Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 10;75(Pt 10):1418–1422. doi: 10.1107/S2056989019012118

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

Toyokazu Muto a, Kikuko Iida a, Keiichi Noguchi b, Noriyuki Yonezawa a, Akiko Okamoto a,*
PMCID: PMC6775736  PMID: 31636968

The title compound has a non-coplanar accumulated aromatic rings structure. In the mol­ecule, the two carbonyl groups are oriented in the same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, whereas the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system.

Keywords: crystal structure, non-coplanar accumulated aromatic rings structure, twisted aroyl group, intra­molecular O—H⋯O hydrogen bond, short contacts involving chloro group, herringbone pattern, Hirshfeld surface analysis, two-dimensional fingerprint plots

Abstract

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.

Chemical context  

o-Hydroxyaryl ketones are generally recognized to be important precursors in the preparation of valuable products such as drugs, cosmetics, dyes and pesticides (Choy & Kwong, 2013; Naeimi et al., 2014; Nimnual et al., 2015). The preparation methods reported include, for example, Fries rearrangement of phenolic esters (Murashige et al., 2011), acyl­ation of benzo­quinone and derivatives (Schiel et al., 2001), coupling reactions of nitriles with boronic acids (Zhou & Larock, 2004), direct C—H bond aryl­ation of 2-hy­droxy­benzaldehydes (Lee & Yi, 2015; Weng et al., 2010), and microwave-assisted direct benzoyl­ation of phenols under solvent-free or ionic liquid conditions (Tran et al., 2017). The neighbouring carbonyl and hy­droxy groups contribute to the regio- and chemoselectivities in these reactions. Conformational studies of hydroxyaryl ketones in the solid state and in solution have attracted considerable inter­est (Siskos et al., 2015; Nonhebel, 1968). Since the discovery of an effective method for diaroylation at the 1,8(peri)-positions of the naphthalene ring core and the related reactions (Okamoto & Yonezawa, 2009; Okamoto et al., 2011; Okamoto, Mitsui et al., 2012), we have reported on the spatial organization of 1,8-diaroylated naphthalenes and homologous compounds in both the solid state and solution (Okamoto, Watanabe et al., 2012; Yoshiwaka et al., 2015; Okamoto et al., 2015; Ohisa et al., 2018). In the crystal structures of these compounds, which have non-coplanar accumulated aromatic rings, mol­ecules are arranged by weak inter­molecular inter­actions, such as non-classical hydrogen bonds and van der Waals inter­actions. Thus, the accumulation structures of 1,8-diaroylated naphthalenes are drastically changed by simple mol­ecular modifications. Herein, we report on the crystal structure and Hirshfeld surface analysis of the title hydroxyaryl ketone, 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene.graphic file with name e-75-01418-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. This compound consists of a naphthalene ring core with two 2,4,6-tri­chloro­benzoyl groups at the 1,8-positions, a hy­droxy group at the 2-position, and a meth­oxy group at the 7-position of the naphthalene ring system, affording an unsymmetrical mol­ecular structure.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Analogous aroylated unsymmetrical naphthalene compounds, for example, 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene (Mitsui, Nagasawa, Noguchi et al., 2010) and 1,8-bis­(4-chlorobenzo­yl)-2,7-dimeth­oxynaphthalene (Nakaema et al., 2007), have two aroyl groups at the 1,8-positions of the naphthalene ring system. The two 4-chloro­benzoyl groups have the same orientation with respect to the naphthalene ring core in 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene, while they are in opposite directions in 1,8-bis­(4-chlorobenzo­yl)-2,7-dimeth­oxynaphthalene. In contrast, in the title compound the carbonyl groups and the benzene rings of the 2,4,6-tri­chloro­benzoyl groups are located in distinct orientations with respect to the naphthalene ring plane: the two carbonyl groups are oriented in the same direction and are located roughly parallel to the naphthalene ring, whereas the two 2,4,6-tri­chloro­benzene rings are twisted away in opposite directions (Fig. 2). The dihedral angles of the carbonyl C—(C=O)—C plane [C1—(C11=O1)—C12 and C9—(C18=O2)—C19] and the naphthalene ring are 45.54 (15) and 30.02 (15)°, respectively. The carbonyl C—(C=O)—C plane and the 2,4,6-tri­chloro­benzene ring in the 8-position of the naphthalene ring forms a larger dihedral angle than that in 1-position [C19–C24 ring and C12–C17 ring], 79.78 (16)° versus 46.39 (16)°. The two carbonyl C—(C=O)—C planes make a large dihedral angle, 73.68 (19)°. Furthermore, the naphthalene ring plane is somewhat distorted, the C6—C5—C10—C9 and C4—C5—C10—C1 torsion angles being 10.2 (4) and 6.1 (5)°, respectively.

Figure 2.

Figure 2

View of the title compound showing the intra­molecular contacts; top view (left) and side view (right).

The intra­molecular O—H⋯O=C hydrogen bond forms a six-membered S(6) ring motif (O3—H3A⋯O1; Figs. 1 and 2, Table 1). In addition, one chloro atom of the tri­chloro­benzoyl group at the 1-position of the naphthalene ring system makes two short intra­molecular Cl⋯O=C contacts [Cl1⋯O1 = 3.018 (2) Å and Cl1⋯O2 = 2.969 (2) Å]. 1-Aroyl-2-hy­droxy­naphthalene homologues often form intra­molecular O—H⋯O=C hydrogen bonds whether the second aroyl group is present or not, e.g., 1-benzoyl-2-hy­droxy-7-meth­oxy­naph­thalene (Nagasawa, Mitsui, Kato et al., 2010), 2-hy­droxy-7-­meth­oxy-1-(4-methyl­benzo­yl)­naphthalene (Nagasawa, Mitsui, Okamoto et al., 2010), 1-(4-chloro­benzo­yl)-2-hy­droxy-7-­meth­oxynaphthalene (Mitsui et al., 2008) and 1,8-bis­(4-chlorobenzo­yl)-2-hy­droxy-7-meth­oxy­naphthalene (Mitsui, Nagasawa, Noguchi et al., 2010). The 2,4,6-trisubstituents in the benzene ring tend to bring about intra­molecular short contacts involving the carbonyl oxygen atom: intra­molecular C—H⋯O=C hydrogen bonds are observed in 2,7-dimeth­oxy-1,8-bis­(2,4,6-tri­methyl­benzo­yl)naphthalene (Muto et al., 2012a ) and 1-(4-chloro­benzo­yl)-2,7-dimeth­oxy-8-(2,4,6-tri­methyl­benzo­yl)naphthalene (Muto et al., 2012b ).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 1.82 2.551 (3) 145

Supra­molecular features  

In the crystal, 21 helical mol­ecular assemblies are observed along the b-axis direction (Fig. 3). The chloro groups in the assemblies are aligned in a herringbone pattern. There are no effective hydrogen bonds, instead, two kinds of short contacts involving chlorine atoms are observed; Cl6⋯O3i [3.224 (3) Å] and Cl3⋯C3i [3.370 (3) Å], symmetry code: (i) −x + 1, y + Inline graphic, Inline graphic − z (Fig. 3).

Figure 3.

Figure 3

A view of the crystal packing of the title compound, showing the Cl⋯O and Cl⋯C short contacts. H atoms have been omitted for clarity.

Hirshfeld surface analysis and two-dimensional fingerprint plots  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over d norm in the range −0.0895 to 1.1549 a.u., is shown in Fig. 4. The red points represent close contacts and negative d norm values on the surface. The largest red point corresponds to the short contact of 3.078 (3) Å involving the carbonyl O atom, O1, and carbon atom C23i [symmetry code: (i) x, −y + Inline graphic, z − Inline graphic], while the other red points around the naphthalene ring indicate short Cl⋯H inter­actions.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm, in the range −0.0895 to 1.1549 a.u.

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5, revealing the inter­molecular contacts and their percentage distributions on the Hirshfeld surface. Not surprisingly the Cl⋯H/H⋯Cl contacts (31.0%) are present as a major contributor, while C⋯H/H⋯C (14.8%), H⋯H (14.0%), O⋯H/H⋯O (12.8%), Cl⋯Cl (11.0%), Cl⋯C/C⋯Cl (8.2%), Cl⋯O/O⋯Cl (3.9%), C⋯C (3.0%) and O⋯C/C⋯O (1.3%) contacts also make significant contributions to the Hirshfeld surface.

Figure 5.

Figure 5

(a) The full two-dimensional fingerprint plot for the title compound, and those delineated into (b) Cl⋯H/H⋯Cl, (c) C⋯H/H⋯C, (d) H⋯H, (e) O⋯H/H⋯O, (f) Cl⋯Cl, (g) Cl⋯C, (h) Cl⋯O, (i) C⋯C and (j) O⋯C contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, last update November 2018; Groom et al., 2016) of the 2-hy­droxy-1-benzoyl­naphthalene moiety of the title compound yield 16 hits. These include compounds with a similar aroyl­naphthalene unit and other polycyclic aromatic hydro­carbon moieties (CSD refcode ITUXOM: Ji et al., 2016; PIRLUX: Freeman et al., 1994; VUDFAC: Luo & Yu, 2009; VUDFEG: Luo & Yu, 2009). A search with a 1-benzoyl group bonded to the 2-hy­droxy­naphthalene framework gave 12 hits. Among these, three had bromo group(s) at the 8-position, 3,8-positions, and 3,6-positions of the naphthalene ring core, viz. PUKGIM (Mitsui, Nakaema, Nagasawa et al., 2010), YUNWOP (Mitsui, Watanabe et al., 2010) and YUPWEM (Mitsui, Nagasawa, Watanabe et al., 2010). Four compounds had an 8-benzoyl group, i.e., 1,8-diaroylated naphthalene compounds, viz. CIQBUB (Mohri et al., 2013), LESLOM (Hijikata et al., 2013), YUQBOC (Mitsui, Nagasawa, Noguchi et al., 2010) and YUQBOC1 (Okamoto, Mitsui et al., 2012). The remaining five compounds have a single 1-benzoyl-2-hy­droxy­naphthalene moiety, viz. KABJUU (Nagasawa, Mitsui, Kato et al., 2010), UCUHAE (Okamoto et al., 2014), VABBEH (Nagasawa, Mitsui, Okamoto et al., 2010), VOJFOQ (Mitsui et al., 2008) and VOJFQ01 (Okamoto, Mitsui et al., 2012). These structures have p-substituted or unsubstituted benzoyl group(s). The structure most similar to the title compound is 1,8-bis­(4-chloro­benzo­yl)-7-meth­oxy­naphthalen-2-ol ethanol solvate, for which there are two reports; refcodes YUQBOC and YUQBOC01.

Synthesis and crystallization  

To a 10 ml eggplant flask equipped with a nitro­gen bulb, 2,4,6-tri­chloro­benzoyl chloride (0.0938 ml, 0.6 mmol), di­chloro­methane (0.5 ml), titanium tetra­chloride (0.1972 ml, 1.8 mmol), and finally 2,7-di­meth­oxy­naphthalene (37.6 mg, 0.2 mmol) were introduced sequentially. The reaction mixture was stirred at ambient temperature for 6 h, then it was poured into ice–water. The resulting mixture was extracted with chloro­form (3 × 20 ml), then the organic layer was washed with saturated aqueous NaCl solution (3 × 20 ml) and dried over granular MgSO4. The solvent was removed by evaporation to yield a crude product of purple viscous liquid, which was crystallized from hot (hexa­ne/CHCl3) to give yellow plate-like crystals (isolated yield 24%; m.p. 493–497 K).

1H NMR δ (300 MHz, DMSO-d 6); 3.59 (3H, s), 7.01 (1H, d, J = 8.4 Hz), 7.34 (1H, d, J = 9.3 Hz), 7.66 (2H, s), 7.70 (2H, s), 8.04 (1H, d, J = 8.7 Hz), 8.09 (1H, d, J = 9.0 Hz) ppm.

1H NMR δ (300 MHz, CDCl3); 3.45 (3H, s), 6.95 (1H, br), 7.02 (1H, d, J = 8.7 Hz), 7.20 (2H, br), 7.21 (1H, d, J = 9.0 Hz), 7.42 (1H, br), 7.90 (1H, d, J = 8.4 Hz), 8.01 (1H, d, J = 9.0 Hz) ppm.

13C NMR δ (100 MHz, CDCl3); 56.64, 110.35, 114.82, 117.67, 119.13, 119.38, 124.45, 127.37, 133.42, 133.68, 134.14, 135.42, 135.51, 136.69, 136.80, 139.15, 140.88, 165.60, 166.21, 185.98, 191.21 ppm.

IR (KBr); 1629 (C=O), 1600, 1510, 1442 (Ar, naphthalene), 1289 (=C—O—C) cm−1.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All of the H atoms were found in a difference-Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.96 (meth­yl) Å, and with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C25H12Cl6O4
M r 589.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 17.9667 (4), 7.9150 (1), 17.6995 (5)
β (°) 110.673 (1)
V3) 2354.91 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.95
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999)
T min, T max 0.168, 0.337
No. of measured, independent and observed [I > 2σ(I)] reflections 41619, 4300, 3737
R int 0.110
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.126, 1.06
No. of reflections 4300
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012118/su5512sup1.cif

e-75-01418-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012118/su5512Isup2.hkl

e-75-01418-Isup2.hkl (206.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012118/su5512Isup3.cdx

1H NMR spectrum (in CDCl3, from -0.5 ppm to 12.5 ppm). DOI: 10.1107/S2056989019012118/su5512sup4.pdf

e-75-01418-sup4.pdf (41.3KB, pdf)

1H NMR spectrum (in CDCl3, from 6.5 ppm to 8.5 ppm). DOI: 10.1107/S2056989019012118/su5512sup5.pdf

e-75-01418-sup5.pdf (44.2KB, pdf)

13C NMR spectrum (in CDCl3). DOI: 10.1107/S2056989019012118/su5512sup6.pdf

e-75-01418-sup6.pdf (47.8KB, pdf)

IR spectrum. DOI: 10.1107/S2056989019012118/su5512sup7.pdf

e-75-01418-sup7.pdf (65.7KB, pdf)

