Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 10;75(Pt 10):1429–1431. doi: 10.1107/S2056989019012374

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

Koji Kubono a, Taisuke Matsumoto b, Masatsugu Taneda c,*
PMCID: PMC6775744  PMID: 31636970

In the title compound, C27H29BrN2, an intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, two mol­ecules are associated into an inversion dimer via a pair of C—H⋯π inter­actions. The dimers are linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction.

Keywords: crystal structure, carbazole, Schiff base, intra­molecular hydrogen bond, C—H⋯π inter­action

Abstract

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).

Chemical context  

Carbazole derivatives have been widely applied in various fields such as pharmaceuticals (Obora, 2018), electroluminescent materials (Krucaite & Grigalevicius, 2019; Taneda, et al., 2015) and dyes (Zhao et al., 2019). As a result of the high acidity of the N—H bond, 9H-carbazoles have also attracted much attention as hydrogen donors in hydrogen-bonding systems (Rubio et al., 2015; Wiosna-Sałyga et al., 2006). Substitution of the 1 position of 9H-carbazole with a hydrogen acceptor can afford an intra­molecular hydrogen-bonding system in the mol­ecules. In this work, a Schiff base including carbazole, N-(3,6-di-tert-butyl-9H-calbazol-1-yl­methyl­idene)-4-bromo­aniline, is newly synthesized. 3,6-Di-tert-butyl-9H-carbazole is useful in order to substitute the 1-position of the 9H-carbazole moiety because the substitution reaction would only occur at its 1- and 8-positions. Thus, the title compound has two tert-butyl groups on the carbazole moiety. The title compound is a suitable model to investigate an intra­molecular hydrogen bond between the heteroaromatic N—H and the N atom of the imino group. We report herein on its mol­ecular and crystal structures.graphic file with name e-75-01429-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The mol­ecule adopts an E configuration with respect to the C=N double bond. The carbazole ring is almost planar with a maximum deviation of 0.0781 (16) Å at atom C8. There is an intra­molecular N—H⋯N hydrogen bond involving the amino group (N3—H3) in the carbazole ring and an imine N atom (N2), generating an S(6) ring motif (Table 1). The dihedral angle between the mean planes of the carbazole ring system and the benzene C25–C30 ring is 42.72 (7)°. The bond lengths and angles of the title compound are normal and agree with those values in other carbazole imine compounds (Gibson et al., 2003; Nolla-Saltiel et al., 2018). One of the tert-butyl substituents shows rotational disorder around the C13—C20 bond axis over two sites with occupancies of 0.592 (3) and 0.408 (3).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. Only the major disordered component is shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular N—H⋯N hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C25–C30, C4–C9 and N3/C4/C5/C11/C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.76 (2) 2.39 (2) 2.862 (2) 121.3 (16)
C22A—H22CCg1i 0.96 2.92 3.878 (4) 177
C29—H29⋯Cg2ii 0.93 2.95 3.613 (2) 129
C21B—H21ECg1i 0.96 2.62 3.391 (5) 138
C22B—H22DCg3iii 0.96 2.92 3.839 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, two mol­ecules are associated through a pair of C—H⋯π inter­actions (C22A—H22CCg1i in the major disorder component or C21B—H21ECg1i in the minor disorder component; Cg1 is the centroid of the C25–C30 ring; symmetry code as in Table 1), forming a centrosymmetric dimer. The dimers are linked by another pair of C—H⋯π inter­actions (C29—H29⋯Cg2ii; Cg2 is the centroid of the C4–C9 ring; symmetry code as in Table 1), forming a ribbon along the c-axis direction (Fig. 2). These ribbons are linked via a C—H⋯π inter­action involving the minor disorder component (C22B—H22DCg3iii; Cg3 is the centroid of the N3/C4/C5/C11/C10 ring; symmetry code as in Table 1) into a network sheet parallel to (100) (Fig. 3).

Figure 2.

Figure 2

A packing diagram of the title compound, showing the ribbon structure. The N—H⋯N hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions and the minor disorder component have been omitted for clarity.

Figure 3.

Figure 3

A packing diagram of the title compound viewed along the a axis, showing a sheet structure. The minor disorder component is shown with bold dashed lines. The N—H⋯N hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in the inter­actions and the major disorder component have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40; February 2019; Groom et al., 2016) gave 56 and 5 hits, respectively, for the 3,6-di-tert-butyl-9H-carbazole and 9H-carbazol-1-yl­methyl­idene fragments. Of these structures, the compounds that resemble the title compound are (3,6-di-tert-butyl-9H-carbazole-1,8-di­yl)bis­[N-(naphthalen-1-yl)methanimine] (Nolla-Saltiel et al., 2018) and 1,8-bis­[(2,4,6-tri­methyl­phen­yl)imino­meth­yl]-3,6-dimethyl-9H-carbazole (Gibson et al., 2003).

Synthesis and crystallization  

3,6-Di-tert-butyl-9H-carbazole-1-carbaldehyde (154 mg, 0.50 mmol) and 4-bromo­aniline (86 mg, 0.50 mmol) were treated in xylene (10 ml) at 423 K under inert gas overnight, followed by evaporation. The recrystallization of the residue from a solvent mixture of acetone and methanol (1:1, v:v) afforded single crystals of the title compound suitable for X-ray structure analysis (97 mg, 0.21 mmol; yield 42%). 1H NMR (CDCl3, 400 MHz) δ = 1.47 [s, 9H, C(CH3)3], 1.49 [s, 9H, C(CH3)3], 7.22 (td, 2H, Jortho = 8.6 Hz, Jmeta = 2.4 Hz, ArH), 7.47–7.58 (m, 4H, ArH), 7.67 (d, 1H, Jmeta = 1.8 Hz, ArH), 8.13 (d, 1H, Jmeta = 1.8 Hz, ArH), 8.26 (d, 1H, Jmeta = 1.7 Hz, ArH), 8.72 (s, 1H, CH=N), 10.55 (b, 1H, NH). HR–MS (m/z): calculated for [C27H30BrN2]+, m/z = 461.1587; found, 461.1627.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom attached to atom N3 was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with U iso(H) = 1.2U eq(C). Orientational disorder of the tert-butyl substituent (C20–C23) around the C13—C20 bond axis is observed and the occupancies refined to 0.592 (3) and 0.408 (3).

Table 2. Experimental details.

Crystal data
Chemical formula C27H29BrN2
M r 461.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 9.9949 (5), 23.546 (1), 10.2919 (6)
β (°) 108.334 (6)
V3) 2299.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.80
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Rigaku AFC HyPix-6000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.610, 0.696
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 19373, 5268, 4580
R int 0.025
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.076, 1.03
No. of reflections 5268
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.54

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and CrystalStructure (Rigaku, 2016).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019012374/is5522sup1.cif

e-75-01429-sup1.cif (592.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012374/is5522Isup2.hkl

e-75-01429-Isup2.hkl (419.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012374/is5522Isup3.cml

CCDC reference: 1951647

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C27H29BrN2 F(000) = 960.00
Mr = 461.42 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 9.9949 (5) Å Cell parameters from 8890 reflections
b = 23.546 (1) Å θ = 2.3–30.3°
c = 10.2919 (6) Å µ = 1.80 mm1
β = 108.334 (6)° T = 123 K
V = 2299.2 (2) Å3 Prism, yellow
Z = 4 0.40 × 0.30 × 0.20 mm

Data collection

Rigaku AFC HyPix-6000 diffractometer 5268 independent reflections
Radiation source: rotating anode X-ray generator, FR-E+ 4580 reflections with F2 > 2.0σ(F2)
Multi-layer mirror optics monochromator Rint = 0.025
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.3°
ω scans h = −10→12
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −26→30
Tmin = 0.610, Tmax = 0.696 l = −13→13
19373 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.3852P] where P = (Fo2 + 2Fc2)/3
5268 reflections (Δ/σ)max < 0.001
312 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.54 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.32389 (2) −0.22866 (2) −0.02368 (2) 0.04191 (8)
N2 0.10884 (14) −0.03518 (6) 0.24791 (14) 0.0214 (3)
N3 0.13607 (14) 0.05539 (6) 0.44000 (14) 0.0194 (3)
C4 −0.00730 (16) 0.05269 (6) 0.37843 (15) 0.0178 (3)
C5 −0.07237 (16) 0.09426 (6) 0.43609 (15) 0.0171 (3)
C6 −0.21856 (16) 0.10061 (7) 0.38848 (16) 0.0190 (3)
H6 −0.2609 0.1292 0.4243 0.023*
C7 −0.30146 (16) 0.06474 (7) 0.28826 (16) 0.0202 (3)
C8 −0.23344 (17) 0.02255 (7) 0.23600 (16) 0.0210 (3)
H8 −0.2887 −0.0021 0.1703 0.025*
C9 −0.08739 (16) 0.01562 (6) 0.27729 (16) 0.0187 (3)
C10 0.16594 (16) 0.09673 (6) 0.54128 (16) 0.0183 (3)
C11 0.03872 (15) 0.12215 (6) 0.54154 (15) 0.0169 (3)
C12 0.03888 (16) 0.16442 (6) 0.63623 (15) 0.0172 (3)
H12 −0.0456 0.1811 0.6359 0.021*
C13 0.16444 (16) 0.18174 (6) 0.73110 (15) 0.0183 (3)
C14 0.29004 (16) 0.15590 (7) 0.72658 (16) 0.0213 (3)
H14 0.3748 0.1675 0.7894 0.026*
C15 0.29330 (16) 0.11409 (7) 0.63310 (17) 0.0216 (3)
H15 0.3781 0.0982 0.6319 0.026*
C16 −0.46276 (17) 0.06969 (7) 0.23445 (18) 0.0249 (4)
C17 −0.5292 (2) 0.01470 (9) 0.2628 (2) 0.0423 (5)
H17A −0.5002 0.0079 0.3597 0.051*
H17B −0.4991 −0.0163 0.2182 0.051*
H17C −0.6300 0.0179 0.2285 0.051*
C18 −0.5096 (2) 0.07977 (9) 0.07942 (19) 0.0351 (4)
H18A −0.6106 0.0811 0.0447 0.042*
H18B −0.4758 0.0494 0.0359 0.042*
H18C −0.4716 0.1152 0.0606 0.042*
C19 −0.51743 (19) 0.11897 (9) 0.2992 (2) 0.0386 (5)
H19A −0.4766 0.1538 0.2812 0.046*
H19B −0.4920 0.1132 0.3963 0.046*
H19C −0.6182 0.1210 0.2610 0.046*
C20 0.16630 (17) 0.22683 (7) 0.83868 (17) 0.0226 (3)
C21A 0.2398 (4) 0.20070 (14) 0.9822 (3) 0.0349 (8) 0.592 (3)
H21A 0.2411 0.2281 1.0517 0.042* 0.592 (3)
H21B 0.3347 0.1903 0.9893 0.042* 0.592 (3)
H21C 0.1890 0.1676 0.9943 0.042* 0.592 (3)
C22A 0.0240 (4) 0.24682 (17) 0.8322 (4) 0.0458 (11) 0.592 (3)
H22A −0.0202 0.2644 0.7452 0.055* 0.592 (3)
H22B 0.0317 0.2739 0.9040 0.055* 0.592 (3)
H22C −0.0318 0.2151 0.8434 0.055* 0.592 (3)
C23A 0.2585 (4) 0.27633 (13) 0.8214 (3) 0.0344 (8) 0.592 (3)
H23A 0.2170 0.2935 0.7333 0.041* 0.592 (3)
H23B 0.3509 0.2625 0.8284 0.041* 0.592 (3)
H23C 0.2655 0.3040 0.8917 0.041* 0.592 (3)
C21B 0.0816 (5) 0.2036 (2) 0.9295 (4) 0.0310 (11) 0.408 (3)
H21D 0.1277 0.1705 0.9775 0.037* 0.408 (3)
H21E −0.0118 0.1937 0.8731 0.037* 0.408 (3)
H21F 0.0762 0.2321 0.9943 0.037* 0.408 (3)
C22B 0.0843 (5) 0.28167 (19) 0.7672 (5) 0.0324 (11) 0.408 (3)
H22D 0.0760 0.3078 0.8359 0.039* 0.408 (3)
H22E −0.0080 0.2711 0.7094 0.039* 0.408 (3)
H22F 0.1351 0.2994 0.7130 0.039* 0.408 (3)
C23B 0.3089 (4) 0.2460 (2) 0.9280 (5) 0.0346 (12) 0.408 (3)
H23D 0.3601 0.2140 0.9772 0.041* 0.408 (3)
H23E 0.2979 0.2739 0.9917 0.041* 0.408 (3)
H23F 0.3599 0.2622 0.8721 0.041* 0.408 (3)
C24 −0.02473 (16) −0.02866 (7) 0.21740 (16) 0.0197 (3)
H24 −0.0838 −0.0533 0.1544 0.024*
C25 0.15800 (17) −0.07912 (7) 0.18052 (16) 0.0207 (3)
C26 0.26499 (17) −0.11434 (7) 0.25860 (18) 0.0235 (3)
H26 0.3037 −0.1079 0.3521 0.028*
C27 0.31439 (17) −0.15892 (7) 0.19842 (19) 0.0263 (4)
H27 0.3834 −0.1833 0.2514 0.032*
C28 0.25953 (18) −0.16661 (7) 0.05853 (19) 0.0263 (4)
C29 0.15945 (19) −0.13042 (8) −0.02231 (19) 0.0288 (4)
H29 0.1269 −0.1351 −0.1168 0.035*
C30 0.10778 (18) −0.08681 (7) 0.03954 (17) 0.0261 (4)
H30 0.0389 −0.0625 −0.0140 0.031*
H3 0.187 (2) 0.0341 (9) 0.426 (2) 0.027 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03992 (12) 0.03025 (11) 0.05975 (15) 0.00525 (8) 0.02168 (10) −0.01567 (9)
N2 0.0257 (7) 0.0183 (6) 0.0222 (7) −0.0004 (5) 0.0103 (6) −0.0001 (5)
N3 0.0172 (6) 0.0193 (7) 0.0222 (7) 0.0024 (5) 0.0069 (5) −0.0017 (5)
C4 0.0192 (7) 0.0168 (7) 0.0181 (7) 0.0000 (6) 0.0066 (6) 0.0036 (6)
C5 0.0208 (7) 0.0157 (7) 0.0154 (7) −0.0007 (6) 0.0065 (6) 0.0015 (6)
C6 0.0196 (7) 0.0182 (7) 0.0194 (8) 0.0025 (6) 0.0065 (6) 0.0007 (6)
C7 0.0185 (8) 0.0211 (8) 0.0198 (8) 0.0005 (6) 0.0045 (6) 0.0009 (6)
C8 0.0229 (8) 0.0183 (7) 0.0202 (8) −0.0021 (6) 0.0045 (6) −0.0017 (6)
C9 0.0225 (8) 0.0161 (7) 0.0188 (7) 0.0000 (6) 0.0082 (6) 0.0016 (6)
C10 0.0214 (8) 0.0160 (7) 0.0186 (7) 0.0009 (6) 0.0078 (6) 0.0021 (6)
C11 0.0166 (7) 0.0165 (7) 0.0175 (7) −0.0006 (6) 0.0053 (6) 0.0035 (6)
C12 0.0163 (7) 0.0166 (7) 0.0193 (7) 0.0007 (6) 0.0063 (6) 0.0020 (6)
C13 0.0200 (7) 0.0178 (7) 0.0178 (7) −0.0018 (6) 0.0068 (6) 0.0018 (6)
C14 0.0164 (7) 0.0246 (8) 0.0207 (8) −0.0023 (6) 0.0025 (6) 0.0006 (6)
C15 0.0159 (7) 0.0234 (8) 0.0258 (8) 0.0029 (6) 0.0067 (6) 0.0020 (7)
C16 0.0175 (8) 0.0246 (8) 0.0291 (9) −0.0008 (6) 0.0023 (7) −0.0044 (7)
C17 0.0228 (9) 0.0388 (11) 0.0652 (14) −0.0008 (8) 0.0135 (9) 0.0078 (10)
C18 0.0256 (9) 0.0400 (11) 0.0324 (10) 0.0030 (8) −0.0013 (8) −0.0039 (8)
C19 0.0195 (8) 0.0479 (12) 0.0426 (11) 0.0070 (8) 0.0017 (8) −0.0161 (9)
C20 0.0229 (8) 0.0219 (8) 0.0220 (8) −0.0047 (6) 0.0058 (6) −0.0037 (6)
C21A 0.049 (2) 0.0336 (17) 0.0241 (16) −0.0039 (14) 0.0149 (14) −0.0042 (13)
C22A 0.0303 (17) 0.047 (2) 0.054 (2) 0.0007 (15) 0.0055 (16) −0.0364 (19)
C23A 0.0448 (19) 0.0241 (15) 0.0292 (17) −0.0123 (13) 0.0045 (14) −0.0049 (13)
C21B 0.039 (3) 0.035 (2) 0.021 (2) −0.012 (2) 0.0112 (19) −0.0070 (18)
C22B 0.045 (3) 0.026 (2) 0.026 (2) 0.0088 (19) 0.012 (2) −0.0038 (18)
C23B 0.021 (2) 0.038 (3) 0.043 (3) −0.0064 (18) 0.006 (2) −0.016 (2)
C24 0.0243 (8) 0.0169 (7) 0.0179 (7) −0.0011 (6) 0.0066 (6) 0.0000 (6)
C25 0.0229 (8) 0.0171 (7) 0.0248 (8) −0.0020 (6) 0.0114 (7) −0.0019 (6)
C26 0.0199 (8) 0.0268 (8) 0.0244 (8) −0.0016 (6) 0.0080 (7) −0.0007 (7)
C27 0.0202 (8) 0.0238 (8) 0.0368 (10) 0.0024 (6) 0.0117 (7) 0.0028 (7)
C28 0.0258 (8) 0.0194 (8) 0.0389 (10) −0.0004 (6) 0.0175 (8) −0.0067 (7)
C29 0.0342 (9) 0.0286 (9) 0.0244 (9) 0.0021 (7) 0.0104 (7) −0.0050 (7)
C30 0.0306 (9) 0.0232 (8) 0.0244 (9) 0.0054 (7) 0.0084 (7) 0.0016 (7)

Geometric parameters (Å, º)

Br1—C28 1.8992 (16) C19—H19B 0.9600
N2—C24 1.281 (2) C19—H19C 0.9600
N2—C25 1.417 (2) C20—C22A 1.479 (4)
N3—C4 1.374 (2) C20—C23B 1.502 (4)
N3—C10 1.388 (2) C20—C23A 1.530 (3)
N3—H3 0.76 (2) C20—C21B 1.545 (5)
C4—C9 1.401 (2) C20—C21A 1.555 (4)
C4—C5 1.406 (2) C20—C22B 1.581 (5)
C5—C6 1.395 (2) C21A—H21A 0.9600
C5—C11 1.444 (2) C21A—H21B 0.9600
C6—C7 1.388 (2) C21A—H21C 0.9600
C6—H6 0.9300 C22A—H22A 0.9600
C7—C8 1.403 (2) C22A—H22B 0.9600
C7—C16 1.535 (2) C22A—H22C 0.9600
C8—C9 1.396 (2) C23A—H23A 0.9600
C8—H8 0.9300 C23A—H23B 0.9600
C9—C24 1.450 (2) C23A—H23C 0.9600
C10—C15 1.387 (2) C21B—H21D 0.9600
C10—C11 1.406 (2) C21B—H21E 0.9600
C11—C12 1.393 (2) C21B—H21F 0.9600
C12—C13 1.387 (2) C22B—H22D 0.9600
C12—H12 0.9300 C22B—H22E 0.9600
C13—C14 1.409 (2) C22B—H22F 0.9600
C13—C20 1.530 (2) C23B—H23D 0.9600
C14—C15 1.384 (2) C23B—H23E 0.9600
C14—H14 0.9300 C23B—H23F 0.9600
C15—H15 0.9300 C24—H24 0.9300
C16—C19 1.523 (2) C25—C30 1.390 (2)
C16—C17 1.525 (3) C25—C26 1.392 (2)
C16—C18 1.533 (3) C26—C27 1.386 (2)
C17—H17A 0.9600 C26—H26 0.9300
C17—H17B 0.9600 C27—C28 1.382 (3)
C17—H17C 0.9600 C27—H27 0.9300
C18—H18A 0.9600 C28—C29 1.377 (3)
C18—H18B 0.9600 C29—C30 1.390 (2)
C18—H18C 0.9600 C29—H29 0.9300
C19—H19A 0.9600 C30—H30 0.9300
C24—N2—C25 117.55 (14) C13—C20—C23A 108.37 (17)
C4—N3—C10 108.99 (13) C23B—C20—C21B 109.3 (3)
C4—N3—H3 123.0 (15) C13—C20—C21B 107.9 (2)
C10—N3—H3 127.4 (15) C22A—C20—C21A 109.2 (2)
N3—C4—C9 129.86 (14) C13—C20—C21A 107.92 (17)
N3—C4—C5 109.09 (13) C23A—C20—C21A 106.8 (2)
C9—C4—C5 121.03 (14) C23B—C20—C22B 107.0 (3)
C6—C5—C4 119.92 (14) C13—C20—C22B 110.1 (2)
C6—C5—C11 133.48 (14) C21B—C20—C22B 105.5 (3)
C4—C5—C11 106.59 (13) C20—C21A—H21A 109.5
C7—C6—C5 120.68 (14) C20—C21A—H21B 109.5
C7—C6—H6 119.7 H21A—C21A—H21B 109.5
C5—C6—H6 119.7 C20—C21A—H21C 109.5
C6—C7—C8 117.89 (14) H21A—C21A—H21C 109.5
C6—C7—C16 122.38 (14) H21B—C21A—H21C 109.5
C8—C7—C16 119.73 (14) C20—C22A—H22A 109.5
C9—C8—C7 123.55 (15) C20—C22A—H22B 109.5
C9—C8—H8 118.2 H22A—C22A—H22B 109.5
C7—C8—H8 118.2 C20—C22A—H22C 109.5
C8—C9—C4 116.87 (14) H22A—C22A—H22C 109.5
C8—C9—C24 120.32 (14) H22B—C22A—H22C 109.5
C4—C9—C24 122.80 (14) C20—C23A—H23A 109.5
C15—C10—N3 130.74 (14) C20—C23A—H23B 109.5
C15—C10—C11 120.66 (14) H23A—C23A—H23B 109.5
N3—C10—C11 108.59 (13) C20—C23A—H23C 109.5
C12—C11—C10 120.24 (14) H23A—C23A—H23C 109.5
C12—C11—C5 133.04 (14) H23B—C23A—H23C 109.5
C10—C11—C5 106.69 (13) C20—C21B—H21D 109.5
C13—C12—C11 120.29 (14) C20—C21B—H21E 109.5
C13—C12—H12 119.9 H21D—C21B—H21E 109.5
C11—C12—H12 119.9 C20—C21B—H21F 109.5
C12—C13—C14 117.91 (14) H21D—C21B—H21F 109.5
C12—C13—C20 121.06 (14) H21E—C21B—H21F 109.5
C14—C13—C20 121.03 (14) C20—C22B—H22D 109.5
C15—C14—C13 123.11 (14) C20—C22B—H22E 109.5
C15—C14—H14 118.4 H22D—C22B—H22E 109.5
C13—C14—H14 118.4 C20—C22B—H22F 109.5
C14—C15—C10 117.77 (14) H22D—C22B—H22F 109.5
C14—C15—H15 121.1 H22E—C22B—H22F 109.5
C10—C15—H15 121.1 C20—C23B—H23D 109.5
C19—C16—C17 109.00 (16) C20—C23B—H23E 109.5
C19—C16—C18 107.66 (15) H23D—C23B—H23E 109.5
C17—C16—C18 108.79 (15) C20—C23B—H23F 109.5
C19—C16—C7 112.37 (14) H23D—C23B—H23F 109.5
C17—C16—C7 109.72 (14) H23E—C23B—H23F 109.5
C18—C16—C7 109.22 (14) N2—C24—C9 122.55 (15)
C16—C17—H17A 109.5 N2—C24—H24 118.7
C16—C17—H17B 109.5 C9—C24—H24 118.7
H17A—C17—H17B 109.5 C30—C25—C26 119.00 (15)
C16—C17—H17C 109.5 C30—C25—N2 122.63 (15)
H17A—C17—H17C 109.5 C26—C25—N2 118.32 (14)
H17B—C17—H17C 109.5 C27—C26—C25 120.68 (16)
C16—C18—H18A 109.5 C27—C26—H26 119.7
C16—C18—H18B 109.5 C25—C26—H26 119.7
H18A—C18—H18B 109.5 C28—C27—C26 118.97 (16)
C16—C18—H18C 109.5 C28—C27—H27 120.5
H18A—C18—H18C 109.5 C26—C27—H27 120.5
H18B—C18—H18C 109.5 C29—C28—C27 121.56 (15)
C16—C19—H19A 109.5 C29—C28—Br1 119.37 (14)
C16—C19—H19B 109.5 C27—C28—Br1 119.07 (13)
H19A—C19—H19B 109.5 C28—C29—C30 118.97 (16)
C16—C19—H19C 109.5 C28—C29—H29 120.5
H19A—C19—H19C 109.5 C30—C29—H29 120.5
H19B—C19—H19C 109.5 C25—C30—C29 120.66 (16)
C22A—C20—C13 113.32 (17) C25—C30—H30 119.7
C23B—C20—C13 116.4 (2) C29—C30—H30 119.7
C22A—C20—C23A 111.0 (2)
C10—N3—C4—C9 −175.87 (15) N3—C10—C15—C14 −178.10 (16)
C10—N3—C4—C5 2.32 (17) C11—C10—C15—C14 1.7 (2)
N3—C4—C5—C6 178.89 (13) C6—C7—C16—C19 2.2 (2)
C9—C4—C5—C6 −2.7 (2) C8—C7—C16—C19 −178.06 (16)
N3—C4—C5—C11 −1.96 (16) C6—C7—C16—C17 −119.19 (18)
C9—C4—C5—C11 176.41 (14) C8—C7—C16—C17 60.5 (2)
C4—C5—C6—C7 2.6 (2) C6—C7—C16—C18 121.64 (17)
C11—C5—C6—C7 −176.26 (16) C8—C7—C16—C18 −58.7 (2)
C5—C6—C7—C8 −0.6 (2) C12—C13—C20—C22A 2.2 (3)
C5—C6—C7—C16 179.10 (14) C14—C13—C20—C22A −176.9 (2)
C6—C7—C8—C9 −1.4 (2) C12—C13—C20—C23B −174.8 (3)
C16—C7—C8—C9 178.89 (15) C14—C13—C20—C23B 6.2 (3)
C7—C8—C9—C4 1.3 (2) C12—C13—C20—C23A −121.4 (2)
C7—C8—C9—C24 −179.34 (15) C14—C13—C20—C23A 59.5 (2)
N3—C4—C9—C8 178.81 (15) C12—C13—C20—C21B 61.9 (3)
C5—C4—C9—C8 0.8 (2) C14—C13—C20—C21B −117.1 (2)
N3—C4—C9—C24 −0.6 (3) C12—C13—C20—C21A 123.2 (2)
C5—C4—C9—C24 −178.55 (14) C14—C13—C20—C21A −55.9 (2)
C4—N3—C10—C15 178.11 (16) C12—C13—C20—C22B −52.8 (3)
C4—N3—C10—C11 −1.74 (17) C14—C13—C20—C22B 128.1 (2)
C15—C10—C11—C12 −1.3 (2) C25—N2—C24—C9 −178.58 (14)
N3—C10—C11—C12 178.55 (13) C8—C9—C24—N2 177.08 (15)
C15—C10—C11—C5 −179.37 (14) C4—C9—C24—N2 −3.6 (2)
N3—C10—C11—C5 0.50 (17) C24—N2—C25—C30 48.4 (2)
C6—C5—C11—C12 2.2 (3) C24—N2—C25—C26 −134.37 (16)
C4—C5—C11—C12 −176.82 (16) C30—C25—C26—C27 −4.4 (2)
C6—C5—C11—C10 179.87 (16) N2—C25—C26—C27 178.28 (14)
C4—C5—C11—C10 0.88 (16) C25—C26—C27—C28 2.5 (2)
C10—C11—C12—C13 −0.1 (2) C26—C27—C28—C29 1.3 (3)
C5—C11—C12—C13 177.38 (15) C26—C27—C28—Br1 −178.58 (12)
C11—C12—C13—C14 0.9 (2) C27—C28—C29—C30 −3.1 (3)
C11—C12—C13—C20 −178.14 (14) Br1—C28—C29—C30 176.80 (13)
C12—C13—C14—C15 −0.5 (2) C26—C25—C30—C29 2.5 (3)
C20—C13—C14—C15 178.59 (15) N2—C25—C30—C29 179.78 (15)
C13—C14—C15—C10 −0.8 (2) C28—C29—C30—C25 1.1 (3)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C25–C30, C4–C9 and N3/C4/C5/C11/C10 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N3—H3···N2 0.76 (2) 2.39 (2) 2.862 (2) 121.3 (16)
C22A—H22C···Cg1i 0.96 2.92 3.878 (4) 177
C29—H29···Cg2ii 0.93 2.95 3.613 (2) 129
C21B—H21E···Cg1i 0.96 2.62 3.391 (5) 138
C22B—H22D···Cg3iii 0.96 2.92 3.839 (5) 159

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y, −z; (iii) x, −y−1/2, z−1/2.

Funding Statement

This work was funded by the Cooperative Research Program of Network Joint Reserarch Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University) (No. 20192018) grant .

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Gibson, V. C., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Dalton Trans. pp. 2718.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Krucaite, G. & Grigalevicius, S. (2019). Synth. Met. 247, 90–108.
  5. Nolla-Saltiel, R., Geer, A. M., Lewis, W., Blake, A. J. & Kays, D. L. (2018). Chem. Commun. 54, 1825–1828. [DOI] [PubMed]
  6. Obora, Y. (2018). Tetrahedron Lett. 59, 167–172.
  7. Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  8. Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
  9. Rubio, O. H., Fuentes de Arriba, L., Monleón, L. M., Sanz, F., Simón, L., Alcázar, V. & Morán, J. R. (2015). Tetrahedron, 71, 1297–1303.
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Taneda, M., Shizu, K., Tanaka, H. & Adachi, C. (2015). Chem. Commun. 51, 5028–5031. [DOI] [PubMed]
  13. Wiosna-Sałyga, G., Dobkowski, J., Mudadu, M. S., Sazanovich, I., Thummel, R. P. & Waluk, J. (2006). Chem. Phys. Lett. 423, 288–292.
  14. Zhao, F., Chen, Z., Fan, C., Liu, G. & Pu, S. (2019). Dyes Pigments, 164, 390–397.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019012374/is5522sup1.cif

e-75-01429-sup1.cif (592.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012374/is5522Isup2.hkl

e-75-01429-Isup2.hkl (419.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019012374/is5522Isup3.cml

CCDC reference: 1951647

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES