Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 3;75(Pt 10):1399–1402. doi: 10.1107/S2056989019011964

Crystal structure of (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol

Karim Ben Ali a, Pascal Retailleau b,*
PMCID: PMC6775741  PMID: 31636965

The title chiral β-amino alcohol was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10Inline graphic) via weak C—H⋯O and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, chiral β-amino alcohol, tetra­hydro­iso­quinoline, hydrogen bond, Hirshfeld surface analysis

Abstract

The synthesis and crystal structure of the title compound, C30H29NO, are described. This compound is a member of the chiral di­hydro­iso­quinoline-derived family, used as building blocks for functional materials and as source of chirality in asymmetric synthesis, and was isolated as one of two diastereomeric β-amino alcohols, the title mol­ecule being found to be the (S,R) diastereoisomer. In the crystal, mol­ecules are packed in a herringbone manner parallel to (103) and (10Inline graphic) via weak C—H⋯O and C—H⋯π(ring) inter­actions. Hirshfeld surface analysis showed that the surface contacts are predominantly H⋯H inter­actions (ca 75%). The crystal studied was refined as a two-component inversion twin.

Chemical context  

β-amino alcohols exhibit a broad spectrum of biological activities and are used as anti­bacterial and tuberculostatic agents (Yendapally & Lee, 2008). In particular, chiral β-amino alcohols are very important chiral mol­ecules that are used as building blocks and structural motifs in pharmaceutically active mol­ecules and natural products and which serve as the main sources of chirality in asymmetric synthesis (Lee et al., 2003; Malkov et al., 2007; Guo et al., 2017).graphic file with name e-75-01399-scheme1.jpg

Among this family of chiral amino-alcohols is the title compound, (I), which we prepared through the alkyl­ation of tetra­hydro­iso­quinoline by the opening racemic trans-stilbene oxide reaction. Two diastereoisomers were obtained in a 1:1 ratio as determined by 1H NMR analysis on the crude mixture. These diastereoisomers were separated by column chromatography. The title mol­ecule was found to be the (S,R) diastereoisomer.

Structural commentary  

The structure of (I) was confirmed using single crystal X-ray diffraction. The asymmetric unit of the ortho­rhom­bic unit cell comprises a single mol­ecule, shown in Fig. 1. The tetra­hydro­iso­quinoline unit is substituted by a methyl group in position 3, a phenyl substituent in position 4 and a β-alcohol substituent at the N atom. The heterocyclic ring exhibits a half-chair conformation, with atom C3 deviating by 0.706 (3) Å from the plane formed by atoms C1/N2/C4/C9/C10. The substituents in positions 3 and 4 of the heterocyclic ring are in axial positions. The mol­ecular structure of (I) is stabilized by an intra­molecular hydrogen bond between the hy­droxy O19—H19 group and atom N2, and to a lesser extent, between the aromatic C21—H21 and the phenyl group in position 4 (Table 1). By reference to two unchanging chiral C18 and C19 atoms, the mol­ecule was found to be the (18R,19S) diastereoisomer resulting from the reaction of tetra­hydro­iso­quinoline and the (S,S) trans-stilbene oxide enanti­omer.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radius. The dashed cyan line indicates the intra­molecular hydrogen bond between the hy­droxy group and the secondary amine.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C12-C17, C20–C25, and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O19—HOH⋯N2 0.86 (3) 2.18 (3) 2.737 (2) 123 (2)
C27—H27⋯O19 0.93 2.48 2.798 (3) 100
C21—H21⋯Cg3 0.93 3.14 3.930 (4) 144
C6—H6⋯O19i 0.93 2.57 3.492 (3) 170
C14—H14⋯Cg5ii 0.93 2.95 3.770 (4) 147
C16—H16⋯Cg4iii 0.93 2.92 3.743 (3) 148
C31—H31⋯Cg2iv 0.93 2.96 3.803 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

This structure was confirmed through the means of usual 1D and 2D NMR experiments. NMR data show that the trans diequatorial arrangement of H3 and H4 is suggested by the coupling constant between H3 and H4 in 1H NMR (J 3,4 ∼0 Hz), so the substituents C3-methyl and C4-phenyl are in an axial disposition. The absolute configurations of carbon atoms C18 and C19 were deduced from the NOESY maps to be R and S, respectively (Fig. 2).

Figure 2.

Figure 2

Selected NOESY correlations observed for compound (I).

Supra­molecular features  

In the crystal, mol­ecules of (I) pack with no classical hydrogen bonds: the potential donor hydroxyl group is involved in an intra­molecular inter­action with the N atom. However, the oxygen atom acts as an acceptor in the short contact C6—H6⋯O19 (−x, Inline graphic + y, Inline graphic − z) with an O19⋯H distance of 2.57 Å, which is of the same order of magnitude of the H⋯O van der Waals distance (2.60 Å), whereas C—H⋯O contacts are frequently reported with H⋯O separations shorter than 2.4 Å (Taylor & Kennard, 1982). The N atom does not play a role in the packing as it is buried inside the structure. Nevertheless, these directed C—H⋯O inter­actions make an important contribution to the packing: zigzagging along the [010] direction, they pair mol­ecules in ribbons, placing the iso­quinoline moieties parallel to the (103) plane on both sides but without overlapping. The ribbon cohesion is reinforced by C—H⋯π inter­actions involving the phenyl group in position 4 and those attached to the β-alcohol part and which flank the ribbon, as shown in Fig. 3. They stack in the [100] direction as columns arranged in a herringbone manner but avoiding π-π- stacking (Fig. 4).

Figure 3.

Figure 3

The ribbon structure of (I) formed along the b-axis direction via C—H⋯O inter­actions (cyan dashed lines) and C—H⋯π inter­actions (blue dashed lines). The red spheres indicate the centroids of the phenyl rings.

Figure 4.

Figure 4

Crystal packing of compound (I) viewed down the b-axis direction. Ribbons stack in a herringbone arrangement with the phenyl groups at the column inter­face.

Database survey  

A search of the Cambridge Structural Database, CSD (Version 5.40; ConQuest 1.21; Groom et al., 2016) found 495 structures of tetra­hydro­iso­quinoline derivatives. Limiting the search to compounds with tri-substitutions on positions C3, C4 and the secondary amine N reduces the number of structures to seven: ADAGOC (Gzella et al., 2006), JIPKEZ (White et al., 2007), TIBPIE (Ben Ali et al., 2007), VAHJOG (Davies et al., 2016), XOSDUE (Gzella et al., 2002), YEKKIK (Shi et al., 2012) and ZIFSUE (Guo et al., 2013). Except for the racemic VAHJOG, they all crystallize in the same P212121 space group. The structures of ZIFSUE, TIBPIE, VAHJOG, JIPKEZ and (I) superimpose well over the heterobicycle with the same conformation, unlike ADAGOC and XOSDUE which have a different half-chair configuration. The amino alcohol TIBPIE is obviously the closest related structure, differing in the N substitution of a cyclo­hexane carrying the hydroxyl group which is involved in the intra­molecular hydrogen bond.

Hirshfeld surface analysis  

The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis and the associated two-dimensional fingerprint plots using CrystalExplorer17.5 (Turner et al., 2017). The electrostatic potentials were calculated using TONTO, integrated within CrystalExplorer. The analysis of inter­molecular inter­actions through the mapping of d norm presented in Fig. 5 compares the contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively, with their respective van der Waals radii. The blue, white and red colour conventions recognize the inter­atomic contacts as longer, at van der Waals separations and short inter­atomic contacts. The C—H⋯O contacts are identified in the d norm-mapped surface as two red spots showing the inter­action between the neighbouring mol­ecules (Fig. 5 a). The overall two-dimensional fingerprint plot derived form the Hirshfeld surface is a useful method to summarize the frequency of each combination of d e and d i across the surface of the studied mol­ecule, encompassing all inter­molecular contacts (Fig. 5 b). The delineated fingerprint plots (Fig. 5 b and 6a,c) focus on specific inter­actions, providing information about the major and minor percentage contribution of inter­atomic contacts in the compound. The H⋯H inter­actions account for the three quarters of the total (73.7%) with an evident sting at about d i = d e = 1.1 Å (Fig. 5 b). The C⋯H/H⋯C plot, which refers to the C—H⋯π inter­actions previously described (22.7%,) shows two broad symmetrical wings at about d i + d e = 2.8 Å (Fig. 6 a). These inter­actions are observed as red regions on the shape-index surface (Fig. 6 b). The absence of C⋯C contacts, highlighted by the Hirshfeld surface with high curvedness delineated by dark-blue edges, confirms that no π–π stacking inter­actions take place in the crystal packing (Fig. 6 c,d). The third marginal contribution is O⋯H/H⋯O (3.6%) with a pair of sharp spikes at about d i + d e = 2.4 Å, symmetrically disposed with respect to the diagonal, indicating the presence of inter­molecular C—H⋯O inter­actions, which play a role in ordering the mol­ecules inside the crystal.

Figure 5.

Figure 5

(a) View of the three-dimensional Hirshfeld surface mapped over d norm, over the range −0.1345 and +1.8231 arbitrary units, (b) the full two-dimensional fingerprint plot for (I) and the two-dimensional fingerprint plots for the O⋯H/H⋯O inter­actions and the H⋯H inter­actions

Figure 6.

Figure 6

(a) The Hirshfeld surface mapped over the shape-index property, (b) the two-dimensional fingerprint plot for the H⋯C/C⋯H inter­actions, (c) the Hirshfeld surface mapped over curvedness and (d) the two-dimensional fingerprint plot for the C⋯C inter­actions in the title compound.

Synthesis and crystallization  

The title β-amino alcohol was obtained by mixing racemic trans-stilbene oxide (5.1g, 26mmol) with (3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinoleine (3g, 13mmol), which was prepared according to the method of Bohé et al. (1999).

The mixture was heated at 353.15 K for 48 h in CF3CH2OH (65 ml), the reaction being monitored by TLC. Two diastereoisomers were obtained in a 1:1 ratio. These diastereoisomers were separated by column chromatography. Only the title compound (white solid) was successfully recrystallized. Crystals were grown by placing this dastereoisomer in a minimum amount of hot heptane. [α] D 25 = −23.6 (c 1, CHCl3), m.p. 425 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding with U iso(H) = 1.2U eq(C). The crystal studied was refined as a two-component inversion twin.

Table 2. Experimental details.

Crystal data
Chemical formula C30H29NO
M r 419.54
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 7.3009 (8), 11.0552 (11), 30.006 (3)
V3) 2421.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.59 × 0.45 × 0.35
 
Data collection
Diffractometer Nonius KappaCCD area detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.844, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21751, 4427, 3948
R int 0.027
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.083, 1.07
No. of reflections 4425
No. of parameters 295
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.11, −0.11
Absolute structure Refined as an inversion twin.

Computer programs: DENZO (Otwinowski & Minor, 1997); COLLECT (Hooft, 1998), CrysAlis PRO (Rigaku OD, 2019), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019011964/ff2162sup1.cif

e-75-01399-sup1.cif (783.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019011964/ff2162Isup2.hkl

e-75-01399-Isup2.hkl (352.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019011964/ff2162Isup3.cml

CCDC reference: 1950166

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Dr Ma­thias Meyer (Rigaku) for his invaluable help in converting ancient KappaCCD images into a format readable by CrysAlis PRO software.

supplementary crystallographic information

Crystal data

C30H29NO Dx = 1.151 Mg m3
Mr = 419.54 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 6302 reflections
a = 7.3009 (8) Å θ = 2.0–24.2°
b = 11.0552 (11) Å µ = 0.07 mm1
c = 30.006 (3) Å T = 293 K
V = 2421.8 (4) Å3 Prism, colorless
Z = 4 0.59 × 0.45 × 0.35 mm
F(000) = 896

Data collection

Nonius KappaCCD area detector diffractometer 4427 independent reflections
Radiation source: 1.5kW sealed tube 3948 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scans θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −8→8
Tmin = 0.844, Tmax = 1.000 k = −13→13
21751 measured reflections l = −36→36

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3321P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.11 e Å3
4425 reflections Δρmin = −0.11 e Å3
295 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0139 (11)
Primary atom site location: dual Absolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3286 (4) −0.0015 (2) 0.21766 (7) 0.0459 (6)
H1A 0.428447 −0.038350 0.234113 0.053*
H1B 0.243483 −0.065133 0.209524 0.053*
N2 0.4019 (2) 0.05352 (14) 0.17689 (6) 0.0355 (4)
C3 0.5027 (3) 0.16552 (19) 0.18741 (7) 0.0400 (5)
H3 0.556815 0.195001 0.159563 0.046*
C4 0.3616 (3) 0.26023 (18) 0.20271 (7) 0.0379 (5)
H4 0.430488 0.329448 0.214349 0.044*
C5 0.1547 (3) 0.2891 (2) 0.26931 (7) 0.0471 (6)
H5 0.162708 0.372208 0.264993 0.054*
C6 0.0507 (3) 0.2447 (3) 0.30407 (8) 0.0553 (7)
H6 −0.009196 0.297836 0.323159 0.064*
C7 0.0357 (4) 0.1222 (3) 0.31050 (8) 0.0576 (7)
H7 −0.035474 0.092057 0.333677 0.066*
C8 0.1265 (3) 0.0443 (2) 0.28246 (8) 0.0518 (6)
H8 0.116921 −0.038604 0.287084 0.060*
C9 0.2328 (3) 0.0871 (2) 0.24723 (7) 0.0405 (5)
C10 0.2479 (3) 0.2114 (2) 0.24055 (7) 0.0383 (5)
C11 0.6589 (3) 0.1502 (2) 0.22101 (9) 0.0567 (7)
H11A 0.726198 0.224575 0.223262 0.068*
H11B 0.739191 0.086877 0.211187 0.068*
H11C 0.609065 0.129700 0.249634 0.068*
C12 0.2492 (3) 0.30571 (18) 0.16372 (7) 0.0400 (5)
C13 0.3195 (4) 0.3956 (2) 0.13673 (8) 0.0570 (7)
H13 0.431991 0.430129 0.143737 0.066*
C14 0.2254 (5) 0.4350 (3) 0.09946 (9) 0.0707 (9)
H14 0.275393 0.495164 0.081543 0.081*
C15 0.0593 (5) 0.3858 (3) 0.08888 (9) 0.0699 (9)
H15 −0.003927 0.412441 0.063832 0.080*
C16 −0.0138 (4) 0.2967 (3) 0.11542 (9) 0.0623 (7)
H16 −0.126869 0.262995 0.108399 0.072*
C17 0.0809 (3) 0.2573 (2) 0.15257 (8) 0.0488 (6)
H17 0.030362 0.197119 0.170385 0.056*
C18 0.5032 (3) −0.03477 (18) 0.14947 (7) 0.0367 (5)
H18 0.600714 −0.070012 0.167776 0.042*
C19 0.3684 (3) −0.13740 (19) 0.13610 (8) 0.0416 (5)
H19 0.338016 −0.182861 0.163143 0.048*
O19 0.2046 (2) −0.08765 (16) 0.11933 (6) 0.0560 (5)
HOH 0.198 (4) −0.016 (3) 0.1307 (9) 0.067*
C20 0.5896 (3) 0.02111 (19) 0.10855 (7) 0.0394 (5)
C21 0.4942 (4) 0.0997 (2) 0.08094 (8) 0.0553 (7)
H21 0.377223 0.125320 0.088719 0.064*
C22 0.5742 (5) 0.1398 (3) 0.04165 (9) 0.0730 (8)
H22 0.510686 0.192712 0.023154 0.084*
C23 0.7467 (5) 0.1018 (3) 0.02999 (10) 0.0778 (10)
H23 0.798359 0.127746 0.003312 0.089*
C24 0.8428 (4) 0.0263 (3) 0.05729 (10) 0.0685 (8)
H24 0.960600 0.001927 0.049589 0.079*
C25 0.7644 (3) −0.0137 (2) 0.09627 (8) 0.0502 (6)
H25 0.830335 −0.065258 0.114775 0.058*
C26 0.4523 (3) −0.22470 (19) 0.10333 (7) 0.0434 (5)
C27 0.4150 (4) −0.2197 (2) 0.05843 (9) 0.0648 (8)
H27 0.330932 −0.163529 0.047712 0.075*
C28 0.5013 (5) −0.2974 (3) 0.02915 (9) 0.0816 (10)
H28 0.474735 −0.293390 −0.001130 0.094*
C29 0.6252 (5) −0.3798 (3) 0.04431 (11) 0.0786 (9)
H29 0.684240 −0.431168 0.024431 0.090*
C30 0.6622 (4) −0.3865 (2) 0.08887 (11) 0.0693 (8)
H30 0.746120 −0.442975 0.099374 0.080*
C31 0.5752 (4) −0.3097 (2) 0.11835 (9) 0.0533 (6)
H31 0.599963 −0.315488 0.148673 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0562 (15) 0.0388 (12) 0.0426 (13) −0.0048 (11) 0.0068 (11) 0.0038 (10)
N2 0.0361 (10) 0.0336 (8) 0.0369 (9) −0.0008 (8) 0.0058 (8) 0.0001 (7)
C3 0.0384 (12) 0.0391 (11) 0.0426 (12) −0.0037 (10) 0.0039 (10) −0.0003 (9)
C4 0.0419 (13) 0.0322 (10) 0.0395 (12) −0.0059 (10) 0.0006 (10) −0.0037 (9)
C5 0.0441 (13) 0.0536 (14) 0.0437 (13) 0.0038 (11) −0.0043 (11) −0.0078 (11)
C6 0.0421 (14) 0.0826 (19) 0.0413 (13) 0.0074 (14) 0.0005 (11) −0.0127 (13)
C7 0.0482 (15) 0.0850 (19) 0.0395 (13) −0.0076 (14) 0.0064 (12) 0.0015 (13)
C8 0.0552 (15) 0.0596 (14) 0.0406 (13) −0.0126 (13) 0.0031 (12) 0.0036 (11)
C9 0.0423 (13) 0.0472 (12) 0.0320 (11) −0.0030 (11) 0.0010 (10) 0.0002 (9)
C10 0.0364 (12) 0.0442 (12) 0.0342 (11) 0.0002 (10) −0.0019 (10) −0.0030 (9)
C11 0.0433 (14) 0.0589 (15) 0.0680 (17) −0.0014 (12) −0.0081 (13) −0.0064 (13)
C12 0.0494 (14) 0.0319 (10) 0.0387 (12) 0.0043 (11) 0.0068 (10) −0.0036 (9)
C13 0.0653 (17) 0.0470 (13) 0.0586 (16) −0.0024 (13) 0.0074 (14) 0.0085 (12)
C14 0.093 (2) 0.0637 (17) 0.0558 (17) 0.0100 (18) 0.0123 (17) 0.0203 (14)
C15 0.091 (2) 0.0766 (19) 0.0426 (15) 0.0331 (19) −0.0020 (15) 0.0037 (14)
C16 0.0589 (16) 0.0737 (17) 0.0544 (16) 0.0111 (15) −0.0078 (14) −0.0108 (14)
C17 0.0526 (15) 0.0485 (13) 0.0452 (13) 0.0024 (12) −0.0009 (11) 0.0013 (11)
C18 0.0336 (11) 0.0391 (11) 0.0375 (11) 0.0034 (10) −0.0016 (10) 0.0010 (9)
C19 0.0396 (12) 0.0390 (11) 0.0463 (13) 0.0003 (10) −0.0006 (10) −0.0009 (10)
O19 0.0414 (9) 0.0551 (10) 0.0715 (12) 0.0037 (8) −0.0092 (9) −0.0069 (9)
C20 0.0415 (13) 0.0403 (11) 0.0364 (12) −0.0010 (10) 0.0015 (10) −0.0042 (9)
C21 0.0617 (17) 0.0595 (14) 0.0448 (14) 0.0047 (14) 0.0015 (12) 0.0049 (12)
C22 0.097 (2) 0.0752 (19) 0.0467 (15) −0.0039 (19) −0.0026 (17) 0.0129 (14)
C23 0.095 (3) 0.091 (2) 0.0469 (16) −0.024 (2) 0.0244 (17) −0.0042 (16)
C24 0.0622 (18) 0.082 (2) 0.0616 (18) −0.0138 (17) 0.0209 (15) −0.0176 (16)
C25 0.0452 (14) 0.0532 (14) 0.0522 (15) −0.0035 (12) 0.0073 (11) −0.0090 (11)
C26 0.0456 (14) 0.0384 (11) 0.0461 (13) −0.0055 (11) −0.0012 (11) −0.0046 (10)
C27 0.086 (2) 0.0577 (15) 0.0507 (16) 0.0103 (16) −0.0131 (15) −0.0060 (12)
C28 0.122 (3) 0.076 (2) 0.0477 (16) 0.007 (2) −0.0009 (18) −0.0158 (15)
C29 0.095 (2) 0.0622 (18) 0.078 (2) 0.0071 (19) 0.0216 (19) −0.0239 (16)
C30 0.069 (2) 0.0568 (16) 0.082 (2) 0.0137 (15) 0.0011 (17) −0.0151 (15)
C31 0.0581 (16) 0.0453 (12) 0.0563 (15) 0.0058 (12) −0.0049 (13) −0.0066 (11)

Geometric parameters (Å, º)

C1—N2 1.467 (3) C16—C17 1.382 (3)
C1—C9 1.496 (3) C16—H16 0.9300
C1—H1A 0.9700 C17—H17 0.9300
C1—H1B 0.9700 C18—C20 1.512 (3)
N2—C3 1.475 (3) C18—C19 1.555 (3)
N2—C18 1.475 (3) C18—H18 0.9800
C3—C11 1.531 (3) C19—O19 1.409 (3)
C3—C4 1.539 (3) C19—C26 1.508 (3)
C3—H3 0.9800 C19—H19 0.9800
C4—C10 1.507 (3) O19—HOH 0.86 (3)
C4—C12 1.515 (3) C20—C25 1.383 (3)
C4—H4 0.9800 C20—C21 1.388 (3)
C5—C6 1.380 (3) C21—C22 1.389 (4)
C5—C10 1.395 (3) C21—H21 0.9300
C5—H5 0.9300 C22—C23 1.373 (4)
C6—C7 1.372 (4) C22—H22 0.9300
C6—H6 0.9300 C23—C24 1.364 (4)
C7—C8 1.374 (4) C23—H23 0.9300
C7—H7 0.9300 C24—C25 1.375 (4)
C8—C9 1.394 (3) C24—H24 0.9300
C8—H8 0.9300 C25—H25 0.9300
C9—C10 1.393 (3) C26—C31 1.375 (3)
C11—H11A 0.9600 C26—C27 1.376 (3)
C11—H11B 0.9600 C27—C28 1.381 (4)
C11—H11C 0.9600 C27—H27 0.9300
C12—C13 1.380 (3) C28—C29 1.362 (4)
C12—C17 1.381 (3) C28—H28 0.9300
C13—C14 1.383 (4) C29—C30 1.366 (4)
C13—H13 0.9300 C29—H29 0.9300
C14—C15 1.367 (4) C30—C31 1.381 (4)
C14—H14 0.9300 C30—H30 0.9300
C15—C16 1.374 (4) C31—H31 0.9300
C15—H15 0.9300
N2—C1—C9 113.18 (17) C16—C15—H15 120.2
N2—C1—H1A 108.9 C15—C16—C17 119.9 (3)
C9—C1—H1A 108.9 C15—C16—H16 120.0
N2—C1—H1B 108.9 C17—C16—H16 120.0
C9—C1—H1B 108.9 C12—C17—C16 121.2 (2)
H1A—C1—H1B 107.8 C12—C17—H17 119.4
C1—N2—C3 110.59 (16) C16—C17—H17 119.4
C1—N2—C18 111.93 (16) N2—C18—C20 113.06 (16)
C3—N2—C18 115.13 (16) N2—C18—C19 108.02 (16)
N2—C3—C11 114.83 (18) C20—C18—C19 110.66 (17)
N2—C3—C4 107.52 (17) N2—C18—H18 108.3
C11—C3—C4 112.15 (18) C20—C18—H18 108.3
N2—C3—H3 107.3 C19—C18—H18 108.3
C11—C3—H3 107.3 O19—C19—C26 111.22 (19)
C4—C3—H3 107.3 O19—C19—C18 110.15 (17)
C10—C4—C12 113.71 (18) C26—C19—C18 112.22 (18)
C10—C4—C3 110.49 (17) O19—C19—H19 107.7
C12—C4—C3 110.99 (17) C26—C19—H19 107.7
C10—C4—H4 107.1 C18—C19—H19 107.7
C12—C4—H4 107.1 C19—O19—HOH 105 (2)
C3—C4—H4 107.1 C25—C20—C21 118.6 (2)
C6—C5—C10 121.1 (2) C25—C20—C18 119.2 (2)
C6—C5—H5 119.4 C21—C20—C18 122.1 (2)
C10—C5—H5 119.4 C20—C21—C22 119.7 (3)
C7—C6—C5 120.1 (2) C20—C21—H21 120.1
C7—C6—H6 120.0 C22—C21—H21 120.1
C5—C6—H6 120.0 C23—C22—C21 120.3 (3)
C6—C7—C8 119.6 (2) C23—C22—H22 119.9
C6—C7—H7 120.2 C21—C22—H22 119.9
C8—C7—H7 120.2 C24—C23—C22 120.4 (3)
C7—C8—C9 121.3 (2) C24—C23—H23 119.8
C7—C8—H8 119.3 C22—C23—H23 119.8
C9—C8—H8 119.3 C23—C24—C25 119.5 (3)
C10—C9—C8 119.2 (2) C23—C24—H24 120.2
C10—C9—C1 121.60 (19) C25—C24—H24 120.2
C8—C9—C1 119.2 (2) C24—C25—C20 121.4 (3)
C9—C10—C5 118.7 (2) C24—C25—H25 119.3
C9—C10—C4 120.36 (19) C20—C25—H25 119.3
C5—C10—C4 121.0 (2) C31—C26—C27 118.6 (2)
C3—C11—H11A 109.5 C31—C26—C19 119.3 (2)
C3—C11—H11B 109.5 C27—C26—C19 122.2 (2)
H11A—C11—H11B 109.5 C26—C27—C28 120.5 (3)
C3—C11—H11C 109.5 C26—C27—H27 119.8
H11A—C11—H11C 109.5 C28—C27—H27 119.8
H11B—C11—H11C 109.5 C29—C28—C27 120.4 (3)
C13—C12—C17 117.9 (2) C29—C28—H28 119.8
C13—C12—C4 119.3 (2) C27—C28—H28 119.8
C17—C12—C4 122.7 (2) C28—C29—C30 119.7 (3)
C12—C13—C14 121.1 (3) C28—C29—H29 120.2
C12—C13—H13 119.5 C30—C29—H29 120.2
C14—C13—H13 119.5 C29—C30—C31 120.2 (3)
C15—C14—C13 120.2 (3) C29—C30—H30 119.9
C15—C14—H14 119.9 C31—C30—H30 119.9
C13—C14—H14 119.9 C26—C31—C30 120.7 (3)
C14—C15—C16 119.7 (3) C26—C31—H31 119.7
C14—C15—H15 120.2 C30—C31—H31 119.7
C9—C1—N2—C3 47.4 (2) C13—C12—C17—C16 0.5 (3)
C9—C1—N2—C18 177.26 (19) C4—C12—C17—C16 −176.6 (2)
C1—N2—C3—C11 56.3 (2) C15—C16—C17—C12 −0.1 (4)
C18—N2—C3—C11 −71.7 (2) C1—N2—C18—C20 −176.66 (18)
C1—N2—C3—C4 −69.2 (2) C3—N2—C18—C20 −49.2 (2)
C18—N2—C3—C4 162.68 (16) C1—N2—C18—C19 60.5 (2)
N2—C3—C4—C10 54.4 (2) C3—N2—C18—C19 −172.04 (17)
C11—C3—C4—C10 −72.8 (2) N2—C18—C19—O19 48.5 (2)
N2—C3—C4—C12 −72.7 (2) C20—C18—C19—O19 −75.7 (2)
C11—C3—C4—C12 160.16 (19) N2—C18—C19—C26 173.03 (17)
C10—C5—C6—C7 −0.8 (4) C20—C18—C19—C26 48.8 (2)
C5—C6—C7—C8 0.8 (4) N2—C18—C20—C25 138.8 (2)
C6—C7—C8—C9 −0.6 (4) C19—C18—C20—C25 −99.9 (2)
C7—C8—C9—C10 0.4 (4) N2—C18—C20—C21 −46.1 (3)
C7—C8—C9—C1 −179.9 (2) C19—C18—C20—C21 75.2 (2)
N2—C1—C9—C10 −12.7 (3) C25—C20—C21—C22 1.0 (4)
N2—C1—C9—C8 167.7 (2) C18—C20—C21—C22 −174.2 (2)
C8—C9—C10—C5 −0.4 (3) C20—C21—C22—C23 0.2 (4)
C1—C9—C10—C5 179.9 (2) C21—C22—C23—C24 −1.4 (5)
C8—C9—C10—C4 −179.9 (2) C22—C23—C24—C25 1.3 (4)
C1—C9—C10—C4 0.4 (3) C23—C24—C25—C20 −0.1 (4)
C6—C5—C10—C9 0.6 (3) C21—C20—C25—C24 −1.1 (3)
C6—C5—C10—C4 −179.8 (2) C18—C20—C25—C24 174.2 (2)
C12—C4—C10—C9 104.1 (2) O19—C19—C26—C31 −159.3 (2)
C3—C4—C10—C9 −21.5 (3) C18—C19—C26—C31 76.8 (3)
C12—C4—C10—C5 −75.4 (2) O19—C19—C26—C27 23.1 (3)
C3—C4—C10—C5 159.02 (19) C18—C19—C26—C27 −100.8 (3)
C10—C4—C12—C13 152.5 (2) C31—C26—C27—C28 −0.9 (4)
C3—C4—C12—C13 −82.2 (2) C19—C26—C27—C28 176.8 (3)
C10—C4—C12—C17 −30.5 (3) C26—C27—C28—C29 −0.2 (5)
C3—C4—C12—C17 94.8 (2) C27—C28—C29—C30 0.9 (5)
C17—C12—C13—C14 −0.7 (4) C28—C29—C30—C31 −0.4 (5)
C4—C12—C13—C14 176.5 (2) C27—C26—C31—C30 1.4 (4)
C12—C13—C14—C15 0.5 (4) C19—C26—C31—C30 −176.4 (2)
C13—C14—C15—C16 −0.1 (4) C29—C30—C31—C26 −0.8 (4)
C14—C15—C16—C17 −0.1 (4)

Hydrogen-bond geometry (Å, º)

Cg2, Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C12-C17, C20–C25, and C26–C31 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O19—HOH···N2 0.86 (3) 2.18 (3) 2.737 (2) 123 (2)
C27—H27···O19 0.93 2.48 2.798 (3) 100
C21—H21···Cg3 0.93 3.14 3.930 (4) 144
C6—H6···O19i 0.93 2.57 3.492 (3) 170
C14—H14···Cg5ii 0.93 2.95 3.770 (4) 147
C16—H16···Cg4iii 0.93 2.92 3.743 (3) 148
C31—H31···Cg2iv 0.93 2.96 3.803 (3) 152

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2.

References

  1. Ben Ali, K., Chiaroni, A. & Bohe, L. (2007). Acta Cryst. E63, o1719–o1720.
  2. Bohé, L., Lusinchi, M. & Lusinchi, X. (1999). Tetrahedron, 55, 141–154.
  3. Davies, S. G., Fletcher, A. M., Frost, A. B., Kennedy, M. S., Roberts, P. M. & Thomson, J. E. (2016). Tetrahedron, 72, 2139–2163.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Guo, J., Zhu, M., Wu, T., Hao, C., Wang, K., Yan, Z., Huang, W., Wang, J., Zhao, D. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 3500–3511. [DOI] [PubMed]
  6. Guo, R.-N., Cai, X.-F., Shi, L., Ye, Z.-S., Chen, M.-W. & Zhou, Y.-G. (2013). Chem. Commun. 49, 8537–8539. [DOI] [PubMed]
  7. Gzella, A., Brózda, D., Koroniak, Ł. & Rozwadowska, M. D. (2002). Acta Cryst. C58, o503–o506. [DOI] [PubMed]
  8. Gzella, A., Chrzanowska, M., Dreas, A., Kaczmarek, M. S. & Woźniak, Z. (2006). Acta Cryst. E62, o1774–o1776.
  9. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  10. Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172–187. [DOI] [PubMed]
  11. Malkov, A. V., Kabeshov, M. A., Bella, M., Kysilka, O., Malyshev, D. A., Pluháčková, K. & Kočovský, P. (2007). Org. Lett. 9, 5473–5476. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Shi, L., Ye, Z.-S., Cao, L.-L., Guo, R.-N., Hu, Y. & Zhou, Y.-G. (2012). Angew. Chem. Int. Ed. 51, 8286–8289. [DOI] [PubMed]
  17. Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  19. White, J., Hulme, A. & Parsons, S. (2007). Private communication (refcode JIPKEZ). CCDC, Cambridge, England.
  20. Yendapally, R. & Lee, R. E. (2008). Bioorg. Med. Chem. Lett. 18, 1607–1611. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019011964/ff2162sup1.cif

e-75-01399-sup1.cif (783.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019011964/ff2162Isup2.hkl

e-75-01399-Isup2.hkl (352.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019011964/ff2162Isup3.cml

CCDC reference: 1950166

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES