In the crystal of the title salt, the cations and anions are linked via N—H⋯Br hydrogen bonds to form a three-dimensional network.
Keywords: crystal structure, charge-assisted hydrogen bonding, thiazolidine ring, Hirshfeld surface analysis
Abstract
In the cation of the title salt, C9H12N3S+·Br−, the thiazolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. A Hirshfeld surface analysis was conducted to quantify the contributions of the different intermolecular interactions and contacts.
Chemical context
As well as their synthetic utility, thiazolidine derivatives possess a broad spectrum of biological activities such as antimalarial, antibacterial, antimicrobial, anti-inflammatory, anticancer, etc. The biological activities of compounds containing a thiazolidine core, such as 1,3-thiazolidines, 2,4-dione-, 4-oxo-thiazolidine, etc. were summarized in a recent review (Makwana & Malani, 2017 ▸). On the other hand, as hydrazones these N-containing ligands have been widely used in the synthesis of coordination compounds (Gurbanov et al., 2018a
▸,b
▸). The non-covalent donor or acceptor properties of N-containing ligands can also contribute to their catalytic activity, among other properties (Mahmudov et al., 2019 ▸; Zubkov et al., 2018 ▸). As part of our ongoing work in this area, we now describe the synthesis and structure of the title molecular salt, C9H12N3S+·Br−, (I).
Structural commentary
In the cation of (I) (Fig. 1 ▸), the thiazolidine ring (S1/N1/C1–C3) adopts an envelope conformation with puckering parameters of Q(2) = 0.317 (2) Å and φ(2) = 225.2 (4)°: the flap atom is C1. In the arbitrarily chosen asymmetric unit, C1 has an R configuration, but symmetry generates a racemic mixture in the crystal. The dihedral angle between the mean plane of the thiazolidine ring (all atoms) and the phenyl ring (C4–C9) is 89.27 (13)°.
Figure 1.
The molecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level and the H⋯Br hydrogen bond is indicated by a dashed line.
Supramolecular features and Hirshfeld surface analysis
In the crystal, each cation forms N—H⋯Br hydrogen bonds (Table 1 ▸) as well as aromatic π–π stacking interactions between the phenyl rings of adjacent cations [Cg2⋯Cg2iv = 3.7758 (16) Å; symmetry code: (iv) 1 − x, 1 − y, 2 − z; where Cg2 is the centroid of the phenyl ring of the cation]: chains of cations form along the [101] direction (Fig. 2 ▸). Taking into account the hydrogen bonding and π-π stacking, the overall connectivity is three-dimensional.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯Br1i | 0.90 | 2.68 | 3.530 (2) | 158 |
| N2—H2B⋯Br1ii | 0.90 | 2.73 | 3.524 (2) | 148 |
| N3—H3A⋯Br1 | 0.90 | 2.38 | 3.271 (2) | 169 |
| N3—H3B⋯Br1iii | 0.90 | 2.56 | 3.337 (2) | 145 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.
Part of the crystal structure of the title compound, showing the formation of N—H⋯Br hydrogen bonds in the ac plane.
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸; Spackman & McKinnon, 2002 ▸) was carried out with CrystalExplorer3.1 (Wolff et al., 2012 ▸) to further investigate the presence of hydrogen bonds and intermolecular interactions in the crystal structure (see supporting information). Fig. 3 ▸(a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode while those delineated into H⋯H (41.5%), Br⋯N/N⋯Br (24.1%), C⋯H/H⋯C (13.8%) and S⋯H/H⋯S (11.7%) contacts, respectively, are shown in Fig. 3 ▸ b–e. All contacts are listed in Table 2 ▸.
Figure 3.
The two-dimensional fingerprint plots of the title salt, showing (a) all interactions, and delineated into (b) H⋯H, (c) Br⋯N/N⋯Br, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S interactions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
Table 2. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 41.5 |
| Br⋯N/N⋯Br | 24.1 |
| C⋯H/H⋯C | 13.8 |
| S⋯H/H⋯S | 11.7 |
| N⋯H/H⋯N | 3.6 |
| C⋯C | 3.3 |
| N⋯C/C⋯N | 1.5 |
| N⋯N | 0.3 |
| S⋯C/C⋯S | 0.3 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016 ▸) for 2-thiazolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019 ▸), UDELUN (Akkurt et al., 2018 ▸), WILBIC (Marthi et al., 1994 ▸), WILBOI (Marthi et al., 1994 ▸), WILBOI01 (Marthi et al., 1994 ▸), YITCEJ (Martem’yanova et al., 1993a ▸), YITCAF (Martem’yanova et al., 1993b ▸) and YOPLUK (Marthi et al., 1995 ▸).
In the crystal of BOBWIB (Khalilov et al., 2019 ▸), the thiazolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018 ▸), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C substituent: the first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994 ▸) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994 ▸) of 3-(2′-chloro-2′-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3): 0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ▸) is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic nitrogen atom, while YITCAF (Martem’yanova et al., 1993b ▸) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
Synthesis and crystallization
To a solution of 2.2 mmol (0.6 g) (1,2-dibromoethyl)benzene in 20 ml of ethanol were added 2.3 mmol (0.3 g) of thiosemicarbazide hydrochloride; 3-4 drops of piperidine were added and the mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature and the solid product was precipitated from solution, collected by filtration and recrystallized from ethanol solution to give colourless crystals of (I) with a yield of 88%, m.p. = 468 K. Analysis calculated for C9H12BrN3S: C 39.43; H 4.41; N 15.33. Found: C 39.40; H 4.39; N 15.30%. 1H NMR (300 MHz, DMSO-d 6) : 4.16 (q, 1H, CH2,3 J H–H = 5.4); 4.45 (t, 1H, CH2, 3 J H–H = 8.4); 5.25 (t, 1H, CH-Ar, 3 J H–H = 5.4); 7.32–7.50 (m, 5H, 5Ar-H); 9.12 (s, 2H, NH2); 9,78 (s, 1H, NH=). 13C NMR (75 MHz, DMSO-d 6 ): 44.42, 62.06, 127.59, 128.76, 129.17, 138.85, 168.53. MS (ESI), m/z: 194.28 [C9H12N3S]+ and 79.88 Br−.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms on C atoms were placed at calculated positions (C—H = 0.95–1.00 Å) and refined using a riding model. The N-bound hydrogen atoms were located from difference-Fourier maps and relocated to idealized locations (N—H = 0.90 Å) and refined as riding atoms. The constraint U
iso(H) = 1.2U
eq(carrier) was applied in all cases. One outlier (
01) was omitted in the final cycles of refinement.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C9H12N3S+·Br− |
| M r | 274.19 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 150 |
| a, b, c (Å) | 10.5986 (5), 8.7168 (3), 13.0308 (5) |
| β (°) | 111.513 (2) |
| V (Å3) | 1119.99 (8) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 3.82 |
| Crystal size (mm) | 0.18 × 0.14 × 0.11 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2003 ▸) |
| T min, T max | 0.534, 0.661 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 8461, 2303, 1998 |
| R int | 0.029 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.027, 0.070, 1.02 |
| No. of reflections | 2303 |
| No. of parameters | 127 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.61, −0.33 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013069/hb7855sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013069/hb7855Isup2.hkl
Hirshfeld surface analysis figures. DOI: 10.1107/S2056989019013069/hb7855sup3.docx
Supporting information file. DOI: 10.1107/S2056989019013069/hb7855Isup4.cml
CCDC reference: 1955268
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
ANK is grateful to Baku State University for the "50 + 50" individual grant in support of this work.
supplementary crystallographic information
Crystal data
| C9H12N3S+·Br− | F(000) = 552 |
| Mr = 274.19 | Dx = 1.626 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 10.5986 (5) Å | Cell parameters from 3357 reflections |
| b = 8.7168 (3) Å | θ = 2.9–26.3° |
| c = 13.0308 (5) Å | µ = 3.82 mm−1 |
| β = 111.513 (2)° | T = 150 K |
| V = 1119.99 (8) Å3 | Block, colorless |
| Z = 4 | 0.18 × 0.14 × 0.11 mm |
Data collection
| Bruker APEXII CCD diffractometer | 1998 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.029 |
| Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.4°, θmin = 2.9° |
| Tmin = 0.534, Tmax = 0.661 | h = −13→13 |
| 8461 measured reflections | k = −10→10 |
| 2303 independent reflections | l = −16→16 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
| wR(F2) = 0.070 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5896P] where P = (Fo2 + 2Fc2)/3 |
| 2303 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.61 e Å−3 |
| 0 restraints | Δρmin = −0.33 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.14662 (3) | 0.38142 (3) | 0.26547 (2) | 0.02369 (10) | |
| S1 | 0.31116 (7) | 0.46985 (7) | 0.58677 (5) | 0.02034 (15) | |
| N1 | 0.4802 (2) | 0.6893 (2) | 0.61070 (15) | 0.0159 (4) | |
| N2 | 0.5487 (2) | 0.8083 (2) | 0.57955 (15) | 0.0183 (4) | |
| H2A | 0.635551 | 0.776693 | 0.607350 | 0.022* | |
| H2B | 0.535901 | 0.891753 | 0.615230 | 0.022* | |
| N3 | 0.3577 (2) | 0.6293 (2) | 0.42850 (16) | 0.0179 (4) | |
| H3A | 0.292719 | 0.572157 | 0.379225 | 0.021* | |
| H3B | 0.390509 | 0.709317 | 0.402415 | 0.021* | |
| C1 | 0.4372 (3) | 0.5007 (3) | 0.72776 (19) | 0.0214 (5) | |
| H1A | 0.513995 | 0.427032 | 0.741377 | 0.026* | |
| C2 | 0.4890 (3) | 0.6645 (3) | 0.72463 (19) | 0.0189 (5) | |
| H2C | 0.432008 | 0.739798 | 0.744749 | 0.023* | |
| H2D | 0.583832 | 0.675080 | 0.776759 | 0.023* | |
| C3 | 0.3879 (2) | 0.6085 (3) | 0.53385 (19) | 0.0154 (5) | |
| C4 | 0.3746 (2) | 0.4760 (3) | 0.81375 (18) | 0.0168 (5) | |
| C5 | 0.4280 (3) | 0.3584 (3) | 0.8912 (2) | 0.0212 (5) | |
| H5A | 0.497585 | 0.293462 | 0.886358 | 0.025* | |
| C6 | 0.3773 (3) | 0.3379 (3) | 0.97571 (19) | 0.0208 (5) | |
| H6A | 0.412191 | 0.258553 | 1.028582 | 0.025* | |
| C7 | 0.2769 (3) | 0.4330 (3) | 0.9816 (2) | 0.0225 (5) | |
| H7A | 0.244208 | 0.420521 | 1.039905 | 0.027* | |
| C8 | 0.2230 (3) | 0.5463 (3) | 0.9041 (2) | 0.0265 (6) | |
| H8A | 0.152610 | 0.610477 | 0.908407 | 0.032* | |
| C9 | 0.2715 (3) | 0.5662 (3) | 0.8203 (2) | 0.0249 (6) | |
| H9A | 0.233208 | 0.643424 | 0.766388 | 0.030* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.02460 (15) | 0.02084 (15) | 0.02181 (15) | −0.00181 (11) | 0.00401 (11) | −0.00181 (10) |
| S1 | 0.0263 (3) | 0.0175 (3) | 0.0173 (3) | −0.0062 (3) | 0.0081 (2) | −0.0012 (2) |
| N1 | 0.0197 (10) | 0.0165 (10) | 0.0132 (9) | −0.0036 (8) | 0.0078 (8) | −0.0004 (8) |
| N2 | 0.0208 (11) | 0.0162 (10) | 0.0198 (10) | −0.0030 (9) | 0.0099 (9) | −0.0004 (8) |
| N3 | 0.0239 (11) | 0.0151 (10) | 0.0144 (10) | −0.0011 (9) | 0.0066 (8) | −0.0014 (8) |
| C1 | 0.0215 (13) | 0.0233 (13) | 0.0184 (12) | 0.0033 (11) | 0.0061 (10) | 0.0023 (10) |
| C2 | 0.0225 (13) | 0.0215 (12) | 0.0126 (11) | −0.0041 (10) | 0.0064 (10) | −0.0018 (10) |
| C3 | 0.0176 (12) | 0.0121 (11) | 0.0178 (12) | 0.0027 (9) | 0.0082 (10) | −0.0009 (9) |
| C4 | 0.0171 (12) | 0.0193 (12) | 0.0131 (11) | −0.0054 (10) | 0.0046 (9) | −0.0010 (9) |
| C5 | 0.0175 (12) | 0.0183 (12) | 0.0255 (13) | −0.0020 (10) | 0.0051 (10) | −0.0066 (10) |
| C6 | 0.0244 (13) | 0.0193 (12) | 0.0147 (12) | −0.0050 (10) | 0.0027 (10) | 0.0016 (10) |
| C7 | 0.0215 (13) | 0.0253 (13) | 0.0214 (13) | −0.0100 (11) | 0.0085 (11) | −0.0029 (11) |
| C8 | 0.0208 (13) | 0.0258 (14) | 0.0335 (15) | −0.0012 (11) | 0.0108 (12) | −0.0007 (12) |
| C9 | 0.0219 (13) | 0.0246 (13) | 0.0266 (14) | 0.0041 (11) | 0.0070 (11) | 0.0036 (11) |
Geometric parameters (Å, º)
| S1—C3 | 1.735 (2) | C2—H2C | 0.9900 |
| S1—C1 | 1.853 (2) | C2—H2D | 0.9900 |
| N1—C3 | 1.318 (3) | C4—C9 | 1.374 (4) |
| N1—N2 | 1.408 (3) | C4—C5 | 1.404 (3) |
| N1—C2 | 1.469 (3) | C5—C6 | 1.403 (4) |
| N2—H2A | 0.9000 | C5—H5A | 0.9500 |
| N2—H2B | 0.9000 | C6—C7 | 1.373 (4) |
| N3—C3 | 1.303 (3) | C6—H6A | 0.9500 |
| N3—H3A | 0.9000 | C7—C8 | 1.378 (4) |
| N3—H3B | 0.9000 | C7—H7A | 0.9500 |
| C1—C4 | 1.513 (3) | C8—C9 | 1.378 (4) |
| C1—C2 | 1.535 (4) | C8—H8A | 0.9500 |
| C1—H1A | 1.0000 | C9—H9A | 0.9500 |
| C3—S1—C1 | 91.16 (11) | N3—C3—N1 | 123.6 (2) |
| C3—N1—N2 | 119.48 (18) | N3—C3—S1 | 123.08 (18) |
| C3—N1—C2 | 116.3 (2) | N1—C3—S1 | 113.33 (17) |
| N2—N1—C2 | 123.48 (18) | C9—C4—C5 | 119.6 (2) |
| N1—N2—H2A | 102.6 | C9—C4—C1 | 122.7 (2) |
| N1—N2—H2B | 104.8 | C5—C4—C1 | 117.7 (2) |
| H2A—N2—H2B | 111.4 | C6—C5—C4 | 119.2 (2) |
| C3—N3—H3A | 120.2 | C6—C5—H5A | 120.4 |
| C3—N3—H3B | 121.7 | C4—C5—H5A | 120.4 |
| H3A—N3—H3B | 117.4 | C7—C6—C5 | 119.6 (2) |
| C4—C1—C2 | 114.2 (2) | C7—C6—H6A | 120.2 |
| C4—C1—S1 | 111.16 (17) | C5—C6—H6A | 120.2 |
| C2—C1—S1 | 104.09 (16) | C6—C7—C8 | 120.9 (2) |
| C4—C1—H1A | 109.1 | C6—C7—H7A | 119.5 |
| C2—C1—H1A | 109.1 | C8—C7—H7A | 119.5 |
| S1—C1—H1A | 109.1 | C9—C8—C7 | 119.7 (3) |
| N1—C2—C1 | 105.85 (19) | C9—C8—H8A | 120.1 |
| N1—C2—H2C | 110.6 | C7—C8—H8A | 120.1 |
| C1—C2—H2C | 110.6 | C4—C9—C8 | 120.9 (2) |
| N1—C2—H2D | 110.6 | C4—C9—H9A | 119.5 |
| C1—C2—H2D | 110.6 | C8—C9—H9A | 119.5 |
| H2C—C2—H2D | 108.7 | ||
| C3—S1—C1—C4 | 147.17 (19) | C2—C1—C4—C9 | 53.9 (3) |
| C3—S1—C1—C2 | 23.78 (17) | S1—C1—C4—C9 | −63.5 (3) |
| C3—N1—C2—C1 | 26.7 (3) | C2—C1—C4—C5 | −124.2 (2) |
| N2—N1—C2—C1 | −163.3 (2) | S1—C1—C4—C5 | 118.4 (2) |
| C4—C1—C2—N1 | −152.1 (2) | C9—C4—C5—C6 | −1.7 (4) |
| S1—C1—C2—N1 | −30.7 (2) | C1—C4—C5—C6 | 176.5 (2) |
| N2—N1—C3—N3 | 1.9 (3) | C4—C5—C6—C7 | −0.2 (4) |
| C2—N1—C3—N3 | 172.3 (2) | C5—C6—C7—C8 | 1.5 (4) |
| N2—N1—C3—S1 | −178.62 (16) | C6—C7—C8—C9 | −0.9 (4) |
| C2—N1—C3—S1 | −8.2 (3) | C5—C4—C9—C8 | 2.2 (4) |
| C1—S1—C3—N3 | 169.2 (2) | C1—C4—C9—C8 | −175.8 (2) |
| C1—S1—C3—N1 | −10.29 (19) | C7—C8—C9—C4 | −1.0 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···Br1i | 0.90 | 2.68 | 3.530 (2) | 158 |
| N2—H2B···Br1ii | 0.90 | 2.73 | 3.524 (2) | 148 |
| N3—H3A···Br1 | 0.90 | 2.38 | 3.271 (2) | 169 |
| N3—H3B···Br1iii | 0.90 | 2.56 | 3.337 (2) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.
Funding Statement
This work was funded by Baku State University grant 50 + 50 to A. N. Khalilov.
References
- Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194.
- Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. [DOI] [PMC free article] [PubMed]
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
- Makwana, H. R. & Malani, A. H. (2017). IOSR J. Appl. Chem 10, 76–84.
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
- Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
- Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019013069/hb7855sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013069/hb7855Isup2.hkl
Hirshfeld surface analysis figures. DOI: 10.1107/S2056989019013069/hb7855sup3.docx
Supporting information file. DOI: 10.1107/S2056989019013069/hb7855Isup4.cml
CCDC reference: 1955268
Additional supporting information: crystallographic information; 3D view; checkCIF report



