The title complex consists of a PtII atom coordinated in a square-planar environment by a dimethyl sulfoxide molecule and a thiosemicarbazone ligand. The overall conformation of the title complex is discussed and compared with related ligands. In the crystal, molecules are assembled via hydrogen bonds and C–H⋯π interactions forming a two-dimensional network.
Keywords: crystal structure, cyclohexylhydrazinecarbothioamide, soft Lewis base, carbothioamide Schiff base, hydrogen bonding, C—H⋯π interactions
Abstract
The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound.
Chemical context
Schiff base ligands and their complexes with transitional metals form an important functionality in medicinal, industrial and coordination chemistry (Hanifehpour et al., 2015 ▸; Singh et al., 2007 ▸). Cisplatin was synthesized by Peyrone in 1844 (Peyrone, 1844 ▸), and its use for treatment against human cancer was authorized in 1978, the biological effects of this compound on cancer cells having been discovered serendipitously by Rosenberg and co-workers in 1965 (Rosenburg et al., 1965 ▸). Work by medicinal chemists on the coordination and biological properties of metal complexes has contributed to the emergence of modern medicinal chemistry, which was inspired by the discovery of cisplatin. The thiosemicarbazone moiety containing Schiff base ligands chelated to platinum(II) shows high antitumor and anticancer activity; metal-based drugs are more promising and convenient as therapeutic agents (Nomiya et al., 1998 ▸; Kovala-Demertzi et al., 2003 ▸; Kovala-Demertzi et al., 2000 ▸; Anacona et al., 1999 ▸; Arafath et al., 2017b
▸). The complexes of PtII with 4(N)-substituted derivatives of 2-acetylpyridine thiosemicarbazone exhibit potential antitumor, anticancer, antibacterial, antineoplastic and cytogenetic activities (Kovala-Demertzi et al., 1999 ▸, 2000 ▸, 2001 ▸). Carbazate containing N- and S-coordinating sites chelated to PtII exhibits potential antibacterial and anticancer activity (Tarafder et al., 2002 ▸; Arafath et al., 2019 ▸). Herein we describe the synthesis and crystal structure of one such complex, ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN
2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II), I.
Structural commentary
The molecular structure of complex I is shown in Fig. 1 ▸. Selected geometrical parameters involving atom Pt1 are given in Table 1 ▸. The PtII atom is four-coordinate, creating a square-planar PtNOS2 environment with a maximum deviation of 0.0105 (2) Å for atom N2. The coordination environment consists of a thiosemicarbazone and a dimethyl sulfoxide molecule. The thiosemicarbazone molecule coordinates in a tridentate manner through thioamide sulfur atom S1, azomethine nitrogen N2 and phenyl oxygen O1, creating two chelate rings which are coplanar; the dihedral angle between the mean planes of the five-membered Pt1/S1/N2/N3/C9 and six-membered Pt1/O1/N2/C1/C6/C8 chelate rings is 1.51 (7)°. The benzene ring (C1–C6) is almost coplanar with both chelate rings, making dihedral angles of 2.82 (9) and 1.36 (10)°, respectively. The bite angles formed between the thiosemicarbazone ligand and the metal are N2—Pt1—S1 = 84.74 (5)° and O1—Pt1—N2 = 93.95 (6)°. The angles formed between the thiosemicarbazone, metal and the dimethyl sulfoxide are O1—Pt1—S2 = 84.87 (5)° and S1—Pt1—S2 = 96.45 (2)°. As a result of chelation, the two azomethine C=N double bonds, N2=C8 and N3=C9, are in Z and E configurations, respectively. This leads to both azomethine double bonds adopting a s-trans conformation with respect to each other. The cyclohexane ring adopts a chair conformation with puckering amplitude Q = 0.567 (3) Å, θ = 175.9 (3)° and φ = 160 (5)°, and forms a torsion angle (C9—N4—C10—C11) of 162.2 (2)° to the Pt1/S1/N2/N3/C9 chelate ring. In the 5-methoxy-3-nitro-2-oxidobenzyl ring, the methoxy and nitro groups are almost coplanar with the benzene ring, as indicated by the torsion angles O2—N1—C2—C1 = 4.0 (4)° and C7—O4—C4—C3 = 4.7 (4)°. Oxygen atom O5 of the dimethyl sulfoxide molecule is almost coplanar with both chelate rings [O5—S2—Pt1—S1 = 1.83 (11)°], whereas the methyl groups are twisted with respect to the chelate ring [C16—S2—Pt1—S1 =123.64 (11) and C17—S2—Pt1—S1 = −127.60 (12) °]. In the molecule, atom O2 of the nitro group acts as a hydrogen-bond acceptor for the adjacent methyl group, forming an intramolecular C—H⋯O hydrogen bond with an S(9) ring motif (Fig. 1 ▸, Table 2 ▸).
Figure 1.
The molecular structure of complex I, with atom labelling and displacement ellipsoids drawn at the 50% probability level.
Table 1. Selected geometric parameters (Å, °).
| Pt1—N2 | 1.9936 (17) | Pt1—S2 | 2.2254 (5) |
| Pt1—O1 | 2.0201 (15) | Pt1—S1 | 2.2441 (5) |
| N2—Pt1—O1 | 93.95 (6) | N2—Pt1—S1 | 84.74 (5) |
| N2—Pt1—S2 | 178.65 (5) | O1—Pt1—S1 | 178.63 (5) |
| O1—Pt1—S2 | 84.87 (5) | S2—Pt1—S1 | 96.45 (2) |
Table 2. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of chelate ring Pt1/S1/N2/N3/C9.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C17—H17A⋯O2 | 0.96 | 2.53 | 3.438 (4) | 157 |
| N4—H1N4⋯O5i | 0.83 (3) | 2.21 (3) | 3.042 (2) | 174 (2) |
| C17—H17B⋯N3ii | 0.96 | 2.46 | 3.336 (3) | 152 |
| C17—H17C⋯O3iii | 0.96 | 2.54 | 3.354 (4) | 143 |
| C12—H12A⋯Cg1iii | 0.97 | 2.95 | 3.669 (3) | 131 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Supramolecular features
In the crystal of I, molecules are linked by N4—H1N4⋯O5i and C17—H17⋯N3ii hydrogen bonds, enclosing an
(8) ring motif and forming chains propagating along the b-axis direction (Fig. 2 ▸, Table 2 ▸). The chains are interconnected via C17—H17C⋯O3iii hydrogen bonds, forming a two-dimensional network parallel to the ab plane (Fig. 3 ▸). These chains are further stabilized by C12—H12A⋯Cg1iii interactions, where Cg1 is the centroid of the Pt1/S1/N2/N3/C9 chelate ring (Fig. 3 ▸, Table 2 ▸). In addition, short intermolecular O3⋯C7(−x + 3, −y + 1, −z) contacts of 2.897 (4) Å are observed; these are ∼0.32 Å shorter than the sum of van der Waals radii of carbon and oxygen atoms.
Figure 2.
A view of the hydrogen-bonded chain formed by N—H⋯O and C—H⋯N hydrogen bonds [dashed lines; symmetry code: (i) x, y − 1, z]. Hydrogen atoms not involved in these interactions have been omitted for clarity.
Figure 3.
A view along the c axis of the crystal packing of complex I. The hydrogen bonds are shown as dashed lines and the C—H⋯π interactions are represented as dashed blue arrows (Table 1 ▸). Hydrogen atoms not involved in these interactions have been omitted for clarity.
Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016 ▸) using (E)-2-(2-(λ1-oxidanyl)benzylidene)-N-cyclohexylhydrazine-1-carbothioamide as the reference skeleton resulted in five related ligands containing cyclohexylhydrazine-1-carbothioamide with different substituents. They include (E)-2-(R 1)-N-cyclohexylhydrazine-1-carbothioamide, where R1 = (2-hydronaphthalen-1-yl)methylene (BEFZIY; Basheer et al., 2016 ▸), 5-bromo-2-hydroxy-3-methoxybenzylidene (LAQCIR; Jacob & Kurup, 2012 ▸), 4-(benzyloxy)-2-hydroxybenzylidene (MOKPOT; Sajitha et al., 2014 ▸), 5-chloro-2-hydroxybenzylidene (OBOLOJ; Arafath et al., 2017a ▸), and 3-(tert-butyl)-2-hydroxybenzylidene (YUXJOS; Arafath et al., 2018 ▸). Selected geometrical parameters of I and the related structures are given in Table 3 ▸. As the ligand molecule in I is chelated to platinum, it exists in a different tautomeric form. In I, the O1—C1 and S1—C9 bond lengths of 1.297 (3) and 1.745 (2) Å, respectively, are different from those in related ligands [O1—C1 and S1—C9 bond lengths in the ranges 1.350–1.362 and 1.683–1.693 Å, respectively]. As a chelating effect, the formation of the N3=C9 azomethine double bond is confirmed by its length [1.320 (3) Å], compared to 1.342–1.364 Å in related ligands. A decrease of the N2—N3—C9 angle is observed [119.03–121.82° compared to 113.79 (17)° in I]. Furthermore, the N2—N3—C9—N4 torsion angle in I has an antiperiplanar [−178.3 (2)°] conformation, whereas this torsion angle is in a synperiplanar [4.08–12.51°] conformation in the related ligands
Table 3. Selected geometrical parameters for I and related ligands (Å, °).
| I | BEFZIY | LAQCIR | MOKPOTa | OBOLOJ | YUXJOS | |
|---|---|---|---|---|---|---|
| Pt1—O1 | 2.0201 (15) | – | – | – | – | – |
| Pt1—N2 | 1.9936 (17) | – | – | – | – | – |
| Pt1—S1 | 2.2441 (5) | – | – | – | – | – |
| Pt1—S2 | 2.2254 (5) | – | – | – | – | – |
| O1—C1 | 1.297 (3) | 1.352 | 1.350 | 1.355, 1.350 | 1.360 | 1.362 |
| S1—C9 | 1.745 (2) | 1.693 | 1.685 | 1.683, 1.683 | 1.688 | 1.691 |
| C6—C8 | 1.438 (3) | 1.488 | 1.448 | 1.443, 1.448 | 1.459 | 1.457 |
| C8—N2 | 1.300 (3) | 1.294 | 1.268 | 1.281, 1.278 | 1.279 | 1.287 |
| N2—N3 | 1.377 (2) | 1.373 | 1.363 | 1.380, 1.379 | 1.369 | 1.388 |
| N3—C9 | 1.320 (3) | 1.354 | 1.342 | 1.346, 1.343 | 1.364 | 1.357 |
| N4—C9 | 1.343 (3) | 1.335 | 1.308 | 1.319, 1.323 | 1.325 | 1.336 |
| N4—C10 | 1.460 (3) | 1.467 | 1.455 | 1.464, 1.455 | 1.465 | 1.466 |
| N2—N3—C9 | 113.79 (17) | 121.82 | 120.90 | 121.70, 120.82 | 121.03 | 119.03 |
| N3—C9—N4 | 116.41 (19) | 117.02 | 116.60 | 117.35, 117.16 | 115.84 | 116.29 |
| N2—N3—C9—N4 | −178.3 (2) | −6.83 | 4.08 | −6.04, 5.25 | −5.50 | 12.51 |
Note: (a) MOKPOT crystallized with two independent molecules in the asymmetric unit.
Synthesis and crystallization
The reaction scheme for the synthesis of complex I is given in Fig. 4 ▸. The ligand (E)-N-cyclohexyl-2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)hydrazine-1-carbothioamide (0.71 g, 2.00 mmol) was dissolved in 20 ml of methanol. A 2 mmol solution of NaOH in 10 ml of methanol was added and the mixture was refluxed for 30 min. A solution of K2PtCl4 (0.83 g, 2.00 mmol) was dissolved in 2 ml of DMSO and refluxed for 30 min. The resulting platinum(II) solution was added dropwise under stirring to the ligand solution under an Ar atmosphere and refluxed for 24 h. The reddish-orange precipitate that formed was filtered off and washed with ethanol, ethyl acetate and n-hexane. It was then dissolved in chloroform and acetonitrile (1:1) for recrystallization. Orange block-like crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of the solvents (yield 88%, m.p. 510–511 K).
Figure 4.
Reaction scheme for the synthesis of the title complex.
Analysis for C17H24N4O5PtS2 (FW: 623.61 g mol−1); calculated C, 32.71; H, 3.84; N, 8.97%; found: C, 32.67; H,3.76; N, 8.97%. IR (KBr pellets, cm−1): 3275 υ(NH), 3006 υ(CH3), 2927 and 2852 υ(CH, cyclohexyl), 1582 υ(C=N), 1544 υ(C=C, aromatic), 1220 υ(C—S), 439 υ(Pt—N). 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 8.56 (s, HC=N), δ 7.60 (d, J = 7.55 Hz, CS—NH), δ 7.73 (s, H-aromatic), δ 7.70 (s, H-aromatic), δ 3.77 (s, Ph—OCH3), δ 2.54 [s, S(CH3)2], δ 1.92–1.12 (multiplet, N—C6H11). 13C NMR (125 MHz, DMSO-d 6) δ 170.35 (C—S), δ 147.36 (C=N), δ 146.93–115.66 (C-aromatic), δ 56.14 (OCH3), δ 54.69 (N—C, cyclohexyl), δ 40.42 [S(CH3)2], δ 32.44–24.75 (N—C6H11) ppm.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The N-bound H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with U iso(H) = 1.5U eq(C–methyl) and 1.2U eq(C) for other C-bound H atoms.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | [Pt(C15H18N4O4S)(C2H6OS)] |
| M r | 623.61 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 296 |
| a, b, c (Å) | 6.5264 (3), 8.9024 (3), 18.9261 (7) |
| α, β, γ (°) | 82.228 (1), 87.074 (1), 74.739 (1) |
| V (Å3) | 1050.96 (7) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 6.91 |
| Crystal size (mm) | 0.49 × 0.21 × 0.15 |
| Data collection | |
| Diffractometer | Bruker APEX Duo CCD area detector |
| Absorption correction | Multi-scan (SADABS; Bruker, 2012 ▸) |
| T min, T max | 0.039, 0.092 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 41144, 6285, 5899 |
| R int | 0.030 |
| (sin θ/λ)max (Å−1) | 0.711 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.019, 0.042, 1.09 |
| No. of reflections | 6285 |
| No. of parameters | 269 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.98, −0.80 |
Supplementary Material
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012623/su5513sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012623/su5513Isup2.hkl
CCDC reference: 1524712
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Pt(C15H18N4O4S)(C2H6OS)] | Z = 2 |
| Mr = 623.61 | F(000) = 608 |
| Triclinic, P1 | Dx = 1.971 Mg m−3 |
| a = 6.5264 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.9024 (3) Å | Cell parameters from 9889 reflections |
| c = 18.9261 (7) Å | θ = 2.4–30.2° |
| α = 82.228 (1)° | µ = 6.91 mm−1 |
| β = 87.074 (1)° | T = 296 K |
| γ = 74.739 (1)° | Block, orange |
| V = 1050.96 (7) Å3 | 0.49 × 0.21 × 0.14 mm |
Data collection
| Bruker APEX Duo CCD area detector diffractometer | 6285 independent reflections |
| Radiation source: fine-focus sealed tube | 5899 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.030 |
| φ and ω scans | θmax = 30.4°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −9→9 |
| Tmin = 0.039, Tmax = 0.092 | k = −12→12 |
| 41144 measured reflections | l = −26→26 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: mixed |
| wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.09 | w = 1/[σ2(Fo2) + (0.0179P)2 + 0.4664P] where P = (Fo2 + 2Fc2)/3 |
| 6285 reflections | (Δ/σ)max = 0.001 |
| 269 parameters | Δρmax = 0.98 e Å−3 |
| 0 restraints | Δρmin = −0.80 e Å−3 |
Special details
| Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71080 6.582 8.984 19.105 82.236 87.079 74.752 |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Pt1 | 0.43753 (2) | 0.56002 (2) | 0.24360 (2) | 0.02894 (3) | |
| S1 | 0.16102 (9) | 0.50827 (6) | 0.30850 (3) | 0.03473 (12) | |
| S2 | 0.37664 (9) | 0.80884 (6) | 0.26345 (3) | 0.03468 (12) | |
| O1 | 0.6871 (3) | 0.60194 (19) | 0.18405 (10) | 0.0390 (4) | |
| O2 | 0.9041 (4) | 0.8000 (3) | 0.14108 (15) | 0.0723 (7) | |
| O3 | 1.1660 (4) | 0.7358 (3) | 0.07156 (15) | 0.0768 (8) | |
| O4 | 1.2756 (3) | 0.1801 (2) | 0.04000 (12) | 0.0554 (5) | |
| O5 | 0.1906 (3) | 0.8775 (2) | 0.30664 (12) | 0.0536 (5) | |
| N1 | 1.0219 (3) | 0.7032 (3) | 0.10813 (12) | 0.0431 (5) | |
| N2 | 0.4993 (3) | 0.3368 (2) | 0.22554 (9) | 0.0269 (3) | |
| N3 | 0.3775 (3) | 0.2401 (2) | 0.25670 (11) | 0.0328 (4) | |
| N4 | 0.0985 (3) | 0.2204 (2) | 0.33019 (12) | 0.0383 (4) | |
| C1 | 0.8250 (3) | 0.5008 (3) | 0.15095 (12) | 0.0313 (4) | |
| C2 | 0.9964 (4) | 0.5447 (3) | 0.11207 (12) | 0.0343 (5) | |
| C3 | 1.1483 (4) | 0.4417 (3) | 0.07519 (13) | 0.0394 (5) | |
| H3A | 1.2590 | 0.4754 | 0.0510 | 0.047* | |
| C4 | 1.1352 (4) | 0.2910 (3) | 0.07449 (13) | 0.0393 (5) | |
| C5 | 0.9686 (4) | 0.2432 (3) | 0.11050 (13) | 0.0374 (5) | |
| H5A | 0.9582 | 0.1415 | 0.1088 | 0.045* | |
| C6 | 0.8158 (3) | 0.3422 (3) | 0.14924 (12) | 0.0315 (4) | |
| C7 | 1.4562 (4) | 0.2214 (4) | 0.00674 (16) | 0.0520 (7) | |
| H7A | 1.5477 | 0.1318 | −0.0120 | 0.078* | |
| H7B | 1.5316 | 0.2554 | 0.0411 | 0.078* | |
| H7C | 1.4115 | 0.3049 | −0.0314 | 0.078* | |
| C8 | 0.6590 (4) | 0.2725 (3) | 0.18624 (12) | 0.0328 (4) | |
| H8A | 0.6737 | 0.1675 | 0.1814 | 0.039* | |
| C9 | 0.2195 (3) | 0.3102 (2) | 0.29690 (12) | 0.0299 (4) | |
| C10 | −0.0798 (3) | 0.2704 (3) | 0.37886 (12) | 0.0328 (4) | |
| H10A | −0.1680 | 0.3725 | 0.3583 | 0.039* | |
| C11 | −0.2114 (4) | 0.1513 (3) | 0.38496 (14) | 0.0409 (5) | |
| H11A | −0.2592 | 0.1448 | 0.3380 | 0.049* | |
| H11B | −0.1240 | 0.0486 | 0.4033 | 0.049* | |
| C12 | −0.4028 (4) | 0.1967 (4) | 0.43416 (17) | 0.0567 (8) | |
| H12A | −0.4989 | 0.2929 | 0.4127 | 0.068* | |
| H12B | −0.4778 | 0.1151 | 0.4396 | 0.068* | |
| C13 | −0.3399 (5) | 0.2203 (4) | 0.50658 (17) | 0.0617 (8) | |
| H13A | −0.2629 | 0.1201 | 0.5312 | 0.074* | |
| H13B | −0.4669 | 0.2597 | 0.5345 | 0.074* | |
| C14 | −0.2027 (6) | 0.3343 (4) | 0.50108 (18) | 0.0669 (9) | |
| H14A | −0.1554 | 0.3394 | 0.5482 | 0.080* | |
| H14B | −0.2864 | 0.4382 | 0.4827 | 0.080* | |
| C15 | −0.0102 (4) | 0.2858 (4) | 0.45248 (15) | 0.0479 (6) | |
| H15A | 0.0806 | 0.1863 | 0.4730 | 0.058* | |
| H15B | 0.0708 | 0.3637 | 0.4484 | 0.058* | |
| C16 | 0.6081 (5) | 0.8331 (3) | 0.30079 (16) | 0.0496 (6) | |
| H16A | 0.7288 | 0.7960 | 0.2707 | 0.074* | |
| H16B | 0.6294 | 0.7741 | 0.3474 | 0.074* | |
| H16C | 0.5912 | 0.9422 | 0.3044 | 0.074* | |
| C17 | 0.3707 (5) | 0.9254 (3) | 0.17999 (14) | 0.0443 (6) | |
| H17A | 0.5041 | 0.8925 | 0.1554 | 0.066* | |
| H17B | 0.3461 | 1.0336 | 0.1871 | 0.066* | |
| H17C | 0.2585 | 0.9137 | 0.1520 | 0.066* | |
| H1N4 | 0.133 (4) | 0.127 (3) | 0.3226 (15) | 0.040 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pt1 | 0.03200 (4) | 0.02243 (4) | 0.03352 (5) | −0.00897 (3) | 0.00631 (3) | −0.00618 (3) |
| S1 | 0.0360 (3) | 0.0249 (2) | 0.0439 (3) | −0.0090 (2) | 0.0134 (2) | −0.0097 (2) |
| S2 | 0.0416 (3) | 0.0244 (2) | 0.0400 (3) | −0.0110 (2) | 0.0086 (2) | −0.0094 (2) |
| O1 | 0.0397 (8) | 0.0291 (8) | 0.0510 (10) | −0.0137 (7) | 0.0176 (7) | −0.0124 (7) |
| O2 | 0.0736 (15) | 0.0459 (12) | 0.107 (2) | −0.0319 (11) | 0.0442 (14) | −0.0266 (12) |
| O3 | 0.0810 (16) | 0.0737 (16) | 0.0964 (19) | −0.0557 (14) | 0.0474 (14) | −0.0303 (14) |
| O4 | 0.0482 (10) | 0.0501 (11) | 0.0665 (13) | −0.0118 (9) | 0.0308 (9) | −0.0156 (10) |
| O5 | 0.0570 (11) | 0.0342 (9) | 0.0715 (14) | −0.0137 (8) | 0.0292 (10) | −0.0213 (9) |
| N1 | 0.0440 (11) | 0.0474 (12) | 0.0446 (12) | −0.0246 (10) | 0.0084 (9) | −0.0073 (10) |
| N2 | 0.0295 (8) | 0.0234 (8) | 0.0285 (9) | −0.0088 (6) | 0.0058 (7) | −0.0040 (7) |
| N3 | 0.0364 (9) | 0.0257 (8) | 0.0395 (10) | −0.0137 (7) | 0.0125 (8) | −0.0093 (7) |
| N4 | 0.0423 (10) | 0.0287 (10) | 0.0475 (12) | −0.0146 (8) | 0.0196 (9) | −0.0136 (9) |
| C1 | 0.0318 (10) | 0.0323 (11) | 0.0307 (11) | −0.0099 (8) | 0.0034 (8) | −0.0048 (8) |
| C2 | 0.0345 (10) | 0.0372 (11) | 0.0340 (11) | −0.0155 (9) | 0.0036 (9) | −0.0039 (9) |
| C3 | 0.0338 (11) | 0.0506 (14) | 0.0356 (12) | −0.0151 (10) | 0.0070 (9) | −0.0059 (10) |
| C4 | 0.0352 (11) | 0.0435 (13) | 0.0367 (12) | −0.0073 (10) | 0.0092 (9) | −0.0060 (10) |
| C5 | 0.0378 (11) | 0.0341 (11) | 0.0391 (12) | −0.0086 (9) | 0.0084 (9) | −0.0052 (9) |
| C6 | 0.0316 (10) | 0.0319 (11) | 0.0313 (11) | −0.0093 (8) | 0.0063 (8) | −0.0055 (8) |
| C7 | 0.0377 (13) | 0.0660 (18) | 0.0514 (16) | −0.0123 (12) | 0.0170 (11) | −0.0135 (14) |
| C8 | 0.0366 (11) | 0.0263 (10) | 0.0366 (12) | −0.0103 (8) | 0.0092 (9) | −0.0077 (9) |
| C9 | 0.0307 (10) | 0.0261 (10) | 0.0349 (11) | −0.0099 (8) | 0.0058 (8) | −0.0074 (8) |
| C10 | 0.0305 (10) | 0.0301 (10) | 0.0376 (12) | −0.0089 (8) | 0.0093 (9) | −0.0056 (9) |
| C11 | 0.0385 (12) | 0.0480 (14) | 0.0409 (13) | −0.0214 (11) | 0.0047 (10) | −0.0031 (11) |
| C12 | 0.0345 (12) | 0.073 (2) | 0.0617 (19) | −0.0205 (13) | 0.0095 (12) | 0.0031 (15) |
| C13 | 0.0555 (17) | 0.074 (2) | 0.0497 (17) | −0.0136 (15) | 0.0238 (14) | −0.0007 (15) |
| C14 | 0.082 (2) | 0.074 (2) | 0.0501 (18) | −0.0261 (18) | 0.0280 (16) | −0.0259 (16) |
| C15 | 0.0490 (14) | 0.0564 (16) | 0.0465 (15) | −0.0244 (13) | 0.0084 (12) | −0.0166 (13) |
| C16 | 0.0622 (17) | 0.0440 (14) | 0.0489 (16) | −0.0207 (13) | −0.0070 (13) | −0.0120 (12) |
| C17 | 0.0620 (16) | 0.0285 (11) | 0.0433 (14) | −0.0135 (11) | −0.0024 (12) | −0.0033 (10) |
Geometric parameters (Å, º)
| Pt1—N2 | 1.9936 (17) | C6—C8 | 1.438 (3) |
| Pt1—O1 | 2.0201 (15) | C7—H7A | 0.9600 |
| Pt1—S2 | 2.2254 (5) | C7—H7B | 0.9600 |
| Pt1—S1 | 2.2441 (5) | C7—H7C | 0.9600 |
| S1—C9 | 1.745 (2) | C8—H8A | 0.9300 |
| S2—O5 | 1.4694 (18) | C10—C11 | 1.521 (3) |
| S2—C17 | 1.765 (3) | C10—C15 | 1.522 (4) |
| S2—C16 | 1.774 (3) | C10—H10A | 0.9800 |
| O1—C1 | 1.297 (3) | C11—C12 | 1.519 (4) |
| O2—N1 | 1.212 (3) | C11—H11A | 0.9700 |
| O3—N1 | 1.213 (3) | C11—H11B | 0.9700 |
| O4—C4 | 1.370 (3) | C12—C13 | 1.507 (5) |
| O4—C7 | 1.418 (3) | C12—H12A | 0.9700 |
| N1—C2 | 1.456 (3) | C12—H12B | 0.9700 |
| N2—C8 | 1.300 (3) | C13—C14 | 1.511 (5) |
| N2—N3 | 1.377 (2) | C13—H13A | 0.9700 |
| N3—C9 | 1.320 (3) | C13—H13B | 0.9700 |
| N4—C9 | 1.343 (3) | C14—C15 | 1.521 (4) |
| N4—C10 | 1.460 (3) | C14—H14A | 0.9700 |
| N4—H1N4 | 0.83 (3) | C14—H14B | 0.9700 |
| C1—C2 | 1.419 (3) | C15—H15A | 0.9700 |
| C1—C6 | 1.434 (3) | C15—H15B | 0.9700 |
| C2—C3 | 1.391 (3) | C16—H16A | 0.9600 |
| C3—C4 | 1.369 (4) | C16—H16B | 0.9600 |
| C3—H3A | 0.9300 | C16—H16C | 0.9600 |
| C4—C5 | 1.385 (3) | C17—H17A | 0.9600 |
| C5—C6 | 1.395 (3) | C17—H17B | 0.9600 |
| C5—H5A | 0.9300 | C17—H17C | 0.9600 |
| N2—Pt1—O1 | 93.95 (6) | N3—C9—N4 | 116.41 (19) |
| N2—Pt1—S2 | 178.65 (5) | N3—C9—S1 | 124.17 (16) |
| O1—Pt1—S2 | 84.87 (5) | N4—C9—S1 | 119.42 (16) |
| N2—Pt1—S1 | 84.74 (5) | N4—C10—C11 | 107.99 (19) |
| O1—Pt1—S1 | 178.63 (5) | N4—C10—C15 | 113.0 (2) |
| S2—Pt1—S1 | 96.45 (2) | C11—C10—C15 | 109.9 (2) |
| C9—S1—Pt1 | 96.02 (7) | N4—C10—H10A | 108.6 |
| O5—S2—C17 | 109.52 (13) | C11—C10—H10A | 108.6 |
| O5—S2—C16 | 109.00 (14) | C15—C10—H10A | 108.6 |
| C17—S2—C16 | 101.25 (14) | C12—C11—C10 | 111.1 (2) |
| O5—S2—Pt1 | 119.46 (8) | C12—C11—H11A | 109.4 |
| C17—S2—Pt1 | 107.80 (9) | C10—C11—H11A | 109.4 |
| C16—S2—Pt1 | 108.28 (10) | C12—C11—H11B | 109.4 |
| C1—O1—Pt1 | 126.00 (14) | C10—C11—H11B | 109.4 |
| C4—O4—C7 | 117.3 (2) | H11A—C11—H11B | 108.0 |
| O2—N1—O3 | 120.7 (2) | C13—C12—C11 | 112.0 (2) |
| O2—N1—C2 | 121.1 (2) | C13—C12—H12A | 109.2 |
| O3—N1—C2 | 118.2 (2) | C11—C12—H12A | 109.2 |
| C8—N2—N3 | 116.09 (17) | C13—C12—H12B | 109.2 |
| C8—N2—Pt1 | 122.71 (14) | C11—C12—H12B | 109.2 |
| N3—N2—Pt1 | 121.16 (13) | H12A—C12—H12B | 107.9 |
| C9—N3—N2 | 113.79 (17) | C12—C13—C14 | 111.7 (3) |
| C9—N4—C10 | 126.23 (19) | C12—C13—H13A | 109.3 |
| C9—N4—H1N4 | 115 (2) | C14—C13—H13A | 109.3 |
| C10—N4—H1N4 | 118 (2) | C12—C13—H13B | 109.3 |
| O1—C1—C2 | 120.4 (2) | C14—C13—H13B | 109.3 |
| O1—C1—C6 | 124.07 (19) | H13A—C13—H13B | 107.9 |
| C2—C1—C6 | 115.6 (2) | C13—C14—C15 | 111.6 (3) |
| C3—C2—C1 | 123.0 (2) | C13—C14—H14A | 109.3 |
| C3—C2—N1 | 115.8 (2) | C15—C14—H14A | 109.3 |
| C1—C2—N1 | 121.2 (2) | C13—C14—H14B | 109.3 |
| C4—C3—C2 | 120.1 (2) | C15—C14—H14B | 109.3 |
| C4—C3—H3A | 119.9 | H14A—C14—H14B | 108.0 |
| C2—C3—H3A | 119.9 | C14—C15—C10 | 110.4 (2) |
| C3—C4—O4 | 125.0 (2) | C14—C15—H15A | 109.6 |
| C3—C4—C5 | 119.2 (2) | C10—C15—H15A | 109.6 |
| O4—C4—C5 | 115.8 (2) | C14—C15—H15B | 109.6 |
| C4—C5—C6 | 122.3 (2) | C10—C15—H15B | 109.6 |
| C4—C5—H5A | 118.9 | H15A—C15—H15B | 108.1 |
| C6—C5—H5A | 118.9 | S2—C16—H16A | 109.5 |
| C5—C6—C1 | 119.9 (2) | S2—C16—H16B | 109.5 |
| C5—C6—C8 | 115.4 (2) | H16A—C16—H16B | 109.5 |
| C1—C6—C8 | 124.71 (19) | S2—C16—H16C | 109.5 |
| O4—C7—H7A | 109.5 | H16A—C16—H16C | 109.5 |
| O4—C7—H7B | 109.5 | H16B—C16—H16C | 109.5 |
| H7A—C7—H7B | 109.5 | S2—C17—H17A | 109.5 |
| O4—C7—H7C | 109.5 | S2—C17—H17B | 109.5 |
| H7A—C7—H7C | 109.5 | H17A—C17—H17B | 109.5 |
| H7B—C7—H7C | 109.5 | S2—C17—H17C | 109.5 |
| N2—C8—C6 | 128.5 (2) | H17A—C17—H17C | 109.5 |
| N2—C8—H8A | 115.8 | H17B—C17—H17C | 109.5 |
| C6—C8—H8A | 115.8 | ||
| C8—N2—N3—C9 | 179.0 (2) | C2—C1—C6—C5 | −0.5 (3) |
| Pt1—N2—N3—C9 | 1.3 (3) | O1—C1—C6—C8 | −2.8 (4) |
| Pt1—O1—C1—C2 | −178.56 (16) | C2—C1—C6—C8 | 178.4 (2) |
| Pt1—O1—C1—C6 | 2.7 (3) | N3—N2—C8—C6 | −177.9 (2) |
| O1—C1—C2—C3 | −179.6 (2) | Pt1—N2—C8—C6 | −0.2 (3) |
| C6—C1—C2—C3 | −0.8 (3) | C5—C6—C8—N2 | −179.5 (2) |
| O1—C1—C2—N1 | −0.1 (3) | C1—C6—C8—N2 | 1.5 (4) |
| C6—C1—C2—N1 | 178.7 (2) | N2—N3—C9—N4 | −178.3 (2) |
| O2—N1—C2—C3 | −176.5 (3) | N2—N3—C9—S1 | 1.8 (3) |
| O3—N1—C2—C3 | 2.7 (4) | C10—N4—C9—N3 | 178.0 (2) |
| O2—N1—C2—C1 | 4.0 (4) | C10—N4—C9—S1 | −2.2 (3) |
| O3—N1—C2—C1 | −176.8 (3) | Pt1—S1—C9—N3 | −3.4 (2) |
| C1—C2—C3—C4 | 0.9 (4) | Pt1—S1—C9—N4 | 176.77 (19) |
| N1—C2—C3—C4 | −178.6 (2) | C9—N4—C10—C11 | 162.2 (2) |
| C2—C3—C4—O4 | 180.0 (2) | C9—N4—C10—C15 | −76.0 (3) |
| C2—C3—C4—C5 | 0.4 (4) | N4—C10—C11—C12 | −179.2 (2) |
| C7—O4—C4—C3 | 4.7 (4) | C15—C10—C11—C12 | 57.2 (3) |
| C7—O4—C4—C5 | −175.7 (2) | C10—C11—C12—C13 | −54.9 (3) |
| C3—C4—C5—C6 | −1.7 (4) | C11—C12—C13—C14 | 53.0 (4) |
| O4—C4—C5—C6 | 178.7 (2) | C12—C13—C14—C15 | −54.0 (4) |
| C4—C5—C6—C1 | 1.8 (4) | C13—C14—C15—C10 | 56.7 (4) |
| C4—C5—C6—C8 | −177.2 (2) | N4—C10—C15—C14 | −178.6 (2) |
| O1—C1—C6—C5 | 178.3 (2) | C11—C10—C15—C14 | −57.9 (3) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of chelate ring Pt1/S1/N2/N3/C9.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C17—H17A···O2 | 0.96 | 2.53 | 3.438 (4) | 157 |
| N4—H1N4···O5i | 0.83 (3) | 2.21 (3) | 3.042 (2) | 174 (2) |
| C17—H17B···N3ii | 0.96 | 2.46 | 3.336 (3) | 152 |
| C17—H17C···O3iii | 0.96 | 2.54 | 3.354 (4) | 143 |
| C12—H12A···Cg1iii | 0.97 | 2.95 | 3.669 (3) | 131 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) x−1, y, z.
Funding Statement
This work was funded by Universiti Sains Malaysia grant 1001/PKIMIA/811269. Universiti Sains Malaysia grant . The World Academy of Sciences grant .
References
- Anacona, J. R., Bastardo, E. & Camus, J. (1999). Transition Met. Chem. 24, 478–480.
- Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.
- Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791–798.
- Arafath, M. A., Al–Suede, F. S., Adam, F., Al–Juaid, S., Khadeer Ahamed, M. B. & Majid, A. M. (2019). Drug Dev. Res. In the press. [DOI] [PubMed]
- Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 1460–1462. [DOI] [PMC free article] [PubMed]
- Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016). J. Fluor. Chem. 191, 129–142.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hanifehpour, Y., Mirtamizdoust, B., Hatami, M., Khomami, B. & Joo, S. W. (2015). J. Mol. Struct. 1091, 43–48.
- Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
- Kovala-Demertzi, D., Demertzis, M. A., Filiou, E., Pantazaki, A. A., Yadav, P. N., Miller, J. R., Zheng, Y. & Kyriakidis, D. A. (2003). Biometals, 16, 411–418. [DOI] [PubMed]
- Kovala-Demertzi, D., Demertzis, M. A., Miller, J., Papadopoulou, C., Dodorou, C. & Filousis, G. (2001). J. Inorg. Biochem. 86, 555–563. [DOI] [PubMed]
- Kovala-Demertzi, D., Miller, J. R., Kourkoumelis, N., Hadjikakou, S. K. & Demertzis, M. A. (1999). Polyhedron, 18, 1005–1013.
- Kovala-Demertzi, D., Yadav, P. N., Demertzis, M. A. & Coluccia, M. (2000). J. Inorg. Biochem. 78, 347–354. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nomiya, K., Tsuda, K. & Kasuga, N. (1998). J. Chem. Soc. Dalton Trans. pp. 1653–1660.
- Peyrone, M. (1844). Eur. J. Org. Chem. 51, 1–29.
- Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699. [DOI] [PubMed]
- Sajitha, N. R., Sithambaresan, M. & Kurup, M. R. P. (2014). Acta Cryst. E70, o987–o988. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tarafder, M., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012623/su5513sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012623/su5513Isup2.hkl
CCDC reference: 1524712
Additional supporting information: crystallographic information; 3D view; checkCIF report





