Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 27;75(Pt 10):1531–1535. doi: 10.1107/S2056989019012908

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­oxy­phen­yl)acetamide

Abdullah Aydin a,*, Sevim Turktekin Celikesir b, Mehmet Akkurt b, Merve Saylam c, Varol Pabuccuoglu d
PMCID: PMC6775743  PMID: 31636988

In the title compound, there are two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link mol­ecules into inversion dimers with Inline graphic(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions, forming a three-dimensional network.

Keywords: crystal structure; 1,3-benzoxazole ring system; dimers; hydrogen bonding; Hirshfeld surface analysis

Abstract

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R 2 2(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.

Chemical context  

As a part of our ongoing research on synthesis and screening of pharmacological activities of compounds with a benzoxazole ring, which is known to produce a wide range of biological activities (Aggarwal et al., 2017; Gautam et al., 2012), we have focused on the synthesis of 3-substituted benzoxazolone-2-thione and S-substituted benzoxazole-2-thiol derivatives. It is well known that alkyl­ation of benzoxazolone-2-thione leads to the S-alkyl­ated derivatives instead of N-alkyl­ated ones (Xiang et al., 2012; Rakse et al., 2013; Yurttaş et al., 2015). In this manner, the title compound was synthesized as a member of the target S-substituted benzoxazole-2-thiol series. The title compound is listed in the literature with registry number CASRN 331966-95-1 but corresponding scientific reference data are not available.graphic file with name e-75-01531-scheme1.jpg

Structural commentary  

In the mol­ecular structure of the title compound (Fig. 1), the 1,3-benzoxazole ring system (N1/O1/C1–C7) is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring (C10–C15) of the meth­oxy­phenyl group. Atoms O3 and C16 deviate from the benzene ring by −0.008 (3) and 0.099 (6) Å, respectively. The torsion angle C7—S1—C8—C9 = −87.7 (3)°, S1—C8—C9— N2 = 91.6 (4)° and C8—C9—N2—C10 = −178.8 (3)°. The C7—S1 [1.740 (4) Å] and C8—S1 [1.812 (4) Å] bond lengths are comparable with those reported for three similar structures, viz. 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2-meth­yl­phen­yl)acetamide (1.763 and 1.805 Å, respectively; Subasri et al., 2014), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2,4-di­methyl­phen­yl)acetamide [1.7650 (14) and 1.8053 (16) Å, respectively; Choudhury et al., 2017] and 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(3-meth­oxy­phen­yl) acetamide [1.7721 (17) and 1.8126 (18) Å, respectively; Choudhury et al., 2017]. The two intra­molecular hydrogen bonds, N2—HN2⋯O3 and N2—HN2⋯N1, form S(5) and S(7) ring motifs, respectively (Table 1, Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C10–C15 benzene ring of the meth­oxy phenyl group.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O3 0.86 2.22 2.608 (4) 107
N2—HN2⋯N1 0.86 2.39 3.075 (4) 136
C8—H8A⋯N1 0.97 2.48 2.914 (5) 107
C11—H11⋯O2 0.93 2.28 2.869 (5) 121
C12—H12⋯O2i 0.93 2.52 3.378 (6) 153
C13—H13⋯Cg3ii 0.93 2.89 3.634 (5) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with Inline graphic(14) ring motifs, stacking along the b-axis direction. These dimers are linked by C—H⋯π (Table 1, Fig. 2) and π–π-stacking inter­actions [Fig. 2; distances of 3.631 (2) and 3.631 (2) Å between the centroids of the five- and opposite six-membered rings of the 1,3-benzoxazole ring system of adjacent mol­ecules], forming a three-dimensional network (Fig. 3).

Figure 2.

Figure 2

A packing diagram of the title compound, showing the intra- and inter­molecular N—H⋯N and N—H⋯O, C—H⋯O hydrogen bonds, C—H⋯π inter­actions and π–π-stacking inter­actions (dashed lines). Symmetry code: (a) − x, 2 − y, 1 − z.

Figure 3.

Figure 3

Packing diagram of the title compound viewed down the b axis.

Hirshfeld surface analysis  

In order to explore the role of weak inter­molecular inter­actions in the crystal packing, Hirshfeld surfaces (d norm) and the related two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Spackman & Jayatilaka, 2009; Wolff et al., 2012). The three-dimensional mol­ecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.1599 to 1.2011 a.u. for d norm (Fig. 4). The red spots in the Hirshfeld surface represent short N⋯H/H⋯N and O⋯H/H⋯O contacts. On the shape-index surface (Fig. 5), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. In addition, concave red regions represent C—H⋯π and π–π inter­actions.

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm, showing the weak inter­molecular C—H⋯O and C—H⋯C contacts.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen- bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) shown in Fig. 6. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors).

Figure 6.

Figure 6

Hirshfeld surfaces for the title compound, mapped with shape-index.

The two-dimensional fingerprint plots (Fig. 7) qu­antify the contributions of each type of inter­molecular inter­action to the Hirshfeld surface (McKinnon et al., 2007). The largest contribution (39.3% of the surface) is from H⋯H contacts (Table 2), which represent van der Waals inter­actions, followed by C⋯H/H⋯C contacts involved in C—H⋯π inter­actions (18.0%). Finally, the O⋯H/H⋯O (15.6%), S⋯H/H⋯S (10.2%) and C⋯C (4.5%) contacts correspond to hydrogen bonds and π–π inter­actions, respectively. The percentage contributions to the Hirshfeld surface of the various inter­atomic contacts are given in Table 3.

Figure 7.

Figure 7

Hirshfeld surfaces and two-dimensional fingerprints for the compound, showing (a) all inter­actions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) S⋯H/H⋯S and (f) C⋯O/O⋯C contacts.

Table 2. Summary of selected short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H5⋯O3 2.72 1 − x, 1 − y, 1 − z
S1⋯H2 3.10 x, Inline graphic − y, Inline graphic + z
C5⋯C1 3.38 1 − x, −y, 1 − z
H8B⋯C11 3.06 x, 1 − y, 1 − z
H12⋯O2 2.52 x, 2 − y, 1 − z
O2⋯H16A 2.74 x, Inline graphic − y, Inline graphic + z
C10⋯H13 3.04 x, −Inline graphic + y, Inline graphic − z
C12⋯H8A 2.82 x, 1 + y, z

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound.

Contact Percentage contribution
H⋯H 39.3
H⋯C/C⋯H 18.0
O⋯H/H⋯O 15.6
S⋯H/H⋯S 10.2
C⋯O/O⋯C 6.0
C⋯C 4.5
N⋯H/H⋯N 4.1
C⋯N/N⋯C 1.4
C⋯S/S⋯C 0.6
N⋯O/O⋯N 0.1

Database survey  

Related compounds to the title compound include 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(naphthalen-1-yl)acetamide (refcode JARPOK; Subasri et al., 2017), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(4-fluoro­phen­yl)acetamide (JAR­PUQ; Subasri et al., 2017), 2-[(4,6-di­amino­pyrimidin-2-yl)sulf­an­yl]-N-(2-methyl­phen­yl)acetamide (GOKWIO; Subasri et al., 2014), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(2,4-di­methyl­phen­yl)acetamide (JAXFIA; Choudhury et al., 2017), 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(3-meth­oxy­phen­yl) acetamide (refcode: JAXFOG; Choudhury et al., 2017) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(4-meth­oxy­phen­yl)acetamide (PAXTEP; Murtaza et al., 2012).

In the crystals of JARPOK and JARPUQ, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with Inline graphic(8) ring motifs. In the crystal of JARPOK, the dimers are linked by bifurcated N—H⋯(O,O) and C—H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of JARPUQ, the dimers are linked by N—H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C—H⋯F hydrogen bonds, forming a three-dimensional architecture.

In the crystal of GOKWIO, mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to (100).

In the crystals of JAXFIA and JAXFOG, a pair of N—H⋯N hydrogen bonds links the mol­ecules, forming inversion dimers with Inline graphic(8) ring motifs. In JAXFIA, the dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, enclosing Inline graphic(14), Inline graphic(11) and Inline graphic(7) ring motifs, forming layers parallel to the (100) plane. There is also an N—H⋯π inter­action present within the layer. In JAXFOG, the inversion dimers are linked by N—H⋯O hydrogen bonds enclosing an Inline graphic(18) ring motif. The presence of N—H⋯O and C—H⋯O hydrogen bonds generate an Inline graphic(6) ring motif. The combination of these various hydrogen bonds results in the formation of layers parallel to the (1Inline graphic1) plane.

In the crystal of PAXTEP, mol­ecules are consolidated in the form of polymeric chains along [010] as a result of N—H⋯O hydrogen bonds, which generate Inline graphic(18) and Inline graphic(22) loops. The polymeric chains are inter­linked through C—H⋯O inter­action and complete Inline graphic(8) ring motifs.

Synthesis and crystallization  

The starting materials, 2-mercaptobenzoxazole and α-chloro-N-(o-meth­oxy­phen­yl)acetamide, were synthesized according to literature methods (Maske et al., 2012; Ren et al., 2015). For the synthesis of the title compound, 2-mercaptobenzoxazole (1 eq) and α-chloro-N-(o-meth­oxy­phen­yl) acetamide (1 eq) were heated in acetone under reflux for 1.5 h in the presence of K2CO3 (1 eq). The reaction mixture was then cooled to room temperature and cold water was added until precipitation was complete. The precipitate was filtered, washed with cold water and dried. The crude product was crystallized from methanol (yield 31%); m.p. 370 K.

1H NMR (DMSO-d 6, 400 MHz) δ 3.82 (3H, s, OCH3), δ 4.42 (2H, s, CH2), δ 6.89 (1H, m, Ar-H), δ 7.03–7.10 (2H, m, Ar-H), δ 7.31–7.38 (2H, m, Ar-H), δ 7.62–7.68 (2H, m, Ar-H), δ 7.97 (1H, d, J = 8.4 Hz, Ar-H), δ 9.65 (1H, s, NH) p.p.m. IR v max cm−1: 3295 (NH), 1675 (amide I), 1534 (amide II); MS (ESI) m/z (intensity %): 315.32 (26) [M+H]+ 192.27 (100).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned with idealized geometry and refined as riding: N—H = 0.86 Å, C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C, N) for all other H atoms. Thirty one outliers (13 1 3), (Inline graphic 1 1), (8 3 12), (Inline graphic 5 15), (0 3 18), (5 0 14), (14 2 5), (Inline graphic 0 14), (Inline graphic 4 17), (14 3 1), (Inline graphic 3 5), (1 8 4), (1 4 15), (10 5 2), (Inline graphic 7 8), (Inline graphic 0 10), (14 2 1), (Inline graphic 1 1), (Inline graphic 3 12), (Inline graphic 2 7), (4 1 17), (11 0 10), (15 1 2), (3 4 14), (10 2 6), (Inline graphic 0 18), (Inline graphic 3 18), (Inline graphic 6 11), (Inline graphic 5 2), (10 1 9), (Inline graphic4 1 2) were omitted in the final cycles of refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C16H14N2O3S
M r 314.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.6670 (13), 6.8704 (6), 16.7220 (16)
β (°) 108.020 (4)
V3) 1493.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.10 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.654, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23464, 3019, 2241
R int 0.092
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.092, 0.169, 1.10
No. of reflections 3019
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.31

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264sup1.cif

e-75-01531-sup1.cif (722.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264Isup2.hkl

e-75-01531-Isup2.hkl (241.3KB, hkl)

CCDC reference: 1954699

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Scientific and Technological Research Application and Research Centre, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

supplementary crystallographic information

Crystal data

C16H14N2O3S F(000) = 656
Mr = 314.35 Dx = 1.398 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.6670 (13) Å Cell parameters from 6692 reflections
b = 6.8704 (6) Å θ = 3.2–26.3°
c = 16.7220 (16) Å µ = 0.23 mm1
β = 108.020 (4)° T = 296 K
V = 1493.1 (2) Å3 Block, colourless
Z = 4 0.10 × 0.07 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 2241 reflections with I > 2σ(I)
φ and ω scans Rint = 0.092
Absorption correction: multi-scan (SADABS; Bruker, 2007) θmax = 26.5°, θmin = 3.1°
Tmin = 0.654, Tmax = 0.745 h = −17→17
23464 measured reflections k = −8→8
3019 independent reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092 H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0406P)2 + 3.9251P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3019 reflections Δρmax = 0.25 e Å3
200 parameters Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4055 (3) 0.2452 (5) 0.4388 (2) 0.0301 (9)
C2 0.4121 (3) 0.1973 (6) 0.3599 (3) 0.0437 (11)
H2 0.353578 0.186794 0.313350 0.052*
C3 0.5089 (4) 0.1660 (7) 0.3535 (3) 0.0507 (12)
H3 0.515664 0.134545 0.301349 0.061*
C4 0.5962 (4) 0.1801 (6) 0.4223 (3) 0.0515 (13)
H4 0.660182 0.158127 0.415281 0.062*
C5 0.5910 (3) 0.2258 (6) 0.5012 (3) 0.0460 (11)
H5 0.649354 0.234724 0.547961 0.055*
C6 0.4940 (3) 0.2573 (5) 0.5059 (3) 0.0330 (9)
C7 0.3608 (3) 0.3093 (5) 0.5452 (2) 0.0304 (9)
C8 0.1670 (3) 0.3513 (7) 0.5515 (3) 0.0401 (10)
H8A 0.160668 0.258715 0.506432 0.048*
H8B 0.122257 0.308919 0.583244 0.048*
C9 0.1330 (3) 0.5503 (6) 0.5143 (2) 0.0368 (10)
C10 0.1249 (3) 0.7568 (6) 0.3915 (2) 0.0272 (8)
C11 0.0683 (3) 0.9111 (6) 0.4077 (2) 0.0364 (10)
H11 0.044048 0.906129 0.453818 0.044*
C12 0.0479 (3) 1.0720 (7) 0.3557 (3) 0.0438 (11)
H12 0.008978 1.173897 0.366520 0.053*
C13 0.0844 (3) 1.0826 (7) 0.2882 (3) 0.0443 (11)
H13 0.070946 1.191980 0.253773 0.053*
C14 0.1411 (3) 0.9312 (7) 0.2714 (2) 0.0380 (10)
H14 0.165837 0.938978 0.225560 0.046*
C15 0.1615 (3) 0.7687 (6) 0.3217 (2) 0.0290 (9)
C16 0.2621 (5) 0.6219 (9) 0.2449 (3) 0.078 (2)
H16A 0.209173 0.634567 0.191795 0.118*
H16B 0.301214 0.505956 0.244719 0.118*
H16C 0.306739 0.733112 0.253872 0.118*
N1 0.3202 (2) 0.2815 (5) 0.46627 (18) 0.0309 (7)
N2 0.1476 (2) 0.5848 (5) 0.43945 (19) 0.0302 (7)
HN2 0.173630 0.491051 0.418615 0.036*
O1 0.4653 (2) 0.3005 (4) 0.57658 (16) 0.0363 (7)
O2 0.0961 (3) 0.6653 (6) 0.55175 (19) 0.0687 (11)
O3 0.2163 (2) 0.6103 (4) 0.31065 (17) 0.0467 (8)
S1 0.29895 (9) 0.35394 (17) 0.62002 (6) 0.0420 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.036 (2) 0.0217 (18) 0.032 (2) 0.0038 (16) 0.0093 (17) 0.0053 (16)
C2 0.047 (3) 0.045 (3) 0.039 (2) 0.002 (2) 0.013 (2) 0.000 (2)
C3 0.059 (3) 0.046 (3) 0.058 (3) 0.006 (2) 0.033 (3) 0.001 (2)
C4 0.044 (3) 0.036 (2) 0.085 (4) 0.005 (2) 0.035 (3) 0.009 (2)
C5 0.032 (2) 0.035 (2) 0.066 (3) −0.0031 (19) 0.007 (2) 0.009 (2)
C6 0.038 (2) 0.0217 (19) 0.039 (2) −0.0024 (17) 0.0112 (18) 0.0046 (17)
C7 0.036 (2) 0.024 (2) 0.029 (2) 0.0016 (16) 0.0067 (17) 0.0061 (16)
C8 0.041 (2) 0.052 (3) 0.034 (2) −0.009 (2) 0.0208 (19) 0.000 (2)
C9 0.036 (2) 0.053 (3) 0.026 (2) −0.001 (2) 0.0156 (18) −0.0053 (19)
C10 0.0190 (18) 0.040 (2) 0.0195 (18) −0.0011 (16) 0.0007 (15) −0.0058 (16)
C11 0.027 (2) 0.050 (3) 0.030 (2) 0.0069 (19) 0.0060 (17) −0.0084 (19)
C12 0.035 (2) 0.049 (3) 0.040 (3) 0.017 (2) 0.002 (2) −0.010 (2)
C13 0.043 (3) 0.044 (3) 0.038 (2) 0.012 (2) 0.000 (2) 0.005 (2)
C14 0.034 (2) 0.055 (3) 0.022 (2) 0.004 (2) 0.0055 (17) 0.0048 (19)
C15 0.0247 (19) 0.040 (2) 0.0224 (18) 0.0045 (17) 0.0067 (15) −0.0009 (17)
C16 0.117 (5) 0.081 (4) 0.066 (4) 0.054 (4) 0.071 (4) 0.027 (3)
N1 0.0325 (18) 0.0342 (18) 0.0236 (17) 0.0008 (14) 0.0055 (14) −0.0010 (14)
N2 0.0334 (18) 0.0369 (18) 0.0261 (16) 0.0024 (14) 0.0177 (14) −0.0058 (14)
O1 0.0348 (16) 0.0358 (15) 0.0311 (15) −0.0026 (13) −0.0002 (12) 0.0042 (12)
O2 0.101 (3) 0.082 (3) 0.0401 (19) 0.035 (2) 0.046 (2) 0.0056 (18)
O3 0.062 (2) 0.0517 (19) 0.0380 (17) 0.0240 (16) 0.0333 (15) 0.0094 (14)
S1 0.0516 (7) 0.0517 (7) 0.0226 (5) 0.0004 (6) 0.0114 (5) 0.0050 (5)

Geometric parameters (Å, º)

C1—C6 1.375 (6) C9—O2 1.211 (5)
C1—C2 1.389 (5) C9—N2 1.348 (5)
C1—N1 1.401 (5) C10—C11 1.388 (5)
C2—C3 1.377 (6) C10—C15 1.406 (5)
C2—H2 0.9300 C10—N2 1.408 (5)
C3—C4 1.382 (7) C11—C12 1.381 (6)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.379 (7) C12—C13 1.370 (6)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.370 (6) C13—C14 1.377 (6)
C5—H5 0.9300 C13—H13 0.9300
C6—O1 1.388 (5) C14—C15 1.374 (6)
C7—N1 1.278 (5) C14—H14 0.9300
C7—O1 1.362 (5) C15—O3 1.366 (4)
C7—S1 1.740 (4) C16—O3 1.426 (5)
C8—C9 1.514 (6) C16—H16A 0.9600
C8—S1 1.812 (4) C16—H16B 0.9600
C8—H8A 0.9700 C16—H16C 0.9600
C8—H8B 0.9700 N2—HN2 0.8600
C6—C1—C2 119.4 (4) C11—C10—N2 124.6 (3)
C6—C1—N1 109.4 (3) C15—C10—N2 116.7 (3)
C2—C1—N1 131.2 (4) C12—C11—C10 120.4 (4)
C3—C2—C1 117.2 (4) C12—C11—H11 119.8
C3—C2—H2 121.4 C10—C11—H11 119.8
C1—C2—H2 121.4 C13—C12—C11 120.4 (4)
C2—C3—C4 121.8 (4) C13—C12—H12 119.8
C2—C3—H3 119.1 C11—C12—H12 119.8
C4—C3—H3 119.1 C12—C13—C14 120.0 (4)
C5—C4—C3 121.8 (4) C12—C13—H13 120.0
C5—C4—H4 119.1 C14—C13—H13 120.0
C3—C4—H4 119.1 C15—C14—C13 120.6 (4)
C6—C5—C4 115.3 (4) C15—C14—H14 119.7
C6—C5—H5 122.3 C13—C14—H14 119.7
C4—C5—H5 122.3 O3—C15—C14 125.4 (3)
C5—C6—C1 124.5 (4) O3—C15—C10 114.6 (3)
C5—C6—O1 128.0 (4) C14—C15—C10 120.0 (4)
C1—C6—O1 107.4 (3) O3—C16—H16A 109.5
N1—C7—O1 117.4 (3) O3—C16—H16B 109.5
N1—C7—S1 128.1 (3) H16A—C16—H16B 109.5
O1—C7—S1 114.5 (3) O3—C16—H16C 109.5
C9—C8—S1 111.7 (3) H16A—C16—H16C 109.5
C9—C8—H8A 109.3 H16B—C16—H16C 109.5
S1—C8—H8A 109.3 C7—N1—C1 103.1 (3)
C9—C8—H8B 109.3 C9—N2—C10 127.4 (3)
S1—C8—H8B 109.3 C9—N2—HN2 116.3
H8A—C8—H8B 107.9 C10—N2—HN2 116.3
O2—C9—N2 124.7 (4) C7—O1—C6 102.7 (3)
O2—C9—C8 120.1 (4) C15—O3—C16 116.7 (3)
N2—C9—C8 115.2 (3) C7—S1—C8 98.82 (18)
C11—C10—C15 118.7 (4)
C6—C1—C2—C3 −0.6 (6) N2—C10—C15—O3 −1.0 (5)
N1—C1—C2—C3 −178.6 (4) C11—C10—C15—C14 0.2 (5)
C1—C2—C3—C4 0.4 (7) N2—C10—C15—C14 179.1 (3)
C2—C3—C4—C5 0.1 (7) O1—C7—N1—C1 1.2 (4)
C3—C4—C5—C6 −0.5 (6) S1—C7—N1—C1 −177.6 (3)
C4—C5—C6—C1 0.3 (6) C6—C1—N1—C7 −0.9 (4)
C4—C5—C6—O1 178.3 (4) C2—C1—N1—C7 177.2 (4)
C2—C1—C6—C5 0.3 (6) O2—C9—N2—C10 0.9 (7)
N1—C1—C6—C5 178.7 (4) C8—C9—N2—C10 −178.8 (3)
C2—C1—C6—O1 −178.1 (3) C11—C10—N2—C9 −10.6 (6)
N1—C1—C6—O1 0.3 (4) C15—C10—N2—C9 170.5 (4)
S1—C8—C9—O2 −88.1 (5) N1—C7—O1—C6 −1.1 (4)
S1—C8—C9—N2 91.6 (4) S1—C7—O1—C6 177.9 (2)
C15—C10—C11—C12 0.5 (6) C5—C6—O1—C7 −177.9 (4)
N2—C10—C11—C12 −178.3 (4) C1—C6—O1—C7 0.4 (4)
C10—C11—C12—C13 −1.0 (6) C14—C15—O3—C16 4.8 (6)
C11—C12—C13—C14 0.7 (7) C10—C15—O3—C16 −175.1 (4)
C12—C13—C14—C15 0.1 (6) N1—C7—S1—C8 −0.8 (4)
C13—C14—C15—O3 179.7 (4) O1—C7—S1—C8 −179.7 (3)
C13—C14—C15—C10 −0.5 (6) C9—C8—S1—C7 −87.7 (3)
C11—C10—C15—O3 −180.0 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C10–C15 benzene ring of the methoxy phenyl group.

D—H···A D—H H···A D···A D—H···A
N2—HN2···O3 0.86 2.22 2.608 (4) 107
N2—HN2···N1 0.86 2.39 3.075 (4) 136
C8—H8A···N1 0.97 2.48 2.914 (5) 107
C11—H11···O2 0.93 2.28 2.869 (5) 121
C12—H12···O2i 0.93 2.52 3.378 (6) 153
C13—H13···Cg3ii 0.93 2.89 3.634 (5) 138

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, y+1/2, −z+1/2.

References

  1. Aggarwal, N., Kaur, A., Anand, K., Kumar, H. & Wakode, S. R. (2017). Int. J. Pharm. Sci. Res 2, 1–5.
  2. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996–1000. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gautam, M. K., Sonal-Sharma, N. K. & Priyanka-Jha, K. K. (2012). Int. J. ChemTech Res. 4, 640–650.
  6. Maske, P. P., Lokapure, S. G., Nimbalkar, D. & Disouza, J. I. (2012). Pharma Chemica, 4, 1283–1287.
  7. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  8. Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968. [DOI] [PMC free article] [PubMed]
  9. Rakse, M., Karthikeyan, C., Deora, G. S., Moorthy, N. S. H. N., Rathore, V., Rawat, A. K., Srivastava, A. K. & Trivedi, P. (2013). Eur. J. Med. Chem. 70, 469–476. [DOI] [PubMed]
  10. Ren, J. L., Zhang, X. Y., Yu, B., Wang, X. X., Shao, K. P., Zhu, X. G. & Liu, H. M. (2015). Eur. J. Med. Chem. 93, 321–329. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  14. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850. [DOI] [PMC free article] [PubMed]
  17. Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306–309. [DOI] [PMC free article] [PubMed]
  18. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.
  19. Xiang, P., Zhou, T., Wang, L., Sun, C.-Y., Hu, J., Zhao, Y.-L. & Yang, L. (2012). Molecules, 17, 873–883. [DOI] [PMC free article] [PubMed]
  20. Yurttaş, L., Tay, F. & Demirayak, S. (2015). J. Enzyme Inhib. Med. Chem. 30, 458–465. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264sup1.cif

e-75-01531-sup1.cif (722.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264Isup2.hkl

e-75-01531-Isup2.hkl (241.3KB, hkl)

CCDC reference: 1954699

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES