Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 12;75(Pt 10):1456–1462. doi: 10.1107/S2056989019012428

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

R Sribala a, S Indhumathi b, RV Krishnakumar a, N Srinivasan a,*
PMCID: PMC6775734  PMID: 31636975

The change of substituents viz. a chlorine atom in (I) replaced by a methyl group in (II) has not induced any differences in their respective crystal packing features, confirming the validity of the chlorine–methyl exchange rule.

Keywords: crystal structure, acenaphthene, supra­molecular, Hirshfeld surface, chlorine-methyl exchange

Abstract

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5′′-(2-chloro­benzyl­idene)-4′-(2-chloro­phen­yl)-1′-methyl­dispiro­[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C34H28Cl2N2O2, (I), and its analogue 1′-methyl-5′′-(2-methyl­benzyl­idene)-4′-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.

Chemical context  

The prediction of crystal structures has emerged as an exciting field involving researchers from diverse fields primarily because of its challenging complexity, which is considered analogous to that of the protein-folding problem. Attempts made in the field of crystal-structure prediction, its present status and the challenges ahead were discussed in detail in a recent article (Oganov, 2018). In this context, instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as a change in a substituent atom/group, are worthy of study as they might provide some insights regarding the subtle factors that govern the crystal packing.graphic file with name e-75-01456-scheme1.jpg

The title compounds (I) and (II) are good examples of crystal structures that obey the Cl–Me exchange rule, complying with the general conclusions arrived at in earlier studies (Jones et al., 1981; Gnanaguru et al., 1984; Desiraju & Sarma, 1986). In some recent studies carried out in our laboratory on mol­ecules that showcase the validity of the Cl–Me exchange rule, it has been observed that factors such as the presence of disorder and minor conformational differences have not disturbed the tendency of mol­ecules to remain as isomorphous pairs (Rajni Swamy, et al., 2013; Sribala et al., 2018). Inter­estingly, the validity of the Cl–Me exchange rule has also been observed in some regularly shaped planar mol­ecules (Nath & Nangia, 2012).

From a pharmacological view point, the title compounds (I) and (II) are spiro compounds that consist of a methyl­pyrrole moiety with its 2- and 3- positions as spiro carbons linked, respectively, to acenapthene and methyl pyridinone ring systems. Each of these ring systems has a variety of associated biological properties. Studies on some 4-pyridone derivatives have shown them to be potent anti­malarial agents (Bueno et al., 2011) and effective in the treatment and prophylaxis of the hepatitis B virus infection (Cheng et al., 2018). Acenaphthene is a pollutant known for its cytotoxicity (Jiang et al., 2019) but is also useful as a dye inter­mediate. Derivatives of acenaphthene are found to exhibit anti­tumor (El-Ayaan et al., 2007; Zhu et al., 2008) and fungistatic properties (McDavids & Daniels, 1951). Pyrrole derivatives belong to an important class of heterocycles owing to their potential applications as anti­microbial, anti­viral, anti­malarial, anti­tubercular, anti-inflammatory and anti­cancer agents (Gholap, 2016).

Structural commentary  

The mol­ecular structures of (I) and (II) (Figs. 1 and 2, respectively) differ from each other only by a chlorine atom in (I) being replaced by a methyl group in (II). This replacement has not induced any significant change in their unit-cell parameters, lattice type or space group. Similarly, there are no substantial changes in the torsion angles of the title compounds (see Tables 1 and 2), as (I) and (II) are isomorphous.

Figure 1.

Figure 1

Displacement ellipsoid plot drawn at 50% probability level for (I) showing the atom-labelling scheme. H atoms have been omitted for clarity.

Figure 2.

Figure 2

Displacement ellipsoid plot drawn at 50% probability level for (II), showing the atom-labelling scheme. H atoms have been omitted for clarity.

Table 1. Selected torsion angles (°) for (I) .

O1—C1—C6—C7 −14.3 (2) Cl2—C14—C19—C20 −0.9 (2)
C7—C8—C13—Cl1 −2.7 (3) N2—C23—C24—O2 −51.3 (2)

Table 2. Selected torsion angles (°) for (II) .

O1—C1—C6—C7 −12.8 (3) C36—C14—C19—C20 −0.1 (3)
C7—C8—C13—C35 −3.6 (4) N2—C23—C24—O2 −51.5 (2)

As expected, the conformational features of both compounds are nearly identical, as shown in a overlay diagram (Fig. 3). The five-membered pyrrolo ring (N2/C21/C20/C2/C23) adopts an envelope conformation on N2 with puckering parameters Q(2) = 0.4011 (2) Å and φ = 180.3733 (3)° for (I), which are comparable with the values of Q(2) = 0.4047 (2) Å and φ = 180.3444 (3)° for (II). In both of the structures, the six-membered pyridinone ring (N1/C3/C2/C1/C6/C5) adopts a screw-boat conformation with puckering parameters Q = 0.5572 (16) Å, θ = 138.9 (2)°, φ = 219.8 (3)° in (I) and Q = 0.5603 (17) Å, θ = 137.7 (2)°, φ = 219.6 (3)° in (II). The acenaphthene ring system is planar in both (I) and (II). However, the O2 atom deviates from the mean plane of the acenaphthene ring system by 0.289 (2) Å in (I) and 0.311 (2) Å in (II), with the r.m.s. deviation of the fitted atoms being 0.043 and 0.044, respectively. This deviation is presumably due to the fact that the O2 atom is involved in two weak C—H⋯O inter­actions that are characteristic of the mol­ecular inter­action patterns of both (I) and (II).

Figure 3.

Figure 3

An overlay diagram depicting the superimposition of mol­ecule (I) and (II) showing no differences in the conformations.

The dihedral angle between the mean planes of the two chloro­phenyl groups in (I) is 67.66 (9)°, similarly the corresponding angle between the two methyl­phenyl groups in (II) is 66.78 (11)°. The dihedral angles between the acenaphthene ring system and the chloro­phenyl groups are 69.1 (1) and 49.4 (1)°, respectively. The corresponding angles in the methyl-substituted analogue are 72.3 (1) and 47.8 (1)°, respectively. Thus, it is clear that the minor differences observed in the conformation of the mol­ecules are insufficient to disrupt the tendency of these mol­ecules to remain isomorphous.

Supra­molecular features  

There are no classical hydrogen bonds in the structures of either (I) or (II). However, in both structures two weak C—H⋯O-type inter­molecular inter­actions, viz. C10—H10⋯O2 and C16—H16⋯O2, which are identical in nature and characteristic of similar fundamental mol­ecular inter­action patterns are present (Tables 3 and 4). The C16—H16⋯O2 inter­action occurs between centrosymmetric pairs (Fig. 4), leading to the formation of Inline graphic(20) graph-set motifs along the b-axis direction in both (I) and (II). Similarly, in both (I) and (II) the C10—H10⋯O2 inter­action links glide-related mol­ecules along the b-axis direction (Fig. 5). The mol­ecular aggregation pattern may be visualized as being composed of these two characteristic weak inter­actions in such a manner that centrosymmetric dimeric pairs are linked through glide-related chains of mol­ecules, forming a two-dimensional layer parallel to the bc plane in both structures, as shown in Figs. 6 and 7, respectively.

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C25–C29/C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.74 3.492 (3) 139
C16—H16⋯O2ii 0.93 2.76 3.481 (3) 135
C5—H5BCg1i 0.97 2.99 3.9466 (19) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36A⋯O1 0.96 2.66 3.586 (3) 161
C10—H10⋯O2i 0.93 2.77 3.529 (3) 140
C16—H16⋯O2ii 0.93 2.79 3.530 (3) 137
C35—H35FCg2iii 0.96 2.94 3.805 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 4.

Figure 4

Perspective view along the a axis showing the weak C16—H16⋯O2 inter­molecular inter­actions between centrosymmetric pairs of mol­ecules in (I) and (II). Non-participating H atoms, methyl C atoms and Cl atoms have been omitted for clarity.

Figure 5.

Figure 5

Perspective view along the a axis showing the weak C10—H10⋯O2 inter­molecular inter­actions between glide-related mol­ecules in (I) and (II). Non-participating H atoms, methyl C atoms and Cl atoms have been omitted for clarity.

Figure 6.

Figure 6

A view of the crystal structure of (I) showing the formation of Inline graphic(20) graph-set motifs leading to the formation of layers formed parallel to the bc plane. Dashed lines indicate weak C—H⋯O inter­molecular inter­actions. H atoms not involved in the inter­actions have been omitted for clarity.

Figure 7.

Figure 7

A view of the crystal structure of (II) showing the Inline graphic(20) graph-set motifs. Dashed lines indicate weak C—H⋯O inter­molecular inter­actions. H atoms not inter­actions have been omitted for clarity.

In (II), an additional inter­molecular inter­action is observed, viz. C36—H36A⋯O1, that is stronger than the two characteristic weak inter­molecular inter­actions and involves the replaced substituent methyl group (C36—H36A) as a donor and the piperidinone O1 atom as an acceptor (see Table 4). It may be concluded that the presence of this additional C—H⋯O inter­action in (II) has not disrupted the validity of the chloro–methyl exchange rule.

In addition, a weak C—H⋯π inter­action involving different donor groups and acceptor π-ring systems is present in both (I) and (II). The C5—H5B⋯π inter­action observed in (I) is between the C5 atom of the methyl­piperidinone ring as a donor and the C25—C29/C34 ring of the acenaphthenone system as an acceptor. Inter­estingly, a geometrically identical weak π–π inter­action about an inversion centre is observed with centroid–centroid Cg3⋯Cg3(1 − x, 2 − y, −z) distances of 3.7459 (2) Å in (I) and 3.8351 (2) Å in (II) with respective slippages of 1.250 and 1.367 Å where Cg3 is the centroid of the C14–C19 ring. The shortest Cl⋯Cl distance observed [Cl1 ⋯Cl1(−x + 1, −y + 2, −z + 1)] is 4.088 (1) Å and bears no structural significance.

Database survey  

A thorough search in the Cambridge Structural Database (CSD Version 5.39, update Nov 2017; Groom et al., 2016) using the main skeleton of the title compounds (having 3D coordinates with no disorder, no ions and no other errors with R factors less than 0.05) gave only three hits: 5′′-(4-chloro­benzyl­idene)-4′-(4-chloro­phen­yl)-1′,1′′-dimethyl-2H,4′′H-di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione (YIRKUG; Pandiarajan et al., 2008), 5′′-benzyl­idene-1′,1′′-dimethyl-4′-phenyl-acenapthene-2-spiro-2′-pyrrolidine-3′-spiro-3′′-piperidine-1,4′′-dione (MAJHEL; Aravindan et al., 2004) and 1-methyl-4-(4-methyl­phen­yl)pyrrolo-(spiro­[2.2′′]acenaphthene-1′′-one)-spiro-[3.3′]-(spiro-[5′.5′′′]-3′′′-(4-chloro­phen­yl)-4′′′-(4-methyl­phen­yl)-isoxazoline)-1′-methyl­tetra­hydro-4′(1H)-pyridinone (XUQFOF; Kumar, et al., 2009).

Hirshfeld surface analysis  

Hirshfeld surface (HS) analysis was used to investigate and visualize the weak inter­molecular inter­actions influential in the packing of the mol­ecules in the crystal. The visual representation of mol­ecular inter­actions on this isosurface is determined using two parameters, viz. d i and d e , which represent the distances from a given point on the surface to the nearest atom inside and outside the surface, respectively. The normalized contact distance, d norm is based on the values of d i and d e.

In the present work, the Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots for title compounds (I) and (II) were generated using CrystalExplorer3.0 (Wolff et al., 2012). The Hirshfeld surfaces mapped over d norm together with decomposed finger print plots (McKinnon et al., 2007; Tan et al., 2019) for (I) and (II) are presented in Figs. 8 and 9, respectively. Being isomorphic and isostructural in nature, both (I) and (II) display similar C—H⋯O inter­molecular inter­actions. The combined O⋯H and H⋯O inter­actions appear symmetrically as distinct spikes at the bottom of the fingerprint plot and contribute 7.5 and 6.9%, respectively, of the total surface in compounds (I) and (II).

Figure 8.

Figure 8

Hirshfeld surface of (I) mapped over shape-index and d norm and decomposed fingerprint plots of the dominant inter­actions.

Figure 9.

Figure 9

Hirshfeld surface of (II) mapped over shape-index and d norm and decomposed fingerprint plots of the dominant inter­actions.

The symmetrical inter­nal wing-like projections correspond to C⋯H/H⋯C contacts, which account for 16% of the HS in (I) and 19.1% in (II). The dominant contribution is from the H⋯H contacts [56.3% in (I) and 70.2% in (II)], as shown by the area occupied between the spikes. Such prominent differences may be accounted for by the presence of a Cl⋯H/H⋯Cl contact in (I) (11.3% contribution) and its absence in (II).

Synthesis and crystallization  

For (I), a mixture of 1-methyl-3,5-bis­[(E)-2-chloro­phenyl­methyl­idene] tetra­hydro-4(1H)- pyridinone (1 mmol), acenaphthene­quinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (15 mL) and refluxed for 30 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 mL) and the precipitated solid was filtered and washed with water (100 mL) to obtain pure (I) as a yellow solid, (0.31 g, 98%), mp 448–449 K, Rf (petroleum ether/EtOAc, 4:1) 0.40. Suitable crystals for single-crystal X-ray studies were obtained by recrystallization of the product from ethanol.

A similar procedure for (II) was adopted by dissolving a mixture of 1-methyl-3,5-bis­[(E)-2-methyl­phenyl­methyl­idene] tetra­hydro-4(1H)-pyridinone (1 mmol), acenaphthene­quinone (1 mmol) and sarcosine (1 mmol) in methanol (15 mL) to yield yellow crystals.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and U iso(H) = 1.5U eq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The H atoms of the methyl atoms C35 and C36 in (II) were refined as idealized and disordered over two positions since significant residual electron densities were noticed between the three hydrogen atoms of the respective methyl C atoms. The introduction of a disordered model for these two methyl groups had appreciable impact on the final structural parameters.

Table 5. Experimental details.

  (I) (II)
Crystal data
Chemical formula C34H28Cl2N2O2 C36H34N2O2
M r 567.48 526.65
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 8.6710 (4), 15.6756 (7), 20.2284 (9) 8.7507 (5), 15.9089 (8), 20.2879 (10)
β (°) 93.036 (2) 92.935 (2)
V3) 2745.6 (2) 2820.7 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.27 0.08
Crystal size (mm) 0.31 × 0.22 × 0.19 0.32 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.771, 1.000 0.816, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33739, 7274, 5025 28946, 5339, 3349
R int 0.026 0.040
(sin θ/λ)max−1) 0.683 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.122, 1.02 0.045, 0.121, 1.02
No. of reflections 7274 5339
No. of parameters 361 362
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.46 0.17, −0.15

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019012428/jj2215sup1.cif

e-75-01456-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012428/jj2215Isup2.hkl

e-75-01456-Isup2.hkl (577.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019012428/jj2215IIsup3.hkl

e-75-01456-IIsup3.hkl (424.9KB, hkl)

CCDC references: 1951894, 1569029

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the Management of Thia­garajar College, Madurai, for financial support in establishing the Cambridge Structural Database in the Department of Physics.

supplementary crystallographic information

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Crystal data

C34H28Cl2N2O2 F(000) = 1184
Mr = 567.48 Dx = 1.373 Mg m3Dm = 1.37 Mg m3Dm measured by floatation method
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.6710 (4) Å Cell parameters from 7274 reflections
b = 15.6756 (7) Å θ = 4.8–57.2°
c = 20.2284 (9) Å µ = 0.27 mm1
β = 93.036 (2)° T = 293 K
V = 2745.6 (2) Å3 Block, yellow
Z = 4 0.31 × 0.22 × 0.19 mm

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Data collection

Bruker SMART APEXII CCD diffractometer 5025 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
φ and ω scans θmax = 29.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.771, Tmax = 1.000 k = −21→21
33739 measured reflections l = −27→27
7274 independent reflections

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2817P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
7274 reflections Δρmax = 0.33 e Å3
361 parameters Δρmin = −0.46 e Å3

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.38200 (9) 0.88710 (4) 0.49943 (3) 0.0749 (2)
Cl2 0.53437 (6) 1.07386 (3) 0.14315 (3) 0.05500 (14)
O1 0.48210 (14) 0.92211 (9) 0.26952 (6) 0.0509 (3)
O2 0.01681 (16) 0.80480 (10) 0.10859 (7) 0.0587 (4)
N1 0.02281 (15) 0.96435 (9) 0.23726 (6) 0.0345 (3)
N2 0.32804 (16) 0.76391 (9) 0.17821 (7) 0.0379 (3)
C1 0.34543 (18) 0.93585 (10) 0.26001 (8) 0.0339 (3)
C2 0.25834 (17) 0.90781 (10) 0.19571 (7) 0.0298 (3)
C3 0.12354 (18) 0.96919 (10) 0.18237 (8) 0.0330 (3)
H3A 0.161841 1.026946 0.177987 0.040*
H3B 0.066923 0.953767 0.141473 0.040*
C4 −0.1310 (2) 0.99694 (13) 0.21990 (10) 0.0486 (4)
H4A −0.175090 0.965861 0.182623 0.073*
H4B −0.194961 0.990171 0.256864 0.073*
H4C −0.124570 1.056321 0.208758 0.073*
C5 0.0931 (2) 1.00991 (11) 0.29351 (8) 0.0412 (4)
H5A 0.029809 1.002742 0.331249 0.049*
H5B 0.096552 1.070296 0.283217 0.049*
C6 0.2542 (2) 0.97887 (10) 0.31150 (8) 0.0367 (3)
C7 0.3209 (2) 0.98384 (12) 0.37223 (9) 0.0453 (4)
H7 0.419755 0.961011 0.377724 0.054*
C8 0.2571 (2) 1.02102 (12) 0.43141 (9) 0.0498 (5)
C9 0.1760 (3) 1.09734 (15) 0.42992 (11) 0.0700 (7)
H9 0.157858 1.125378 0.389746 0.084*
C10 0.1219 (4) 1.13245 (17) 0.48645 (13) 0.0900 (9)
H10 0.067945 1.183728 0.484082 0.108*
C11 0.1467 (4) 1.09265 (18) 0.54595 (12) 0.0925 (10)
H11 0.109239 1.116503 0.584021 0.111*
C12 0.2269 (3) 1.01755 (16) 0.54950 (11) 0.0761 (7)
H12 0.244309 0.990238 0.590018 0.091*
C13 0.2817 (3) 0.98246 (13) 0.49292 (9) 0.0546 (5)
C14 0.40575 (19) 1.04221 (11) 0.07931 (8) 0.0395 (4)
C15 0.3746 (2) 1.09964 (13) 0.02837 (10) 0.0524 (5)
H15 0.424605 1.152112 0.028284 0.063*
C16 0.2695 (3) 1.07856 (15) −0.02190 (10) 0.0604 (6)
H16 0.247308 1.116892 −0.056185 0.073*
C17 0.1973 (2) 1.00115 (16) −0.02157 (10) 0.0589 (6)
H17 0.125775 0.986900 −0.055648 0.071*
C18 0.2301 (2) 0.94401 (13) 0.02908 (9) 0.0475 (4)
H18 0.180273 0.891469 0.028376 0.057*
C19 0.33571 (18) 0.96284 (11) 0.08114 (8) 0.0355 (3)
C20 0.37056 (18) 0.90127 (10) 0.13774 (7) 0.0333 (3)
H20 0.474518 0.914578 0.156241 0.040*
C21 0.3698 (2) 0.80722 (11) 0.11831 (9) 0.0418 (4)
H21A 0.294485 0.796255 0.082138 0.050*
H21B 0.470866 0.789228 0.105323 0.050*
C22 0.3020 (3) 0.67327 (12) 0.17056 (11) 0.0576 (5)
H22A 0.275049 0.649399 0.212106 0.086*
H22B 0.219323 0.663728 0.137946 0.086*
H22C 0.394350 0.646490 0.156564 0.086*
C23 0.20239 (17) 0.81269 (10) 0.20545 (8) 0.0322 (3)
C24 0.0411 (2) 0.79856 (11) 0.16774 (9) 0.0410 (4)
C25 −0.06990 (19) 0.77207 (11) 0.21615 (10) 0.0429 (4)
C26 −0.2263 (2) 0.75748 (13) 0.21054 (12) 0.0572 (5)
H26 −0.281931 0.764906 0.170370 0.069*
C27 −0.2990 (2) 0.73129 (15) 0.26675 (14) 0.0684 (7)
H27 −0.405325 0.722892 0.264134 0.082*
C28 −0.2189 (3) 0.71761 (13) 0.32545 (13) 0.0628 (6)
H28 −0.271567 0.698729 0.361561 0.075*
C29 −0.0578 (2) 0.73134 (11) 0.33300 (10) 0.0461 (4)
C30 0.0409 (3) 0.71831 (12) 0.38919 (10) 0.0526 (5)
H30 0.001188 0.698030 0.428006 0.063*
C31 0.1947 (2) 0.73521 (12) 0.38725 (9) 0.0496 (5)
H31 0.258210 0.724857 0.424875 0.060*
C32 0.2616 (2) 0.76802 (11) 0.32996 (9) 0.0410 (4)
H32 0.366809 0.779746 0.330281 0.049*
C33 0.16946 (18) 0.78193 (10) 0.27480 (8) 0.0339 (3)
C34 0.01184 (19) 0.76132 (10) 0.27645 (9) 0.0379 (4)

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1164 (5) 0.0651 (4) 0.0426 (3) 0.0162 (3) −0.0028 (3) 0.0052 (2)
Cl2 0.0520 (3) 0.0486 (3) 0.0634 (3) −0.0065 (2) −0.0062 (2) −0.0027 (2)
O1 0.0375 (6) 0.0762 (9) 0.0382 (7) 0.0023 (6) −0.0059 (5) −0.0024 (6)
O2 0.0606 (8) 0.0712 (10) 0.0422 (8) −0.0164 (7) −0.0156 (6) 0.0065 (7)
N1 0.0344 (7) 0.0376 (7) 0.0316 (7) 0.0049 (5) 0.0030 (5) −0.0007 (6)
N2 0.0460 (8) 0.0329 (7) 0.0352 (8) 0.0044 (6) 0.0067 (6) −0.0027 (6)
C1 0.0384 (8) 0.0354 (8) 0.0275 (8) −0.0033 (6) −0.0013 (6) 0.0035 (6)
C2 0.0309 (7) 0.0335 (8) 0.0252 (7) 0.0007 (6) 0.0013 (6) 0.0008 (6)
C3 0.0365 (8) 0.0355 (8) 0.0268 (8) 0.0039 (6) −0.0005 (6) 0.0016 (6)
C4 0.0411 (9) 0.0537 (11) 0.0511 (11) 0.0131 (8) 0.0035 (8) 0.0005 (9)
C5 0.0517 (10) 0.0408 (9) 0.0315 (9) 0.0077 (7) 0.0039 (7) −0.0038 (7)
C6 0.0465 (9) 0.0344 (8) 0.0291 (8) −0.0030 (7) 0.0010 (7) −0.0008 (6)
C7 0.0571 (11) 0.0466 (10) 0.0318 (9) −0.0019 (8) −0.0023 (8) −0.0012 (7)
C8 0.0732 (13) 0.0468 (10) 0.0288 (9) −0.0039 (9) −0.0025 (8) −0.0063 (8)
C9 0.117 (2) 0.0542 (13) 0.0381 (11) 0.0107 (13) −0.0047 (12) −0.0076 (9)
C10 0.153 (3) 0.0611 (15) 0.0555 (15) 0.0301 (16) 0.0057 (16) −0.0159 (12)
C11 0.163 (3) 0.0710 (17) 0.0448 (14) 0.0170 (18) 0.0209 (16) −0.0168 (12)
C12 0.133 (2) 0.0629 (14) 0.0337 (11) 0.0001 (15) 0.0128 (13) −0.0019 (10)
C13 0.0821 (14) 0.0460 (11) 0.0356 (10) −0.0045 (10) 0.0017 (9) −0.0034 (8)
C14 0.0358 (8) 0.0465 (9) 0.0369 (9) 0.0042 (7) 0.0078 (7) 0.0023 (7)
C15 0.0570 (11) 0.0509 (11) 0.0507 (12) 0.0045 (9) 0.0165 (9) 0.0135 (9)
C16 0.0635 (13) 0.0777 (15) 0.0409 (11) 0.0173 (11) 0.0104 (9) 0.0262 (10)
C17 0.0525 (11) 0.0899 (17) 0.0337 (10) 0.0036 (11) −0.0023 (8) 0.0126 (10)
C18 0.0463 (10) 0.0642 (12) 0.0319 (9) −0.0031 (8) 0.0010 (7) 0.0051 (8)
C19 0.0337 (8) 0.0459 (9) 0.0275 (8) 0.0032 (7) 0.0065 (6) 0.0027 (7)
C20 0.0324 (7) 0.0403 (8) 0.0273 (8) 0.0011 (6) 0.0013 (6) 0.0002 (6)
C21 0.0485 (9) 0.0432 (9) 0.0343 (9) 0.0054 (7) 0.0075 (7) −0.0040 (7)
C22 0.0804 (14) 0.0358 (10) 0.0577 (13) 0.0030 (9) 0.0133 (11) −0.0059 (9)
C23 0.0335 (7) 0.0336 (8) 0.0292 (8) 0.0001 (6) −0.0006 (6) 0.0014 (6)
C24 0.0413 (9) 0.0364 (9) 0.0443 (10) −0.0033 (7) −0.0059 (7) 0.0012 (7)
C25 0.0367 (8) 0.0342 (9) 0.0574 (11) −0.0009 (7) −0.0002 (8) 0.0006 (8)
C26 0.0391 (9) 0.0519 (11) 0.0798 (15) −0.0016 (8) −0.0034 (10) −0.0004 (10)
C27 0.0395 (10) 0.0635 (14) 0.104 (2) −0.0058 (9) 0.0173 (12) −0.0037 (13)
C28 0.0549 (12) 0.0518 (12) 0.0851 (17) −0.0068 (9) 0.0344 (12) −0.0017 (11)
C29 0.0539 (10) 0.0309 (8) 0.0555 (12) 0.0016 (7) 0.0216 (9) 0.0003 (8)
C30 0.0744 (13) 0.0377 (9) 0.0482 (11) 0.0050 (9) 0.0253 (10) 0.0054 (8)
C31 0.0711 (13) 0.0406 (10) 0.0374 (10) 0.0110 (9) 0.0051 (9) 0.0074 (8)
C32 0.0461 (9) 0.0382 (9) 0.0389 (9) 0.0067 (7) 0.0033 (7) 0.0048 (7)
C33 0.0377 (8) 0.0288 (7) 0.0355 (9) 0.0029 (6) 0.0049 (6) 0.0026 (6)
C34 0.0403 (8) 0.0261 (7) 0.0479 (10) 0.0012 (6) 0.0090 (7) 0.0000 (7)

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Geometric parameters (Å, º)

Cl1—C13 1.731 (2) C14—C19 1.386 (2)
Cl2—C14 1.7336 (18) C15—C16 1.369 (3)
O1—C1 1.2098 (19) C15—H15 0.9300
O2—C24 1.208 (2) C16—C17 1.365 (3)
N1—C5 1.450 (2) C16—H16 0.9300
N1—C3 1.4506 (19) C17—C18 1.379 (3)
N1—C4 1.454 (2) C17—H17 0.9300
N2—C22 1.446 (2) C18—C19 1.390 (2)
N2—C21 1.451 (2) C18—H18 0.9300
N2—C23 1.462 (2) C19—C20 1.516 (2)
C1—C6 1.501 (2) C20—C21 1.526 (2)
C1—C2 1.533 (2) C20—H20 0.9800
C2—C3 1.527 (2) C21—H21A 0.9700
C2—C20 1.566 (2) C21—H21B 0.9700
C2—C23 1.584 (2) C22—H22A 0.9600
C3—H3A 0.9700 C22—H22B 0.9600
C3—H3B 0.9700 C22—H22C 0.9600
C4—H4A 0.9600 C23—C33 1.525 (2)
C4—H4B 0.9600 C23—C24 1.573 (2)
C4—H4C 0.9600 C24—C25 1.469 (3)
C5—C6 1.505 (2) C25—C26 1.374 (2)
C5—H5A 0.9700 C25—C34 1.388 (3)
C5—H5B 0.9700 C26—C27 1.391 (3)
C6—C7 1.332 (2) C26—H26 0.9300
C7—C8 1.466 (3) C27—C28 1.360 (3)
C7—H7 0.9300 C27—H27 0.9300
C8—C9 1.387 (3) C28—C29 1.414 (3)
C8—C13 1.390 (3) C28—H28 0.9300
C9—C10 1.374 (3) C29—C30 1.401 (3)
C9—H9 0.9300 C29—C34 1.402 (2)
C10—C11 1.363 (4) C30—C31 1.362 (3)
C10—H10 0.9300 C30—H30 0.9300
C11—C12 1.367 (4) C31—C32 1.420 (2)
C11—H11 0.9300 C31—H31 0.9300
C12—C13 1.377 (3) C32—C33 1.355 (2)
C12—H12 0.9300 C32—H32 0.9300
C14—C15 1.384 (3) C33—C34 1.406 (2)
C5—N1—C3 109.25 (13) C16—C17—C18 120.3 (2)
C5—N1—C4 111.01 (13) C16—C17—H17 119.9
C3—N1—C4 112.25 (13) C18—C17—H17 119.9
C22—N2—C21 114.51 (14) C17—C18—C19 121.78 (19)
C22—N2—C23 116.03 (14) C17—C18—H18 119.1
C21—N2—C23 107.08 (13) C19—C18—H18 119.1
O1—C1—C6 121.17 (15) C14—C19—C18 116.24 (16)
O1—C1—C2 121.21 (15) C14—C19—C20 121.46 (15)
C6—C1—C2 117.60 (13) C18—C19—C20 122.29 (16)
C3—C2—C1 107.89 (12) C19—C20—C21 115.01 (13)
C3—C2—C20 114.15 (12) C19—C20—C2 114.64 (12)
C1—C2—C20 110.87 (12) C21—C20—C2 105.17 (13)
C3—C2—C23 112.25 (12) C19—C20—H20 107.2
C1—C2—C23 107.74 (12) C21—C20—H20 107.2
C20—C2—C23 103.77 (12) C2—C20—H20 107.2
N1—C3—C2 108.55 (12) N2—C21—C20 103.58 (13)
N1—C3—H3A 110.0 N2—C21—H21A 111.0
C2—C3—H3A 110.0 C20—C21—H21A 111.0
N1—C3—H3B 110.0 N2—C21—H21B 111.0
C2—C3—H3B 110.0 C20—C21—H21B 111.0
H3A—C3—H3B 108.4 H21A—C21—H21B 109.0
N1—C4—H4A 109.5 N2—C22—H22A 109.5
N1—C4—H4B 109.5 N2—C22—H22B 109.5
H4A—C4—H4B 109.5 H22A—C22—H22B 109.5
N1—C4—H4C 109.5 N2—C22—H22C 109.5
H4A—C4—H4C 109.5 H22A—C22—H22C 109.5
H4B—C4—H4C 109.5 H22B—C22—H22C 109.5
N1—C5—C6 112.12 (13) N2—C23—C33 111.16 (12)
N1—C5—H5A 109.2 N2—C23—C24 113.88 (13)
C6—C5—H5A 109.2 C33—C23—C24 101.34 (12)
N1—C5—H5B 109.2 N2—C23—C2 101.90 (12)
C6—C5—H5B 109.2 C33—C23—C2 119.06 (13)
H5A—C5—H5B 107.9 C24—C23—C2 110.04 (12)
C7—C6—C1 116.54 (16) O2—C24—C25 126.70 (16)
C7—C6—C5 123.80 (16) O2—C24—C23 124.93 (16)
C1—C6—C5 119.60 (14) C25—C24—C23 108.28 (14)
C6—C7—C8 127.74 (18) C26—C25—C34 120.53 (18)
C6—C7—H7 116.1 C26—C25—C24 132.12 (19)
C8—C7—H7 116.1 C34—C25—C24 107.35 (15)
C9—C8—C13 116.62 (18) C25—C26—C27 118.0 (2)
C9—C8—C7 122.54 (18) C25—C26—H26 121.0
C13—C8—C7 120.78 (18) C27—C26—H26 121.0
C10—C9—C8 121.5 (2) C28—C27—C26 121.8 (2)
C10—C9—H9 119.2 C28—C27—H27 119.1
C8—C9—H9 119.2 C26—C27—H27 119.1
C11—C10—C9 120.5 (2) C27—C28—C29 121.7 (2)
C11—C10—H10 119.8 C27—C28—H28 119.1
C9—C10—H10 119.8 C29—C28—H28 119.1
C10—C11—C12 119.8 (2) C30—C29—C34 116.10 (17)
C10—C11—H11 120.1 C30—C29—C28 128.53 (19)
C12—C11—H11 120.1 C34—C29—C28 115.4 (2)
C11—C12—C13 119.8 (2) C31—C30—C29 120.33 (17)
C11—C12—H12 120.1 C31—C30—H30 119.8
C13—C12—H12 120.1 C29—C30—H30 119.8
C12—C13—C8 121.8 (2) C30—C31—C32 122.50 (18)
C12—C13—Cl1 118.43 (17) C30—C31—H31 118.8
C8—C13—Cl1 119.76 (15) C32—C31—H31 118.8
C15—C14—C19 122.37 (17) C33—C32—C31 118.77 (17)
C15—C14—Cl2 117.45 (15) C33—C32—H32 120.6
C19—C14—Cl2 120.17 (13) C31—C32—H32 120.6
C16—C15—C14 119.5 (2) C32—C33—C34 118.36 (15)
C16—C15—H15 120.3 C32—C33—C23 132.64 (15)
C14—C15—H15 120.3 C34—C33—C23 108.90 (14)
C17—C16—C15 119.85 (19) C25—C34—C29 122.39 (17)
C17—C16—H16 120.1 C25—C34—C33 113.76 (15)
C15—C16—H16 120.1 C29—C34—C33 123.85 (17)
O1—C1—C2—C3 −151.50 (15) C19—C20—C21—N2 −152.40 (13)
C6—C1—C2—C3 30.10 (18) C2—C20—C21—N2 −25.30 (16)
O1—C1—C2—C20 −25.8 (2) C22—N2—C23—C33 60.97 (19)
C6—C1—C2—C20 155.77 (13) C21—N2—C23—C33 −169.74 (13)
O1—C1—C2—C23 87.09 (18) C22—N2—C23—C24 −52.7 (2)
C6—C1—C2—C23 −91.31 (15) C21—N2—C23—C24 76.57 (16)
C5—N1—C3—C2 75.82 (16) C22—N2—C23—C2 −171.16 (15)
C4—N1—C3—C2 −160.58 (14) C21—N2—C23—C2 −41.87 (15)
C1—C2—C3—N1 −60.62 (16) C3—C2—C23—N2 147.45 (12)
C20—C2—C3—N1 175.67 (13) C1—C2—C23—N2 −93.90 (14)
C23—C2—C3—N1 57.94 (16) C20—C2—C23—N2 23.71 (14)
C3—N1—C5—C6 −54.27 (18) C3—C2—C23—C33 −89.93 (16)
C4—N1—C5—C6 −178.59 (14) C1—C2—C23—C33 28.72 (17)
O1—C1—C6—C7 −14.3 (2) C20—C2—C23—C33 146.34 (13)
C2—C1—C6—C7 164.07 (15) C3—C2—C23—C24 26.31 (17)
O1—C1—C6—C5 168.41 (16) C1—C2—C23—C24 144.96 (13)
C2—C1—C6—C5 −13.2 (2) C20—C2—C23—C24 −97.43 (14)
N1—C5—C6—C7 −153.17 (16) N2—C23—C24—O2 −51.3 (2)
N1—C5—C6—C1 23.9 (2) C33—C23—C24—O2 −170.73 (17)
C1—C6—C7—C8 −179.00 (17) C2—C23—C24—O2 62.4 (2)
C5—C6—C7—C8 −1.9 (3) N2—C23—C24—C25 125.47 (15)
C6—C7—C8—C9 −42.2 (3) C33—C23—C24—C25 6.04 (16)
C6—C7—C8—C13 140.7 (2) C2—C23—C24—C25 −120.86 (14)
C13—C8—C9—C10 −0.5 (4) O2—C24—C25—C26 −8.4 (3)
C7—C8—C9—C10 −177.7 (3) C23—C24—C25—C26 174.85 (19)
C8—C9—C10—C11 −0.1 (5) O2—C24—C25—C34 171.10 (18)
C9—C10—C11—C12 0.4 (5) C23—C24—C25—C34 −5.60 (18)
C10—C11—C12—C13 −0.2 (5) C34—C25—C26—C27 −0.4 (3)
C11—C12—C13—C8 −0.4 (4) C24—C25—C26—C27 179.1 (2)
C11—C12—C13—Cl1 −179.7 (2) C25—C26—C27—C28 −2.0 (3)
C9—C8—C13—C12 0.8 (3) C26—C27—C28—C29 1.6 (3)
C7—C8—C13—C12 178.0 (2) C27—C28—C29—C30 −178.3 (2)
C9—C8—C13—Cl1 −179.95 (18) C27—C28—C29—C34 1.2 (3)
C7—C8—C13—Cl1 −2.7 (3) C34—C29—C30—C31 0.5 (3)
C19—C14—C15—C16 0.9 (3) C28—C29—C30—C31 179.99 (19)
Cl2—C14—C15—C16 −177.66 (15) C29—C30—C31—C32 1.4 (3)
C14—C15—C16—C17 −0.4 (3) C30—C31—C32—C33 −1.0 (3)
C15—C16—C17—C18 −0.2 (3) C31—C32—C33—C34 −1.4 (2)
C16—C17—C18—C19 0.3 (3) C31—C32—C33—C23 −177.36 (16)
C15—C14—C19—C18 −0.7 (2) N2—C23—C33—C32 50.4 (2)
Cl2—C14—C19—C18 177.79 (13) C24—C23—C33—C32 171.78 (17)
C15—C14—C19—C20 −179.46 (15) C2—C23—C33—C32 −67.5 (2)
Cl2—C14—C19—C20 −0.9 (2) N2—C23—C33—C34 −125.80 (14)
C17—C18—C19—C14 0.1 (3) C24—C23—C33—C34 −4.45 (16)
C17—C18—C19—C20 178.84 (17) C2—C23—C33—C34 116.30 (15)
C14—C19—C20—C21 −145.35 (15) C26—C25—C34—C29 3.3 (3)
C18—C19—C20—C21 36.0 (2) C24—C25—C34—C29 −176.29 (15)
C14—C19—C20—C2 92.53 (18) C26—C25—C34—C33 −177.61 (16)
C18—C19—C20—C2 −86.13 (19) C24—C25—C34—C33 2.8 (2)
C3—C2—C20—C19 5.57 (19) C30—C29—C34—C25 175.93 (16)
C1—C2—C20—C19 −116.52 (15) C28—C29—C34—C25 −3.6 (2)
C23—C2—C20—C19 128.06 (14) C30—C29—C34—C33 −3.0 (2)
C3—C2—C20—C21 −121.76 (14) C28—C29—C34—C33 177.43 (16)
C1—C2—C20—C21 116.15 (14) C32—C33—C34—C25 −175.52 (15)
C23—C2—C20—C21 0.73 (15) C23—C33—C34—C25 1.33 (19)
C22—N2—C21—C20 173.28 (15) C32—C33—C34—C29 3.5 (2)
C23—N2—C21—C20 43.13 (17) C23—C33—C34—C29 −179.62 (15)

5''-(2-Chlorobenzylidene)-4'-(2-chlorophenyl)-1'-methyldispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (I). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C25–C29/C34 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10···O2i 0.93 2.74 3.492 (3) 139
C16—H16···O2ii 0.93 2.76 3.481 (3) 135
C5—H5B···Cg1i 0.97 2.99 3.9466 (19) 168

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+2, −z.

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Crystal data

C36H34N2O2 F(000) = 1120
Mr = 526.65 Dx = 1.240 Mg m3Dm = 1.24 Mg m3Dm measured by floatation method
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.7507 (5) Å Cell parameters from 5358 reflections
b = 15.9089 (8) Å θ = 4.7–42.0°
c = 20.2879 (10) Å µ = 0.08 mm1
β = 92.935 (2)° T = 293 K
V = 2820.7 (3) Å3 Block, yellow
Z = 4 0.32 × 0.24 × 0.18 mm

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Data collection

Bruker SMART APEXII CCD diffractometer 3349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
φ and ω scans θmax = 25.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.816, Tmax = 1.000 k = −19→19
28946 measured reflections l = −24→18
5339 independent reflections

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5169P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.17 e Å3
5339 reflections Δρmin = −0.15 e Å3
362 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0040 (6)

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.47706 (15) 0.91884 (10) 0.26949 (6) 0.0632 (4)
O2 0.01075 (17) 0.80552 (10) 0.11060 (7) 0.0749 (5)
N1 0.02197 (15) 0.96279 (9) 0.23966 (7) 0.0438 (4)
N2 0.32038 (17) 0.76401 (9) 0.17891 (7) 0.0488 (4)
C1 0.3410 (2) 0.93366 (11) 0.26053 (8) 0.0434 (4)
C2 0.25341 (18) 0.90633 (11) 0.19667 (8) 0.0377 (4)
C3 0.12046 (19) 0.96732 (11) 0.18425 (8) 0.0420 (4)
H3A 0.159005 1.024095 0.179771 0.050*
H3B 0.063116 0.952451 0.143748 0.050*
C4 −0.1307 (2) 0.99492 (14) 0.22319 (10) 0.0619 (6)
H4A −0.175538 0.964127 0.186372 0.093*
H4B −0.192980 0.988480 0.260484 0.093*
H4C −0.124579 1.053358 0.211850 0.093*
C5 0.0937 (2) 1.00778 (12) 0.29519 (9) 0.0529 (5)
H5A 0.032387 1.000780 0.333317 0.063*
H5B 0.096585 1.067257 0.284807 0.063*
C6 0.2541 (2) 0.97734 (11) 0.31209 (8) 0.0459 (4)
C7 0.3224 (2) 0.98436 (13) 0.37200 (9) 0.0566 (5)
H7 0.420638 0.962182 0.376842 0.068*
C8 0.2630 (3) 1.02252 (14) 0.43153 (9) 0.0637 (6)
C9 0.1907 (3) 1.09994 (16) 0.42926 (11) 0.0862 (8)
H9 0.176292 1.127477 0.388985 0.103*
C10 0.1399 (4) 1.13691 (19) 0.48527 (13) 0.1125 (11)
H10 0.092416 1.189186 0.482807 0.135*
C11 0.1595 (4) 1.0966 (2) 0.54474 (13) 0.1158 (11)
H11 0.124439 1.121064 0.582782 0.139*
C12 0.2304 (4) 1.02073 (18) 0.54774 (12) 0.1011 (10)
H12 0.242808 0.993784 0.588346 0.121*
C13 0.2852 (3) 0.98180 (14) 0.49223 (10) 0.0736 (7)
C14 0.4072 (2) 1.03916 (12) 0.08230 (9) 0.0477 (5)
C15 0.3741 (2) 1.09458 (14) 0.03059 (10) 0.0627 (6)
H15 0.425474 1.145727 0.029917 0.075*
C16 0.2684 (3) 1.07634 (17) −0.01936 (11) 0.0716 (7)
H16 0.247654 1.114850 −0.053129 0.086*
C17 0.1933 (2) 1.00083 (17) −0.01915 (10) 0.0693 (6)
H17 0.121043 0.987782 −0.052809 0.083*
C18 0.2252 (2) 0.94425 (14) 0.03112 (9) 0.0563 (5)
H18 0.173963 0.893017 0.030703 0.068*
C19 0.33151 (19) 0.96161 (12) 0.08224 (8) 0.0429 (4)
C20 0.36354 (19) 0.89945 (11) 0.13800 (8) 0.0420 (4)
H20 0.466999 0.911443 0.156377 0.050*
C21 0.3607 (2) 0.80656 (12) 0.11868 (9) 0.0529 (5)
H21A 0.284808 0.796067 0.083082 0.063*
H21B 0.460023 0.788322 0.105068 0.063*
C22 0.2938 (3) 0.67430 (13) 0.17162 (11) 0.0731 (7)
H22A 0.268011 0.651006 0.213260 0.110*
H22B 0.211144 0.664885 0.139531 0.110*
H22C 0.384812 0.647695 0.157250 0.110*
C23 0.19669 (19) 0.81255 (11) 0.20669 (8) 0.0422 (4)
C24 0.0359 (2) 0.79910 (12) 0.16969 (10) 0.0523 (5)
C25 −0.0735 (2) 0.77254 (12) 0.21815 (10) 0.0540 (5)
C26 −0.2285 (2) 0.75824 (14) 0.21310 (13) 0.0723 (6)
H26 −0.284279 0.766562 0.173375 0.087*
C27 −0.2998 (3) 0.73101 (16) 0.26895 (16) 0.0843 (8)
H27 −0.405192 0.722827 0.266586 0.101*
C28 −0.2194 (3) 0.71598 (14) 0.32708 (14) 0.0765 (7)
H28 −0.270670 0.696290 0.363029 0.092*
C29 −0.0593 (2) 0.72969 (12) 0.33393 (11) 0.0580 (5)
C30 0.0395 (3) 0.71575 (13) 0.38964 (11) 0.0661 (6)
H30 0.000748 0.694837 0.428213 0.079*
C31 0.1921 (3) 0.73275 (12) 0.38742 (10) 0.0618 (6)
H31 0.255708 0.721647 0.424532 0.074*
C32 0.2575 (2) 0.76681 (11) 0.33047 (9) 0.0504 (5)
H32 0.361543 0.778819 0.330644 0.060*
C33 0.1650 (2) 0.78149 (11) 0.27577 (8) 0.0430 (4)
C34 0.0085 (2) 0.76075 (11) 0.27794 (9) 0.0473 (5)
C35 0.3604 (4) 0.89722 (16) 0.49768 (11) 0.0951 (9)
H35A 0.391046 0.879874 0.454998 0.143* 0.5
H35B 0.448790 0.900568 0.527609 0.143* 0.5
H35C 0.289565 0.857078 0.513916 0.143* 0.5
H35D 0.361888 0.878473 0.542684 0.143* 0.5
H35E 0.304143 0.857779 0.470073 0.143* 0.5
H35F 0.463369 0.901268 0.483766 0.143* 0.5
C36 0.5214 (2) 1.06401 (14) 0.13658 (11) 0.0659 (6)
H36A 0.531595 1.019372 0.168344 0.099* 0.5
H36B 0.618648 1.074534 0.118366 0.099* 0.5
H36C 0.486814 1.114002 0.157740 0.099* 0.5
H36D 0.559776 1.119233 0.127956 0.099* 0.5
H36E 0.472723 1.064071 0.177934 0.099* 0.5
H36F 0.604557 1.024604 0.138560 0.099* 0.5

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0476 (8) 0.0952 (11) 0.0459 (8) 0.0049 (7) −0.0050 (6) −0.0030 (7)
O2 0.0784 (10) 0.0890 (12) 0.0551 (10) −0.0227 (8) −0.0182 (8) 0.0099 (8)
N1 0.0438 (8) 0.0493 (9) 0.0386 (9) 0.0075 (7) 0.0052 (7) 0.0005 (7)
N2 0.0621 (10) 0.0420 (9) 0.0434 (9) 0.0056 (7) 0.0121 (7) −0.0019 (7)
C1 0.0449 (11) 0.0489 (11) 0.0361 (10) −0.0008 (8) 0.0004 (8) 0.0042 (8)
C2 0.0396 (9) 0.0432 (10) 0.0303 (9) 0.0010 (8) 0.0026 (7) 0.0004 (8)
C3 0.0471 (10) 0.0452 (10) 0.0336 (10) 0.0022 (8) 0.0018 (8) 0.0018 (8)
C4 0.0526 (12) 0.0685 (14) 0.0650 (14) 0.0164 (10) 0.0071 (10) −0.0003 (11)
C5 0.0666 (13) 0.0533 (12) 0.0391 (11) 0.0101 (10) 0.0072 (9) −0.0033 (9)
C6 0.0597 (11) 0.0439 (11) 0.0340 (10) −0.0015 (9) 0.0009 (8) 0.0001 (8)
C7 0.0757 (14) 0.0559 (12) 0.0377 (11) −0.0012 (10) −0.0014 (10) −0.0005 (9)
C8 0.0948 (16) 0.0596 (14) 0.0362 (12) 0.0032 (12) −0.0021 (10) −0.0079 (10)
C9 0.143 (2) 0.0701 (16) 0.0441 (14) 0.0211 (16) −0.0056 (14) −0.0085 (12)
C10 0.193 (3) 0.0801 (19) 0.0642 (18) 0.040 (2) 0.0039 (19) −0.0204 (15)
C11 0.202 (3) 0.093 (2) 0.0542 (17) 0.028 (2) 0.0216 (18) −0.0222 (16)
C12 0.179 (3) 0.0834 (19) 0.0420 (14) 0.013 (2) 0.0156 (16) −0.0069 (13)
C13 0.118 (2) 0.0631 (15) 0.0393 (12) 0.0007 (14) 0.0031 (12) −0.0062 (11)
C14 0.0447 (10) 0.0549 (12) 0.0444 (11) 0.0043 (9) 0.0126 (8) 0.0033 (9)
C15 0.0696 (14) 0.0620 (14) 0.0584 (14) 0.0034 (11) 0.0222 (11) 0.0141 (11)
C16 0.0759 (16) 0.0903 (18) 0.0497 (14) 0.0212 (14) 0.0140 (12) 0.0276 (12)
C17 0.0593 (13) 0.107 (2) 0.0415 (12) 0.0025 (13) 0.0008 (10) 0.0154 (12)
C18 0.0545 (12) 0.0767 (14) 0.0377 (11) −0.0056 (10) 0.0028 (9) 0.0068 (10)
C19 0.0414 (10) 0.0557 (12) 0.0322 (10) 0.0019 (9) 0.0084 (8) 0.0030 (8)
C20 0.0402 (10) 0.0518 (11) 0.0342 (10) −0.0004 (8) 0.0025 (7) −0.0005 (8)
C21 0.0609 (12) 0.0562 (12) 0.0425 (11) 0.0046 (9) 0.0117 (9) −0.0047 (9)
C22 0.1067 (18) 0.0462 (12) 0.0682 (15) 0.0039 (12) 0.0207 (13) −0.0071 (11)
C23 0.0437 (10) 0.0457 (11) 0.0372 (10) 0.0020 (8) 0.0029 (8) 0.0007 (8)
C24 0.0573 (12) 0.0463 (11) 0.0524 (13) −0.0040 (9) −0.0057 (10) 0.0040 (9)
C25 0.0477 (11) 0.0459 (11) 0.0684 (14) −0.0011 (9) 0.0045 (10) 0.0018 (10)
C26 0.0524 (13) 0.0648 (14) 0.0994 (19) −0.0021 (11) 0.0012 (12) −0.0008 (13)
C27 0.0542 (14) 0.0776 (17) 0.123 (2) −0.0061 (13) 0.0221 (16) −0.0055 (17)
C28 0.0690 (16) 0.0648 (15) 0.100 (2) −0.0065 (12) 0.0418 (15) −0.0021 (14)
C29 0.0696 (14) 0.0404 (11) 0.0664 (14) 0.0048 (10) 0.0249 (12) 0.0005 (10)
C30 0.0901 (17) 0.0501 (13) 0.0613 (14) 0.0083 (12) 0.0364 (13) 0.0071 (10)
C31 0.0919 (17) 0.0501 (12) 0.0439 (12) 0.0184 (12) 0.0088 (11) 0.0087 (9)
C32 0.0591 (12) 0.0465 (11) 0.0460 (11) 0.0112 (9) 0.0069 (9) 0.0061 (9)
C33 0.0509 (11) 0.0366 (10) 0.0422 (11) 0.0069 (8) 0.0082 (8) 0.0033 (8)
C34 0.0519 (11) 0.0349 (10) 0.0563 (12) 0.0028 (8) 0.0149 (10) 0.0026 (9)
C35 0.157 (3) 0.0752 (17) 0.0521 (14) 0.0178 (17) −0.0015 (15) 0.0049 (12)
C36 0.0637 (13) 0.0622 (14) 0.0717 (15) −0.0101 (11) 0.0025 (11) −0.0023 (11)

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Geometric parameters (Å, º)

O1—C1 1.218 (2) C17—H17 0.9300
O2—C24 1.212 (2) C18—C19 1.385 (2)
N1—C5 1.450 (2) C18—H18 0.9300
N1—C3 1.453 (2) C19—C20 1.518 (2)
N1—C4 1.454 (2) C20—C21 1.529 (3)
N2—C22 1.452 (2) C20—H20 0.9800
N2—C21 1.456 (2) C21—H21A 0.9700
N2—C23 1.466 (2) C21—H21B 0.9700
C1—C6 1.496 (2) C22—H22A 0.9600
C1—C2 1.534 (2) C22—H22B 0.9600
C2—C3 1.526 (2) C22—H22C 0.9600
C2—C20 1.573 (2) C23—C33 1.525 (2)
C2—C23 1.589 (2) C23—C24 1.575 (3)
C3—H3A 0.9700 C24—C25 1.469 (3)
C3—H3B 0.9700 C25—C26 1.374 (3)
C4—H4A 0.9600 C25—C34 1.390 (3)
C4—H4B 0.9600 C26—C27 1.390 (3)
C4—H4C 0.9600 C26—H26 0.9300
C5—C6 1.508 (3) C27—C28 1.363 (3)
C5—H5A 0.9700 C27—H27 0.9300
C5—H5B 0.9700 C28—C29 1.417 (3)
C6—C7 1.331 (2) C28—H28 0.9300
C7—C8 1.470 (3) C29—C34 1.398 (3)
C7—H7 0.9300 C29—C30 1.405 (3)
C8—C9 1.384 (3) C30—C31 1.366 (3)
C8—C13 1.396 (3) C30—H30 0.9300
C9—C10 1.374 (3) C31—C32 1.423 (3)
C9—H9 0.9300 C31—H31 0.9300
C10—C11 1.369 (4) C32—C33 1.360 (2)
C10—H10 0.9300 C32—H32 0.9300
C11—C12 1.358 (4) C33—C34 1.412 (2)
C11—H11 0.9300 C35—H35A 0.9600
C12—C13 1.392 (3) C35—H35B 0.9600
C12—H12 0.9300 C35—H35C 0.9600
C13—C35 1.500 (3) C35—H35D 0.9600
C14—C15 1.390 (3) C35—H35E 0.9600
C14—C19 1.400 (3) C35—H35F 0.9600
C14—C36 1.501 (3) C36—H36A 0.9600
C15—C16 1.368 (3) C36—H36B 0.9600
C15—H15 0.9300 C36—H36C 0.9600
C16—C17 1.369 (3) C36—H36D 0.9600
C16—H16 0.9300 C36—H36E 0.9600
C17—C18 1.378 (3) C36—H36F 0.9600
C5—N1—C3 109.05 (14) C19—C20—C21 116.01 (14)
C5—N1—C4 111.16 (15) C19—C20—C2 114.95 (14)
C3—N1—C4 112.30 (14) C21—C20—C2 104.99 (14)
C22—N2—C21 114.57 (15) C19—C20—H20 106.8
C22—N2—C23 116.08 (15) C21—C20—H20 106.8
C21—N2—C23 107.05 (13) C2—C20—H20 106.8
O1—C1—C6 120.91 (16) N2—C21—C20 103.63 (13)
O1—C1—C2 120.90 (16) N2—C21—H21A 111.0
C6—C1—C2 118.18 (15) C20—C21—H21A 111.0
C3—C2—C1 107.64 (14) N2—C21—H21B 111.0
C3—C2—C20 114.25 (13) C20—C21—H21B 111.0
C1—C2—C20 111.07 (13) H21A—C21—H21B 109.0
C3—C2—C23 112.19 (13) N2—C22—H22A 109.5
C1—C2—C23 107.70 (13) N2—C22—H22B 109.5
C20—C2—C23 103.83 (13) H22A—C22—H22B 109.5
N1—C3—C2 108.55 (13) N2—C22—H22C 109.5
N1—C3—H3A 110.0 H22A—C22—H22C 109.5
C2—C3—H3A 110.0 H22B—C22—H22C 109.5
N1—C3—H3B 110.0 N2—C23—C33 110.81 (14)
C2—C3—H3B 110.0 N2—C23—C24 113.84 (14)
H3A—C3—H3B 108.4 C33—C23—C24 101.21 (14)
N1—C4—H4A 109.5 N2—C23—C2 101.76 (13)
N1—C4—H4B 109.5 C33—C23—C2 119.65 (14)
H4A—C4—H4B 109.5 C24—C23—C2 110.12 (13)
N1—C4—H4C 109.5 O2—C24—C25 126.46 (18)
H4A—C4—H4C 109.5 O2—C24—C23 124.94 (17)
H4B—C4—H4C 109.5 C25—C24—C23 108.48 (16)
N1—C5—C6 112.26 (15) C26—C25—C34 120.42 (19)
N1—C5—H5A 109.2 C26—C25—C24 132.3 (2)
C6—C5—H5A 109.2 C34—C25—C24 107.31 (16)
N1—C5—H5B 109.2 C25—C26—C27 118.3 (2)
C6—C5—H5B 109.2 C25—C26—H26 120.9
H5A—C5—H5B 107.9 C27—C26—H26 120.9
C7—C6—C1 117.20 (17) C28—C27—C26 121.8 (2)
C7—C6—C5 123.34 (17) C28—C27—H27 119.1
C1—C6—C5 119.41 (15) C26—C27—H27 119.1
C6—C7—C8 128.6 (2) C27—C28—C29 121.4 (2)
C6—C7—H7 115.7 C27—C28—H28 119.3
C8—C7—H7 115.7 C29—C28—H28 119.3
C9—C8—C13 119.01 (19) C34—C29—C30 116.11 (19)
C9—C8—C7 121.34 (19) C34—C29—C28 115.7 (2)
C13—C8—C7 119.6 (2) C30—C29—C28 128.2 (2)
C10—C9—C8 121.3 (2) C31—C30—C29 120.30 (19)
C10—C9—H9 119.3 C31—C30—H30 119.8
C8—C9—H9 119.3 C29—C30—H30 119.8
C11—C10—C9 119.8 (3) C30—C31—C32 122.5 (2)
C11—C10—H10 120.1 C30—C31—H31 118.8
C9—C10—H10 120.1 C32—C31—H31 118.8
C12—C11—C10 119.5 (2) C33—C32—C31 118.75 (19)
C12—C11—H11 120.3 C33—C32—H32 120.6
C10—C11—H11 120.3 C31—C32—H32 120.6
C11—C12—C13 122.4 (2) C32—C33—C34 118.17 (17)
C11—C12—H12 118.8 C32—C33—C23 132.64 (16)
C13—C12—H12 118.8 C34—C33—C23 109.07 (15)
C12—C13—C8 118.0 (2) C25—C34—C29 122.33 (19)
C12—C13—C35 120.5 (2) C25—C34—C33 113.55 (16)
C8—C13—C35 121.46 (19) C29—C34—C33 124.10 (19)
C15—C14—C19 118.55 (18) C13—C35—H35A 109.5
C15—C14—C36 119.47 (18) C13—C35—H35B 109.5
C19—C14—C36 121.98 (17) H35A—C35—H35B 109.5
C16—C15—C14 122.1 (2) C13—C35—H35C 109.5
C16—C15—H15 118.9 H35A—C35—H35C 109.5
C14—C15—H15 118.9 H35B—C35—H35C 109.5
C15—C16—C17 119.4 (2) H35D—C35—H35E 109.5
C15—C16—H16 120.3 H35D—C35—H35F 109.5
C17—C16—H16 120.3 H35E—C35—H35F 109.5
C16—C17—C18 119.8 (2) C14—C36—H36A 109.5
C16—C17—H17 120.1 C14—C36—H36B 109.5
C18—C17—H17 120.1 H36A—C36—H36B 109.5
C17—C18—C19 121.8 (2) C14—C36—H36C 109.5
C17—C18—H18 119.1 H36A—C36—H36C 109.5
C19—C18—H18 119.1 H36B—C36—H36C 109.5
C18—C19—C14 118.42 (17) H36D—C36—H36E 109.5
C18—C19—C20 121.30 (17) H36D—C36—H36F 109.5
C14—C19—C20 120.26 (15) H36E—C36—H36F 109.5
O1—C1—C2—C3 −152.18 (17) C19—C20—C21—N2 −153.51 (14)
C6—C1—C2—C3 29.1 (2) C2—C20—C21—N2 −25.45 (17)
O1—C1—C2—C20 −26.4 (2) C22—N2—C23—C33 60.2 (2)
C6—C1—C2—C20 154.89 (15) C21—N2—C23—C33 −170.39 (14)
O1—C1—C2—C23 86.66 (19) C22—N2—C23—C24 −53.0 (2)
C6—C1—C2—C23 −92.04 (17) C21—N2—C23—C24 76.33 (18)
C5—N1—C3—C2 76.18 (17) C22—N2—C23—C2 −171.47 (15)
C4—N1—C3—C2 −160.14 (15) C21—N2—C23—C2 −42.10 (16)
C1—C2—C3—N1 −60.49 (17) C3—C2—C23—N2 147.72 (13)
C20—C2—C3—N1 175.66 (13) C1—C2—C23—N2 −94.01 (15)
C23—C2—C3—N1 57.82 (17) C20—C2—C23—N2 23.85 (15)
C3—N1—C5—C6 −54.01 (19) C3—C2—C23—C33 −89.87 (17)
C4—N1—C5—C6 −178.36 (15) C1—C2—C23—C33 28.4 (2)
O1—C1—C6—C7 −12.8 (3) C20—C2—C23—C33 146.26 (14)
C2—C1—C6—C7 165.91 (16) C3—C2—C23—C24 26.65 (18)
O1—C1—C6—C5 169.68 (17) C1—C2—C23—C24 144.93 (14)
C2—C1—C6—C5 −11.6 (2) C20—C2—C23—C24 −97.21 (15)
N1—C5—C6—C7 −154.62 (18) N2—C23—C24—O2 −51.5 (2)
N1—C5—C6—C1 22.8 (2) C33—C23—C24—O2 −170.37 (18)
C1—C6—C7—C8 −178.84 (19) C2—C23—C24—O2 62.1 (2)
C5—C6—C7—C8 −1.4 (3) N2—C23—C24—C25 124.97 (16)
C6—C7—C8—C9 −46.1 (3) C33—C23—C24—C25 6.06 (18)
C6—C7—C8—C13 136.6 (2) C2—C23—C24—C25 −121.50 (15)
C13—C8—C9—C10 −0.4 (4) O2—C24—C25—C26 −8.7 (4)
C7—C8—C9—C10 −177.7 (3) C23—C24—C25—C26 174.9 (2)
C8—C9—C10—C11 −0.5 (5) O2—C24—C25—C34 170.5 (2)
C9—C10—C11—C12 0.6 (6) C23—C24—C25—C34 −5.9 (2)
C10—C11—C12—C13 0.2 (5) C34—C25—C26—C27 −0.7 (3)
C11—C12—C13—C8 −1.1 (5) C24—C25—C26—C27 178.4 (2)
C11—C12—C13—C35 −179.0 (3) C25—C26—C27—C28 −2.0 (4)
C9—C8—C13—C12 1.2 (4) C26—C27—C28—C29 1.8 (4)
C7—C8—C13—C12 178.6 (2) C27—C28—C29—C34 1.1 (3)
C9—C8—C13—C35 179.0 (3) C27—C28—C29—C30 −178.6 (2)
C7—C8—C13—C35 −3.6 (4) C34—C29—C30—C31 0.3 (3)
C19—C14—C15—C16 1.2 (3) C28—C29—C30—C31 −179.9 (2)
C36—C14—C15—C16 −178.30 (19) C29—C30—C31—C32 1.6 (3)
C14—C15—C16—C17 −0.7 (3) C30—C31—C32—C33 −1.3 (3)
C15—C16—C17—C18 −0.1 (3) C31—C32—C33—C34 −1.0 (3)
C16—C17—C18—C19 0.3 (3) C31—C32—C33—C23 −176.46 (17)
C17—C18—C19—C14 0.3 (3) N2—C23—C33—C32 50.5 (3)
C17—C18—C19—C20 178.85 (17) C24—C23—C33—C32 171.57 (19)
C15—C14—C19—C18 −1.0 (3) C2—C23—C33—C32 −67.4 (2)
C36—C14—C19—C18 178.52 (17) N2—C23—C33—C34 −125.23 (15)
C15—C14—C19—C20 −179.60 (16) C24—C23—C33—C34 −4.16 (17)
C36—C14—C19—C20 −0.1 (3) C2—C23—C33—C34 116.91 (16)
C18—C19—C20—C21 36.9 (2) C26—C25—C34—C29 3.7 (3)
C14—C19—C20—C21 −144.55 (17) C24—C25—C34—C29 −175.53 (17)
C18—C19—C20—C2 −86.1 (2) C26—C25—C34—C33 −177.43 (17)
C14—C19—C20—C2 92.47 (19) C24—C25—C34—C33 3.3 (2)
C3—C2—C20—C19 6.9 (2) C30—C29—C34—C25 175.91 (18)
C1—C2—C20—C19 −115.06 (16) C28—C29—C34—C25 −3.9 (3)
C23—C2—C20—C19 129.45 (15) C30—C29—C34—C33 −2.8 (3)
C3—C2—C20—C21 −121.77 (16) C28—C29—C34—C33 177.44 (17)
C1—C2—C20—C21 116.24 (16) C32—C33—C34—C25 −175.63 (17)
C23—C2—C20—C21 0.75 (16) C23—C33—C34—C25 0.8 (2)
C22—N2—C21—C20 173.69 (16) C32—C33—C34—C29 3.2 (3)
C23—N2—C21—C20 43.47 (18) C23—C33—C34—C29 179.61 (17)

1'-Methyl-5''-(2-methylbenzylidene)-4'-(2-methylphenyl)dispiro[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione (II). Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
C36—H36A···O1 0.96 2.66 3.586 (3) 161
C10—H10···O2i 0.93 2.77 3.529 (3) 140
C16—H16···O2ii 0.93 2.79 3.530 (3) 137
C35—H35F···Cg2iii 0.96 2.94 3.805 (4) 151

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+2, −z; (iii) −x+1, −y+2, −z+1.

References

  1. Aravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2004). Acta Cryst. E60, o2149–o2151.
  2. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bueno, J. M., Manzano, P., García, M. C., Chicharro, J., Puente, M., Lorenzo, M., García, A., Ferrer, S., Gómez, R. M., Fraile, M. T., Lavandera, J. L., Fiandor, J. M., Vidal, J., Herreros, E. & Gargallo-Viola, D. (2011). Bioorg. Med. Chem. Lett. 21, 5214–5218. [DOI] [PubMed]
  5. Cheng, Z., Han, X., Liang, C. & Yang, S. (2018). US Patent Pub. No. US2018/0134705A1.
  6. Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599–605.
  7. El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333. [DOI] [PubMed]
  8. Gholap, S. S. (2016). Eur. J. Med. Chem. 110, 13–31. [DOI] [PubMed]
  9. Gnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255–258.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Jiang, L., Zhang, B., Wang, Y., Sun, J., Ma, X., Wang, G., Fu, S., Lin, C. & Li, Y. (2019). Nat. Prod. Res. https://doi. org/10.1080/14786419.2019.1647422
  12. Jones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594–2597.
  13. Kumar, R. R., Loganayaki, B. & Perumal, S. (2009). Synth. Commun. 39, 3197–3216.
  14. McDavids, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. (Sci. ed.), 40, 325–326. [DOI] [PubMed]
  15. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  16. Nath, N. K. & Nangia, A. (2012). Cryst. Growth Des. 12, 5411–5425.
  17. Oganov, A. R. (2018). Faraday Discuss. 211, 643–660. [DOI] [PubMed]
  18. Pandiarajan, S., Saravanamoorthy, S. N., Kumar, B. R., Kumar, R. R. & Athimoolam, S. (2008). Acta Cryst. E64, o99–o100. [DOI] [PMC free article] [PubMed]
  19. Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415. [DOI] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267–1271. [DOI] [PMC free article] [PubMed]
  25. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia.
  28. Zhu, W., Dai, M., Xu, Y. & Qian, X. (2008). Bioorg. Med. Chem. 16, 3255–3260. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019012428/jj2215sup1.cif

e-75-01456-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012428/jj2215Isup2.hkl

e-75-01456-Isup2.hkl (577.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019012428/jj2215IIsup3.hkl

e-75-01456-IIsup3.hkl (424.9KB, hkl)

CCDC references: 1951894, 1569029

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES