 0.923 mmol) and Fe(OTf)2·2MeCN (400 mg, 0.917 mmol) were placed in separate vials. The ligand was dissolved in THF (about 12 mL) and added to the vial containing Fe(OTf)2·2MeCN under gentle stirring. The color of the solution turned from black to dark red and stirring was maintained overnight at room temperature. The resulting compound was precipitated twice by dropwise addition of a concentrated THF solution into hexane. The slightly pink-colored supernatants were removed by deca­ntation. The precipitated solids were washed with hexa­nes and dried under vacuum. The deca­nted solutions were stored in a freezer at 238 K and over a month light-pink crystals slowly grew.

A second crystallization starting from the isolated precipitate in an 1:1 THF:hexane solution grew similar crystals over several months at 238 K. 1H-NMR in d 3-MeCN showed no paramagnetic peaks but small diamagnetic peaks of THF (3.64, 1.79 ppm) and hexane (1.28, 0.89 ppm). 19F-NMR showed a single sharp peak at −79.36 ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were placed in calculated positions (C—H = 0.99 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula [Fe(CF3O3S)2(C4H8O)4]
M r 642.40
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 8.6618 (3), 16.2610 (6), 19.0572 (4)
V3) 2684.20 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.43 × 0.32 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.652, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 43720, 6166, 6027
R int 0.020
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.051, 1.07
No. of reflections 6166
No. of parameters 335
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.28
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.001 (10)

Computer programs: APEX2 (Bruker, 2007), PEAKREF (Schreurs, 2016), Eval15 (Schreurs et al., 2010), initial coordinates from isostructural Zn complex (Amel’chenkova et al., 2006), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007).

The reflection profiles in Eval15 (Schreurs et al., 2010) were based on a split-mosaic model. Two fragments were rotated by 0.56° with respect to each other. An example for a reflection profile is shown in Fig. 4.

Figure 4.

Figure 4

Height plot of the pixel intensities of reflection hkl = (5,Inline graphic,Inline graphic). The central frame (scan width 0.3°) is shown. Observed intensities (left) and model intensities (right). A split-mosaic model was assumed for the prediction of the profile.

Because (I) crystallizes in the Sohncke space group P212121 without second kind symmetry operations, it is susceptible for an absolute structure determination. A full-matrix refinement as inversion twin results in a Flack parameter of x = −0.001 (10) (Flack, 1983). Within standard uncertainties, the crystal structure can consequently be considered as enanti­omerically pure. The standard uncertainty is corrected for the different number of observations in the point group versus the Laue group symmetry (Sheldrick, 2015). If this correction is not applied (program SHELXL97, Sheldrick, 2008), the Flack parameter is x = −0.001 (8). Analysis of 2590 intensity quotients (Parsons et al. 2013) results in an absolute structure parameter of z = −0.001 (2). Similarly, a likelihood analysis on Bijvoet differences (Hooft et al., 2008) gives an absolute structure parameter y = −0.000 (1). This analysis uses a t-value of 99, resulting in a slope of 0.885 and an inter­cept of −0.037. The student-t probability plot is linear with a correlation coefficient of 1.000. All of these different methods give a consistent result for the present crystal. The measurement of a second crystal results in x = 0.015 (11) from an inversion twin refinement, but very low standard uncertainties in the values of z = 0.015 (2) and y = 0.0012 (1) leave reasons for doubt concerning its enanti­opurity, although the Bijvoet difference related probabilities P2/P3 (true) are 1.000 and the probability P3 (false) is 0.000 in both crystals, suggesting that both crystals are enanti­opure.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153sup1.cif

e-75-01548-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153Isup2.hkl

e-75-01548-Isup2.hkl (490.3KB, hkl)

CCDC reference: 1955192

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).

supplementary crystallographic information

Crystal data

[Fe(CF3O3S)2(C4H8O)4] Dx = 1.590 Mg m3
Mr = 642.40 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 40729 reflections
a = 8.6618 (3) Å θ = 1.6–27.5°
b = 16.2610 (6) Å µ = 0.81 mm1
c = 19.0572 (4) Å T = 150 K
V = 2684.20 (14) Å3 Block, light pink
Z = 4 0.43 × 0.32 × 0.18 mm
F(000) = 1328

Data collection

Bruker Kappa APEXII CCD diffractometer 6027 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.020
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→11
Tmin = 0.652, Tmax = 0.746 k = −21→21
43720 measured reflections l = −24→24
6166 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.6586P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
6166 reflections Δρmax = 0.33 e Å3
335 parameters Δρmin = −0.28 e Å3
0 restraints Absolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.001 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.50772 (3) 0.48861 (2) 0.86831 (2) 0.01643 (6)
S1 0.81595 (5) 0.57825 (3) 0.93928 (2) 0.02277 (10)
S2 0.32496 (6) 0.31474 (3) 0.81507 (2) 0.02265 (10)
F1 0.9574 (2) 0.68741 (12) 1.01554 (11) 0.0680 (6)
F2 0.7121 (2) 0.68477 (9) 1.03052 (7) 0.0470 (4)
F3 0.8062 (3) 0.73954 (9) 0.93805 (9) 0.0590 (5)
F4 0.06455 (18) 0.35905 (12) 0.75689 (10) 0.0558 (4)
F5 0.14957 (18) 0.24184 (9) 0.72262 (9) 0.0480 (4)
F6 0.2551 (2) 0.35272 (10) 0.68562 (7) 0.0508 (4)
O1 0.65973 (16) 0.57880 (9) 0.91040 (7) 0.0240 (3)
O2 0.93533 (19) 0.58245 (12) 0.88737 (9) 0.0406 (4)
O3 0.83890 (17) 0.52029 (9) 0.99506 (8) 0.0324 (3)
O4 0.34877 (17) 0.40267 (8) 0.82643 (8) 0.0274 (3)
O5 0.45752 (17) 0.27184 (10) 0.78893 (9) 0.0353 (4)
O6 0.2398 (2) 0.27486 (11) 0.86955 (9) 0.0428 (4)
O7 0.38706 (15) 0.48776 (10) 0.96533 (6) 0.0238 (3)
O8 0.35941 (17) 0.58263 (8) 0.83381 (7) 0.0256 (3)
O9 0.62129 (17) 0.49769 (8) 0.77015 (7) 0.0264 (3)
O10 0.64976 (15) 0.39087 (8) 0.90293 (7) 0.0235 (3)
C1 0.8230 (3) 0.67820 (14) 0.98276 (12) 0.0350 (5)
C2 0.1914 (3) 0.31710 (13) 0.74133 (11) 0.0296 (4)
C3 0.2234 (2) 0.46794 (15) 0.97287 (10) 0.0305 (5)
H3A 0.203548 0.410133 0.959313 0.037*
H3B 0.159680 0.504403 0.943011 0.037*
C4 0.1865 (2) 0.48144 (16) 1.05024 (11) 0.0354 (5)
H4A 0.115020 0.438696 1.067968 0.042*
H4B 0.139912 0.536288 1.058032 0.042*
C5 0.3443 (2) 0.47496 (15) 1.08559 (10) 0.0308 (4)
H5A 0.346138 0.504546 1.130987 0.037*
H5B 0.374432 0.416917 1.093207 0.037*
C6 0.4466 (2) 0.51605 (14) 1.03204 (9) 0.0272 (4)
H6A 0.439699 0.576664 1.035736 0.033*
H6B 0.555633 0.499216 1.038254 0.033*
C7 0.2531 (3) 0.57493 (15) 0.77512 (11) 0.0349 (5)
H7A 0.159543 0.544020 0.789144 0.042*
H7B 0.302789 0.546152 0.735315 0.042*
C8 0.2128 (3) 0.66148 (15) 0.75551 (12) 0.0358 (5)
H8A 0.107456 0.664582 0.735575 0.043*
H8B 0.287162 0.683703 0.720896 0.043*
C9 0.2226 (3) 0.70770 (13) 0.82393 (12) 0.0318 (5)
H9A 0.250509 0.765977 0.815906 0.038*
H9B 0.123089 0.705398 0.849438 0.038*
C10 0.3467 (3) 0.66399 (13) 0.86392 (13) 0.0417 (6)
H10A 0.445941 0.693786 0.859551 0.050*
H10B 0.319250 0.660390 0.914247 0.050*
C11 0.6152 (3) 0.44132 (13) 0.71141 (10) 0.0274 (4)
H11A 0.518112 0.448247 0.684649 0.033*
H11B 0.622800 0.383601 0.727581 0.033*
C12 0.7528 (3) 0.46439 (15) 0.66738 (12) 0.0393 (5)
H12A 0.738428 0.447800 0.617830 0.047*
H12B 0.848683 0.439136 0.685716 0.047*
C13 0.7560 (4) 0.55698 (18) 0.67491 (16) 0.0593 (9)
H13A 0.863015 0.577957 0.671068 0.071*
H13B 0.692138 0.583316 0.638162 0.071*
C14 0.6920 (4) 0.57395 (14) 0.74568 (11) 0.0407 (6)
H14A 0.775102 0.591301 0.778098 0.049*
H14B 0.613879 0.618318 0.743218 0.049*
C15 0.6119 (3) 0.33496 (14) 0.95980 (11) 0.0316 (4)
H15A 0.502945 0.317000 0.956510 0.038*
H15B 0.628145 0.361845 1.005821 0.038*
C16 0.7192 (3) 0.26300 (15) 0.95120 (13) 0.0376 (5)
H16A 0.677552 0.222297 0.917507 0.045*
H16B 0.739603 0.235545 0.996623 0.045*
C17 0.8638 (3) 0.30493 (17) 0.92264 (14) 0.0417 (6)
H17A 0.922310 0.332764 0.960436 0.050*
H17B 0.932237 0.265169 0.898545 0.050*
C18 0.7963 (2) 0.36611 (13) 0.87176 (12) 0.0292 (4)
H18A 0.865616 0.414073 0.866134 0.035*
H18B 0.779706 0.340471 0.825253 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01825 (11) 0.01659 (11) 0.01444 (10) 0.00166 (10) 0.00053 (9) −0.00065 (8)
S1 0.0182 (2) 0.0244 (2) 0.0257 (2) −0.00151 (17) 0.00011 (18) −0.00155 (17)
S2 0.0229 (2) 0.0189 (2) 0.0261 (2) −0.00106 (17) −0.00181 (18) −0.00144 (16)
F1 0.0548 (10) 0.0586 (11) 0.0907 (14) −0.0162 (8) −0.0327 (10) −0.0222 (10)
F2 0.0648 (10) 0.0402 (8) 0.0360 (7) 0.0033 (7) 0.0047 (7) −0.0135 (6)
F3 0.0976 (14) 0.0258 (7) 0.0536 (9) −0.0106 (8) −0.0009 (10) 0.0063 (7)
F4 0.0342 (7) 0.0635 (11) 0.0697 (11) 0.0195 (7) −0.0173 (7) −0.0151 (9)
F5 0.0478 (9) 0.0322 (7) 0.0640 (9) −0.0105 (6) −0.0218 (7) −0.0118 (7)
F6 0.0648 (10) 0.0564 (9) 0.0311 (7) −0.0160 (8) −0.0116 (7) 0.0056 (7)
O1 0.0226 (6) 0.0237 (7) 0.0256 (6) −0.0001 (5) −0.0033 (5) −0.0029 (5)
O2 0.0279 (7) 0.0495 (10) 0.0443 (10) −0.0002 (7) 0.0124 (7) −0.0004 (8)
O3 0.0293 (7) 0.0315 (7) 0.0364 (7) 0.0018 (6) −0.0072 (6) 0.0046 (6)
O4 0.0284 (7) 0.0211 (7) 0.0326 (7) 0.0000 (5) −0.0059 (6) −0.0067 (6)
O5 0.0274 (7) 0.0271 (8) 0.0514 (9) 0.0054 (6) −0.0033 (7) −0.0092 (7)
O6 0.0478 (10) 0.0439 (9) 0.0368 (8) −0.0087 (8) 0.0054 (8) 0.0099 (8)
O7 0.0173 (6) 0.0382 (8) 0.0160 (5) −0.0010 (6) 0.0006 (4) −0.0031 (6)
O8 0.0334 (8) 0.0201 (6) 0.0233 (6) 0.0088 (6) −0.0091 (6) −0.0057 (5)
O9 0.0397 (7) 0.0196 (7) 0.0199 (6) −0.0031 (6) 0.0099 (5) −0.0025 (5)
O10 0.0199 (7) 0.0233 (6) 0.0273 (6) 0.0039 (5) 0.0045 (5) 0.0053 (5)
C1 0.0411 (12) 0.0290 (10) 0.0351 (11) −0.0086 (10) −0.0066 (10) −0.0027 (9)
C2 0.0285 (10) 0.0247 (9) 0.0356 (10) −0.0027 (8) −0.0070 (9) −0.0049 (8)
C3 0.0171 (9) 0.0492 (13) 0.0253 (9) −0.0037 (8) 0.0017 (7) 0.0003 (9)
C4 0.0244 (9) 0.0533 (14) 0.0284 (9) 0.0015 (10) 0.0073 (8) 0.0001 (10)
C5 0.0309 (10) 0.0433 (12) 0.0183 (8) −0.0017 (9) 0.0034 (7) 0.0006 (8)
C6 0.0274 (9) 0.0374 (11) 0.0169 (8) −0.0044 (8) 0.0002 (7) −0.0043 (8)
C7 0.0416 (12) 0.0330 (11) 0.0301 (10) 0.0088 (10) −0.0163 (9) −0.0054 (9)
C8 0.0390 (12) 0.0357 (12) 0.0325 (11) 0.0092 (10) −0.0090 (9) 0.0042 (9)
C9 0.0362 (11) 0.0213 (9) 0.0379 (11) 0.0063 (8) −0.0023 (9) 0.0022 (8)
C10 0.0577 (15) 0.0241 (10) 0.0432 (12) 0.0170 (10) −0.0213 (12) −0.0150 (10)
C11 0.0372 (10) 0.0255 (10) 0.0195 (8) −0.0029 (8) 0.0047 (8) −0.0057 (7)
C12 0.0488 (14) 0.0415 (13) 0.0275 (10) −0.0022 (10) 0.0154 (10) −0.0072 (9)
C13 0.084 (2) 0.0427 (15) 0.0515 (16) −0.0202 (15) 0.0368 (16) −0.0027 (12)
C14 0.0679 (17) 0.0247 (10) 0.0295 (10) −0.0127 (11) 0.0150 (11) 0.0011 (8)
C15 0.0301 (10) 0.0353 (11) 0.0294 (10) 0.0062 (9) 0.0039 (8) 0.0126 (8)
C16 0.0424 (12) 0.0317 (11) 0.0386 (11) 0.0109 (10) 0.0024 (10) 0.0136 (9)
C17 0.0284 (11) 0.0489 (14) 0.0479 (13) 0.0154 (10) 0.0012 (10) 0.0088 (11)
C18 0.0245 (9) 0.0269 (9) 0.0363 (10) 0.0057 (7) 0.0080 (9) 0.0020 (9)

Geometric parameters (Å, º)

Fe1—O8 2.1024 (13) C5—H5B 0.9900
Fe1—O10 2.1153 (13) C6—H6A 0.9900
Fe1—O4 2.1179 (14) C6—H6B 0.9900
Fe1—O9 2.1187 (13) C7—C8 1.497 (3)
Fe1—O7 2.1239 (12) C7—H7A 0.9900
Fe1—O1 2.1279 (14) C7—H7B 0.9900
S1—O2 1.4325 (16) C8—C9 1.507 (3)
S1—O3 1.4346 (15) C8—H8A 0.9900
S1—O1 1.4608 (14) C8—H8B 0.9900
S1—C1 1.825 (2) C9—C10 1.497 (3)
S2—O6 1.4290 (17) C9—H9A 0.9900
S2—O5 1.4329 (16) C9—H9B 0.9900
S2—O4 1.4608 (14) C10—H10A 0.9900
S2—C2 1.821 (2) C10—H10B 0.9900
F1—C1 1.329 (3) C11—C12 1.505 (3)
F2—C1 1.328 (3) C11—H11A 0.9900
F3—C1 1.320 (3) C11—H11B 0.9900
F4—C2 1.327 (3) C12—C13 1.513 (4)
F5—C2 1.325 (2) C12—H12A 0.9900
F6—C2 1.330 (3) C12—H12B 0.9900
O7—C6 1.447 (2) C13—C14 1.484 (3)
O7—C3 1.461 (2) C13—H13A 0.9900
O8—C10 1.446 (2) C13—H13B 0.9900
O8—C7 1.454 (2) C14—H14A 0.9900
O9—C11 1.448 (2) C14—H14B 0.9900
O9—C14 1.459 (3) C15—C16 1.503 (3)
O10—C15 1.452 (2) C15—H15A 0.9900
O10—C18 1.458 (2) C15—H15B 0.9900
C3—C4 1.525 (3) C16—C17 1.527 (3)
C3—H3A 0.9900 C16—H16A 0.9900
C3—H3B 0.9900 C16—H16B 0.9900
C4—C5 1.528 (3) C17—C18 1.507 (3)
C4—H4A 0.9900 C17—H17A 0.9900
C4—H4B 0.9900 C17—H17B 0.9900
C5—C6 1.508 (3) C18—H18A 0.9900
C5—H5A 0.9900 C18—H18B 0.9900
O8—Fe1—O10 177.82 (6) C5—C6—H6B 110.9
O8—Fe1—O4 87.98 (5) H6A—C6—H6B 109.0
O10—Fe1—O4 89.99 (6) O8—C7—C8 104.97 (17)
O8—Fe1—O9 87.53 (6) O8—C7—H7A 110.8
O10—Fe1—O9 93.31 (5) C8—C7—H7A 110.8
O4—Fe1—O9 90.86 (6) O8—C7—H7B 110.8
O8—Fe1—O7 88.64 (6) C8—C7—H7B 110.8
O10—Fe1—O7 90.57 (5) H7A—C7—H7B 108.8
O4—Fe1—O7 90.22 (6) C7—C8—C9 103.87 (17)
O9—Fe1—O7 175.98 (6) C7—C8—H8A 111.0
O8—Fe1—O1 89.70 (5) C9—C8—H8A 111.0
O10—Fe1—O1 92.31 (5) C7—C8—H8B 111.0
O4—Fe1—O1 177.54 (6) C9—C8—H8B 111.0
O9—Fe1—O1 89.86 (5) H8A—C8—H8B 109.0
O7—Fe1—O1 88.90 (5) C10—C9—C8 104.11 (18)
O2—S1—O3 116.30 (10) C10—C9—H9A 110.9
O2—S1—O1 114.09 (9) C8—C9—H9A 110.9
O3—S1—O1 114.30 (9) C10—C9—H9B 110.9
O2—S1—C1 104.29 (11) C8—C9—H9B 110.9
O3—S1—C1 104.11 (10) H9A—C9—H9B 109.0
O1—S1—C1 101.34 (10) O8—C10—C9 106.67 (17)
O6—S2—O5 116.43 (11) O8—C10—H10A 110.4
O6—S2—O4 114.17 (10) C9—C10—H10A 110.4
O5—S2—O4 114.51 (10) O8—C10—H10B 110.4
O6—S2—C2 104.02 (11) C9—C10—H10B 110.4
O5—S2—C2 104.55 (10) H10A—C10—H10B 108.6
O4—S2—C2 100.57 (9) O9—C11—C12 104.14 (17)
S1—O1—Fe1 135.31 (9) O9—C11—H11A 110.9
S2—O4—Fe1 142.51 (9) C12—C11—H11A 110.9
C6—O7—C3 109.25 (14) O9—C11—H11B 110.9
C6—O7—Fe1 125.96 (11) C12—C11—H11B 110.9
C3—O7—Fe1 124.38 (11) H11A—C11—H11B 108.9
C10—O8—C7 109.61 (15) C11—C12—C13 102.1 (2)
C10—O8—Fe1 125.99 (12) C11—C12—H12A 111.3
C7—O8—Fe1 124.39 (12) C13—C12—H12A 111.3
C11—O9—C14 107.83 (14) C11—C12—H12B 111.3
C11—O9—Fe1 128.44 (12) C13—C12—H12B 111.3
C14—O9—Fe1 122.42 (12) H12A—C12—H12B 109.2
C15—O10—C18 109.12 (15) C14—C13—C12 105.3 (2)
C15—O10—Fe1 124.88 (12) C14—C13—H13A 110.7
C18—O10—Fe1 125.93 (11) C12—C13—H13A 110.7
F3—C1—F2 107.6 (2) C14—C13—H13B 110.7
F3—C1—F1 108.4 (2) C12—C13—H13B 110.7
F2—C1—F1 107.59 (19) H13A—C13—H13B 108.8
F3—C1—S1 112.09 (16) O9—C14—C13 106.82 (18)
F2—C1—S1 111.02 (15) O9—C14—H14A 110.4
F1—C1—S1 110.05 (18) C13—C14—H14A 110.4
F5—C2—F4 108.00 (19) O9—C14—H14B 110.4
F5—C2—F6 107.51 (18) C13—C14—H14B 110.4
F4—C2—F6 107.37 (19) H14A—C14—H14B 108.6
F5—C2—S2 111.21 (15) O10—C15—C16 105.46 (17)
F4—C2—S2 111.38 (15) O10—C15—H15A 110.7
F6—C2—S2 111.18 (15) C16—C15—H15A 110.7
O7—C3—C4 105.50 (16) O10—C15—H15B 110.7
O7—C3—H3A 110.6 C16—C15—H15B 110.7
C4—C3—H3A 110.6 H15A—C15—H15B 108.8
O7—C3—H3B 110.6 C15—C16—C17 101.44 (19)
C4—C3—H3B 110.6 C15—C16—H16A 111.5
H3A—C3—H3B 108.8 C17—C16—H16A 111.5
C3—C4—C5 103.22 (16) C15—C16—H16B 111.5
C3—C4—H4A 111.1 C17—C16—H16B 111.5
C5—C4—H4A 111.1 H16A—C16—H16B 109.3
C3—C4—H4B 111.1 C18—C17—C16 101.86 (17)
C5—C4—H4B 111.1 C18—C17—H17A 111.4
H4A—C4—H4B 109.1 C16—C17—H17A 111.4
C6—C5—C4 101.37 (16) C18—C17—H17B 111.4
C6—C5—H5A 111.5 C16—C17—H17B 111.4
C4—C5—H5A 111.5 H17A—C17—H17B 109.3
C6—C5—H5B 111.5 O10—C18—C17 104.95 (17)
C4—C5—H5B 111.5 O10—C18—H18A 110.8
H5A—C5—H5B 109.3 C17—C18—H18A 110.8
O7—C6—C5 104.12 (16) O10—C18—H18B 110.8
O7—C6—H6A 110.9 C17—C18—H18B 110.8
C5—C6—H6A 110.9 H18A—C18—H18B 108.8
O7—C6—H6B 110.9
O2—S1—O1—Fe1 83.66 (14) O7—C3—C4—C5 −21.8 (2)
O3—S1—O1—Fe1 −53.60 (15) C3—C4—C5—C6 37.3 (2)
C1—S1—O1—Fe1 −164.91 (12) C3—O7—C6—C5 27.1 (2)
O6—S2—O4—Fe1 93.74 (17) Fe1—O7—C6—C5 −160.09 (13)
O5—S2—O4—Fe1 −44.07 (19) C4—C5—C6—O7 −39.6 (2)
C2—S2—O4—Fe1 −155.53 (15) C10—O8—C7—C8 18.0 (3)
O2—S1—C1—F3 56.6 (2) Fe1—O8—C7—C8 −161.93 (14)
O3—S1—C1—F3 178.93 (19) O8—C7—C8—C9 −30.8 (2)
O1—S1—C1—F3 −62.2 (2) C7—C8—C9—C10 32.0 (3)
O2—S1—C1—F2 176.88 (16) C7—O8—C10—C9 2.3 (3)
O3—S1—C1—F2 −60.75 (18) Fe1—O8—C10—C9 −177.78 (14)
O1—S1—C1—F2 58.15 (17) C8—C9—C10—O8 −21.4 (3)
O2—S1—C1—F1 −64.11 (19) C14—O9—C11—C12 30.3 (2)
O3—S1—C1—F1 58.26 (19) Fe1—O9—C11—C12 −162.73 (15)
O1—S1—C1—F1 177.16 (17) O9—C11—C12—C13 −37.2 (3)
O6—S2—C2—F5 −60.00 (19) C11—C12—C13—C14 30.6 (3)
O5—S2—C2—F5 62.60 (18) C11—O9—C14—C13 −10.8 (3)
O4—S2—C2—F5 −178.42 (16) Fe1—O9—C14—C13 −178.7 (2)
O6—S2—C2—F4 60.52 (19) C12—C13—C14—O9 −13.0 (4)
O5—S2—C2—F4 −176.87 (16) C18—O10—C15—C16 −13.7 (2)
O4—S2—C2—F4 −57.89 (18) Fe1—O10—C15—C16 163.46 (14)
O6—S2—C2—F6 −179.78 (16) O10—C15—C16—C17 33.9 (2)
O5—S2—C2—F6 −57.17 (17) C15—C16—C17—C18 −41.0 (2)
O4—S2—C2—F6 61.81 (17) C15—O10—C18—C17 −12.8 (2)
C6—O7—C3—C4 −3.0 (2) Fe1—O10—C18—C17 170.13 (15)
Fe1—O7—C3—C4 −175.97 (14) C16—C17—C18—O10 33.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O2i 0.99 2.55 3.514 (3) 164
C11—H11B···O5 0.99 2.59 3.412 (3) 140
C12—H12A···O3ii 0.99 2.49 3.388 (3) 151
C14—H14A···O2 0.99 2.51 3.429 (3) 155
C16—H16B···O6iii 0.99 2.56 3.476 (3) 154

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, −y+1, z−1/2; (iii) x+1/2, −y+1/2, −z+2.

Funding Statement

This work was funded by Nederlandse Organisatie voor Wetenschappelijk Onderzoek grant .

References

  1. Amel’chenkova, E. V., Denisova, T. O. & Nefedov, S. E. (2006). Russ. J. Inorg. Chem. 51, 1218–1263.
  2. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.
  4. Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hagen, K. S. (2000). Inorg. Chem. 39, 5867–5869. [DOI] [PubMed]
  8. Haynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429–441.
  9. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  10. Kitajgorodskij, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Mackay, A. L. (1984). Acta Cryst. A40, 165–166.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.
  15. Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
  16. Schreurs, A. M. M. (2016). PEAKREF. University of Utrecht, The Netherlands.
  17. Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.
  18. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153sup1.cif

e-75-01548-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013094/vn2153Isup2.hkl

e-75-01548-Isup2.hkl (490.3KB, hkl)

CCDC reference: 1955192

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES