In the title compound, there are two intramolecular N—H⋯O and N—H⋯N hydrogen bonds, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link molecules into inversion dimers with
(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking interactions, forming a three-dimensional network.
Keywords: crystal structure; 1,3-benzoxazole ring system; dimers; hydrogen bonding; Hirshfeld surface analysis
Abstract
In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the methoxyphenyl group. Two intramolecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the molecules into inversion dimers with R 2 2(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking interactions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) interactions.
Chemical context
As a part of our ongoing research on synthesis and screening of pharmacological activities of compounds with a benzoxazole ring, which is known to produce a wide range of biological activities (Aggarwal et al., 2017 ▸; Gautam et al., 2012 ▸), we have focused on the synthesis of 3-substituted benzoxazolone-2-thione and S-substituted benzoxazole-2-thiol derivatives. It is well known that alkylation of benzoxazolone-2-thione leads to the S-alkylated derivatives instead of N-alkylated ones (Xiang et al., 2012 ▸; Rakse et al., 2013 ▸; Yurttaş et al., 2015 ▸). In this manner, the title compound was synthesized as a member of the target S-substituted benzoxazole-2-thiol series. The title compound is listed in the literature with registry number CASRN 331966-95-1 but corresponding scientific reference data are not available.
Structural commentary
In the molecular structure of the title compound (Fig. 1 ▸), the 1,3-benzoxazole ring system (N1/O1/C1–C7) is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring (C10–C15) of the methoxyphenyl group. Atoms O3 and C16 deviate from the benzene ring by −0.008 (3) and 0.099 (6) Å, respectively. The torsion angle C7—S1—C8—C9 = −87.7 (3)°, S1—C8—C9— N2 = 91.6 (4)° and C8—C9—N2—C10 = −178.8 (3)°. The C7—S1 [1.740 (4) Å] and C8—S1 [1.812 (4) Å] bond lengths are comparable with those reported for three similar structures, viz. 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(2-methylphenyl)acetamide (1.763 and 1.805 Å, respectively; Subasri et al., 2014 ▸), 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(2,4-dimethylphenyl)acetamide [1.7650 (14) and 1.8053 (16) Å, respectively; Choudhury et al., 2017 ▸] and 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(3-methoxyphenyl) acetamide [1.7721 (17) and 1.8126 (18) Å, respectively; Choudhury et al., 2017 ▸]. The two intramolecular hydrogen bonds, N2—HN2⋯O3 and N2—HN2⋯N1, form S(5) and S(7) ring motifs, respectively (Table 1 ▸, Fig. 1 ▸).
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
Table 1. Hydrogen-bond geometry (Å, °).
Cg3 is the centroid of the C10–C15 benzene ring of the methoxy phenyl group.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—HN2⋯O3 | 0.86 | 2.22 | 2.608 (4) | 107 |
| N2—HN2⋯N1 | 0.86 | 2.39 | 3.075 (4) | 136 |
| C8—H8A⋯N1 | 0.97 | 2.48 | 2.914 (5) | 107 |
| C11—H11⋯O2 | 0.93 | 2.28 | 2.869 (5) | 121 |
| C12—H12⋯O2i | 0.93 | 2.52 | 3.378 (6) | 153 |
| C13—H13⋯Cg3ii | 0.93 | 2.89 | 3.634 (5) | 138 |
Symmetry codes: (i)
; (ii)
.
Supramolecular features
In the crystal, pairs of C—H⋯O hydrogen bonds link the molecules into inversion dimers with
(14) ring motifs, stacking along the b-axis direction. These dimers are linked by C—H⋯π (Table 1 ▸, Fig. 2 ▸) and π–π-stacking interactions [Fig. 2 ▸; distances of 3.631 (2) and 3.631 (2) Å between the centroids of the five- and opposite six-membered rings of the 1,3-benzoxazole ring system of adjacent molecules], forming a three-dimensional network (Fig. 3 ▸).
Figure 2.
A packing diagram of the title compound, showing the intra- and intermolecular N—H⋯N and N—H⋯O, C—H⋯O hydrogen bonds, C—H⋯π interactions and π–π-stacking interactions (dashed lines). Symmetry code: (a) − x, 2 − y, 1 − z.
Figure 3.
Packing diagram of the title compound viewed down the b axis.
Hirshfeld surface analysis
In order to explore the role of weak intermolecular interactions in the crystal packing, Hirshfeld surfaces (d norm) and the related two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Spackman & Jayatilaka, 2009 ▸; Wolff et al., 2012 ▸). The three-dimensional molecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.1599 to 1.2011 a.u. for d norm (Fig. 4 ▸). The red spots in the Hirshfeld surface represent short N⋯H/H⋯N and O⋯H/H⋯O contacts. On the shape-index surface (Fig. 5 ▸), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. In addition, concave red regions represent C—H⋯π and π–π interactions.
Figure 4.
Hirshfeld surface mapped over d norm, showing the weak intermolecular C—H⋯O and C—H⋯C contacts.
Figure 5.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen- bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008 ▸) shown in Fig. 6 ▸. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors).
Figure 6.
Hirshfeld surfaces for the title compound, mapped with shape-index.
The two-dimensional fingerprint plots (Fig. 7 ▸) quantify the contributions of each type of intermolecular interaction to the Hirshfeld surface (McKinnon et al., 2007 ▸). The largest contribution (39.3% of the surface) is from H⋯H contacts (Table 2 ▸), which represent van der Waals interactions, followed by C⋯H/H⋯C contacts involved in C—H⋯π interactions (18.0%). Finally, the O⋯H/H⋯O (15.6%), S⋯H/H⋯S (10.2%) and C⋯C (4.5%) contacts correspond to hydrogen bonds and π–π interactions, respectively. The percentage contributions to the Hirshfeld surface of the various interatomic contacts are given in Table 3 ▸.
Figure 7.
Hirshfeld surfaces and two-dimensional fingerprints for the compound, showing (a) all interactions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) S⋯H/H⋯S and (f) C⋯O/O⋯C contacts.
Table 2. Summary of selected short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| H5⋯O3 | 2.72 | 1 − x, 1 − y, 1 − z |
| S1⋯H2 | 3.10 |
x, − y, + z
|
| C5⋯C1 | 3.38 | 1 − x, −y, 1 − z |
| H8B⋯C11 | 3.06 | −x, 1 − y, 1 − z |
| H12⋯O2 | 2.52 | −x, 2 − y, 1 − z |
| O2⋯H16A | 2.74 |
x, − y, + z
|
| C10⋯H13 | 3.04 | −x, − + y, − z
|
| C12⋯H8A | 2.82 | x, 1 + y, z |
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 39.3 |
| H⋯C/C⋯H | 18.0 |
| O⋯H/H⋯O | 15.6 |
| S⋯H/H⋯S | 10.2 |
| C⋯O/O⋯C | 6.0 |
| C⋯C | 4.5 |
| N⋯H/H⋯N | 4.1 |
| C⋯N/N⋯C | 1.4 |
| C⋯S/S⋯C | 0.6 |
| N⋯O/O⋯N | 0.1 |
Database survey
Related compounds to the title compound include 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(naphthalen-1-yl)acetamide (refcode JARPOK; Subasri et al., 2017 ▸), 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluorophenyl)acetamide (JARPUQ; Subasri et al., 2017 ▸), 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(2-methylphenyl)acetamide (GOKWIO; Subasri et al., 2014 ▸), 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(2,4-dimethylphenyl)acetamide (JAXFIA; Choudhury et al., 2017 ▸), 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(3-methoxyphenyl) acetamide (refcode: JAXFOG; Choudhury et al., 2017 ▸) and 2-[(2-aminophenyl)sulfanyl]-N-(4-methoxyphenyl)acetamide (PAXTEP; Murtaza et al., 2012 ▸).
In the crystals of JARPOK and JARPUQ, molecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with
(8) ring motifs. In the crystal of JARPOK, the dimers are linked by bifurcated N—H⋯(O,O) and C—H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of JARPUQ, the dimers are linked by N—H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C—H⋯F hydrogen bonds, forming a three-dimensional architecture.
In the crystal of GOKWIO, molecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an
(8) ring motif. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to (100).
In the crystals of JAXFIA and JAXFOG, a pair of N—H⋯N hydrogen bonds links the molecules, forming inversion dimers with
(8) ring motifs. In JAXFIA, the dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, enclosing
(14),
(11) and
(7) ring motifs, forming layers parallel to the (100) plane. There is also an N—H⋯π interaction present within the layer. In JAXFOG, the inversion dimers are linked by N—H⋯O hydrogen bonds enclosing an
(18) ring motif. The presence of N—H⋯O and C—H⋯O hydrogen bonds generate an
(6) ring motif. The combination of these various hydrogen bonds results in the formation of layers parallel to the (1
1) plane.
In the crystal of PAXTEP, molecules are consolidated in the form of polymeric chains along [010] as a result of N—H⋯O hydrogen bonds, which generate
(18) and
(22) loops. The polymeric chains are interlinked through C—H⋯O interaction and complete
(8) ring motifs.
Synthesis and crystallization
The starting materials, 2-mercaptobenzoxazole and α-chloro-N-(o-methoxyphenyl)acetamide, were synthesized according to literature methods (Maske et al., 2012 ▸; Ren et al., 2015 ▸). For the synthesis of the title compound, 2-mercaptobenzoxazole (1 eq) and α-chloro-N-(o-methoxyphenyl) acetamide (1 eq) were heated in acetone under reflux for 1.5 h in the presence of K2CO3 (1 eq). The reaction mixture was then cooled to room temperature and cold water was added until precipitation was complete. The precipitate was filtered, washed with cold water and dried. The crude product was crystallized from methanol (yield 31%); m.p. 370 K.
1H NMR (DMSO-d 6, 400 MHz) δ 3.82 (3H, s, OCH3), δ 4.42 (2H, s, CH2), δ 6.89 (1H, m, Ar-H), δ 7.03–7.10 (2H, m, Ar-H), δ 7.31–7.38 (2H, m, Ar-H), δ 7.62–7.68 (2H, m, Ar-H), δ 7.97 (1H, d, J = 8.4 Hz, Ar-H), δ 9.65 (1H, s, NH) p.p.m. IR v max cm−1: 3295 (NH), 1675 (amide I), 1534 (amide II); MS (ESI) m/z (intensity %): 315.32 (26) [M+H]+ 192.27 (100).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All H atoms were positioned with idealized geometry and refined as riding: N—H = 0.86 Å, C—H = 0.93–0.97 Å with U
iso(H) = 1.5U
eq(C) for methyl H atoms and U
iso(H) = 1.2U
eq(C, N) for all other H atoms. Thirty one outliers (13 1 3), (
1 1), (8 3 12), (
5 15), (0 3 18), (5 0 14), (14 2 5), (
0 14), (
4 17), (14 3 1), (
3 5), (1 8 4), (1 4 15), (10 5 2), (
7 8), (
0 10), (14 2 1), (
1 1), (
3 12), (
2 7), (4 1 17), (11 0 10), (15 1 2), (3 4 14), (10 2 6), (
0 18), (
3 18), (
6 11), (
5 2), (10 1 9), (
4 1 2) were omitted in the final cycles of refinement.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C16H14N2O3S |
| M r | 314.35 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 13.6670 (13), 6.8704 (6), 16.7220 (16) |
| β (°) | 108.020 (4) |
| V (Å3) | 1493.1 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.23 |
| Crystal size (mm) | 0.10 × 0.07 × 0.06 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2007 ▸) |
| T min, T max | 0.654, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 23464, 3019, 2241 |
| R int | 0.092 |
| (sin θ/λ)max (Å−1) | 0.627 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.092, 0.169, 1.10 |
| No. of reflections | 3019 |
| No. of parameters | 200 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.25, −0.31 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264Isup2.hkl
CCDC reference: 1954699
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge the Scientific and Technological Research Application and Research Centre, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.
supplementary crystallographic information
Crystal data
| C16H14N2O3S | F(000) = 656 |
| Mr = 314.35 | Dx = 1.398 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 13.6670 (13) Å | Cell parameters from 6692 reflections |
| b = 6.8704 (6) Å | θ = 3.2–26.3° |
| c = 16.7220 (16) Å | µ = 0.23 mm−1 |
| β = 108.020 (4)° | T = 296 K |
| V = 1493.1 (2) Å3 | Block, colourless |
| Z = 4 | 0.10 × 0.07 × 0.06 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2241 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.092 |
| Absorption correction: multi-scan (SADABS; Bruker, 2007) | θmax = 26.5°, θmin = 3.1° |
| Tmin = 0.654, Tmax = 0.745 | h = −17→17 |
| 23464 measured reflections | k = −8→8 |
| 3019 independent reflections | l = −20→20 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.092 | H-atom parameters constrained |
| wR(F2) = 0.169 | w = 1/[σ2(Fo2) + (0.0406P)2 + 3.9251P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.10 | (Δ/σ)max < 0.001 |
| 3019 reflections | Δρmax = 0.25 e Å−3 |
| 200 parameters | Δρmin = −0.31 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.4055 (3) | 0.2452 (5) | 0.4388 (2) | 0.0301 (9) | |
| C2 | 0.4121 (3) | 0.1973 (6) | 0.3599 (3) | 0.0437 (11) | |
| H2 | 0.353578 | 0.186794 | 0.313350 | 0.052* | |
| C3 | 0.5089 (4) | 0.1660 (7) | 0.3535 (3) | 0.0507 (12) | |
| H3 | 0.515664 | 0.134545 | 0.301349 | 0.061* | |
| C4 | 0.5962 (4) | 0.1801 (6) | 0.4223 (3) | 0.0515 (13) | |
| H4 | 0.660182 | 0.158127 | 0.415281 | 0.062* | |
| C5 | 0.5910 (3) | 0.2258 (6) | 0.5012 (3) | 0.0460 (11) | |
| H5 | 0.649354 | 0.234724 | 0.547961 | 0.055* | |
| C6 | 0.4940 (3) | 0.2573 (5) | 0.5059 (3) | 0.0330 (9) | |
| C7 | 0.3608 (3) | 0.3093 (5) | 0.5452 (2) | 0.0304 (9) | |
| C8 | 0.1670 (3) | 0.3513 (7) | 0.5515 (3) | 0.0401 (10) | |
| H8A | 0.160668 | 0.258715 | 0.506432 | 0.048* | |
| H8B | 0.122257 | 0.308919 | 0.583244 | 0.048* | |
| C9 | 0.1330 (3) | 0.5503 (6) | 0.5143 (2) | 0.0368 (10) | |
| C10 | 0.1249 (3) | 0.7568 (6) | 0.3915 (2) | 0.0272 (8) | |
| C11 | 0.0683 (3) | 0.9111 (6) | 0.4077 (2) | 0.0364 (10) | |
| H11 | 0.044048 | 0.906129 | 0.453818 | 0.044* | |
| C12 | 0.0479 (3) | 1.0720 (7) | 0.3557 (3) | 0.0438 (11) | |
| H12 | 0.008978 | 1.173897 | 0.366520 | 0.053* | |
| C13 | 0.0844 (3) | 1.0826 (7) | 0.2882 (3) | 0.0443 (11) | |
| H13 | 0.070946 | 1.191980 | 0.253773 | 0.053* | |
| C14 | 0.1411 (3) | 0.9312 (7) | 0.2714 (2) | 0.0380 (10) | |
| H14 | 0.165837 | 0.938978 | 0.225560 | 0.046* | |
| C15 | 0.1615 (3) | 0.7687 (6) | 0.3217 (2) | 0.0290 (9) | |
| C16 | 0.2621 (5) | 0.6219 (9) | 0.2449 (3) | 0.078 (2) | |
| H16A | 0.209173 | 0.634567 | 0.191795 | 0.118* | |
| H16B | 0.301214 | 0.505956 | 0.244719 | 0.118* | |
| H16C | 0.306739 | 0.733112 | 0.253872 | 0.118* | |
| N1 | 0.3202 (2) | 0.2815 (5) | 0.46627 (18) | 0.0309 (7) | |
| N2 | 0.1476 (2) | 0.5848 (5) | 0.43945 (19) | 0.0302 (7) | |
| HN2 | 0.173630 | 0.491051 | 0.418615 | 0.036* | |
| O1 | 0.4653 (2) | 0.3005 (4) | 0.57658 (16) | 0.0363 (7) | |
| O2 | 0.0961 (3) | 0.6653 (6) | 0.55175 (19) | 0.0687 (11) | |
| O3 | 0.2163 (2) | 0.6103 (4) | 0.31065 (17) | 0.0467 (8) | |
| S1 | 0.29895 (9) | 0.35394 (17) | 0.62002 (6) | 0.0420 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.036 (2) | 0.0217 (18) | 0.032 (2) | 0.0038 (16) | 0.0093 (17) | 0.0053 (16) |
| C2 | 0.047 (3) | 0.045 (3) | 0.039 (2) | 0.002 (2) | 0.013 (2) | 0.000 (2) |
| C3 | 0.059 (3) | 0.046 (3) | 0.058 (3) | 0.006 (2) | 0.033 (3) | 0.001 (2) |
| C4 | 0.044 (3) | 0.036 (2) | 0.085 (4) | 0.005 (2) | 0.035 (3) | 0.009 (2) |
| C5 | 0.032 (2) | 0.035 (2) | 0.066 (3) | −0.0031 (19) | 0.007 (2) | 0.009 (2) |
| C6 | 0.038 (2) | 0.0217 (19) | 0.039 (2) | −0.0024 (17) | 0.0112 (18) | 0.0046 (17) |
| C7 | 0.036 (2) | 0.024 (2) | 0.029 (2) | 0.0016 (16) | 0.0067 (17) | 0.0061 (16) |
| C8 | 0.041 (2) | 0.052 (3) | 0.034 (2) | −0.009 (2) | 0.0208 (19) | 0.000 (2) |
| C9 | 0.036 (2) | 0.053 (3) | 0.026 (2) | −0.001 (2) | 0.0156 (18) | −0.0053 (19) |
| C10 | 0.0190 (18) | 0.040 (2) | 0.0195 (18) | −0.0011 (16) | 0.0007 (15) | −0.0058 (16) |
| C11 | 0.027 (2) | 0.050 (3) | 0.030 (2) | 0.0069 (19) | 0.0060 (17) | −0.0084 (19) |
| C12 | 0.035 (2) | 0.049 (3) | 0.040 (3) | 0.017 (2) | 0.002 (2) | −0.010 (2) |
| C13 | 0.043 (3) | 0.044 (3) | 0.038 (2) | 0.012 (2) | 0.000 (2) | 0.005 (2) |
| C14 | 0.034 (2) | 0.055 (3) | 0.022 (2) | 0.004 (2) | 0.0055 (17) | 0.0048 (19) |
| C15 | 0.0247 (19) | 0.040 (2) | 0.0224 (18) | 0.0045 (17) | 0.0067 (15) | −0.0009 (17) |
| C16 | 0.117 (5) | 0.081 (4) | 0.066 (4) | 0.054 (4) | 0.071 (4) | 0.027 (3) |
| N1 | 0.0325 (18) | 0.0342 (18) | 0.0236 (17) | 0.0008 (14) | 0.0055 (14) | −0.0010 (14) |
| N2 | 0.0334 (18) | 0.0369 (18) | 0.0261 (16) | 0.0024 (14) | 0.0177 (14) | −0.0058 (14) |
| O1 | 0.0348 (16) | 0.0358 (15) | 0.0311 (15) | −0.0026 (13) | −0.0002 (12) | 0.0042 (12) |
| O2 | 0.101 (3) | 0.082 (3) | 0.0401 (19) | 0.035 (2) | 0.046 (2) | 0.0056 (18) |
| O3 | 0.062 (2) | 0.0517 (19) | 0.0380 (17) | 0.0240 (16) | 0.0333 (15) | 0.0094 (14) |
| S1 | 0.0516 (7) | 0.0517 (7) | 0.0226 (5) | 0.0004 (6) | 0.0114 (5) | 0.0050 (5) |
Geometric parameters (Å, º)
| C1—C6 | 1.375 (6) | C9—O2 | 1.211 (5) |
| C1—C2 | 1.389 (5) | C9—N2 | 1.348 (5) |
| C1—N1 | 1.401 (5) | C10—C11 | 1.388 (5) |
| C2—C3 | 1.377 (6) | C10—C15 | 1.406 (5) |
| C2—H2 | 0.9300 | C10—N2 | 1.408 (5) |
| C3—C4 | 1.382 (7) | C11—C12 | 1.381 (6) |
| C3—H3 | 0.9300 | C11—H11 | 0.9300 |
| C4—C5 | 1.379 (7) | C12—C13 | 1.370 (6) |
| C4—H4 | 0.9300 | C12—H12 | 0.9300 |
| C5—C6 | 1.370 (6) | C13—C14 | 1.377 (6) |
| C5—H5 | 0.9300 | C13—H13 | 0.9300 |
| C6—O1 | 1.388 (5) | C14—C15 | 1.374 (6) |
| C7—N1 | 1.278 (5) | C14—H14 | 0.9300 |
| C7—O1 | 1.362 (5) | C15—O3 | 1.366 (4) |
| C7—S1 | 1.740 (4) | C16—O3 | 1.426 (5) |
| C8—C9 | 1.514 (6) | C16—H16A | 0.9600 |
| C8—S1 | 1.812 (4) | C16—H16B | 0.9600 |
| C8—H8A | 0.9700 | C16—H16C | 0.9600 |
| C8—H8B | 0.9700 | N2—HN2 | 0.8600 |
| C6—C1—C2 | 119.4 (4) | C11—C10—N2 | 124.6 (3) |
| C6—C1—N1 | 109.4 (3) | C15—C10—N2 | 116.7 (3) |
| C2—C1—N1 | 131.2 (4) | C12—C11—C10 | 120.4 (4) |
| C3—C2—C1 | 117.2 (4) | C12—C11—H11 | 119.8 |
| C3—C2—H2 | 121.4 | C10—C11—H11 | 119.8 |
| C1—C2—H2 | 121.4 | C13—C12—C11 | 120.4 (4) |
| C2—C3—C4 | 121.8 (4) | C13—C12—H12 | 119.8 |
| C2—C3—H3 | 119.1 | C11—C12—H12 | 119.8 |
| C4—C3—H3 | 119.1 | C12—C13—C14 | 120.0 (4) |
| C5—C4—C3 | 121.8 (4) | C12—C13—H13 | 120.0 |
| C5—C4—H4 | 119.1 | C14—C13—H13 | 120.0 |
| C3—C4—H4 | 119.1 | C15—C14—C13 | 120.6 (4) |
| C6—C5—C4 | 115.3 (4) | C15—C14—H14 | 119.7 |
| C6—C5—H5 | 122.3 | C13—C14—H14 | 119.7 |
| C4—C5—H5 | 122.3 | O3—C15—C14 | 125.4 (3) |
| C5—C6—C1 | 124.5 (4) | O3—C15—C10 | 114.6 (3) |
| C5—C6—O1 | 128.0 (4) | C14—C15—C10 | 120.0 (4) |
| C1—C6—O1 | 107.4 (3) | O3—C16—H16A | 109.5 |
| N1—C7—O1 | 117.4 (3) | O3—C16—H16B | 109.5 |
| N1—C7—S1 | 128.1 (3) | H16A—C16—H16B | 109.5 |
| O1—C7—S1 | 114.5 (3) | O3—C16—H16C | 109.5 |
| C9—C8—S1 | 111.7 (3) | H16A—C16—H16C | 109.5 |
| C9—C8—H8A | 109.3 | H16B—C16—H16C | 109.5 |
| S1—C8—H8A | 109.3 | C7—N1—C1 | 103.1 (3) |
| C9—C8—H8B | 109.3 | C9—N2—C10 | 127.4 (3) |
| S1—C8—H8B | 109.3 | C9—N2—HN2 | 116.3 |
| H8A—C8—H8B | 107.9 | C10—N2—HN2 | 116.3 |
| O2—C9—N2 | 124.7 (4) | C7—O1—C6 | 102.7 (3) |
| O2—C9—C8 | 120.1 (4) | C15—O3—C16 | 116.7 (3) |
| N2—C9—C8 | 115.2 (3) | C7—S1—C8 | 98.82 (18) |
| C11—C10—C15 | 118.7 (4) | ||
| C6—C1—C2—C3 | −0.6 (6) | N2—C10—C15—O3 | −1.0 (5) |
| N1—C1—C2—C3 | −178.6 (4) | C11—C10—C15—C14 | 0.2 (5) |
| C1—C2—C3—C4 | 0.4 (7) | N2—C10—C15—C14 | 179.1 (3) |
| C2—C3—C4—C5 | 0.1 (7) | O1—C7—N1—C1 | 1.2 (4) |
| C3—C4—C5—C6 | −0.5 (6) | S1—C7—N1—C1 | −177.6 (3) |
| C4—C5—C6—C1 | 0.3 (6) | C6—C1—N1—C7 | −0.9 (4) |
| C4—C5—C6—O1 | 178.3 (4) | C2—C1—N1—C7 | 177.2 (4) |
| C2—C1—C6—C5 | 0.3 (6) | O2—C9—N2—C10 | 0.9 (7) |
| N1—C1—C6—C5 | 178.7 (4) | C8—C9—N2—C10 | −178.8 (3) |
| C2—C1—C6—O1 | −178.1 (3) | C11—C10—N2—C9 | −10.6 (6) |
| N1—C1—C6—O1 | 0.3 (4) | C15—C10—N2—C9 | 170.5 (4) |
| S1—C8—C9—O2 | −88.1 (5) | N1—C7—O1—C6 | −1.1 (4) |
| S1—C8—C9—N2 | 91.6 (4) | S1—C7—O1—C6 | 177.9 (2) |
| C15—C10—C11—C12 | 0.5 (6) | C5—C6—O1—C7 | −177.9 (4) |
| N2—C10—C11—C12 | −178.3 (4) | C1—C6—O1—C7 | 0.4 (4) |
| C10—C11—C12—C13 | −1.0 (6) | C14—C15—O3—C16 | 4.8 (6) |
| C11—C12—C13—C14 | 0.7 (7) | C10—C15—O3—C16 | −175.1 (4) |
| C12—C13—C14—C15 | 0.1 (6) | N1—C7—S1—C8 | −0.8 (4) |
| C13—C14—C15—O3 | 179.7 (4) | O1—C7—S1—C8 | −179.7 (3) |
| C13—C14—C15—C10 | −0.5 (6) | C9—C8—S1—C7 | −87.7 (3) |
| C11—C10—C15—O3 | −180.0 (3) |
Hydrogen-bond geometry (Å, º)
Cg3 is the centroid of the C10–C15 benzene ring of the methoxy phenyl group.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—HN2···O3 | 0.86 | 2.22 | 2.608 (4) | 107 |
| N2—HN2···N1 | 0.86 | 2.39 | 3.075 (4) | 136 |
| C8—H8A···N1 | 0.97 | 2.48 | 2.914 (5) | 107 |
| C11—H11···O2 | 0.93 | 2.28 | 2.869 (5) | 121 |
| C12—H12···O2i | 0.93 | 2.52 | 3.378 (6) | 153 |
| C13—H13···Cg3ii | 0.93 | 2.89 | 3.634 (5) | 138 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, y+1/2, −z+1/2.
References
- Aggarwal, N., Kaur, A., Anand, K., Kumar, H. & Wakode, S. R. (2017). Int. J. Pharm. Sci. Res 2, 1–5.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996–1000. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gautam, M. K., Sonal-Sharma, N. K. & Priyanka-Jha, K. K. (2012). Int. J. ChemTech Res. 4, 640–650.
- Maske, P. P., Lokapure, S. G., Nimbalkar, D. & Disouza, J. I. (2012). Pharma Chemica, 4, 1283–1287.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
- Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968. [DOI] [PMC free article] [PubMed]
- Rakse, M., Karthikeyan, C., Deora, G. S., Moorthy, N. S. H. N., Rathore, V., Rawat, A. K., Srivastava, A. K. & Trivedi, P. (2013). Eur. J. Med. Chem. 70, 469–476. [DOI] [PubMed]
- Ren, J. L., Zhang, X. Y., Yu, B., Wang, X. X., Shao, K. P., Zhu, X. G. & Liu, H. M. (2015). Eur. J. Med. Chem. 93, 321–329. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850. [DOI] [PMC free article] [PubMed]
- Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306–309. [DOI] [PMC free article] [PubMed]
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.
- Xiang, P., Zhou, T., Wang, L., Sun, C.-Y., Hu, J., Zhao, Y.-L. & Yang, L. (2012). Molecules, 17, 873–883. [DOI] [PMC free article] [PubMed]
- Yurttaş, L., Tay, F. & Demirayak, S. (2015). J. Enzyme Inhib. Med. Chem. 30, 458–465. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012908/rz5264Isup2.hkl
CCDC reference: 1954699
Additional supporting information: crystallographic information; 3D view; checkCIF report









