The molecular and crystal structure of the salt 3-methacrylamido-N,N,N-trimethylpropan-1-aminium 2-acrylamido-2-methylpropane-1-sulfonate, that crystallizes with two unique pairs of cations and anions in the asymmetric unit, is reported. Hirshfeld surface analysis of the asymmetric unit and of the two individual salts is also carried out.
Keywords: crystal structure; 3-methacrylamido-N,N,N-trimethylpropan-1-aminium; 2-acrylamido-2-methylpropane-1-sulfonate; hydrogen bonding; Hirshfeld surface analysis
Abstract
The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the orthorhombic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of interatomic contacts to the surfaces of the individual cations and anions are also compared.
Chemical context
We are currently interested in tough hydrogels with a built-in capacity for self-healing, as a means of improving their performance in practical applications (Goswami et al., 2017 ▸; Pushparajan et al., 2018 ▸). One approach involves the polymerization of ion-pair comonomers (IPC) typically based on sulfonate anions and quaternary ammonium cations (McAdam et al., 2019 ▸). The covalent cross-linking of mixed cationic and anionic monomers generates polyampholytes (Zurick & Bernards, 2014 ▸) with additional toughness and self-healing ability due to electrostatic interactions between the oppositely charged functional groups present (Ihsan et al., 2016 ▸; Haag & Bernards, 2017 ▸). The title IPC salt was first reported in 1978 at the emergence of this field (Salamone et al., 1978 ▸). The original synthesis utilized ion-exchange chromatography (Salamone et al., 1980 ▸) but this preparative methodology has been superseded by the argentometric mixing approach (Li et al., 2010 ▸).
Structural commentary
The title compound (1) is a salt consisting of a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The asymmetric unit contains two unique pairs of cations and anions and the individual cation/anion pairs are shown in Figs. 1 ▸ and 2 ▸. In the numbering scheme the two salts are distinguished by leading 1 and 2 characters. A feature of both cation/anion pairs is the substantial number of intermolecular contacts, N—H⋯O, C—H⋯O and weaker C—H⋯N hydrogen bonds, Table 1 ▸, linking the cations to the anions, with the O12 and O22 atoms acting as bifurcated acceptors enclosing
(6) ring motifs in each case.
Figure 1.
Salt 1 of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are drawn as dashed grey, cyan and green lines, respectively.
Figure 2.
Salt 2 of (1) showing the atom numbering with ellipsoids drawn at the 50% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N12—H12N⋯O15 | 0.84 (7) | 2.02 (7) | 2.841 (6) | 167 (7) |
| N13—H13N⋯O11i | 0.88 (7) | 2.10 (7) | 2.943 (6) | 162 (6) |
| N22—H22N⋯O25 | 0.93 (7) | 2.00 (7) | 2.865 (6) | 154 (6) |
| N23—H23N⋯O21ii | 0.82 (7) | 2.15 (7) | 2.961 (6) | 174 (7) |
| C11—H11D⋯O12 | 0.99 | 2.31 | 3.216 (8) | 151 |
| C12—H12A⋯O14iii | 0.99 | 2.68 | 3.583 (8) | 151 |
| C13—H13B⋯O12 | 0.99 | 2.69 | 3.463 (8) | 135 |
| C18—H18C⋯O14iii | 0.98 | 2.23 | 3.182 (10) | 164 |
| C18—H18B⋯O22iii | 0.98 | 2.25 | 3.192 (8) | 160 |
| C18—H18A⋯O23iv | 0.98 | 2.28 | 3.226 (9) | 162 |
| C19—H19A⋯O24iii | 0.98 | 2.63 | 3.555 (10) | 157 |
| C110—H11B⋯O21 | 0.98 | 2.65 | 3.182 (11) | 114 |
| C116—H116⋯O11i | 0.95 | 2.68 | 3.375 (7) | 131 |
| C117—H11N⋯N12 | 0.95 | 2.73 | 3.338 (8) | 123 |
| C21—H21D⋯O22 | 0.99 | 2.34 | 3.236 (8) | 151 |
| C22—H22B⋯O24iv | 0.99 | 2.53 | 3.463 (8) | 157 |
| C23—H23B⋯O22 | 0.99 | 2.65 | 3.442 (7) | 137 |
| C28—H28A⋯O12 | 0.98 | 2.20 | 3.162 (9) | 166 |
| C28—H28B⋯O13v | 0.98 | 2.27 | 3.195 (9) | 158 |
| C29—H29C⋯O23 | 0.98 | 2.41 | 3.377 (10) | 169 |
| C211—H21F⋯O21i | 0.99 | 2.71 | 3.674 (8) | 164 |
| C216—H216⋯O21ii | 0.95 | 2.69 | 3.405 (7) | 132 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
In the asymmetric unit the cations and anions are interconnected by further N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds with O12 and O22 acting as trifurcated and bifurcated acceptors, respectively, Fig. 3 ▸. The unique cation and anions pairs in (1) are reasonably similar to one another. Examination of selected bond distances, Table 2 ▸, confirms this similarity. Furthermore, the individual cations and anions overlay with r.m.s. deviations of only 0.0561 Å for the two cations and 0.0228 Å for the anions (Macrae et al., 2008 ▸). For the cations the most significant variations occur around the amide unit and for one of the methyl groups of the trimethylamine substituent, Fig. 4 ▸. The anions are even more closely comparable with only small variations around the amide N atoms and the vinyl groups, Fig. 5 ▸.
Figure 3.
Intermolecular contacts in the asymmetric unit of (1).
Table 2. Selected bond lengths (Å) for salts 1 and 2.
| Salt 1 | Salt 2 | ||
|---|---|---|---|
| C18—N11 | 1.479 (10) | C28—N21 | 1.504 (9) |
| C19—N11 | 1.506 (9) | C29—N21 | 1.506 (9) |
| C110—N11 | 1.498 (11) | C210—N21 | 1.504 (10) |
| N11—C11 | 1.511 (8) | N21—C21 | 1.500 (8) |
| C13—N12 | 1.463 (7) | C23—N22 | 1.457 (7) |
| N12—C14 | 1.330 (7) | N22—C24 | 1.338 (7) |
| C14—O11 | 1.239 (7) | C24—O21 | 1.236 (7) |
| C15—C16 | 1.367 (9) | C25—C26 | 1.352 (9) |
| O12—S1 | 1.434 (5) | O22—S2 | 1.436 (4) |
| O13—S1 | 1.447 (6) | O23—S2 | 1.437 (6) |
| O14—S1 | 1.436 (7) | O24—S2 | 1.432 (7) |
| S1—C111 | 1.778 (8) | S2—C211 | 1.786 (8) |
| N13—C115 | 1.333 (7) | N23—C215 | 1.338 (7) |
| C115—O15 | 1.245 (7) | C215—O25 | 1.235 (7) |
| C116—C117 | 1.304 (9) | C216—C217 | 1.323 (9) |
Figure 4.
An overlay of the two unique cations of (1), r.m.s. deviation 0.0561 Å.
Figure 5.
An overlay of the two unique anions of (1), r.m.s. deviation 0.0228 Å.
While the cations both adopt stretched arrangements, aided by the central propyl units, the anions are U-shaped with the acrylamide and sulfonate residues on opposite vertices of the U. The relative conformations of the C=O and vinyl double bonds within the C115 and C215 acrylamide substituents of the anions are s-cis, as found in similar compounds (Goswami et al., 2017 ▸). The two methacrylamide residues of the cations are similarly arranged.
Supramolecular features
In the crystal, a series of N—H⋯O and C—H⋯O hydrogen bonds, Table 1 ▸, form double chains of cations and anions along the a axis with adjacent double chains forming sheets in the ac plane, Fig. 6 ▸. These sheets are stacked along the b-axis direction by additional C—H⋯O hydrogen bonds, Fig. 7 ▸.
Figure 6.
Sheets of the cations and anions of (1) in the ac plane. All hydrogen bonds are shown as dashed cyan lines.
Figure 7.
Overall packing of the title compound viewed along the b-axis direction.
Hirshfeld Analysis
Further details of the intermolecular architecture of this salt are available using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017 ▸). Hirshfeld surfaces of the asymmetric unit of the structure which comprises salts 1 and 2, viewed for opposite faces are shown in Fig. 8 ▸(a) and 8(b). The red circles on the Hirshfeld surfaces correspond to the N—H⋯O and some of the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the contacts on the Hirshfeld surface of the asymmetric unit of (1) are shown in Fig. 9 ▸. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H and the much weaker and less significant H⋯N/N⋯H contributions. All contacts are detailed in Table 3 ▸.
Figure 8.
Hirshfeld surfaces for opposite faces of the asymmetric unit of (1) mapped over d norm in the range −0.5027 to 1.6303 a.u.
Figure 9.
Full two-dimensional fingerprint plots for the asymmetric unit of (1) (a) and (b)–(e) separate contact types for the separate contact types for the asymmetric unit of the salt. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.
Table 3. Percentage contributions of the interatomic contacts to the Hirshfeld surface of the asymmetric unit of (1).
| Contacts | Included surface area (%) |
|---|---|
| H⋯H | 68.9 |
| H⋯O/O⋯H | 22.6 |
| H⋯C/C⋯H | 8.0 |
| H⋯N/N⋯H | 0.5 |
The surfaces of the two discrete salt components of the structure can also be examined individually. Fig. 10 ▸(a) and 10(b) for salt 1 and Fig. 11 ▸(a) and 11(b) for salt 2 show the Hirshfeld surfaces of the individual salts 1 and 2, for opposite faces in each case. An immediate observation, strongly supported by the surface area data found in the fingerprint plots, vide infra, is that the surface contacts in the two discrete salts are reasonably similar to one another. Such similarities are also signalled by the closely comparable metrical data for the two salts and the results of the overlay experiments on the pairs of cations and anions discussed earlier.
Figure 10.
Hirshfeld surfaces for opposite faces of salt 1 mapped over d norm in the range −0.4919 to 1.6314 a.u.
Figure 11.
Hirshfeld surfaces for opposite faces of salt 2 mapped over d norm in the range −0.5029 to 1.6274 a.u.
It is also instructive to investigate the differences in contacts for the discrete cation and anion components of both salts by recording fingerprint plots for the two salts together with those of the discrete cations and anions. All of the surface contributions for the individual salts and their component cations and anions are shown in Table 4 ▸, with fingerprint plots for these contacts displayed in Fig. 12 ▸ for salt 1 and Fig. 13 ▸ for salt 2. The fingerprint plots for the two salts are closely analogous as indeed are the percentage contribution figures in Table 4 ▸, further highlighting their similarities. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals interactions are significantly greater for the cations in comparison to the anions, while the anion shows considerable increases in the H⋯O/O⋯H contacts reflecting the prominent role of the sulfonate O atoms in hydrogen bond formation. The H⋯N/N⋯H contributions to all of the surfaces are very weak but are included for completeness.
Table 4. Percentage contributions of the interatomic contacts to the Hirshfeld surface of the individual salts of (1).
| Contact | Salt 1 | Cation | Anion | Salt 2 | Cation | Anion |
|---|---|---|---|---|---|---|
| H⋯H | 68.9 | 67.3 | 54.9 | 68.9 | 67.2 | 54.5 |
| H⋯O/O⋯H | 23.5 | 24.9 | 35.4 | 23.6 | 25.1 | 35.7 |
| H⋯C/C⋯H | 7.2 | 7.0 | 8.8 | 7.0 | 6.7 | 8.7 |
| H⋯N/N⋯H | 0.4 | 0.8 | 0.8 | 0.5 | 0.9 | 1.0 |
Figure 12.
Full two-dimensional fingerprint plots for salt 1 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.
Figure 13.
Full two-dimensional fingerprint plots for salt 2 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.
Database survey
The Cambridge Structural Database (version 5.40 Nov 2018 with update of May 2019; Groom et al. 2016 ▸) contains structures of 66 acrylamide and 41 methacrylamide derivatives including acrylamide itself (ARCLAM01; Zhou et al. 2007 ▸) and both the s-cis (WANSAG) and s-trans (WANSAG01) conformations of methacrylamide (Guo et al. 2005 ▸). However, these results show that both components of this salt are unusual with no hits for any structures of related methylacrylamido cations nor acrylamidosulfonate anions. Indeed, the only structure showing even a moderately close relationship to either of the molecules reported here is N,N,N′,N′-tetramethyl-N′′-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone solvate (Tiritiris, 2013 ▸) that contains the Me3N+(CH2)3NH- fragment.
Synthesis and crystallization
The title compound was prepared via an argentometric mixing approach (Li et al., 2010 ▸) from the silver salt of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and 3-(methacryloylamino)propyl-trimethylammonium chloride (MPT Cl). After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair comonomers recrystallized from dioxane.
1H NMR (400 MHz, DMSO-d 6): δ 8.36 (br s, 1H, AMPS amide H), 8.06 (br s, 1H, MPT amide H), 6.09–5.89 (m, 2H, AMPS =CH2), 5.69 (m, 1H, MPT=CH), 5.48 (m, 1H, AMPS =CH), 5.32 (m, 1H MPT=CH), 3.31–3.22 (m, 2H, MPT CH2), 3.15 (m, 2H, MPT CH2), 3.02 (s, 9H, MPT CH3), 2.72 (s, 2H, AMPS CH2), 1.91–1.79 (m, 2H, MPT CH2), 1.79 (s, 3H, MPT=CCH3), 1.41 (s, 6H, AMPS CH3).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 5 ▸. N—H hydrogen atoms were located in a difference-Fourier map and their coordinates were refined with U iso(H) = 1.2U eq(N). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and U iso(H) = 1.2U eq(C) for methylene and d(C—H) = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms. The crystal studied was refined as a two-component inversion twin with a 0.58 (4):0.42 (4) domain ratio. Two reflections with F o >>> F c were omitted from the final refinement cycles.
Table 5. Experimental details.
| Crystal data | |
| Chemical formula | C10H21N2O+·C7H12NO4S− |
| M r | 391.52 |
| Crystal system, space group | Orthorhombic, P c a21 |
| Temperature (K) | 100 |
| a, b, c (Å) | 17.5093 (7), 7.8052 (3), 30.3155 (13) |
| V (Å3) | 4143.0 (3) |
| Z | 8 |
| Radiation type | Cu Kα |
| μ (mm−1) | 1.65 |
| Crystal size (mm) | 0.46 × 0.27 × 0.11 |
| Data collection | |
| Diffractometer | Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.589, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 10436, 5961, 5040 |
| R int | 0.054 |
| (sin θ/λ)max (Å−1) | 0.620 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.060, 0.173, 1.03 |
| No. of reflections | 5961 |
| No. of parameters | 494 |
| No. of restraints | 31 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.64, −0.32 |
| Absolute structure | Refined as an inversion twin. |
| Absolute structure parameter | 0.47 (4) |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019012003/vm2221sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012003/vm2221Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019012003/vm2221Isup3.cml
CCDC reference: 1950279
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C10H21N2O+·C7H12NO4S− | Dx = 1.255 Mg m−3 |
| Mr = 391.52 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, Pca21 | Cell parameters from 4725 reflections |
| a = 17.5093 (7) Å | θ = 5.2–72.8° |
| b = 7.8052 (3) Å | µ = 1.65 mm−1 |
| c = 30.3155 (13) Å | T = 100 K |
| V = 4143.0 (3) Å3 | Plate, colourless |
| Z = 8 | 0.46 × 0.27 × 0.11 mm |
| F(000) = 1696 |
Data collection
| Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer | 5961 independent reflections |
| Radiation source: SuperNova (Cu) X-ray Source | 5040 reflections with I > 2σ(I) |
| Detector resolution: 5.1725 pixels mm-1 | Rint = 0.054 |
| ω scans | θmax = 72.8°, θmin = 5.1° |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −21→15 |
| Tmin = 0.589, Tmax = 1.000 | k = −9→6 |
| 10436 measured reflections | l = −36→36 |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.1018P)2 + 1.0621P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.173 | (Δ/σ)max < 0.001 |
| S = 1.03 | Δρmax = 0.64 e Å−3 |
| 5961 reflections | Δρmin = −0.32 e Å−3 |
| 494 parameters | Absolute structure: Refined as an inversion twin. |
| 31 restraints | Absolute structure parameter: 0.47 (4) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refined as a 2-component inversion twin. Two reflections with Fo >>> Fc were omitted from the final refinement cycles. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C18 | 0.6830 (4) | 0.9831 (8) | 0.5183 (3) | 0.0247 (16) | |
| H18A | 0.690198 | 0.878168 | 0.535604 | 0.037* | |
| H18B | 0.693085 | 1.083025 | 0.537028 | 0.037* | |
| H18C | 0.718325 | 0.983217 | 0.493281 | 0.037* | |
| C19 | 0.5921 (5) | 1.1545 (9) | 0.4766 (3) | 0.0349 (17) | |
| H19A | 0.595183 | 1.252064 | 0.496889 | 0.052* | |
| H19B | 0.541887 | 1.153142 | 0.462385 | 0.052* | |
| H19C | 0.631985 | 1.165139 | 0.454063 | 0.052* | |
| C110 | 0.5495 (5) | 0.9882 (10) | 0.5403 (3) | 0.037 (2) | |
| H11A | 0.560070 | 1.086234 | 0.559514 | 0.055* | |
| H11B | 0.556169 | 0.881640 | 0.556894 | 0.055* | |
| H11C | 0.496835 | 0.995378 | 0.529420 | 0.055* | |
| N11 | 0.6035 (4) | 0.9905 (6) | 0.5019 (2) | 0.0258 (14) | |
| C11 | 0.5863 (4) | 0.8365 (8) | 0.4734 (2) | 0.0247 (14) | |
| H11D | 0.530261 | 0.826601 | 0.470045 | 0.030* | |
| H11E | 0.604392 | 0.732378 | 0.488861 | 0.030* | |
| C12 | 0.6220 (3) | 0.8411 (7) | 0.4280 (2) | 0.0250 (12) | |
| H12A | 0.677882 | 0.857686 | 0.430586 | 0.030* | |
| H12B | 0.600668 | 0.937774 | 0.410867 | 0.030* | |
| C13 | 0.6053 (3) | 0.6730 (7) | 0.4046 (2) | 0.0249 (12) | |
| H13A | 0.637844 | 0.581781 | 0.417331 | 0.030* | |
| H13B | 0.551289 | 0.640957 | 0.409807 | 0.030* | |
| N12 | 0.6191 (3) | 0.6838 (6) | 0.35712 (17) | 0.0224 (10) | |
| H12N | 0.578 (4) | 0.693 (9) | 0.343 (3) | 0.027* | |
| C14 | 0.6881 (3) | 0.6571 (7) | 0.3401 (2) | 0.0198 (11) | |
| O11 | 0.7443 (2) | 0.6223 (6) | 0.36331 (15) | 0.0272 (9) | |
| C15 | 0.6946 (4) | 0.6717 (8) | 0.2908 (2) | 0.0261 (13) | |
| C16 | 0.7639 (4) | 0.6354 (9) | 0.2722 (2) | 0.0358 (15) | |
| H16A | 0.770611 | 0.644668 | 0.241236 | 0.043* | |
| H16B | 0.805393 | 0.600812 | 0.290379 | 0.043* | |
| C17 | 0.6299 (4) | 0.7244 (13) | 0.2650 (3) | 0.047 (2) | |
| H17A | 0.644894 | 0.733716 | 0.233933 | 0.071* | |
| H17B | 0.611814 | 0.835987 | 0.275506 | 0.071* | |
| H17C | 0.588996 | 0.639623 | 0.267955 | 0.071* | |
| O12 | 0.4219 (3) | 0.8164 (6) | 0.42637 (18) | 0.0348 (11) | |
| O13 | 0.4113 (5) | 1.1199 (7) | 0.4319 (2) | 0.067 (2) | |
| O14 | 0.3005 (3) | 0.9400 (12) | 0.4408 (2) | 0.070 (2) | |
| S1 | 0.37335 (9) | 0.9620 (2) | 0.41979 (5) | 0.0265 (4) | |
| C111 | 0.3578 (4) | 0.9838 (7) | 0.3621 (3) | 0.0221 (15) | |
| H11F | 0.330598 | 1.093499 | 0.357282 | 0.026* | |
| H11G | 0.408354 | 0.994452 | 0.347790 | 0.026* | |
| C112 | 0.3129 (3) | 0.8423 (7) | 0.33741 (19) | 0.0195 (11) | |
| C113 | 0.2292 (3) | 0.8345 (8) | 0.3513 (2) | 0.0302 (14) | |
| H11H | 0.203429 | 0.742638 | 0.335013 | 0.045* | |
| H11I | 0.204478 | 0.944182 | 0.344692 | 0.045* | |
| H11J | 0.225960 | 0.811578 | 0.382995 | 0.045* | |
| C114 | 0.3169 (4) | 0.8832 (9) | 0.2880 (2) | 0.0285 (13) | |
| H11K | 0.370443 | 0.891877 | 0.278843 | 0.043* | |
| H11L | 0.290935 | 0.992159 | 0.282197 | 0.043* | |
| H11M | 0.291816 | 0.791602 | 0.271238 | 0.043* | |
| N13 | 0.3453 (3) | 0.6713 (6) | 0.34566 (17) | 0.0204 (10) | |
| H13N | 0.309 (4) | 0.600 (9) | 0.354 (2) | 0.025* | |
| C115 | 0.4176 (3) | 0.6236 (7) | 0.33943 (19) | 0.0198 (11) | |
| O15 | 0.4681 (2) | 0.7184 (5) | 0.32397 (14) | 0.0233 (8) | |
| C116 | 0.4340 (3) | 0.4425 (8) | 0.3526 (2) | 0.0238 (12) | |
| H116 | 0.396813 | 0.383181 | 0.369559 | 0.029* | |
| C117 | 0.4965 (4) | 0.3618 (8) | 0.3420 (3) | 0.0337 (15) | |
| H11N | 0.534618 | 0.418056 | 0.324986 | 0.040* | |
| H11O | 0.504003 | 0.246658 | 0.351177 | 0.040* | |
| C28 | 0.4323 (4) | 0.4759 (9) | 0.4825 (3) | 0.0251 (16) | |
| H28A | 0.438522 | 0.577869 | 0.464020 | 0.038* | |
| H28B | 0.440159 | 0.372881 | 0.464636 | 0.038* | |
| H28C | 0.469854 | 0.478512 | 0.506503 | 0.038* | |
| C29 | 0.3427 (5) | 0.3137 (9) | 0.5288 (3) | 0.0353 (17) | |
| H29A | 0.381784 | 0.309600 | 0.551935 | 0.053* | |
| H29B | 0.347640 | 0.212808 | 0.509783 | 0.053* | |
| H29C | 0.291909 | 0.314495 | 0.542420 | 0.053* | |
| C210 | 0.2971 (4) | 0.4666 (10) | 0.4641 (3) | 0.0319 (16) | |
| H21A | 0.245390 | 0.450262 | 0.475731 | 0.048* | |
| H21B | 0.310127 | 0.370769 | 0.444590 | 0.048* | |
| H21C | 0.299313 | 0.574064 | 0.447434 | 0.048* | |
| N21 | 0.3530 (3) | 0.4736 (6) | 0.5017 (2) | 0.0192 (11) | |
| C21 | 0.3369 (4) | 0.6330 (8) | 0.5277 (2) | 0.0246 (14) | |
| H21D | 0.280949 | 0.644582 | 0.531300 | 0.030* | |
| H21E | 0.355032 | 0.733184 | 0.510638 | 0.030* | |
| C22 | 0.3744 (3) | 0.6368 (8) | 0.5736 (2) | 0.0264 (12) | |
| H22A | 0.353621 | 0.543142 | 0.592074 | 0.032* | |
| H22B | 0.430212 | 0.620149 | 0.570793 | 0.032* | |
| C23 | 0.3579 (3) | 0.8094 (8) | 0.59519 (19) | 0.0257 (13) | |
| H23A | 0.390392 | 0.898458 | 0.581496 | 0.031* | |
| H23B | 0.303840 | 0.840767 | 0.589997 | 0.031* | |
| N22 | 0.3725 (3) | 0.8040 (6) | 0.64248 (17) | 0.0223 (10) | |
| H22N | 0.332 (4) | 0.785 (9) | 0.662 (2) | 0.027* | |
| C24 | 0.4405 (3) | 0.8420 (7) | 0.6600 (2) | 0.0214 (11) | |
| O21 | 0.4954 (2) | 0.8854 (5) | 0.63690 (15) | 0.0255 (9) | |
| C25 | 0.4467 (3) | 0.8314 (8) | 0.7094 (2) | 0.0242 (12) | |
| C26 | 0.5143 (4) | 0.8731 (9) | 0.7281 (2) | 0.0354 (15) | |
| H26A | 0.520137 | 0.868026 | 0.759239 | 0.042* | |
| H26B | 0.555964 | 0.907559 | 0.710104 | 0.042* | |
| C27 | 0.3810 (4) | 0.7778 (11) | 0.7356 (2) | 0.0415 (17) | |
| H27A | 0.395103 | 0.775397 | 0.766843 | 0.062* | |
| H27B | 0.364896 | 0.663109 | 0.726266 | 0.062* | |
| H27C | 0.338970 | 0.858807 | 0.731144 | 0.062* | |
| O22 | 0.1734 (3) | 0.6760 (6) | 0.57622 (17) | 0.0310 (10) | |
| O23 | 0.1667 (4) | 0.3726 (7) | 0.5717 (2) | 0.0591 (18) | |
| O24 | 0.0536 (3) | 0.5449 (11) | 0.5619 (2) | 0.0624 (19) | |
| S2 | 0.12650 (9) | 0.52727 (18) | 0.58283 (5) | 0.0240 (4) | |
| C211 | 0.1106 (5) | 0.5078 (7) | 0.6408 (3) | 0.0217 (15) | |
| H21F | 0.083063 | 0.398716 | 0.645875 | 0.026* | |
| H21G | 0.161104 | 0.496867 | 0.655210 | 0.026* | |
| C212 | 0.0661 (3) | 0.6508 (7) | 0.6651 (2) | 0.0215 (11) | |
| C213 | −0.0178 (3) | 0.6588 (8) | 0.6509 (2) | 0.0304 (14) | |
| H21H | −0.043509 | 0.751535 | 0.666856 | 0.046* | |
| H21I | −0.042740 | 0.549617 | 0.657698 | 0.046* | |
| H21J | −0.020728 | 0.680539 | 0.619112 | 0.046* | |
| C214 | 0.0700 (4) | 0.6112 (8) | 0.7144 (2) | 0.0274 (13) | |
| H21K | 0.123502 | 0.609082 | 0.723913 | 0.041* | |
| H21L | 0.046610 | 0.499244 | 0.720077 | 0.041* | |
| H21M | 0.042408 | 0.699737 | 0.730856 | 0.041* | |
| N23 | 0.0982 (3) | 0.8228 (6) | 0.65627 (16) | 0.0205 (10) | |
| H23N | 0.071 (4) | 0.904 (10) | 0.649 (2) | 0.025* | |
| C215 | 0.1711 (3) | 0.8691 (8) | 0.6618 (2) | 0.0215 (12) | |
| O25 | 0.2210 (2) | 0.7750 (5) | 0.67734 (14) | 0.0240 (9) | |
| C216 | 0.1867 (3) | 1.0492 (8) | 0.6480 (2) | 0.0234 (12) | |
| H216 | 0.148817 | 1.107951 | 0.631384 | 0.028* | |
| C217 | 0.2507 (3) | 1.1311 (8) | 0.6577 (3) | 0.0346 (16) | |
| H21N | 0.289415 | 1.075050 | 0.674228 | 0.041* | |
| H21O | 0.257890 | 1.245841 | 0.648134 | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C18 | 0.025 (4) | 0.027 (3) | 0.022 (4) | −0.002 (2) | 0.001 (3) | −0.002 (2) |
| C19 | 0.054 (5) | 0.028 (3) | 0.022 (4) | 0.017 (3) | −0.003 (3) | 0.001 (3) |
| C110 | 0.026 (4) | 0.055 (5) | 0.028 (4) | −0.002 (3) | 0.013 (3) | −0.010 (3) |
| N11 | 0.031 (3) | 0.027 (3) | 0.019 (3) | 0.003 (2) | 0.004 (3) | −0.0038 (19) |
| C11 | 0.024 (3) | 0.031 (3) | 0.019 (3) | −0.008 (2) | 0.003 (3) | −0.005 (2) |
| C12 | 0.023 (3) | 0.030 (3) | 0.022 (3) | −0.001 (2) | 0.001 (2) | −0.005 (2) |
| C13 | 0.024 (3) | 0.026 (3) | 0.025 (3) | −0.002 (2) | −0.001 (2) | −0.004 (2) |
| N12 | 0.020 (2) | 0.027 (2) | 0.021 (2) | 0.0001 (19) | −0.004 (2) | −0.0041 (19) |
| C14 | 0.017 (2) | 0.015 (2) | 0.027 (3) | −0.002 (2) | 0.000 (2) | −0.004 (2) |
| O11 | 0.0191 (19) | 0.035 (2) | 0.028 (2) | 0.0022 (16) | −0.0012 (17) | −0.0033 (19) |
| C15 | 0.031 (3) | 0.023 (3) | 0.024 (3) | −0.004 (2) | 0.004 (2) | −0.001 (2) |
| C16 | 0.031 (3) | 0.047 (4) | 0.029 (3) | 0.012 (3) | 0.005 (3) | 0.009 (3) |
| C17 | 0.023 (3) | 0.087 (6) | 0.032 (4) | 0.009 (4) | 0.003 (3) | 0.018 (4) |
| O12 | 0.046 (2) | 0.030 (2) | 0.028 (3) | 0.0111 (19) | −0.012 (2) | −0.002 (2) |
| O13 | 0.128 (6) | 0.029 (3) | 0.044 (4) | −0.008 (3) | −0.038 (4) | −0.004 (3) |
| O14 | 0.031 (3) | 0.154 (6) | 0.024 (3) | 0.020 (4) | 0.002 (2) | 0.006 (4) |
| S1 | 0.0313 (9) | 0.0304 (8) | 0.0177 (8) | 0.0080 (6) | −0.0038 (7) | −0.0061 (7) |
| C111 | 0.021 (3) | 0.021 (3) | 0.024 (5) | −0.002 (2) | −0.002 (3) | −0.002 (2) |
| C112 | 0.019 (3) | 0.015 (2) | 0.025 (3) | 0.003 (2) | −0.002 (2) | −0.007 (2) |
| C113 | 0.020 (3) | 0.028 (3) | 0.042 (4) | 0.005 (2) | 0.005 (3) | −0.003 (3) |
| C114 | 0.031 (3) | 0.032 (3) | 0.022 (3) | 0.009 (3) | −0.004 (3) | −0.004 (2) |
| N13 | 0.017 (2) | 0.021 (2) | 0.023 (2) | −0.0006 (18) | 0.0009 (19) | −0.0006 (19) |
| C115 | 0.019 (3) | 0.024 (3) | 0.016 (3) | −0.003 (2) | 0.000 (2) | −0.006 (2) |
| O15 | 0.0176 (18) | 0.029 (2) | 0.024 (2) | −0.0012 (16) | 0.0026 (16) | −0.0008 (17) |
| C116 | 0.022 (3) | 0.021 (3) | 0.029 (3) | 0.003 (2) | −0.002 (2) | 0.001 (3) |
| C117 | 0.029 (3) | 0.023 (3) | 0.049 (4) | 0.000 (2) | 0.002 (3) | −0.012 (3) |
| C28 | 0.017 (3) | 0.035 (3) | 0.024 (4) | 0.000 (2) | 0.003 (3) | −0.005 (3) |
| C29 | 0.051 (5) | 0.024 (3) | 0.031 (4) | −0.009 (3) | 0.006 (3) | 0.002 (3) |
| C210 | 0.022 (4) | 0.049 (4) | 0.025 (4) | 0.000 (3) | −0.002 (3) | −0.011 (3) |
| N21 | 0.013 (2) | 0.025 (2) | 0.020 (3) | −0.0014 (18) | 0.000 (2) | −0.003 (2) |
| C21 | 0.023 (3) | 0.029 (3) | 0.022 (3) | 0.002 (2) | −0.003 (3) | −0.007 (3) |
| C22 | 0.025 (3) | 0.034 (3) | 0.021 (3) | 0.005 (2) | 0.000 (2) | −0.004 (2) |
| C23 | 0.024 (3) | 0.034 (3) | 0.019 (3) | −0.001 (2) | −0.005 (2) | 0.001 (2) |
| N22 | 0.016 (2) | 0.031 (2) | 0.020 (2) | −0.0014 (19) | 0.0027 (19) | −0.002 (2) |
| C24 | 0.023 (3) | 0.020 (3) | 0.021 (3) | −0.003 (2) | 0.000 (2) | −0.002 (2) |
| O21 | 0.0214 (19) | 0.030 (2) | 0.025 (2) | −0.0029 (17) | 0.0025 (17) | −0.0014 (18) |
| C25 | 0.026 (3) | 0.024 (3) | 0.023 (3) | 0.002 (2) | 0.003 (2) | −0.002 (2) |
| C26 | 0.038 (3) | 0.043 (4) | 0.026 (3) | −0.012 (3) | −0.006 (3) | 0.012 (3) |
| C27 | 0.028 (3) | 0.072 (5) | 0.024 (3) | −0.007 (3) | 0.000 (3) | 0.007 (3) |
| O22 | 0.038 (2) | 0.031 (2) | 0.024 (2) | −0.0106 (18) | 0.0061 (19) | −0.0002 (19) |
| O23 | 0.116 (5) | 0.030 (3) | 0.032 (3) | 0.013 (3) | 0.034 (3) | −0.006 (2) |
| O24 | 0.034 (3) | 0.130 (5) | 0.023 (3) | −0.025 (3) | −0.003 (2) | 0.006 (4) |
| S2 | 0.0250 (8) | 0.0296 (8) | 0.0173 (8) | −0.0039 (6) | 0.0017 (6) | −0.0010 (7) |
| C211 | 0.034 (4) | 0.017 (3) | 0.014 (4) | 0.005 (2) | 0.000 (3) | −0.0022 (19) |
| C212 | 0.019 (2) | 0.020 (3) | 0.026 (3) | −0.004 (2) | 0.003 (2) | −0.002 (2) |
| C213 | 0.026 (3) | 0.032 (3) | 0.033 (4) | 0.000 (2) | −0.001 (3) | −0.002 (3) |
| C214 | 0.028 (3) | 0.033 (3) | 0.022 (3) | −0.004 (2) | 0.005 (2) | −0.003 (3) |
| N23 | 0.022 (2) | 0.019 (2) | 0.021 (2) | 0.0039 (18) | −0.0001 (19) | 0.0009 (19) |
| C215 | 0.020 (3) | 0.025 (3) | 0.019 (3) | 0.000 (2) | 0.001 (2) | −0.007 (2) |
| O25 | 0.0188 (19) | 0.029 (2) | 0.024 (2) | 0.0009 (16) | −0.0004 (16) | 0.0006 (18) |
| C216 | 0.022 (3) | 0.023 (3) | 0.025 (3) | 0.004 (2) | −0.003 (2) | −0.003 (3) |
| C217 | 0.025 (3) | 0.025 (3) | 0.053 (4) | −0.003 (2) | 0.001 (3) | −0.004 (3) |
Geometric parameters (Å, º)
| C18—N11 | 1.479 (10) | C28—N21 | 1.504 (9) |
| C18—H18A | 0.9800 | C28—H28A | 0.9800 |
| C18—H18B | 0.9800 | C28—H28B | 0.9800 |
| C18—H18C | 0.9800 | C28—H28C | 0.9800 |
| C19—N11 | 1.506 (9) | C29—N21 | 1.506 (9) |
| C19—H19A | 0.9800 | C29—H29A | 0.9800 |
| C19—H19B | 0.9800 | C29—H29B | 0.9800 |
| C19—H19C | 0.9800 | C29—H29C | 0.9800 |
| C110—N11 | 1.498 (11) | C210—N21 | 1.504 (10) |
| C110—H11A | 0.9800 | C210—H21A | 0.9800 |
| C110—H11B | 0.9800 | C210—H21B | 0.9800 |
| C110—H11C | 0.9800 | C210—H21C | 0.9800 |
| N11—C11 | 1.511 (8) | N21—C21 | 1.500 (8) |
| C11—C12 | 1.511 (9) | C21—C22 | 1.539 (9) |
| C11—H11D | 0.9900 | C21—H21D | 0.9900 |
| C11—H11E | 0.9900 | C21—H21E | 0.9900 |
| C12—C13 | 1.520 (8) | C22—C23 | 1.525 (8) |
| C12—H12A | 0.9900 | C22—H22A | 0.9900 |
| C12—H12B | 0.9900 | C22—H22B | 0.9900 |
| C13—N12 | 1.463 (7) | C23—N22 | 1.457 (7) |
| C13—H13A | 0.9900 | C23—H23A | 0.9900 |
| C13—H13B | 0.9900 | C23—H23B | 0.9900 |
| N12—C14 | 1.330 (7) | N22—C24 | 1.338 (7) |
| N12—H12N | 0.84 (7) | N22—H22N | 0.93 (7) |
| C14—O11 | 1.239 (7) | C24—O21 | 1.236 (7) |
| C14—C15 | 1.505 (8) | C24—C25 | 1.505 (8) |
| C15—C16 | 1.367 (9) | C25—C26 | 1.352 (9) |
| C15—C17 | 1.436 (9) | C25—C27 | 1.457 (9) |
| C16—H16A | 0.9500 | C26—H26A | 0.9500 |
| C16—H16B | 0.9500 | C26—H26B | 0.9500 |
| C17—H17A | 0.9800 | C27—H27A | 0.9800 |
| C17—H17B | 0.9800 | C27—H27B | 0.9800 |
| C17—H17C | 0.9800 | C27—H27C | 0.9800 |
| O12—S1 | 1.434 (5) | O22—S2 | 1.436 (4) |
| O13—S1 | 1.447 (6) | O23—S2 | 1.437 (6) |
| O14—S1 | 1.436 (7) | O24—S2 | 1.432 (7) |
| S1—C111 | 1.778 (8) | S2—C211 | 1.786 (8) |
| C111—C112 | 1.548 (8) | C211—C212 | 1.547 (8) |
| C111—H11F | 0.9900 | C211—H21F | 0.9900 |
| C111—H11G | 0.9900 | C211—H21G | 0.9900 |
| C112—N13 | 1.472 (7) | C212—N23 | 1.479 (7) |
| C112—C113 | 1.526 (7) | C212—C214 | 1.529 (8) |
| C112—C114 | 1.534 (8) | C212—C213 | 1.532 (8) |
| C113—H11H | 0.9800 | C213—H21H | 0.9800 |
| C113—H11I | 0.9800 | C213—H21I | 0.9800 |
| C113—H11J | 0.9800 | C213—H21J | 0.9800 |
| C114—H11K | 0.9800 | C214—H21K | 0.9800 |
| C114—H11L | 0.9800 | C214—H21L | 0.9800 |
| C114—H11M | 0.9800 | C214—H21M | 0.9800 |
| N13—C115 | 1.333 (7) | N23—C215 | 1.338 (7) |
| N13—H13N | 0.88 (7) | N23—H23N | 0.82 (7) |
| C115—O15 | 1.245 (7) | C215—O25 | 1.235 (7) |
| C115—C116 | 1.496 (8) | C215—C216 | 1.492 (9) |
| C116—C117 | 1.304 (9) | C216—C217 | 1.323 (9) |
| C116—H116 | 0.9500 | C216—H216 | 0.9500 |
| C117—H11N | 0.9500 | C217—H21N | 0.9500 |
| C117—H11O | 0.9500 | C217—H21O | 0.9500 |
| N11—C18—H18A | 109.5 | N21—C28—H28A | 109.5 |
| N11—C18—H18B | 109.5 | N21—C28—H28B | 109.5 |
| H18A—C18—H18B | 109.5 | H28A—C28—H28B | 109.5 |
| N11—C18—H18C | 109.5 | N21—C28—H28C | 109.5 |
| H18A—C18—H18C | 109.5 | H28A—C28—H28C | 109.5 |
| H18B—C18—H18C | 109.5 | H28B—C28—H28C | 109.5 |
| N11—C19—H19A | 109.5 | N21—C29—H29A | 109.5 |
| N11—C19—H19B | 109.5 | N21—C29—H29B | 109.5 |
| H19A—C19—H19B | 109.5 | H29A—C29—H29B | 109.5 |
| N11—C19—H19C | 109.5 | N21—C29—H29C | 109.5 |
| H19A—C19—H19C | 109.5 | H29A—C29—H29C | 109.5 |
| H19B—C19—H19C | 109.5 | H29B—C29—H29C | 109.5 |
| N11—C110—H11A | 109.5 | N21—C210—H21A | 109.5 |
| N11—C110—H11B | 109.5 | N21—C210—H21B | 109.5 |
| H11A—C110—H11B | 109.5 | H21A—C210—H21B | 109.5 |
| N11—C110—H11C | 109.5 | N21—C210—H21C | 109.5 |
| H11A—C110—H11C | 109.5 | H21A—C210—H21C | 109.5 |
| H11B—C110—H11C | 109.5 | H21B—C210—H21C | 109.5 |
| C18—N11—C110 | 109.4 (7) | C21—N21—C210 | 107.8 (5) |
| C18—N11—C19 | 109.2 (6) | C21—N21—C28 | 111.5 (5) |
| C110—N11—C19 | 108.8 (6) | C210—N21—C28 | 108.0 (6) |
| C18—N11—C11 | 110.4 (5) | C21—N21—C29 | 112.2 (6) |
| C110—N11—C11 | 108.0 (6) | C210—N21—C29 | 107.8 (6) |
| C19—N11—C11 | 111.0 (6) | C28—N21—C29 | 109.4 (6) |
| N11—C11—C12 | 114.8 (5) | N21—C21—C22 | 114.3 (5) |
| N11—C11—H11D | 108.6 | N21—C21—H21D | 108.7 |
| C12—C11—H11D | 108.6 | C22—C21—H21D | 108.7 |
| N11—C11—H11E | 108.6 | N21—C21—H21E | 108.7 |
| C12—C11—H11E | 108.6 | C22—C21—H21E | 108.7 |
| H11D—C11—H11E | 107.5 | H21D—C21—H21E | 107.6 |
| C11—C12—C13 | 108.9 (5) | C23—C22—C21 | 108.9 (5) |
| C11—C12—H12A | 109.9 | C23—C22—H22A | 109.9 |
| C13—C12—H12A | 109.9 | C21—C22—H22A | 109.9 |
| C11—C12—H12B | 109.9 | C23—C22—H22B | 109.9 |
| C13—C12—H12B | 109.9 | C21—C22—H22B | 109.9 |
| H12A—C12—H12B | 108.3 | H22A—C22—H22B | 108.3 |
| N12—C13—C12 | 112.2 (5) | N22—C23—C22 | 111.3 (5) |
| N12—C13—H13A | 109.2 | N22—C23—H23A | 109.4 |
| C12—C13—H13A | 109.2 | C22—C23—H23A | 109.4 |
| N12—C13—H13B | 109.2 | N22—C23—H23B | 109.4 |
| C12—C13—H13B | 109.2 | C22—C23—H23B | 109.4 |
| H13A—C13—H13B | 107.9 | H23A—C23—H23B | 108.0 |
| C14—N12—C13 | 121.5 (5) | C24—N22—C23 | 122.7 (5) |
| C14—N12—H12N | 127 (5) | C24—N22—H22N | 118 (4) |
| C13—N12—H12N | 111 (5) | C23—N22—H22N | 119 (4) |
| O11—C14—N12 | 122.4 (6) | O21—C24—N22 | 121.9 (5) |
| O11—C14—C15 | 121.4 (5) | O21—C24—C25 | 121.6 (5) |
| N12—C14—C15 | 116.2 (5) | N22—C24—C25 | 116.5 (5) |
| C16—C15—C17 | 122.4 (6) | C26—C25—C27 | 122.2 (6) |
| C16—C15—C14 | 117.4 (6) | C26—C25—C24 | 117.8 (5) |
| C17—C15—C14 | 120.2 (5) | C27—C25—C24 | 120.1 (5) |
| C15—C16—H16A | 120.0 | C25—C26—H26A | 120.0 |
| C15—C16—H16B | 120.0 | C25—C26—H26B | 120.0 |
| H16A—C16—H16B | 120.0 | H26A—C26—H26B | 120.0 |
| C15—C17—H17A | 109.5 | C25—C27—H27A | 109.5 |
| C15—C17—H17B | 109.5 | C25—C27—H27B | 109.5 |
| H17A—C17—H17B | 109.5 | H27A—C27—H27B | 109.5 |
| C15—C17—H17C | 109.5 | C25—C27—H27C | 109.5 |
| H17A—C17—H17C | 109.5 | H27A—C27—H27C | 109.5 |
| H17B—C17—H17C | 109.5 | H27B—C27—H27C | 109.5 |
| O12—S1—O14 | 111.7 (4) | O24—S2—O22 | 111.7 (4) |
| O12—S1—O13 | 111.6 (4) | O24—S2—O23 | 114.4 (5) |
| O14—S1—O13 | 113.4 (5) | O22—S2—O23 | 111.5 (4) |
| O12—S1—C111 | 107.7 (3) | O24—S2—C211 | 107.8 (4) |
| O14—S1—C111 | 108.1 (4) | O22—S2—C211 | 107.2 (3) |
| O13—S1—C111 | 103.8 (3) | O23—S2—C211 | 103.6 (3) |
| C112—C111—S1 | 119.0 (5) | C212—C211—S2 | 119.0 (5) |
| C112—C111—H11F | 107.6 | C212—C211—H21F | 107.6 |
| S1—C111—H11F | 107.6 | S2—C211—H21F | 107.6 |
| C112—C111—H11G | 107.6 | C212—C211—H21G | 107.6 |
| S1—C111—H11G | 107.6 | S2—C211—H21G | 107.6 |
| H11F—C111—H11G | 107.0 | H21F—C211—H21G | 107.0 |
| N13—C112—C113 | 106.7 (5) | N23—C212—C214 | 110.1 (5) |
| N13—C112—C114 | 109.7 (4) | N23—C212—C213 | 106.0 (5) |
| C113—C112—C114 | 108.7 (5) | C214—C212—C213 | 109.0 (5) |
| N13—C112—C111 | 111.7 (5) | N23—C212—C211 | 112.3 (5) |
| C113—C112—C111 | 112.5 (5) | C214—C212—C211 | 107.3 (5) |
| C114—C112—C111 | 107.5 (5) | C213—C212—C211 | 112.3 (5) |
| C112—C113—H11H | 109.5 | C212—C213—H21H | 109.5 |
| C112—C113—H11I | 109.5 | C212—C213—H21I | 109.5 |
| H11H—C113—H11I | 109.5 | H21H—C213—H21I | 109.5 |
| C112—C113—H11J | 109.5 | C212—C213—H21J | 109.5 |
| H11H—C113—H11J | 109.5 | H21H—C213—H21J | 109.5 |
| H11I—C113—H11J | 109.5 | H21I—C213—H21J | 109.5 |
| C112—C114—H11K | 109.5 | C212—C214—H21K | 109.5 |
| C112—C114—H11L | 109.5 | C212—C214—H21L | 109.5 |
| H11K—C114—H11L | 109.5 | H21K—C214—H21L | 109.5 |
| C112—C114—H11M | 109.5 | C212—C214—H21M | 109.5 |
| H11K—C114—H11M | 109.5 | H21K—C214—H21M | 109.5 |
| H11L—C114—H11M | 109.5 | H21L—C214—H21M | 109.5 |
| C115—N13—C112 | 126.5 (5) | C215—N23—C212 | 125.8 (5) |
| C115—N13—H13N | 123 (4) | C215—N23—H23N | 112 (5) |
| C112—N13—H13N | 110 (4) | C212—N23—H23N | 122 (5) |
| O15—C115—N13 | 124.2 (6) | O25—C215—N23 | 124.2 (6) |
| O15—C115—C116 | 121.7 (5) | O25—C215—C216 | 122.6 (5) |
| N13—C115—C116 | 114.1 (5) | N23—C215—C216 | 113.2 (5) |
| C117—C116—C115 | 123.5 (6) | C217—C216—C215 | 123.2 (6) |
| C117—C116—H116 | 118.3 | C217—C216—H216 | 118.4 |
| C115—C116—H116 | 118.3 | C215—C216—H216 | 118.4 |
| C116—C117—H11N | 120.0 | C216—C217—H21N | 120.0 |
| C116—C117—H11O | 120.0 | C216—C217—H21O | 120.0 |
| H11N—C117—H11O | 120.0 | H21N—C217—H21O | 120.0 |
| C18—N11—C11—C12 | −74.4 (7) | C210—N21—C21—C22 | 164.9 (6) |
| C110—N11—C11—C12 | 165.9 (6) | C28—N21—C21—C22 | −76.7 (7) |
| C19—N11—C11—C12 | 46.8 (9) | C29—N21—C21—C22 | 46.4 (8) |
| N11—C11—C12—C13 | 175.5 (5) | N21—C21—C22—C23 | 176.3 (5) |
| C11—C12—C13—N12 | 164.4 (5) | C21—C22—C23—N22 | 163.8 (5) |
| C12—C13—N12—C14 | 85.9 (6) | C22—C23—N22—C24 | 90.1 (7) |
| C13—N12—C14—O11 | −0.2 (8) | C23—N22—C24—O21 | 0.5 (9) |
| C13—N12—C14—C15 | 179.8 (5) | C23—N22—C24—C25 | 179.7 (5) |
| O11—C14—C15—C16 | 3.7 (9) | O21—C24—C25—C26 | 0.8 (9) |
| N12—C14—C15—C16 | −176.4 (6) | N22—C24—C25—C26 | −178.5 (6) |
| O11—C14—C15—C17 | −175.4 (7) | O21—C24—C25—C27 | −179.3 (6) |
| N12—C14—C15—C17 | 4.5 (9) | N22—C24—C25—C27 | 1.4 (9) |
| O12—S1—C111—C112 | 65.6 (6) | O24—S2—C211—C212 | −56.9 (7) |
| O14—S1—C111—C112 | −55.3 (7) | O22—S2—C211—C212 | 63.5 (6) |
| O13—S1—C111—C112 | −176.0 (6) | O23—S2—C211—C212 | −178.5 (6) |
| S1—C111—C112—N13 | −52.7 (7) | S2—C211—C212—N23 | −52.1 (7) |
| S1—C111—C112—C113 | 67.2 (7) | S2—C211—C212—C214 | −173.1 (5) |
| S1—C111—C112—C114 | −173.1 (5) | S2—C211—C212—C213 | 67.2 (7) |
| C113—C112—N13—C115 | −177.8 (5) | C214—C212—N23—C215 | 66.0 (7) |
| C114—C112—N13—C115 | 64.6 (7) | C213—C212—N23—C215 | −176.3 (5) |
| C111—C112—N13—C115 | −54.5 (7) | C211—C212—N23—C215 | −53.4 (8) |
| C112—N13—C115—O15 | −2.6 (9) | C212—N23—C215—O25 | −4.1 (9) |
| C112—N13—C115—C116 | 177.6 (5) | C212—N23—C215—C216 | 177.1 (5) |
| O15—C115—C116—C117 | −12.6 (10) | O25—C215—C216—C217 | −11.3 (10) |
| N13—C115—C116—C117 | 167.2 (6) | N23—C215—C216—C217 | 167.5 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N12—H12N···O15 | 0.84 (7) | 2.02 (7) | 2.841 (6) | 167 (7) |
| N13—H13N···O11i | 0.88 (7) | 2.10 (7) | 2.943 (6) | 162 (6) |
| N22—H22N···O25 | 0.93 (7) | 2.00 (7) | 2.865 (6) | 154 (6) |
| N23—H23N···O21ii | 0.82 (7) | 2.15 (7) | 2.961 (6) | 174 (7) |
| C11—H11D···O12 | 0.99 | 2.31 | 3.216 (8) | 151 |
| C12—H12A···O14iii | 0.99 | 2.68 | 3.583 (8) | 151 |
| C13—H13B···O12 | 0.99 | 2.69 | 3.463 (8) | 135 |
| C18—H18C···O14iii | 0.98 | 2.23 | 3.182 (10) | 164 |
| C18—H18B···O22iii | 0.98 | 2.25 | 3.192 (8) | 160 |
| C18—H18A···O23iv | 0.98 | 2.28 | 3.226 (9) | 162 |
| C19—H19A···O24iii | 0.98 | 2.63 | 3.555 (10) | 157 |
| C110—H11B···O21 | 0.98 | 2.65 | 3.182 (11) | 114 |
| C116—H116···O11i | 0.95 | 2.68 | 3.375 (7) | 131 |
| C117—H11N···N12 | 0.95 | 2.73 | 3.338 (8) | 123 |
| C21—H21D···O22 | 0.99 | 2.34 | 3.236 (8) | 151 |
| C22—H22B···O24iv | 0.99 | 2.53 | 3.463 (8) | 157 |
| C23—H23B···O22 | 0.99 | 2.65 | 3.442 (7) | 137 |
| C28—H28A···O12 | 0.98 | 2.20 | 3.162 (9) | 166 |
| C28—H28B···O13v | 0.98 | 2.27 | 3.195 (9) | 158 |
| C29—H29C···O23 | 0.98 | 2.41 | 3.377 (10) | 169 |
| C211—H21F···O21i | 0.99 | 2.71 | 3.674 (8) | 164 |
| C216—H216···O21ii | 0.95 | 2.69 | 3.405 (7) | 132 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x−1/2, −y+2, z; (iii) x+1/2, −y+2, z; (iv) x+1/2, −y+1, z; (v) x, y−1, z.
Funding Statement
This work was funded by Ministry of Business, Innovation and Employment grant UOO-X1206. University of Otago grant .
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guo, C., Hickey, M. B., Guggenheim, E. R., Enkelmann, V. & Foxman, B. M. (2005). Chem. Commun. pp. 2220–2222. [DOI] [PubMed]
- Haag, S. L. & Bernards, M. T. (2017). Gels, 3, 41. [DOI] [PMC free article] [PubMed]
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Ihsan, A. B., Sun, T. L., Kurokawa, T., Karobi, S. N., Nakajima, T., Nonoyama, T., Roy, C. K., Luo, F. & Gong, J. P. (2016). Macromolecules, 49, 4245–4252.
- Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McAdam, C. J., Hanton, L. R., Moratti, S. C., Simpson, J. & Wickramasinhage, R. N. (2019). Acta Cryst. E75, 946–950. [DOI] [PMC free article] [PubMed]
- Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1978). ACS Polymer Preprints E19, 261-264.
- Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1980). Ions in Polymers – Advances in Chemistry, Vol. 187, edited by A. Eisenberg, ch. 22, p. 337–346. ACS Publications.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tiritiris, I. (2013). Acta Cryst. E69, o337–o338. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhou, Q.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o3039.
- Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019012003/vm2221sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012003/vm2221Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019012003/vm2221Isup3.cml
CCDC reference: 1950279
Additional supporting information: crystallographic information; 3D view; checkCIF report