CCDC reference: 1950725

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C25H12Cl6O4 F(000) = 1184
Mr = 589.05 Dx = 1.661 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybc Cell parameters from 28116 reflections
a = 17.9667 (4) Å θ = 3.0–68.3°
b = 7.9150 (1) Å µ = 6.95 mm1
c = 17.6995 (5) Å T = 193 K
β = 110.673 (1)° Platelet, yellow
V = 2354.91 (9) Å3 0.40 × 0.40 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4300 independent reflections
Radiation source: rotaing anode 3737 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.110
Detector resolution: 10.000 pixels mm-1 θmax = 68.3°, θmin = 5.1°
ω scans h = −21→21
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −9→9
Tmin = 0.168, Tmax = 0.337 l = −21→21
41619 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.5934P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4300 reflections Δρmax = 0.50 e Å3
319 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00166 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.13592 (4) 0.62787 (10) 0.05084 (5) 0.0543 (2)
Cl2 0.00708 (5) 0.06020 (13) 0.10904 (5) 0.0645 (3)
Cl3 0.32240 (4) 0.09099 (9) 0.20159 (4) 0.0477 (2)
Cl4 0.09824 (5) 0.59970 (12) 0.24340 (5) 0.0634 (3)
Cl5 0.10530 (6) 1.19664 (13) 0.39062 (6) 0.0703 (3)
Cl6 0.37761 (4) 0.90853 (10) 0.39693 (4) 0.0512 (2)
O1 0.30235 (12) 0.5154 (3) 0.07105 (12) 0.0517 (5)
O2 0.26606 (11) 0.6928 (3) 0.20713 (11) 0.0422 (5)
O3 0.44648 (13) 0.4173 (3) 0.11247 (14) 0.0589 (6)
H3A 0.4035 0.4583 0.0812 0.071*
O4 0.26290 (15) 0.5184 (3) 0.41656 (12) 0.0613 (6)
C1 0.37736 (16) 0.4494 (4) 0.20717 (17) 0.0413 (6)
C2 0.44482 (17) 0.4097 (4) 0.1885 (2) 0.0492 (7)
C3 0.51384 (17) 0.3460 (4) 0.2480 (2) 0.0571 (9)
H3 0.5593 0.3195 0.2347 0.069*
C4 0.51548 (18) 0.3226 (4) 0.3237 (2) 0.0584 (9)
H4 0.5612 0.2728 0.3625 0.070*
C5 0.45068 (18) 0.3702 (4) 0.34747 (19) 0.0509 (8)
C6 0.4532 (2) 0.3417 (4) 0.42678 (19) 0.0604 (9)
H6 0.4992 0.2905 0.4644 0.072*
C7 0.3920 (2) 0.3850 (4) 0.45164 (19) 0.0583 (9)
H7 0.3938 0.3581 0.5046 0.070*
C8 0.3262 (2) 0.4701 (4) 0.39744 (17) 0.0511 (8)
C9 0.32242 (16) 0.5103 (4) 0.31878 (16) 0.0409 (6)
C10 0.38174 (16) 0.4428 (4) 0.28935 (17) 0.0418 (6)
C11 0.30243 (16) 0.4589 (4) 0.13587 (16) 0.0403 (6)
C12 0.22876 (15) 0.3656 (4) 0.13489 (15) 0.0379 (6)
C13 0.15151 (17) 0.4292 (4) 0.09543 (16) 0.0431 (7)
C14 0.08428 (16) 0.3378 (4) 0.08818 (16) 0.0464 (7)
H14 0.0331 0.3860 0.0625 0.056*
C15 0.09164 (16) 0.1760 (4) 0.11843 (17) 0.0458 (7)
C16 0.16576 (17) 0.1018 (4) 0.15470 (16) 0.0457 (7)
H16 0.1706 −0.0115 0.1736 0.055*
C17 0.23220 (15) 0.1976 (4) 0.16237 (15) 0.0386 (6)
C18 0.27267 (15) 0.6515 (4) 0.27587 (16) 0.0395 (6)
C19 0.23318 (16) 0.7726 (4) 0.31692 (15) 0.0398 (6)
C20 0.15062 (16) 0.7704 (4) 0.29719 (16) 0.0452 (7)
C21 0.11036 (18) 0.8971 (4) 0.31971 (18) 0.0500 (7)
H21 0.0543 0.8925 0.3057 0.060*
C22 0.15427 (18) 1.0321 (4) 0.36357 (18) 0.0503 (7)
C23 0.23617 (18) 1.0364 (4) 0.38688 (17) 0.0480 (7)
H23 0.2656 1.1279 0.4180 0.058*
C24 0.27431 (16) 0.9059 (4) 0.36436 (16) 0.0424 (6)
C25 0.2684 (3) 0.5207 (6) 0.4997 (2) 0.0862 (14)
H25A 0.2202 0.5722 0.5036 0.103*
H25B 0.3150 0.5868 0.5317 0.103*
H25C 0.2736 0.4048 0.5205 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0419 (4) 0.0540 (5) 0.0572 (4) 0.0039 (3) 0.0054 (3) 0.0116 (3)
Cl2 0.0421 (4) 0.0769 (6) 0.0739 (5) −0.0167 (4) 0.0198 (4) 0.0057 (4)
Cl3 0.0375 (4) 0.0437 (4) 0.0543 (4) 0.0019 (3) 0.0067 (3) 0.0027 (3)
Cl4 0.0434 (4) 0.0766 (6) 0.0739 (5) −0.0202 (4) 0.0255 (4) −0.0219 (4)
Cl5 0.0680 (6) 0.0673 (6) 0.0806 (6) 0.0184 (5) 0.0324 (5) −0.0061 (4)
Cl6 0.0357 (4) 0.0568 (5) 0.0525 (4) −0.0032 (3) 0.0049 (3) −0.0037 (3)
O1 0.0434 (11) 0.0682 (15) 0.0466 (11) −0.0015 (10) 0.0198 (9) 0.0071 (10)
O2 0.0418 (10) 0.0444 (11) 0.0401 (10) 0.0018 (9) 0.0139 (8) 0.0033 (8)
O3 0.0461 (12) 0.0644 (16) 0.0731 (15) 0.0009 (11) 0.0297 (11) −0.0043 (12)
O4 0.0764 (16) 0.0679 (16) 0.0452 (12) −0.0017 (13) 0.0284 (11) 0.0088 (11)
C1 0.0307 (13) 0.0372 (15) 0.0531 (16) −0.0021 (11) 0.0111 (12) −0.0008 (12)
C2 0.0356 (15) 0.0438 (18) 0.0666 (19) −0.0069 (13) 0.0161 (14) −0.0040 (14)
C3 0.0312 (15) 0.0483 (19) 0.086 (2) −0.0005 (13) 0.0137 (15) −0.0100 (17)
C4 0.0330 (15) 0.0430 (18) 0.079 (2) 0.0006 (13) −0.0053 (15) −0.0020 (16)
C5 0.0391 (16) 0.0430 (18) 0.0542 (17) −0.0043 (13) −0.0037 (13) −0.0053 (13)
C6 0.057 (2) 0.0471 (19) 0.0503 (18) −0.0023 (16) −0.0145 (15) 0.0031 (14)
C7 0.069 (2) 0.052 (2) 0.0395 (16) −0.0097 (17) 0.0013 (15) 0.0044 (14)
C8 0.0587 (19) 0.0451 (18) 0.0425 (15) −0.0083 (15) 0.0093 (14) 0.0011 (13)
C9 0.0370 (14) 0.0414 (16) 0.0382 (14) −0.0050 (12) 0.0057 (11) 0.0009 (12)
C10 0.0332 (14) 0.0337 (15) 0.0497 (15) −0.0041 (11) 0.0036 (11) 0.0001 (12)
C11 0.0361 (14) 0.0421 (16) 0.0414 (14) 0.0020 (12) 0.0123 (11) −0.0003 (12)
C12 0.0336 (13) 0.0445 (16) 0.0332 (13) −0.0010 (12) 0.0090 (10) −0.0010 (11)
C13 0.0384 (14) 0.0486 (17) 0.0371 (14) 0.0000 (13) 0.0068 (11) 0.0021 (12)
C14 0.0324 (14) 0.061 (2) 0.0421 (15) 0.0021 (13) 0.0085 (11) −0.0004 (13)
C15 0.0350 (14) 0.059 (2) 0.0423 (15) −0.0096 (13) 0.0124 (11) −0.0020 (13)
C16 0.0418 (16) 0.0502 (19) 0.0429 (15) −0.0053 (13) 0.0121 (12) 0.0032 (13)
C17 0.0329 (13) 0.0451 (16) 0.0351 (13) 0.0006 (12) 0.0088 (10) −0.0021 (11)
C18 0.0312 (13) 0.0440 (16) 0.0398 (14) −0.0047 (12) 0.0080 (11) 0.0000 (12)
C19 0.0358 (13) 0.0473 (17) 0.0367 (13) −0.0022 (12) 0.0132 (11) 0.0027 (12)
C20 0.0366 (14) 0.0576 (19) 0.0413 (14) −0.0087 (13) 0.0138 (11) −0.0023 (13)
C21 0.0383 (15) 0.067 (2) 0.0480 (16) 0.0024 (14) 0.0186 (13) 0.0005 (15)
C22 0.0510 (17) 0.055 (2) 0.0489 (16) 0.0111 (15) 0.0225 (14) 0.0034 (14)
C23 0.0494 (17) 0.0501 (18) 0.0421 (15) 0.0006 (14) 0.0132 (13) −0.0025 (13)
C24 0.0339 (14) 0.0523 (18) 0.0383 (14) −0.0010 (12) 0.0096 (11) 0.0015 (12)
C25 0.127 (4) 0.090 (3) 0.049 (2) −0.016 (3) 0.040 (2) −0.003 (2)

Geometric parameters (Å, º)

Cl1—C13 1.737 (3) C7—H7 0.9500
Cl2—C15 1.731 (3) C8—C9 1.406 (4)
Cl3—C17 1.740 (3) C9—C10 1.444 (4)
Cl4—C20 1.728 (3) C9—C18 1.465 (4)
Cl5—C22 1.731 (3) C11—C12 1.511 (4)
Cl6—C24 1.738 (3) C12—C13 1.408 (4)
O1—C11 1.231 (3) C12—C17 1.409 (4)
O2—C18 1.224 (3) C13—C14 1.374 (4)
O3—C2 1.358 (4) C14—C15 1.376 (5)
O3—H3A 0.8400 C14—H14 0.9500
O4—C8 1.351 (4) C15—C16 1.388 (4)
O4—C25 1.441 (4) C16—C17 1.380 (4)
C1—C2 1.400 (4) C16—H16 0.9500
C1—C10 1.430 (4) C18—C19 1.522 (4)
C1—C11 1.487 (4) C19—C24 1.388 (4)
C2—C3 1.407 (4) C19—C20 1.399 (4)
C3—C4 1.342 (5) C20—C21 1.375 (4)
C3—H3 0.9500 C21—C22 1.391 (5)
C4—C5 1.421 (5) C21—H21 0.9500
C4—H4 0.9500 C22—C23 1.381 (4)
C5—C6 1.407 (5) C23—C24 1.374 (4)
C5—C10 1.422 (4) C23—H23 0.9500
C6—C7 1.365 (5) C25—H25A 0.9800
C6—H6 0.9500 C25—H25B 0.9800
C7—C8 1.403 (5) C25—H25C 0.9800
C2—O3—H3A 109.5 C12—C13—Cl1 121.4 (2)
C8—O4—C25 120.0 (3) C13—C14—C15 119.5 (3)
C2—C1—C10 119.4 (3) C13—C14—H14 120.2
C2—C1—C11 114.3 (3) C15—C14—H14 120.2
C10—C1—C11 125.0 (2) C14—C15—C16 121.2 (3)
O3—C2—C1 123.2 (3) C14—C15—Cl2 119.6 (2)
O3—C2—C3 115.8 (3) C16—C15—Cl2 119.1 (3)
C1—C2—C3 120.8 (3) C17—C16—C15 117.9 (3)
C4—C3—C2 120.0 (3) C17—C16—H16 121.0
C4—C3—H3 120.0 C15—C16—H16 121.0
C2—C3—H3 120.0 C16—C17—C12 123.6 (3)
C3—C4—C5 121.8 (3) C16—C17—Cl3 115.1 (2)
C3—C4—H4 119.1 C12—C17—Cl3 121.1 (2)
C5—C4—H4 119.1 O2—C18—C9 123.1 (3)
C6—C5—C4 120.7 (3) O2—C18—C19 114.1 (2)
C6—C5—C10 120.0 (3) C9—C18—C19 122.4 (2)
C4—C5—C10 119.2 (3) C24—C19—C20 116.9 (3)
C7—C6—C5 122.4 (3) C24—C19—C18 122.0 (2)
C7—C6—H6 118.8 C20—C19—C18 120.3 (2)
C5—C6—H6 118.8 C21—C20—C19 122.6 (3)
C6—C7—C8 118.7 (3) C21—C20—Cl4 119.3 (2)
C6—C7—H7 120.7 C19—C20—Cl4 118.1 (2)
C8—C7—H7 120.7 C20—C21—C22 118.0 (3)
O4—C8—C7 123.0 (3) C20—C21—H21 121.0
O4—C8—C9 115.7 (3) C22—C21—H21 121.0
C7—C8—C9 121.3 (3) C23—C22—C21 121.3 (3)
C8—C9—C10 119.3 (3) C23—C22—Cl5 119.4 (3)
C8—C9—C18 119.6 (3) C21—C22—Cl5 119.3 (2)
C10—C9—C18 119.2 (2) C24—C23—C22 118.9 (3)
C5—C10—C1 118.1 (3) C24—C23—H23 120.6
C5—C10—C9 117.0 (3) C22—C23—H23 120.6
C1—C10—C9 124.8 (2) C23—C24—C19 122.2 (3)
O1—C11—C1 120.8 (3) C23—C24—Cl6 118.6 (2)
O1—C11—C12 117.0 (2) C19—C24—Cl6 119.2 (2)
C1—C11—C12 120.8 (2) O4—C25—H25A 109.5
C13—C12—C17 115.1 (3) O4—C25—H25B 109.5
C13—C12—C11 122.5 (3) H25A—C25—H25B 109.5
C17—C12—C11 121.7 (2) O4—C25—H25C 109.5
C14—C13—C12 122.6 (3) H25A—C25—H25C 109.5
C14—C13—Cl1 116.0 (2) H25B—C25—H25C 109.5
C10—C1—C2—O3 −178.1 (3) C17—C12—C13—C14 3.5 (4)
C11—C1—C2—O3 14.5 (4) C11—C12—C13—C14 174.0 (3)
C10—C1—C2—C3 7.0 (4) C17—C12—C13—Cl1 −175.0 (2)
C11—C1—C2—C3 −160.4 (3) C11—C12—C13—Cl1 −4.6 (4)
O3—C2—C3—C4 −175.3 (3) C12—C13—C14—C15 −1.8 (4)
C1—C2—C3—C4 0.0 (5) Cl1—C13—C14—C15 176.8 (2)
C2—C3—C4—C5 −3.9 (5) C13—C14—C15—C16 −1.4 (4)
C3—C4—C5—C6 178.9 (3) C13—C14—C15—Cl2 −179.7 (2)
C3—C4—C5—C10 0.8 (5) C14—C15—C16—C17 2.5 (4)
C4—C5—C6—C7 −179.7 (3) Cl2—C15—C16—C17 −179.2 (2)
C10—C5—C6—C7 −1.6 (5) C15—C16—C17—C12 −0.5 (4)
C5—C6—C7—C8 −3.9 (5) C15—C16—C17—Cl3 −175.5 (2)
C25—O4—C8—C7 15.0 (5) C13—C12—C17—C16 −2.3 (4)
C25—O4—C8—C9 −165.1 (3) C11—C12—C17—C16 −172.9 (3)
C6—C7—C8—O4 −179.8 (3) C13—C12—C17—Cl3 172.3 (2)
C6—C7—C8—C9 0.2 (5) C11—C12—C17—Cl3 1.8 (4)
O4—C8—C9—C10 −171.3 (3) C8—C9—C18—O2 −179.4 (3)
C7—C8—C9—C10 8.7 (4) C10—C9—C18—O2 16.3 (4)
O4—C8—C9—C18 24.5 (4) C8—C9—C18—C19 8.5 (4)
C7—C8—C9—C18 −155.6 (3) C10—C9—C18—C19 −155.8 (3)
C6—C5—C10—C1 −172.0 (3) O2—C18—C19—C24 −91.9 (3)
C4—C5—C10—C1 6.1 (4) C9—C18—C19—C24 80.8 (4)
C6—C5—C10—C9 10.2 (4) O2—C18—C19—C20 77.3 (3)
C4—C5—C10—C9 −171.7 (3) C9—C18—C19—C20 −109.9 (3)
C2—C1—C10—C5 −9.9 (4) C24—C19—C20—C21 3.1 (4)
C11—C1—C10—C5 156.1 (3) C18—C19—C20—C21 −166.7 (3)
C2—C1—C10—C9 167.7 (3) C24—C19—C20—Cl4 −176.2 (2)
C11—C1—C10—C9 −26.3 (4) C18—C19—C20—Cl4 14.1 (4)
C8—C9—C10—C5 −13.6 (4) C19—C20—C21—C22 0.2 (4)
C18—C9—C10—C5 150.6 (3) Cl4—C20—C21—C22 179.5 (2)
C8—C9—C10—C1 168.7 (3) C20—C21—C22—C23 −2.6 (4)
C18—C9—C10—C1 −27.0 (4) C20—C21—C22—Cl5 178.3 (2)
C2—C1—C11—O1 −36.1 (4) C21—C22—C23—C24 1.6 (4)
C10—C1—C11—O1 157.3 (3) Cl5—C22—C23—C24 −179.3 (2)
C2—C1—C11—C12 130.2 (3) C22—C23—C24—C19 2.0 (4)
C10—C1—C11—C12 −36.4 (4) C22—C23—C24—Cl6 −177.8 (2)
O1—C11—C12—C13 −47.0 (4) C20—C19—C24—C23 −4.2 (4)
C1—C11—C12—C13 146.3 (3) C18—C19—C24—C23 165.4 (3)
O1—C11—C12—C17 122.9 (3) C20—C19—C24—Cl6 175.5 (2)
C1—C11—C12—C17 −43.9 (4) C18—C19—C24—Cl6 −14.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O1 0.84 1.82 2.551 (3) 145

Funding Statement

This work was funded by Tokyo Ohka Foundation for The Promotion of Science and Technology grant .

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Choy, P. Y. & Kwong, F. Y. (2013). Org. Lett. 15, 270–273. [DOI] [PubMed]
  4. Freeman, D., Frolow, F., Kapinus, E., Lavie, D., Lavie, G., Meruelo, D. & Mazur, Y. (1994). J. Chem. Soc. Chem. Commun. pp. 891–892.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  7. Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o208–o209. [DOI] [PMC free article] [PubMed]
  8. Ji, K., Yang, F., Gao, S., Tang, J.-J. & Gao, J. (2016). Chem. Eur. J. 22, 10225–10229. [DOI] [PubMed]
  9. Lee, H. & Yi, C. S. (2015). Eur. J. Org. Chem. pp. 1899–1904. [DOI] [PMC free article] [PubMed]
  10. Luo, N. & Yu, Z. (2009). J. Organomet. Chem. 694, 3058–3067.
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790. [DOI] [PMC free article] [PubMed]
  13. Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1761. [DOI] [PMC free article] [PubMed]
  14. Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. [DOI] [PMC free article] [PubMed]
  15. Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [DOI] [PMC free article] [PubMed]
  16. Mitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1304. [DOI] [PMC free article] [PubMed]
  17. Mohri, S., Yoshiwaka, S., Isozaki, K., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. C69, 1541–1544. [DOI] [PubMed]
  18. Murashige, R., Hayashi, Y., Ohmori, S., Torii, A., Aizu, Y., Muto, Y., Murai, Y., Oda, Y. & Hashimoto, M. (2011). Tetrahedron, 67, 641–649.
  19. Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012a). Acta Cryst. E68, o23. [DOI] [PMC free article] [PubMed]
  20. Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012b). Acta Cryst. E68, o906. [DOI] [PMC free article] [PubMed]
  21. Naeimi, H., Amini, A. & Moradian, M. (2014). Org. Chem. Front. 1, 415–421.
  22. Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2677. [DOI] [PMC free article] [PubMed]
  23. Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820–o2821. [DOI] [PMC free article] [PubMed]
  24. Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  25. Nimnual, P., Tummatorn, J., Thongsornkleeb, C. & Ruchirawat, S. (2015). J. Org. Chem. 80, 8657–8667. [DOI] [PubMed]
  26. Nonhebel, D. C. (1968). Tetrahedron, 24, 1869–1874.
  27. Ohisa, S., Saeki, M., Shiomichi, H., Yonezawa, N. & Okamoto, A. (2018). Eur. Chem. Bull. 7, 1–9.
  28. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  29. Okamoto, A., Mitsui, R., Watanabe, S., Tsubouchi, T. & Yonezawa, N. (2012). Int. J. Org. Chem. 02, 194–201.
  30. Okamoto, A., Nagasawa, A. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 263–268.
  31. Okamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struc. Theo. Appl. 1, 121–127.
  32. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  33. Okamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339–360.
  34. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  35. Schiel, C., Oelgemoller, M. & Mattay, J. (2001). Synthesis, pp. 1275–1279.
  36. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  37. Siskos, M. G., Tzakos, A. G. & Gerothanassis, I. P. (2015). Org. Biomol. Chem. 13, 8852–8868. [DOI] [PubMed]
  38. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  39. Tran, P. H., Phung, H. Q., Duong, M. N. & Pham-Tran, N.-N. (2017). Tetrahedron Lett. 58, 1588–1563.
  40. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  41. Weng, F., Wang, C. & Xu, B. (2010). Tetrahedron Lett. 51, 2593–2596.
  42. Yoshiwaka, S., Ogata, K., Yonezawa, N. & Okamoto, A. (2015). Eur. Chem. Bull. 4(4), 195–201.
  43. Zhou, C. & Larock, R. C. (2004). J. Am. Chem. Soc. 126, 2302–2303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012118/su5512sup1.cif

e-75-01418-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012118/su5512Isup2.hkl

e-75-01418-Isup2.hkl (206.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012118/su5512Isup3.cdx

1H NMR spectrum (in CDCl3, from -0.5 ppm to 12.5 ppm). DOI: 10.1107/S2056989019012118/su5512sup4.pdf

e-75-01418-sup4.pdf (41.3KB, pdf)

1H NMR spectrum (in CDCl3, from 6.5 ppm to 8.5 ppm). DOI: 10.1107/S2056989019012118/su5512sup5.pdf

e-75-01418-sup5.pdf (44.2KB, pdf)

13C NMR spectrum (in CDCl3). DOI: 10.1107/S2056989019012118/su5512sup6.pdf

e-75-01418-sup6.pdf (47.8KB, pdf)

IR spectrum. DOI: 10.1107/S2056989019012118/su5512sup7.pdf

e-75-01418-sup7.pdf (65.7KB, pdf)

CCDC reference: 1950725

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES