Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 10;75(Pt 10):1445–1451. doi: 10.1107/S2056989019012003

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

Ravindra N Wickramasinhage a, C John McAdam a, Lyall R Hanton a, Stephen C Moratti a, Jim Simpson a,*
PMCID: PMC6775740  PMID: 31636973

The mol­ecular and crystal structure of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate, that crystallizes with two unique pairs of cations and anions in the asymmetric unit, is reported. Hirshfeld surface analysis of the asymmetric unit and of the two individual salts is also carried out.

Keywords: crystal structure; 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium; 2-acryl­amido-2-methyl­propane-1-sulfonate; hydrogen bonding; Hirshfeld surface analysis

Abstract

The title salt, C10H21N2O+·C7H12NO4S, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.

Chemical context  

We are currently inter­ested in tough hydro­gels with a built-in capacity for self-healing, as a means of improving their performance in practical applications (Goswami et al., 2017; Pushparajan et al., 2018). One approach involves the polymerization of ion-pair comonomers (IPC) typically based on sulfonate anions and quaternary ammonium cations (McAdam et al., 2019). The covalent cross-linking of mixed cationic and anionic monomers generates polyampholytes (Zurick & Bernards, 2014) with additional toughness and self-healing ability due to electrostatic inter­actions between the oppositely charged functional groups present (Ihsan et al., 2016; Haag & Bernards, 2017). The title IPC salt was first reported in 1978 at the emergence of this field (Salamone et al., 1978). The original synthesis utilized ion-exchange chromatography (Salamone et al., 1980) but this preparative methodology has been superseded by the argentometric mixing approach (Li et al., 2010).graphic file with name e-75-01445-scheme1.jpg

Structural commentary  

The title compound (1) is a salt consisting of a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The asymmetric unit contains two unique pairs of cations and anions and the individual cation/anion pairs are shown in Figs. 1 and 2. In the numbering scheme the two salts are distinguished by leading 1 and 2 characters. A feature of both cation/anion pairs is the substantial number of inter­molecular contacts, N—H⋯O, C—H⋯O and weaker C—H⋯N hydrogen bonds, Table 1, linking the cations to the anions, with the O12 and O22 atoms acting as bifurcated acceptors enclosing Inline graphic(6) ring motifs in each case.

Figure 1.

Figure 1

Salt 1 of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are drawn as dashed grey, cyan and green lines, respectively.

Figure 2.

Figure 2

Salt 2 of (1) showing the atom numbering with ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12N⋯O15 0.84 (7) 2.02 (7) 2.841 (6) 167 (7)
N13—H13N⋯O11i 0.88 (7) 2.10 (7) 2.943 (6) 162 (6)
N22—H22N⋯O25 0.93 (7) 2.00 (7) 2.865 (6) 154 (6)
N23—H23N⋯O21ii 0.82 (7) 2.15 (7) 2.961 (6) 174 (7)
C11—H11D⋯O12 0.99 2.31 3.216 (8) 151
C12—H12A⋯O14iii 0.99 2.68 3.583 (8) 151
C13—H13B⋯O12 0.99 2.69 3.463 (8) 135
C18—H18C⋯O14iii 0.98 2.23 3.182 (10) 164
C18—H18B⋯O22iii 0.98 2.25 3.192 (8) 160
C18—H18A⋯O23iv 0.98 2.28 3.226 (9) 162
C19—H19A⋯O24iii 0.98 2.63 3.555 (10) 157
C110—H11B⋯O21 0.98 2.65 3.182 (11) 114
C116—H116⋯O11i 0.95 2.68 3.375 (7) 131
C117—H11N⋯N12 0.95 2.73 3.338 (8) 123
C21—H21D⋯O22 0.99 2.34 3.236 (8) 151
C22—H22B⋯O24iv 0.99 2.53 3.463 (8) 157
C23—H23B⋯O22 0.99 2.65 3.442 (7) 137
C28—H28A⋯O12 0.98 2.20 3.162 (9) 166
C28—H28B⋯O13v 0.98 2.27 3.195 (9) 158
C29—H29C⋯O23 0.98 2.41 3.377 (10) 169
C211—H21F⋯O21i 0.99 2.71 3.674 (8) 164
C216—H216⋯O21ii 0.95 2.69 3.405 (7) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

In the asymmetric unit the cations and anions are inter­connected by further N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds with O12 and O22 acting as trifurcated and bifurcated acceptors, respectively, Fig. 3. The unique cation and anions pairs in (1) are reasonably similar to one another. Examination of selected bond distances, Table 2, confirms this similarity. Furthermore, the individual cations and anions overlay with r.m.s. deviations of only 0.0561 Å for the two cations and 0.0228 Å for the anions (Macrae et al., 2008). For the cations the most significant variations occur around the amide unit and for one of the methyl groups of the tri­methyl­amine substituent, Fig. 4. The anions are even more closely comparable with only small variations around the amide N atoms and the vinyl groups, Fig. 5.

Figure 3.

Figure 3

Inter­molecular contacts in the asymmetric unit of (1).

Table 2. Selected bond lengths (Å) for salts 1 and 2.

Salt 1   Salt 2  
C18—N11 1.479 (10) C28—N21 1.504 (9)
C19—N11 1.506 (9) C29—N21 1.506 (9)
C110—N11 1.498 (11) C210—N21 1.504 (10)
N11—C11 1.511 (8) N21—C21 1.500 (8)
C13—N12 1.463 (7) C23—N22 1.457 (7)
N12—C14 1.330 (7) N22—C24 1.338 (7)
C14—O11 1.239 (7) C24—O21 1.236 (7)
C15—C16 1.367 (9) C25—C26 1.352 (9)
O12—S1 1.434 (5) O22—S2 1.436 (4)
O13—S1 1.447 (6) O23—S2 1.437 (6)
O14—S1 1.436 (7) O24—S2 1.432 (7)
S1—C111 1.778 (8) S2—C211 1.786 (8)
N13—C115 1.333 (7) N23—C215 1.338 (7)
C115—O15 1.245 (7) C215—O25 1.235 (7)
C116—C117 1.304 (9) C216—C217 1.323 (9)

Figure 4.

Figure 4

An overlay of the two unique cations of (1), r.m.s. deviation 0.0561 Å.

Figure 5.

Figure 5

An overlay of the two unique anions of (1), r.m.s. deviation 0.0228 Å.

While the cations both adopt stretched arrangements, aided by the central propyl units, the anions are U-shaped with the acryl­amide and sulfonate residues on opposite vertices of the U. The relative conformations of the C=O and vinyl double bonds within the C115 and C215 acryl­amide substituents of the anions are s-cis, as found in similar compounds (Goswami et al., 2017). The two methacryl­amide residues of the cations are similarly arranged.

Supra­molecular features  

In the crystal, a series of N—H⋯O and C—H⋯O hydrogen bonds, Table 1, form double chains of cations and anions along the a axis with adjacent double chains forming sheets in the ac plane, Fig. 6. These sheets are stacked along the b-axis direction by additional C—H⋯O hydrogen bonds, Fig. 7.

Figure 6.

Figure 6

Sheets of the cations and anions of (1) in the ac plane. All hydrogen bonds are shown as dashed cyan lines.

Figure 7.

Figure 7

Overall packing of the title compound viewed along the b-axis direction.

Hirshfeld Analysis  

Further details of the inter­molecular architecture of this salt are available using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017). Hirshfeld surfaces of the asymmetric unit of the structure which comprises salts 1 and 2, viewed for opposite faces are shown in Fig. 8(a) and 8(b). The red circles on the Hirshfeld surfaces correspond to the N—H⋯O and some of the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the contacts on the Hirshfeld surface of the asymmetric unit of (1) are shown in Fig. 9. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H and the much weaker and less significant H⋯N/N⋯H contributions. All contacts are detailed in Table 3.

Figure 8.

Figure 8

Hirshfeld surfaces for opposite faces of the asymmetric unit of (1) mapped over d norm in the range −0.5027 to 1.6303 a.u.

Figure 9.

Figure 9

Full two-dimensional fingerprint plots for the asymmetric unit of (1) (a) and (b)–(e) separate contact types for the separate contact types for the asymmetric unit of the salt. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.

Table 3. Percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the asymmetric unit of (1).

Contacts Included surface area (%)
H⋯H 68.9
H⋯O/O⋯H 22.6
H⋯C/C⋯H 8.0
H⋯N/N⋯H 0.5

The surfaces of the two discrete salt components of the structure can also be examined individually. Fig. 10(a) and 10(b) for salt 1 and Fig. 11(a) and 11(b) for salt 2 show the Hirshfeld surfaces of the individual salts 1 and 2, for opposite faces in each case. An immediate observation, strongly supported by the surface area data found in the fingerprint plots, vide infra, is that the surface contacts in the two discrete salts are reasonably similar to one another. Such similarities are also signalled by the closely comparable metrical data for the two salts and the results of the overlay experiments on the pairs of cations and anions discussed earlier.

Figure 10.

Figure 10

Hirshfeld surfaces for opposite faces of salt 1 mapped over d norm in the range −0.4919 to 1.6314 a.u.

Figure 11.

Figure 11

Hirshfeld surfaces for opposite faces of salt 2 mapped over d norm in the range −0.5029 to 1.6274 a.u.

It is also instructive to investigate the differences in contacts for the discrete cation and anion components of both salts by recording fingerprint plots for the two salts together with those of the discrete cations and anions. All of the surface contributions for the individual salts and their component cations and anions are shown in Table 4, with fingerprint plots for these contacts displayed in Fig. 12 for salt 1 and Fig. 13 for salt 2. The fingerprint plots for the two salts are closely analogous as indeed are the percentage contribution figures in Table 4, further highlighting their similarities. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals inter­actions are significantly greater for the cations in comparison to the anions, while the anion shows considerable increases in the H⋯O/O⋯H contacts reflecting the prominent role of the sulfonate O atoms in hydrogen bond formation. The H⋯N/N⋯H contributions to all of the surfaces are very weak but are included for completeness.

Table 4. Percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the individual salts of (1).

Contact Salt 1 Cation Anion Salt 2 Cation Anion
H⋯H 68.9 67.3 54.9 68.9 67.2 54.5
H⋯O/O⋯H 23.5 24.9 35.4 23.6 25.1 35.7
H⋯C/C⋯H 7.2 7.0 8.8 7.0 6.7 8.7
H⋯N/N⋯H 0.4 0.8 0.8 0.5 0.9 1.0

Figure 12.

Figure 12

Full two-dimensional fingerprint plots for salt 1 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.

Figure 13.

Figure 13

Full two-dimensional fingerprint plots for salt 2 (a) its cation (b) and anion (c); (d)–(o) separate contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts.

Database survey  

The Cambridge Structural Database (version 5.40 Nov 2018 with update of May 2019; Groom et al. 2016) contains structures of 66 acryl­amide and 41 methacryl­amide derivatives including acryl­amide itself (ARCLAM01; Zhou et al. 2007) and both the s-cis (WANSAG) and s-trans (WANSAG01) conformations of methacryl­amide (Guo et al. 2005). However, these results show that both components of this salt are unusual with no hits for any structures of related methyl­acryl­amido cations nor acryl­amido­sulfonate anions. Indeed, the only structure showing even a moderately close relationship to either of the mol­ecules reported here is N,N,N′,N′-tetra­methyl-N′′-[3-(tri­methyl­aza­nium­yl)prop­yl]guanidinium bis­(tetra­phenyl­borate) acetone solvate (Tiritiris, 2013) that contains the Me3N+(CH2)3NH- fragment.

Synthesis and crystallization  

The title compound was prepared via an argentometric mixing approach (Li et al., 2010) from the silver salt of 2-acryl­amido-2-methyl-1-propane­sulfonic acid (AMPS) and 3-(meth­acryl­oyl­amino)­propyl-tri­methyl­ammonium chloride (MPT Cl). After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair comonomers recrystallized from dioxane.

1H NMR (400 MHz, DMSO-d 6): δ 8.36 (br s, 1H, AMPS amide H), 8.06 (br s, 1H, MPT amide H), 6.09–5.89 (m, 2H, AMPS =CH2), 5.69 (m, 1H, MPT=CH), 5.48 (m, 1H, AMPS =CH), 5.32 (m, 1H MPT=CH), 3.31–3.22 (m, 2H, MPT CH2), 3.15 (m, 2H, MPT CH2), 3.02 (s, 9H, MPT CH3), 2.72 (s, 2H, AMPS CH2), 1.91–1.79 (m, 2H, MPT CH2), 1.79 (s, 3H, MPT=CCH3), 1.41 (s, 6H, AMPS CH3).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. N—H hydrogen atoms were located in a difference-Fourier map and their coordinates were refined with U iso(H) = 1.2U eq(N). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and U iso(H) = 1.2U eq(C) for methyl­ene and d(C—H) = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms. The crystal studied was refined as a two-component inversion twin with a 0.58 (4):0.42 (4) domain ratio. Two reflections with F o >>> F c were omitted from the final refinement cycles.

Table 5. Experimental details.

Crystal data
Chemical formula C10H21N2O+·C7H12NO4S
M r 391.52
Crystal system, space group Orthorhombic, P c a21
Temperature (K) 100
a, b, c (Å) 17.5093 (7), 7.8052 (3), 30.3155 (13)
V3) 4143.0 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.65
Crystal size (mm) 0.46 × 0.27 × 0.11
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.589, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10436, 5961, 5040
R int 0.054
(sin θ/λ)max−1) 0.620
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.173, 1.03
No. of reflections 5961
No. of parameters 494
No. of restraints 31
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.32
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.47 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019012003/vm2221sup1.cif

e-75-01445-sup1.cif (363.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012003/vm2221Isup2.hkl

e-75-01445-Isup2.hkl (474.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012003/vm2221Isup3.cml

CCDC reference: 1950279

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H21N2O+·C7H12NO4S Dx = 1.255 Mg m3
Mr = 391.52 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21 Cell parameters from 4725 reflections
a = 17.5093 (7) Å θ = 5.2–72.8°
b = 7.8052 (3) Å µ = 1.65 mm1
c = 30.3155 (13) Å T = 100 K
V = 4143.0 (3) Å3 Plate, colourless
Z = 8 0.46 × 0.27 × 0.11 mm
F(000) = 1696

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer 5961 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 5040 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1 Rint = 0.054
ω scans θmax = 72.8°, θmin = 5.1°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) h = −21→15
Tmin = 0.589, Tmax = 1.000 k = −9→6
10436 measured reflections l = −36→36

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1018P)2 + 1.0621P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.64 e Å3
5961 reflections Δρmin = −0.32 e Å3
494 parameters Absolute structure: Refined as an inversion twin.
31 restraints Absolute structure parameter: 0.47 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin. Two reflections with Fo >>> Fc were omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C18 0.6830 (4) 0.9831 (8) 0.5183 (3) 0.0247 (16)
H18A 0.690198 0.878168 0.535604 0.037*
H18B 0.693085 1.083025 0.537028 0.037*
H18C 0.718325 0.983217 0.493281 0.037*
C19 0.5921 (5) 1.1545 (9) 0.4766 (3) 0.0349 (17)
H19A 0.595183 1.252064 0.496889 0.052*
H19B 0.541887 1.153142 0.462385 0.052*
H19C 0.631985 1.165139 0.454063 0.052*
C110 0.5495 (5) 0.9882 (10) 0.5403 (3) 0.037 (2)
H11A 0.560070 1.086234 0.559514 0.055*
H11B 0.556169 0.881640 0.556894 0.055*
H11C 0.496835 0.995378 0.529420 0.055*
N11 0.6035 (4) 0.9905 (6) 0.5019 (2) 0.0258 (14)
C11 0.5863 (4) 0.8365 (8) 0.4734 (2) 0.0247 (14)
H11D 0.530261 0.826601 0.470045 0.030*
H11E 0.604392 0.732378 0.488861 0.030*
C12 0.6220 (3) 0.8411 (7) 0.4280 (2) 0.0250 (12)
H12A 0.677882 0.857686 0.430586 0.030*
H12B 0.600668 0.937774 0.410867 0.030*
C13 0.6053 (3) 0.6730 (7) 0.4046 (2) 0.0249 (12)
H13A 0.637844 0.581781 0.417331 0.030*
H13B 0.551289 0.640957 0.409807 0.030*
N12 0.6191 (3) 0.6838 (6) 0.35712 (17) 0.0224 (10)
H12N 0.578 (4) 0.693 (9) 0.343 (3) 0.027*
C14 0.6881 (3) 0.6571 (7) 0.3401 (2) 0.0198 (11)
O11 0.7443 (2) 0.6223 (6) 0.36331 (15) 0.0272 (9)
C15 0.6946 (4) 0.6717 (8) 0.2908 (2) 0.0261 (13)
C16 0.7639 (4) 0.6354 (9) 0.2722 (2) 0.0358 (15)
H16A 0.770611 0.644668 0.241236 0.043*
H16B 0.805393 0.600812 0.290379 0.043*
C17 0.6299 (4) 0.7244 (13) 0.2650 (3) 0.047 (2)
H17A 0.644894 0.733716 0.233933 0.071*
H17B 0.611814 0.835987 0.275506 0.071*
H17C 0.588996 0.639623 0.267955 0.071*
O12 0.4219 (3) 0.8164 (6) 0.42637 (18) 0.0348 (11)
O13 0.4113 (5) 1.1199 (7) 0.4319 (2) 0.067 (2)
O14 0.3005 (3) 0.9400 (12) 0.4408 (2) 0.070 (2)
S1 0.37335 (9) 0.9620 (2) 0.41979 (5) 0.0265 (4)
C111 0.3578 (4) 0.9838 (7) 0.3621 (3) 0.0221 (15)
H11F 0.330598 1.093499 0.357282 0.026*
H11G 0.408354 0.994452 0.347790 0.026*
C112 0.3129 (3) 0.8423 (7) 0.33741 (19) 0.0195 (11)
C113 0.2292 (3) 0.8345 (8) 0.3513 (2) 0.0302 (14)
H11H 0.203429 0.742638 0.335013 0.045*
H11I 0.204478 0.944182 0.344692 0.045*
H11J 0.225960 0.811578 0.382995 0.045*
C114 0.3169 (4) 0.8832 (9) 0.2880 (2) 0.0285 (13)
H11K 0.370443 0.891877 0.278843 0.043*
H11L 0.290935 0.992159 0.282197 0.043*
H11M 0.291816 0.791602 0.271238 0.043*
N13 0.3453 (3) 0.6713 (6) 0.34566 (17) 0.0204 (10)
H13N 0.309 (4) 0.600 (9) 0.354 (2) 0.025*
C115 0.4176 (3) 0.6236 (7) 0.33943 (19) 0.0198 (11)
O15 0.4681 (2) 0.7184 (5) 0.32397 (14) 0.0233 (8)
C116 0.4340 (3) 0.4425 (8) 0.3526 (2) 0.0238 (12)
H116 0.396813 0.383181 0.369559 0.029*
C117 0.4965 (4) 0.3618 (8) 0.3420 (3) 0.0337 (15)
H11N 0.534618 0.418056 0.324986 0.040*
H11O 0.504003 0.246658 0.351177 0.040*
C28 0.4323 (4) 0.4759 (9) 0.4825 (3) 0.0251 (16)
H28A 0.438522 0.577869 0.464020 0.038*
H28B 0.440159 0.372881 0.464636 0.038*
H28C 0.469854 0.478512 0.506503 0.038*
C29 0.3427 (5) 0.3137 (9) 0.5288 (3) 0.0353 (17)
H29A 0.381784 0.309600 0.551935 0.053*
H29B 0.347640 0.212808 0.509783 0.053*
H29C 0.291909 0.314495 0.542420 0.053*
C210 0.2971 (4) 0.4666 (10) 0.4641 (3) 0.0319 (16)
H21A 0.245390 0.450262 0.475731 0.048*
H21B 0.310127 0.370769 0.444590 0.048*
H21C 0.299313 0.574064 0.447434 0.048*
N21 0.3530 (3) 0.4736 (6) 0.5017 (2) 0.0192 (11)
C21 0.3369 (4) 0.6330 (8) 0.5277 (2) 0.0246 (14)
H21D 0.280949 0.644582 0.531300 0.030*
H21E 0.355032 0.733184 0.510638 0.030*
C22 0.3744 (3) 0.6368 (8) 0.5736 (2) 0.0264 (12)
H22A 0.353621 0.543142 0.592074 0.032*
H22B 0.430212 0.620149 0.570793 0.032*
C23 0.3579 (3) 0.8094 (8) 0.59519 (19) 0.0257 (13)
H23A 0.390392 0.898458 0.581496 0.031*
H23B 0.303840 0.840767 0.589997 0.031*
N22 0.3725 (3) 0.8040 (6) 0.64248 (17) 0.0223 (10)
H22N 0.332 (4) 0.785 (9) 0.662 (2) 0.027*
C24 0.4405 (3) 0.8420 (7) 0.6600 (2) 0.0214 (11)
O21 0.4954 (2) 0.8854 (5) 0.63690 (15) 0.0255 (9)
C25 0.4467 (3) 0.8314 (8) 0.7094 (2) 0.0242 (12)
C26 0.5143 (4) 0.8731 (9) 0.7281 (2) 0.0354 (15)
H26A 0.520137 0.868026 0.759239 0.042*
H26B 0.555964 0.907559 0.710104 0.042*
C27 0.3810 (4) 0.7778 (11) 0.7356 (2) 0.0415 (17)
H27A 0.395103 0.775397 0.766843 0.062*
H27B 0.364896 0.663109 0.726266 0.062*
H27C 0.338970 0.858807 0.731144 0.062*
O22 0.1734 (3) 0.6760 (6) 0.57622 (17) 0.0310 (10)
O23 0.1667 (4) 0.3726 (7) 0.5717 (2) 0.0591 (18)
O24 0.0536 (3) 0.5449 (11) 0.5619 (2) 0.0624 (19)
S2 0.12650 (9) 0.52727 (18) 0.58283 (5) 0.0240 (4)
C211 0.1106 (5) 0.5078 (7) 0.6408 (3) 0.0217 (15)
H21F 0.083063 0.398716 0.645875 0.026*
H21G 0.161104 0.496867 0.655210 0.026*
C212 0.0661 (3) 0.6508 (7) 0.6651 (2) 0.0215 (11)
C213 −0.0178 (3) 0.6588 (8) 0.6509 (2) 0.0304 (14)
H21H −0.043509 0.751535 0.666856 0.046*
H21I −0.042740 0.549617 0.657698 0.046*
H21J −0.020728 0.680539 0.619112 0.046*
C214 0.0700 (4) 0.6112 (8) 0.7144 (2) 0.0274 (13)
H21K 0.123502 0.609082 0.723913 0.041*
H21L 0.046610 0.499244 0.720077 0.041*
H21M 0.042408 0.699737 0.730856 0.041*
N23 0.0982 (3) 0.8228 (6) 0.65627 (16) 0.0205 (10)
H23N 0.071 (4) 0.904 (10) 0.649 (2) 0.025*
C215 0.1711 (3) 0.8691 (8) 0.6618 (2) 0.0215 (12)
O25 0.2210 (2) 0.7750 (5) 0.67734 (14) 0.0240 (9)
C216 0.1867 (3) 1.0492 (8) 0.6480 (2) 0.0234 (12)
H216 0.148817 1.107951 0.631384 0.028*
C217 0.2507 (3) 1.1311 (8) 0.6577 (3) 0.0346 (16)
H21N 0.289415 1.075050 0.674228 0.041*
H21O 0.257890 1.245841 0.648134 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C18 0.025 (4) 0.027 (3) 0.022 (4) −0.002 (2) 0.001 (3) −0.002 (2)
C19 0.054 (5) 0.028 (3) 0.022 (4) 0.017 (3) −0.003 (3) 0.001 (3)
C110 0.026 (4) 0.055 (5) 0.028 (4) −0.002 (3) 0.013 (3) −0.010 (3)
N11 0.031 (3) 0.027 (3) 0.019 (3) 0.003 (2) 0.004 (3) −0.0038 (19)
C11 0.024 (3) 0.031 (3) 0.019 (3) −0.008 (2) 0.003 (3) −0.005 (2)
C12 0.023 (3) 0.030 (3) 0.022 (3) −0.001 (2) 0.001 (2) −0.005 (2)
C13 0.024 (3) 0.026 (3) 0.025 (3) −0.002 (2) −0.001 (2) −0.004 (2)
N12 0.020 (2) 0.027 (2) 0.021 (2) 0.0001 (19) −0.004 (2) −0.0041 (19)
C14 0.017 (2) 0.015 (2) 0.027 (3) −0.002 (2) 0.000 (2) −0.004 (2)
O11 0.0191 (19) 0.035 (2) 0.028 (2) 0.0022 (16) −0.0012 (17) −0.0033 (19)
C15 0.031 (3) 0.023 (3) 0.024 (3) −0.004 (2) 0.004 (2) −0.001 (2)
C16 0.031 (3) 0.047 (4) 0.029 (3) 0.012 (3) 0.005 (3) 0.009 (3)
C17 0.023 (3) 0.087 (6) 0.032 (4) 0.009 (4) 0.003 (3) 0.018 (4)
O12 0.046 (2) 0.030 (2) 0.028 (3) 0.0111 (19) −0.012 (2) −0.002 (2)
O13 0.128 (6) 0.029 (3) 0.044 (4) −0.008 (3) −0.038 (4) −0.004 (3)
O14 0.031 (3) 0.154 (6) 0.024 (3) 0.020 (4) 0.002 (2) 0.006 (4)
S1 0.0313 (9) 0.0304 (8) 0.0177 (8) 0.0080 (6) −0.0038 (7) −0.0061 (7)
C111 0.021 (3) 0.021 (3) 0.024 (5) −0.002 (2) −0.002 (3) −0.002 (2)
C112 0.019 (3) 0.015 (2) 0.025 (3) 0.003 (2) −0.002 (2) −0.007 (2)
C113 0.020 (3) 0.028 (3) 0.042 (4) 0.005 (2) 0.005 (3) −0.003 (3)
C114 0.031 (3) 0.032 (3) 0.022 (3) 0.009 (3) −0.004 (3) −0.004 (2)
N13 0.017 (2) 0.021 (2) 0.023 (2) −0.0006 (18) 0.0009 (19) −0.0006 (19)
C115 0.019 (3) 0.024 (3) 0.016 (3) −0.003 (2) 0.000 (2) −0.006 (2)
O15 0.0176 (18) 0.029 (2) 0.024 (2) −0.0012 (16) 0.0026 (16) −0.0008 (17)
C116 0.022 (3) 0.021 (3) 0.029 (3) 0.003 (2) −0.002 (2) 0.001 (3)
C117 0.029 (3) 0.023 (3) 0.049 (4) 0.000 (2) 0.002 (3) −0.012 (3)
C28 0.017 (3) 0.035 (3) 0.024 (4) 0.000 (2) 0.003 (3) −0.005 (3)
C29 0.051 (5) 0.024 (3) 0.031 (4) −0.009 (3) 0.006 (3) 0.002 (3)
C210 0.022 (4) 0.049 (4) 0.025 (4) 0.000 (3) −0.002 (3) −0.011 (3)
N21 0.013 (2) 0.025 (2) 0.020 (3) −0.0014 (18) 0.000 (2) −0.003 (2)
C21 0.023 (3) 0.029 (3) 0.022 (3) 0.002 (2) −0.003 (3) −0.007 (3)
C22 0.025 (3) 0.034 (3) 0.021 (3) 0.005 (2) 0.000 (2) −0.004 (2)
C23 0.024 (3) 0.034 (3) 0.019 (3) −0.001 (2) −0.005 (2) 0.001 (2)
N22 0.016 (2) 0.031 (2) 0.020 (2) −0.0014 (19) 0.0027 (19) −0.002 (2)
C24 0.023 (3) 0.020 (3) 0.021 (3) −0.003 (2) 0.000 (2) −0.002 (2)
O21 0.0214 (19) 0.030 (2) 0.025 (2) −0.0029 (17) 0.0025 (17) −0.0014 (18)
C25 0.026 (3) 0.024 (3) 0.023 (3) 0.002 (2) 0.003 (2) −0.002 (2)
C26 0.038 (3) 0.043 (4) 0.026 (3) −0.012 (3) −0.006 (3) 0.012 (3)
C27 0.028 (3) 0.072 (5) 0.024 (3) −0.007 (3) 0.000 (3) 0.007 (3)
O22 0.038 (2) 0.031 (2) 0.024 (2) −0.0106 (18) 0.0061 (19) −0.0002 (19)
O23 0.116 (5) 0.030 (3) 0.032 (3) 0.013 (3) 0.034 (3) −0.006 (2)
O24 0.034 (3) 0.130 (5) 0.023 (3) −0.025 (3) −0.003 (2) 0.006 (4)
S2 0.0250 (8) 0.0296 (8) 0.0173 (8) −0.0039 (6) 0.0017 (6) −0.0010 (7)
C211 0.034 (4) 0.017 (3) 0.014 (4) 0.005 (2) 0.000 (3) −0.0022 (19)
C212 0.019 (2) 0.020 (3) 0.026 (3) −0.004 (2) 0.003 (2) −0.002 (2)
C213 0.026 (3) 0.032 (3) 0.033 (4) 0.000 (2) −0.001 (3) −0.002 (3)
C214 0.028 (3) 0.033 (3) 0.022 (3) −0.004 (2) 0.005 (2) −0.003 (3)
N23 0.022 (2) 0.019 (2) 0.021 (2) 0.0039 (18) −0.0001 (19) 0.0009 (19)
C215 0.020 (3) 0.025 (3) 0.019 (3) 0.000 (2) 0.001 (2) −0.007 (2)
O25 0.0188 (19) 0.029 (2) 0.024 (2) 0.0009 (16) −0.0004 (16) 0.0006 (18)
C216 0.022 (3) 0.023 (3) 0.025 (3) 0.004 (2) −0.003 (2) −0.003 (3)
C217 0.025 (3) 0.025 (3) 0.053 (4) −0.003 (2) 0.001 (3) −0.004 (3)

Geometric parameters (Å, º)

C18—N11 1.479 (10) C28—N21 1.504 (9)
C18—H18A 0.9800 C28—H28A 0.9800
C18—H18B 0.9800 C28—H28B 0.9800
C18—H18C 0.9800 C28—H28C 0.9800
C19—N11 1.506 (9) C29—N21 1.506 (9)
C19—H19A 0.9800 C29—H29A 0.9800
C19—H19B 0.9800 C29—H29B 0.9800
C19—H19C 0.9800 C29—H29C 0.9800
C110—N11 1.498 (11) C210—N21 1.504 (10)
C110—H11A 0.9800 C210—H21A 0.9800
C110—H11B 0.9800 C210—H21B 0.9800
C110—H11C 0.9800 C210—H21C 0.9800
N11—C11 1.511 (8) N21—C21 1.500 (8)
C11—C12 1.511 (9) C21—C22 1.539 (9)
C11—H11D 0.9900 C21—H21D 0.9900
C11—H11E 0.9900 C21—H21E 0.9900
C12—C13 1.520 (8) C22—C23 1.525 (8)
C12—H12A 0.9900 C22—H22A 0.9900
C12—H12B 0.9900 C22—H22B 0.9900
C13—N12 1.463 (7) C23—N22 1.457 (7)
C13—H13A 0.9900 C23—H23A 0.9900
C13—H13B 0.9900 C23—H23B 0.9900
N12—C14 1.330 (7) N22—C24 1.338 (7)
N12—H12N 0.84 (7) N22—H22N 0.93 (7)
C14—O11 1.239 (7) C24—O21 1.236 (7)
C14—C15 1.505 (8) C24—C25 1.505 (8)
C15—C16 1.367 (9) C25—C26 1.352 (9)
C15—C17 1.436 (9) C25—C27 1.457 (9)
C16—H16A 0.9500 C26—H26A 0.9500
C16—H16B 0.9500 C26—H26B 0.9500
C17—H17A 0.9800 C27—H27A 0.9800
C17—H17B 0.9800 C27—H27B 0.9800
C17—H17C 0.9800 C27—H27C 0.9800
O12—S1 1.434 (5) O22—S2 1.436 (4)
O13—S1 1.447 (6) O23—S2 1.437 (6)
O14—S1 1.436 (7) O24—S2 1.432 (7)
S1—C111 1.778 (8) S2—C211 1.786 (8)
C111—C112 1.548 (8) C211—C212 1.547 (8)
C111—H11F 0.9900 C211—H21F 0.9900
C111—H11G 0.9900 C211—H21G 0.9900
C112—N13 1.472 (7) C212—N23 1.479 (7)
C112—C113 1.526 (7) C212—C214 1.529 (8)
C112—C114 1.534 (8) C212—C213 1.532 (8)
C113—H11H 0.9800 C213—H21H 0.9800
C113—H11I 0.9800 C213—H21I 0.9800
C113—H11J 0.9800 C213—H21J 0.9800
C114—H11K 0.9800 C214—H21K 0.9800
C114—H11L 0.9800 C214—H21L 0.9800
C114—H11M 0.9800 C214—H21M 0.9800
N13—C115 1.333 (7) N23—C215 1.338 (7)
N13—H13N 0.88 (7) N23—H23N 0.82 (7)
C115—O15 1.245 (7) C215—O25 1.235 (7)
C115—C116 1.496 (8) C215—C216 1.492 (9)
C116—C117 1.304 (9) C216—C217 1.323 (9)
C116—H116 0.9500 C216—H216 0.9500
C117—H11N 0.9500 C217—H21N 0.9500
C117—H11O 0.9500 C217—H21O 0.9500
N11—C18—H18A 109.5 N21—C28—H28A 109.5
N11—C18—H18B 109.5 N21—C28—H28B 109.5
H18A—C18—H18B 109.5 H28A—C28—H28B 109.5
N11—C18—H18C 109.5 N21—C28—H28C 109.5
H18A—C18—H18C 109.5 H28A—C28—H28C 109.5
H18B—C18—H18C 109.5 H28B—C28—H28C 109.5
N11—C19—H19A 109.5 N21—C29—H29A 109.5
N11—C19—H19B 109.5 N21—C29—H29B 109.5
H19A—C19—H19B 109.5 H29A—C29—H29B 109.5
N11—C19—H19C 109.5 N21—C29—H29C 109.5
H19A—C19—H19C 109.5 H29A—C29—H29C 109.5
H19B—C19—H19C 109.5 H29B—C29—H29C 109.5
N11—C110—H11A 109.5 N21—C210—H21A 109.5
N11—C110—H11B 109.5 N21—C210—H21B 109.5
H11A—C110—H11B 109.5 H21A—C210—H21B 109.5
N11—C110—H11C 109.5 N21—C210—H21C 109.5
H11A—C110—H11C 109.5 H21A—C210—H21C 109.5
H11B—C110—H11C 109.5 H21B—C210—H21C 109.5
C18—N11—C110 109.4 (7) C21—N21—C210 107.8 (5)
C18—N11—C19 109.2 (6) C21—N21—C28 111.5 (5)
C110—N11—C19 108.8 (6) C210—N21—C28 108.0 (6)
C18—N11—C11 110.4 (5) C21—N21—C29 112.2 (6)
C110—N11—C11 108.0 (6) C210—N21—C29 107.8 (6)
C19—N11—C11 111.0 (6) C28—N21—C29 109.4 (6)
N11—C11—C12 114.8 (5) N21—C21—C22 114.3 (5)
N11—C11—H11D 108.6 N21—C21—H21D 108.7
C12—C11—H11D 108.6 C22—C21—H21D 108.7
N11—C11—H11E 108.6 N21—C21—H21E 108.7
C12—C11—H11E 108.6 C22—C21—H21E 108.7
H11D—C11—H11E 107.5 H21D—C21—H21E 107.6
C11—C12—C13 108.9 (5) C23—C22—C21 108.9 (5)
C11—C12—H12A 109.9 C23—C22—H22A 109.9
C13—C12—H12A 109.9 C21—C22—H22A 109.9
C11—C12—H12B 109.9 C23—C22—H22B 109.9
C13—C12—H12B 109.9 C21—C22—H22B 109.9
H12A—C12—H12B 108.3 H22A—C22—H22B 108.3
N12—C13—C12 112.2 (5) N22—C23—C22 111.3 (5)
N12—C13—H13A 109.2 N22—C23—H23A 109.4
C12—C13—H13A 109.2 C22—C23—H23A 109.4
N12—C13—H13B 109.2 N22—C23—H23B 109.4
C12—C13—H13B 109.2 C22—C23—H23B 109.4
H13A—C13—H13B 107.9 H23A—C23—H23B 108.0
C14—N12—C13 121.5 (5) C24—N22—C23 122.7 (5)
C14—N12—H12N 127 (5) C24—N22—H22N 118 (4)
C13—N12—H12N 111 (5) C23—N22—H22N 119 (4)
O11—C14—N12 122.4 (6) O21—C24—N22 121.9 (5)
O11—C14—C15 121.4 (5) O21—C24—C25 121.6 (5)
N12—C14—C15 116.2 (5) N22—C24—C25 116.5 (5)
C16—C15—C17 122.4 (6) C26—C25—C27 122.2 (6)
C16—C15—C14 117.4 (6) C26—C25—C24 117.8 (5)
C17—C15—C14 120.2 (5) C27—C25—C24 120.1 (5)
C15—C16—H16A 120.0 C25—C26—H26A 120.0
C15—C16—H16B 120.0 C25—C26—H26B 120.0
H16A—C16—H16B 120.0 H26A—C26—H26B 120.0
C15—C17—H17A 109.5 C25—C27—H27A 109.5
C15—C17—H17B 109.5 C25—C27—H27B 109.5
H17A—C17—H17B 109.5 H27A—C27—H27B 109.5
C15—C17—H17C 109.5 C25—C27—H27C 109.5
H17A—C17—H17C 109.5 H27A—C27—H27C 109.5
H17B—C17—H17C 109.5 H27B—C27—H27C 109.5
O12—S1—O14 111.7 (4) O24—S2—O22 111.7 (4)
O12—S1—O13 111.6 (4) O24—S2—O23 114.4 (5)
O14—S1—O13 113.4 (5) O22—S2—O23 111.5 (4)
O12—S1—C111 107.7 (3) O24—S2—C211 107.8 (4)
O14—S1—C111 108.1 (4) O22—S2—C211 107.2 (3)
O13—S1—C111 103.8 (3) O23—S2—C211 103.6 (3)
C112—C111—S1 119.0 (5) C212—C211—S2 119.0 (5)
C112—C111—H11F 107.6 C212—C211—H21F 107.6
S1—C111—H11F 107.6 S2—C211—H21F 107.6
C112—C111—H11G 107.6 C212—C211—H21G 107.6
S1—C111—H11G 107.6 S2—C211—H21G 107.6
H11F—C111—H11G 107.0 H21F—C211—H21G 107.0
N13—C112—C113 106.7 (5) N23—C212—C214 110.1 (5)
N13—C112—C114 109.7 (4) N23—C212—C213 106.0 (5)
C113—C112—C114 108.7 (5) C214—C212—C213 109.0 (5)
N13—C112—C111 111.7 (5) N23—C212—C211 112.3 (5)
C113—C112—C111 112.5 (5) C214—C212—C211 107.3 (5)
C114—C112—C111 107.5 (5) C213—C212—C211 112.3 (5)
C112—C113—H11H 109.5 C212—C213—H21H 109.5
C112—C113—H11I 109.5 C212—C213—H21I 109.5
H11H—C113—H11I 109.5 H21H—C213—H21I 109.5
C112—C113—H11J 109.5 C212—C213—H21J 109.5
H11H—C113—H11J 109.5 H21H—C213—H21J 109.5
H11I—C113—H11J 109.5 H21I—C213—H21J 109.5
C112—C114—H11K 109.5 C212—C214—H21K 109.5
C112—C114—H11L 109.5 C212—C214—H21L 109.5
H11K—C114—H11L 109.5 H21K—C214—H21L 109.5
C112—C114—H11M 109.5 C212—C214—H21M 109.5
H11K—C114—H11M 109.5 H21K—C214—H21M 109.5
H11L—C114—H11M 109.5 H21L—C214—H21M 109.5
C115—N13—C112 126.5 (5) C215—N23—C212 125.8 (5)
C115—N13—H13N 123 (4) C215—N23—H23N 112 (5)
C112—N13—H13N 110 (4) C212—N23—H23N 122 (5)
O15—C115—N13 124.2 (6) O25—C215—N23 124.2 (6)
O15—C115—C116 121.7 (5) O25—C215—C216 122.6 (5)
N13—C115—C116 114.1 (5) N23—C215—C216 113.2 (5)
C117—C116—C115 123.5 (6) C217—C216—C215 123.2 (6)
C117—C116—H116 118.3 C217—C216—H216 118.4
C115—C116—H116 118.3 C215—C216—H216 118.4
C116—C117—H11N 120.0 C216—C217—H21N 120.0
C116—C117—H11O 120.0 C216—C217—H21O 120.0
H11N—C117—H11O 120.0 H21N—C217—H21O 120.0
C18—N11—C11—C12 −74.4 (7) C210—N21—C21—C22 164.9 (6)
C110—N11—C11—C12 165.9 (6) C28—N21—C21—C22 −76.7 (7)
C19—N11—C11—C12 46.8 (9) C29—N21—C21—C22 46.4 (8)
N11—C11—C12—C13 175.5 (5) N21—C21—C22—C23 176.3 (5)
C11—C12—C13—N12 164.4 (5) C21—C22—C23—N22 163.8 (5)
C12—C13—N12—C14 85.9 (6) C22—C23—N22—C24 90.1 (7)
C13—N12—C14—O11 −0.2 (8) C23—N22—C24—O21 0.5 (9)
C13—N12—C14—C15 179.8 (5) C23—N22—C24—C25 179.7 (5)
O11—C14—C15—C16 3.7 (9) O21—C24—C25—C26 0.8 (9)
N12—C14—C15—C16 −176.4 (6) N22—C24—C25—C26 −178.5 (6)
O11—C14—C15—C17 −175.4 (7) O21—C24—C25—C27 −179.3 (6)
N12—C14—C15—C17 4.5 (9) N22—C24—C25—C27 1.4 (9)
O12—S1—C111—C112 65.6 (6) O24—S2—C211—C212 −56.9 (7)
O14—S1—C111—C112 −55.3 (7) O22—S2—C211—C212 63.5 (6)
O13—S1—C111—C112 −176.0 (6) O23—S2—C211—C212 −178.5 (6)
S1—C111—C112—N13 −52.7 (7) S2—C211—C212—N23 −52.1 (7)
S1—C111—C112—C113 67.2 (7) S2—C211—C212—C214 −173.1 (5)
S1—C111—C112—C114 −173.1 (5) S2—C211—C212—C213 67.2 (7)
C113—C112—N13—C115 −177.8 (5) C214—C212—N23—C215 66.0 (7)
C114—C112—N13—C115 64.6 (7) C213—C212—N23—C215 −176.3 (5)
C111—C112—N13—C115 −54.5 (7) C211—C212—N23—C215 −53.4 (8)
C112—N13—C115—O15 −2.6 (9) C212—N23—C215—O25 −4.1 (9)
C112—N13—C115—C116 177.6 (5) C212—N23—C215—C216 177.1 (5)
O15—C115—C116—C117 −12.6 (10) O25—C215—C216—C217 −11.3 (10)
N13—C115—C116—C117 167.2 (6) N23—C215—C216—C217 167.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N12—H12N···O15 0.84 (7) 2.02 (7) 2.841 (6) 167 (7)
N13—H13N···O11i 0.88 (7) 2.10 (7) 2.943 (6) 162 (6)
N22—H22N···O25 0.93 (7) 2.00 (7) 2.865 (6) 154 (6)
N23—H23N···O21ii 0.82 (7) 2.15 (7) 2.961 (6) 174 (7)
C11—H11D···O12 0.99 2.31 3.216 (8) 151
C12—H12A···O14iii 0.99 2.68 3.583 (8) 151
C13—H13B···O12 0.99 2.69 3.463 (8) 135
C18—H18C···O14iii 0.98 2.23 3.182 (10) 164
C18—H18B···O22iii 0.98 2.25 3.192 (8) 160
C18—H18A···O23iv 0.98 2.28 3.226 (9) 162
C19—H19A···O24iii 0.98 2.63 3.555 (10) 157
C110—H11B···O21 0.98 2.65 3.182 (11) 114
C116—H116···O11i 0.95 2.68 3.375 (7) 131
C117—H11N···N12 0.95 2.73 3.338 (8) 123
C21—H21D···O22 0.99 2.34 3.236 (8) 151
C22—H22B···O24iv 0.99 2.53 3.463 (8) 157
C23—H23B···O22 0.99 2.65 3.442 (7) 137
C28—H28A···O12 0.98 2.20 3.162 (9) 166
C28—H28B···O13v 0.98 2.27 3.195 (9) 158
C29—H29C···O23 0.98 2.41 3.377 (10) 169
C211—H21F···O21i 0.99 2.71 3.674 (8) 164
C216—H216···O21ii 0.95 2.69 3.405 (7) 132

Symmetry codes: (i) x−1/2, −y+1, z; (ii) x−1/2, −y+2, z; (iii) x+1/2, −y+2, z; (iv) x+1/2, −y+1, z; (v) x, y−1, z.

Funding Statement

This work was funded by Ministry of Business, Innovation and Employment grant UOO-X1206. University of Otago grant .

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Guo, C., Hickey, M. B., Guggenheim, E. R., Enkelmann, V. & Foxman, B. M. (2005). Chem. Commun. pp. 2220–2222. [DOI] [PubMed]
  6. Haag, S. L. & Bernards, M. T. (2017). Gels, 3, 41. [DOI] [PMC free article] [PubMed]
  7. Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
  8. Ihsan, A. B., Sun, T. L., Kurokawa, T., Karobi, S. N., Nakajima, T., Nonoyama, T., Roy, C. K., Luo, F. & Gong, J. P. (2016). Macromolecules, 49, 4245–4252.
  9. Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. McAdam, C. J., Hanton, L. R., Moratti, S. C., Simpson, J. & Wickramasinhage, R. N. (2019). Acta Cryst. E75, 946–950. [DOI] [PMC free article] [PubMed]
  12. Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. [DOI] [PubMed]
  13. Rigaku OD (2018). CrysAlis PRO, Rigaku Oxford Diffraction Ltd, Yarnton, England.
  14. Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1978). ACS Polymer Preprints E19, 261-264.
  15. Salamone, J. C., Tsai, C. C., Olson, A. P. & Watterson, A. C. (1980). Ions in Polymers – Advances in Chemistry, Vol. 187, edited by A. Eisenberg, ch. 22, p. 337–346. ACS Publications.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Tiritiris, I. (2013). Acta Cryst. E69, o337–o338. [DOI] [PMC free article] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Zhou, Q.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o3039.
  24. Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019012003/vm2221sup1.cif

e-75-01445-sup1.cif (363.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012003/vm2221Isup2.hkl

e-75-01445-Isup2.hkl (474.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012003/vm2221Isup3.cml

CCDC reference: 1950279

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES