Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Sep 12;75(Pt 10):1486–1489. doi: 10.1107/S2056989019012623

The crystal structure of ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN 2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II): a supra­molecular two-dimensional network

Md Azharul Arafath a,*, Huey Chong Kwong b, Farook Adam b
PMCID: PMC6775752  PMID: 31636980

The title complex consists of a PtII atom coordinated in a square-planar environment by a dimethyl sulfoxide mol­ecule and a thio­semicarbazone ligand. The overall conformation of the title complex is discussed and compared with related ligands. In the crystal, mol­ecules are assembled via hydrogen bonds and C–H⋯π inter­actions forming a two-dimensional network.

Keywords: crystal structure, cyclo­hexyl­hydrazinecarbo­thio­amide, soft Lewis base, carbo­thio­amide Schiff base, hydrogen bonding, C—H⋯π inter­actions

Abstract

The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio­semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π inter­actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo­hexyl­hydrazine-1-carbo­thio­amide ligands are compared to that of the title compound.

Chemical context  

Schiff base ligands and their complexes with transitional metals form an important functionality in medicinal, industrial and coordination chemistry (Hanifehpour et al., 2015; Singh et al., 2007). Cisplatin was synthesized by Peyrone in 1844 (Peyrone, 1844), and its use for treatment against human cancer was authorized in 1978, the biological effects of this compound on cancer cells having been discovered serendipitously by Rosenberg and co-workers in 1965 (Rosenburg et al., 1965). Work by medicinal chemists on the coordination and biological properties of metal complexes has contributed to the emergence of modern medicinal chemistry, which was inspired by the discovery of cisplatin. The thio­semicarbazone moiety containing Schiff base ligands chelated to platinum(II) shows high anti­tumor and anti­cancer activity; metal-based drugs are more promising and convenient as therapeutic agents (Nomiya et al., 1998; Kovala-Demertzi et al., 2003; Kovala-Demertzi et al., 2000; Anacona et al., 1999; Arafath et al., 2017b ). The complexes of PtII with 4(N)-substituted deriv­atives of 2-acetyl­pyridine thio­semicarbazone exhibit potential anti­tumor, anti­cancer, anti­bacterial, anti­neoplastic and cytogenetic activities (Kovala-Demertzi et al., 1999, 2000, 2001). Carbazate containing N- and S-coordinating sites chelated to PtII exhibits potential anti­bacterial and anti­cancer activity (Tarafder et al., 2002; Arafath et al., 2019). Herein we describe the synthesis and crystal structure of one such complex, ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN 2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II), I.graphic file with name e-75-01486-scheme1.jpg

Structural commentary  

The mol­ecular structure of complex I is shown in Fig. 1. Selected geometrical parameters involving atom Pt1 are given in Table 1. The PtII atom is four-coordinate, creating a square-planar PtNOS2 environment with a maximum deviation of 0.0105 (2) Å for atom N2. The coordination environment consists of a thio­semicarbazone and a dimethyl sulfoxide mol­ecule. The thio­semicarbazone mol­ecule coordinates in a tridentate manner through thio­amide sulfur atom S1, azo­meth­ine nitro­gen N2 and phenyl oxygen O1, creating two chelate rings which are coplanar; the dihedral angle between the mean planes of the five-membered Pt1/S1/N2/N3/C9 and six-membered Pt1/O1/N2/C1/C6/C8 chelate rings is 1.51 (7)°. The benzene ring (C1–C6) is almost coplanar with both chelate rings, making dihedral angles of 2.82 (9) and 1.36 (10)°, respectively. The bite angles formed between the thio­semicarbazone ligand and the metal are N2—Pt1—S1 = 84.74 (5)° and O1—Pt1—N2 = 93.95 (6)°. The angles formed between the thio­semicarbazone, metal and the dimethyl sulfoxide are O1—Pt1—S2 = 84.87 (5)° and S1—Pt1—S2 = 96.45 (2)°. As a result of chelation, the two azomethine C=N double bonds, N2=C8 and N3=C9, are in Z and E configurations, respectively. This leads to both azomethine double bonds adopting a s-trans conformation with respect to each other. The cyclo­hexane ring adopts a chair conformation with puckering amplitude Q = 0.567 (3) Å, θ = 175.9 (3)° and φ = 160 (5)°, and forms a torsion angle (C9—N4—C10—C11) of 162.2 (2)° to the Pt1/S1/N2/N3/C9 chelate ring. In the 5-meth­oxy-3-nitro-2-oxidobenzyl ring, the meth­oxy and nitro groups are almost coplanar with the benzene ring, as indicated by the torsion angles O2—N1—C2—C1 = 4.0 (4)° and C7—O4—C4—C3 = 4.7 (4)°. Oxygen atom O5 of the dimethyl sulfoxide mol­ecule is almost coplanar with both chelate rings [O5—S2—Pt1—S1 = 1.83 (11)°], whereas the methyl groups are twisted with respect to the chelate ring [C16—S2—Pt1—S1 =123.64 (11) and C17—S2—Pt1—S1 = −127.60 (12) °]. In the mol­ecule, atom O2 of the nitro group acts as a hydrogen-bond acceptor for the adjacent methyl group, forming an intra­molecular C—H⋯O hydrogen bond with an S(9) ring motif (Fig. 1, Table 2).

Figure 1.

Figure 1

The mol­ecular structure of complex I, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

Pt1—N2 1.9936 (17) Pt1—S2 2.2254 (5)
Pt1—O1 2.0201 (15) Pt1—S1 2.2441 (5)
       
N2—Pt1—O1 93.95 (6) N2—Pt1—S1 84.74 (5)
N2—Pt1—S2 178.65 (5) O1—Pt1—S1 178.63 (5)
O1—Pt1—S2 84.87 (5) S2—Pt1—S1 96.45 (2)

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of chelate ring Pt1/S1/N2/N3/C9.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O2 0.96 2.53 3.438 (4) 157
N4—H1N4⋯O5i 0.83 (3) 2.21 (3) 3.042 (2) 174 (2)
C17—H17B⋯N3ii 0.96 2.46 3.336 (3) 152
C17—H17C⋯O3iii 0.96 2.54 3.354 (4) 143
C12—H12ACg1iii 0.97 2.95 3.669 (3) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal of I, mol­ecules are linked by N4—H1N4⋯O5i and C17—H17⋯N3ii hydrogen bonds, enclosing an Inline graphic(8) ring motif and forming chains propagating along the b-axis direction (Fig. 2, Table 2). The chains are inter­connected via C17—H17C⋯O3iii hydrogen bonds, forming a two-dimensional network parallel to the ab plane (Fig. 3). These chains are further stabilized by C12—H12ACg1iii inter­actions, where Cg1 is the centroid of the Pt1/S1/N2/N3/C9 chelate ring (Fig. 3, Table 2). In addition, short inter­molecular O3⋯C7(−x + 3, −y + 1, −z) contacts of 2.897 (4) Å are observed; these are ∼0.32 Å shorter than the sum of van der Waals radii of carbon and oxygen atoms.

Figure 2.

Figure 2

A view of the hydrogen-bonded chain formed by N—H⋯O and C—H⋯N hydrogen bonds [dashed lines; symmetry code: (i) x, y − 1, z]. Hydrogen atoms not involved in these inter­actions have been omitted for clarity.

Figure 3.

Figure 3

A view along the c axis of the crystal packing of complex I. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions are represented as dashed blue arrows (Table 1). Hydrogen atoms not involved in these inter­actions have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.40, last update May 2019; Groom et al., 2016) using (E)-2-(2-(λ1-oxidan­yl)benzyl­idene)-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide as the reference skeleton resulted in five related ligands containing cyclo­hexyl­hydrazine-1-carbo­thio­amide with different substituents. They include (E)-2-(R 1)-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide, where R1 = (2-hydro­naphthalen-1-yl)methyl­ene (BEFZIY; Basheer et al., 2016), 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene (LAQCIR; Jacob & Kurup, 2012), 4-(benz­yloxy)-2-hy­droxy­benzyl­idene (MOKPOT; Sajitha et al., 2014), 5-chloro-2-hy­droxy­benzyl­idene (OBOLOJ; Arafath et al., 2017a ), and 3-(tert-but­yl)-2-hy­droxy­benzyl­idene (YUXJOS; Arafath et al., 2018). Selected geometrical parameters of I and the related structures are given in Table 3. As the ligand mol­ecule in I is chelated to platinum, it exists in a different tautomeric form. In I, the O1—C1 and S1—C9 bond lengths of 1.297 (3) and 1.745 (2) Å, respectively, are different from those in related ligands [O1—C1 and S1—C9 bond lengths in the ranges 1.350–1.362 and 1.683–1.693 Å, respectively]. As a chelating effect, the formation of the N3=C9 azomethine double bond is confirmed by its length [1.320 (3) Å], compared to 1.342–1.364 Å in related ligands. A decrease of the N2—N3—C9 angle is observed [119.03–121.82° compared to 113.79 (17)° in I]. Furthermore, the N2—N3—C9—N4 torsion angle in I has an anti­periplanar [−178.3 (2)°] conformation, whereas this torsion angle is in a synperiplanar [4.08–12.51°] conformation in the related ligands

Table 3. Selected geometrical parameters for I and related ligands (Å, °).

  I BEFZIY LAQCIR MOKPOTa OBOLOJ YUXJOS
Pt1—O1 2.0201 (15)
Pt1—N2 1.9936 (17)
Pt1—S1 2.2441 (5)
Pt1—S2 2.2254 (5)
O1—C1 1.297 (3) 1.352 1.350 1.355, 1.350 1.360 1.362
S1—C9 1.745 (2) 1.693 1.685 1.683, 1.683 1.688 1.691
C6—C8 1.438 (3) 1.488 1.448 1.443, 1.448 1.459 1.457
C8—N2 1.300 (3) 1.294 1.268 1.281, 1.278 1.279 1.287
N2—N3 1.377 (2) 1.373 1.363 1.380, 1.379 1.369 1.388
N3—C9 1.320 (3) 1.354 1.342 1.346, 1.343 1.364 1.357
N4—C9 1.343 (3) 1.335 1.308 1.319, 1.323 1.325 1.336
N4—C10 1.460 (3) 1.467 1.455 1.464, 1.455 1.465 1.466
N2—N3—C9 113.79 (17) 121.82 120.90 121.70, 120.82 121.03 119.03
N3—C9—N4 116.41 (19) 117.02 116.60 117.35, 117.16 115.84 116.29
N2—N3—C9—N4 −178.3 (2) −6.83 4.08 −6.04, 5.25 −5.50 12.51

Note: (a) MOKPOT crystallized with two independent mol­ecules in the asymmetric unit.

Synthesis and crystallization  

The reaction scheme for the synthesis of complex I is given in Fig. 4. The ligand (E)-N-cyclo­hexyl-2-(2-hy­droxy-5-meth­oxy-3-nitro­benzyl­idene)hydrazine-1-carbo­thio­amide (0.71 g, 2.00 mmol) was dissolved in 20 ml of methanol. A 2 mmol solution of NaOH in 10 ml of methanol was added and the mixture was refluxed for 30 min. A solution of K2PtCl4 (0.83 g, 2.00 mmol) was dissolved in 2 ml of DMSO and refluxed for 30 min. The resulting platinum(II) solution was added dropwise under stirring to the ligand solution under an Ar atmos­phere and refluxed for 24 h. The reddish-orange precipitate that formed was filtered off and washed with ethanol, ethyl acetate and n-hexane. It was then dissolved in chloro­form and aceto­nitrile (1:1) for recrystallization. Orange block-like crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of the solvents (yield 88%, m.p. 510–511 K).

Figure 4.

Figure 4

Reaction scheme for the synthesis of the title complex.

Analysis for C17H24N4O5PtS2 (FW: 623.61 g mol−1); calculated C, 32.71; H, 3.84; N, 8.97%; found: C, 32.67; H,3.76; N, 8.97%. IR (KBr pellets, cm−1): 3275 υ(NH), 3006 υ(CH3), 2927 and 2852 υ(CH, cyclo­hex­yl), 1582 υ(C=N), 1544 υ(C=C, aromatic), 1220 υ(C—S), 439 υ(Pt—N). 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 8.56 (s, HC=N), δ 7.60 (d, J = 7.55 Hz, CS—NH), δ 7.73 (s, H-aromatic), δ 7.70 (s, H-aromatic), δ 3.77 (s, Ph—OCH3), δ 2.54 [s, S(CH3)2], δ 1.92–1.12 (multiplet, N—C6H11). 13C NMR (125 MHz, DMSO-d 6) δ 170.35 (C—S), δ 147.36 (C=N), δ 146.93–115.66 (C-aromatic), δ 56.14 (OCH3), δ 54.69 (N—C, cyclo­hex­yl), δ 40.42 [S(CH3)2], δ 32.44–24.75 (N—C6H11) ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The N-bound H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically (CH = 0.93–0.98 Å) and refined using a riding model with U iso(H) = 1.5U eq(C–meth­yl) and 1.2U eq(C) for other C-bound H atoms.

Table 4. Experimental details.

Crystal data
Chemical formula [Pt(C15H18N4O4S)(C2H6OS)]
M r 623.61
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 6.5264 (3), 8.9024 (3), 18.9261 (7)
α, β, γ (°) 82.228 (1), 87.074 (1), 74.739 (1)
V3) 1050.96 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.91
Crystal size (mm) 0.49 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker APEX Duo CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.039, 0.092
No. of measured, independent and observed [I > 2σ(I)] reflections 41144, 6285, 5899
R int 0.030
(sin θ/λ)max−1) 0.711
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.042, 1.09
No. of reflections 6285
No. of parameters 269
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.98, −0.80

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012623/su5513sup1.cif

e-75-01486-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012623/su5513Isup2.hkl

e-75-01486-Isup2.hkl (499.5KB, hkl)

CCDC reference: 1524712

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Pt(C15H18N4O4S)(C2H6OS)] Z = 2
Mr = 623.61 F(000) = 608
Triclinic, P1 Dx = 1.971 Mg m3
a = 6.5264 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9024 (3) Å Cell parameters from 9889 reflections
c = 18.9261 (7) Å θ = 2.4–30.2°
α = 82.228 (1)° µ = 6.91 mm1
β = 87.074 (1)° T = 296 K
γ = 74.739 (1)° Block, orange
V = 1050.96 (7) Å3 0.49 × 0.21 × 0.14 mm

Data collection

Bruker APEX Duo CCD area detector diffractometer 6285 independent reflections
Radiation source: fine-focus sealed tube 5899 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 30.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −9→9
Tmin = 0.039, Tmax = 0.092 k = −12→12
41144 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: mixed
wR(F2) = 0.042 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.4664P] where P = (Fo2 + 2Fc2)/3
6285 reflections (Δ/σ)max = 0.001
269 parameters Δρmax = 0.98 e Å3
0 restraints Δρmin = −0.80 e Å3

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71080 6.582 8.984 19.105 82.236 87.079 74.752
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.43753 (2) 0.56002 (2) 0.24360 (2) 0.02894 (3)
S1 0.16102 (9) 0.50827 (6) 0.30850 (3) 0.03473 (12)
S2 0.37664 (9) 0.80884 (6) 0.26345 (3) 0.03468 (12)
O1 0.6871 (3) 0.60194 (19) 0.18405 (10) 0.0390 (4)
O2 0.9041 (4) 0.8000 (3) 0.14108 (15) 0.0723 (7)
O3 1.1660 (4) 0.7358 (3) 0.07156 (15) 0.0768 (8)
O4 1.2756 (3) 0.1801 (2) 0.04000 (12) 0.0554 (5)
O5 0.1906 (3) 0.8775 (2) 0.30664 (12) 0.0536 (5)
N1 1.0219 (3) 0.7032 (3) 0.10813 (12) 0.0431 (5)
N2 0.4993 (3) 0.3368 (2) 0.22554 (9) 0.0269 (3)
N3 0.3775 (3) 0.2401 (2) 0.25670 (11) 0.0328 (4)
N4 0.0985 (3) 0.2204 (2) 0.33019 (12) 0.0383 (4)
C1 0.8250 (3) 0.5008 (3) 0.15095 (12) 0.0313 (4)
C2 0.9964 (4) 0.5447 (3) 0.11207 (12) 0.0343 (5)
C3 1.1483 (4) 0.4417 (3) 0.07519 (13) 0.0394 (5)
H3A 1.2590 0.4754 0.0510 0.047*
C4 1.1352 (4) 0.2910 (3) 0.07449 (13) 0.0393 (5)
C5 0.9686 (4) 0.2432 (3) 0.11050 (13) 0.0374 (5)
H5A 0.9582 0.1415 0.1088 0.045*
C6 0.8158 (3) 0.3422 (3) 0.14924 (12) 0.0315 (4)
C7 1.4562 (4) 0.2214 (4) 0.00674 (16) 0.0520 (7)
H7A 1.5477 0.1318 −0.0120 0.078*
H7B 1.5316 0.2554 0.0411 0.078*
H7C 1.4115 0.3049 −0.0314 0.078*
C8 0.6590 (4) 0.2725 (3) 0.18624 (12) 0.0328 (4)
H8A 0.6737 0.1675 0.1814 0.039*
C9 0.2195 (3) 0.3102 (2) 0.29690 (12) 0.0299 (4)
C10 −0.0798 (3) 0.2704 (3) 0.37886 (12) 0.0328 (4)
H10A −0.1680 0.3725 0.3583 0.039*
C11 −0.2114 (4) 0.1513 (3) 0.38496 (14) 0.0409 (5)
H11A −0.2592 0.1448 0.3380 0.049*
H11B −0.1240 0.0486 0.4033 0.049*
C12 −0.4028 (4) 0.1967 (4) 0.43416 (17) 0.0567 (8)
H12A −0.4989 0.2929 0.4127 0.068*
H12B −0.4778 0.1151 0.4396 0.068*
C13 −0.3399 (5) 0.2203 (4) 0.50658 (17) 0.0617 (8)
H13A −0.2629 0.1201 0.5312 0.074*
H13B −0.4669 0.2597 0.5345 0.074*
C14 −0.2027 (6) 0.3343 (4) 0.50108 (18) 0.0669 (9)
H14A −0.1554 0.3394 0.5482 0.080*
H14B −0.2864 0.4382 0.4827 0.080*
C15 −0.0102 (4) 0.2858 (4) 0.45248 (15) 0.0479 (6)
H15A 0.0806 0.1863 0.4730 0.058*
H15B 0.0708 0.3637 0.4484 0.058*
C16 0.6081 (5) 0.8331 (3) 0.30079 (16) 0.0496 (6)
H16A 0.7288 0.7960 0.2707 0.074*
H16B 0.6294 0.7741 0.3474 0.074*
H16C 0.5912 0.9422 0.3044 0.074*
C17 0.3707 (5) 0.9254 (3) 0.17999 (14) 0.0443 (6)
H17A 0.5041 0.8925 0.1554 0.066*
H17B 0.3461 1.0336 0.1871 0.066*
H17C 0.2585 0.9137 0.1520 0.066*
H1N4 0.133 (4) 0.127 (3) 0.3226 (15) 0.040 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.03200 (4) 0.02243 (4) 0.03352 (5) −0.00897 (3) 0.00631 (3) −0.00618 (3)
S1 0.0360 (3) 0.0249 (2) 0.0439 (3) −0.0090 (2) 0.0134 (2) −0.0097 (2)
S2 0.0416 (3) 0.0244 (2) 0.0400 (3) −0.0110 (2) 0.0086 (2) −0.0094 (2)
O1 0.0397 (8) 0.0291 (8) 0.0510 (10) −0.0137 (7) 0.0176 (7) −0.0124 (7)
O2 0.0736 (15) 0.0459 (12) 0.107 (2) −0.0319 (11) 0.0442 (14) −0.0266 (12)
O3 0.0810 (16) 0.0737 (16) 0.0964 (19) −0.0557 (14) 0.0474 (14) −0.0303 (14)
O4 0.0482 (10) 0.0501 (11) 0.0665 (13) −0.0118 (9) 0.0308 (9) −0.0156 (10)
O5 0.0570 (11) 0.0342 (9) 0.0715 (14) −0.0137 (8) 0.0292 (10) −0.0213 (9)
N1 0.0440 (11) 0.0474 (12) 0.0446 (12) −0.0246 (10) 0.0084 (9) −0.0073 (10)
N2 0.0295 (8) 0.0234 (8) 0.0285 (9) −0.0088 (6) 0.0058 (7) −0.0040 (7)
N3 0.0364 (9) 0.0257 (8) 0.0395 (10) −0.0137 (7) 0.0125 (8) −0.0093 (7)
N4 0.0423 (10) 0.0287 (10) 0.0475 (12) −0.0146 (8) 0.0196 (9) −0.0136 (9)
C1 0.0318 (10) 0.0323 (11) 0.0307 (11) −0.0099 (8) 0.0034 (8) −0.0048 (8)
C2 0.0345 (10) 0.0372 (11) 0.0340 (11) −0.0155 (9) 0.0036 (9) −0.0039 (9)
C3 0.0338 (11) 0.0506 (14) 0.0356 (12) −0.0151 (10) 0.0070 (9) −0.0059 (10)
C4 0.0352 (11) 0.0435 (13) 0.0367 (12) −0.0073 (10) 0.0092 (9) −0.0060 (10)
C5 0.0378 (11) 0.0341 (11) 0.0391 (12) −0.0086 (9) 0.0084 (9) −0.0052 (9)
C6 0.0316 (10) 0.0319 (11) 0.0313 (11) −0.0093 (8) 0.0063 (8) −0.0055 (8)
C7 0.0377 (13) 0.0660 (18) 0.0514 (16) −0.0123 (12) 0.0170 (11) −0.0135 (14)
C8 0.0366 (11) 0.0263 (10) 0.0366 (12) −0.0103 (8) 0.0092 (9) −0.0077 (9)
C9 0.0307 (10) 0.0261 (10) 0.0349 (11) −0.0099 (8) 0.0058 (8) −0.0074 (8)
C10 0.0305 (10) 0.0301 (10) 0.0376 (12) −0.0089 (8) 0.0093 (9) −0.0056 (9)
C11 0.0385 (12) 0.0480 (14) 0.0409 (13) −0.0214 (11) 0.0047 (10) −0.0031 (11)
C12 0.0345 (12) 0.073 (2) 0.0617 (19) −0.0205 (13) 0.0095 (12) 0.0031 (15)
C13 0.0555 (17) 0.074 (2) 0.0497 (17) −0.0136 (15) 0.0238 (14) −0.0007 (15)
C14 0.082 (2) 0.074 (2) 0.0501 (18) −0.0261 (18) 0.0280 (16) −0.0259 (16)
C15 0.0490 (14) 0.0564 (16) 0.0465 (15) −0.0244 (13) 0.0084 (12) −0.0166 (13)
C16 0.0622 (17) 0.0440 (14) 0.0489 (16) −0.0207 (13) −0.0070 (13) −0.0120 (12)
C17 0.0620 (16) 0.0285 (11) 0.0433 (14) −0.0135 (11) −0.0024 (12) −0.0033 (10)

Geometric parameters (Å, º)

Pt1—N2 1.9936 (17) C6—C8 1.438 (3)
Pt1—O1 2.0201 (15) C7—H7A 0.9600
Pt1—S2 2.2254 (5) C7—H7B 0.9600
Pt1—S1 2.2441 (5) C7—H7C 0.9600
S1—C9 1.745 (2) C8—H8A 0.9300
S2—O5 1.4694 (18) C10—C11 1.521 (3)
S2—C17 1.765 (3) C10—C15 1.522 (4)
S2—C16 1.774 (3) C10—H10A 0.9800
O1—C1 1.297 (3) C11—C12 1.519 (4)
O2—N1 1.212 (3) C11—H11A 0.9700
O3—N1 1.213 (3) C11—H11B 0.9700
O4—C4 1.370 (3) C12—C13 1.507 (5)
O4—C7 1.418 (3) C12—H12A 0.9700
N1—C2 1.456 (3) C12—H12B 0.9700
N2—C8 1.300 (3) C13—C14 1.511 (5)
N2—N3 1.377 (2) C13—H13A 0.9700
N3—C9 1.320 (3) C13—H13B 0.9700
N4—C9 1.343 (3) C14—C15 1.521 (4)
N4—C10 1.460 (3) C14—H14A 0.9700
N4—H1N4 0.83 (3) C14—H14B 0.9700
C1—C2 1.419 (3) C15—H15A 0.9700
C1—C6 1.434 (3) C15—H15B 0.9700
C2—C3 1.391 (3) C16—H16A 0.9600
C3—C4 1.369 (4) C16—H16B 0.9600
C3—H3A 0.9300 C16—H16C 0.9600
C4—C5 1.385 (3) C17—H17A 0.9600
C5—C6 1.395 (3) C17—H17B 0.9600
C5—H5A 0.9300 C17—H17C 0.9600
N2—Pt1—O1 93.95 (6) N3—C9—N4 116.41 (19)
N2—Pt1—S2 178.65 (5) N3—C9—S1 124.17 (16)
O1—Pt1—S2 84.87 (5) N4—C9—S1 119.42 (16)
N2—Pt1—S1 84.74 (5) N4—C10—C11 107.99 (19)
O1—Pt1—S1 178.63 (5) N4—C10—C15 113.0 (2)
S2—Pt1—S1 96.45 (2) C11—C10—C15 109.9 (2)
C9—S1—Pt1 96.02 (7) N4—C10—H10A 108.6
O5—S2—C17 109.52 (13) C11—C10—H10A 108.6
O5—S2—C16 109.00 (14) C15—C10—H10A 108.6
C17—S2—C16 101.25 (14) C12—C11—C10 111.1 (2)
O5—S2—Pt1 119.46 (8) C12—C11—H11A 109.4
C17—S2—Pt1 107.80 (9) C10—C11—H11A 109.4
C16—S2—Pt1 108.28 (10) C12—C11—H11B 109.4
C1—O1—Pt1 126.00 (14) C10—C11—H11B 109.4
C4—O4—C7 117.3 (2) H11A—C11—H11B 108.0
O2—N1—O3 120.7 (2) C13—C12—C11 112.0 (2)
O2—N1—C2 121.1 (2) C13—C12—H12A 109.2
O3—N1—C2 118.2 (2) C11—C12—H12A 109.2
C8—N2—N3 116.09 (17) C13—C12—H12B 109.2
C8—N2—Pt1 122.71 (14) C11—C12—H12B 109.2
N3—N2—Pt1 121.16 (13) H12A—C12—H12B 107.9
C9—N3—N2 113.79 (17) C12—C13—C14 111.7 (3)
C9—N4—C10 126.23 (19) C12—C13—H13A 109.3
C9—N4—H1N4 115 (2) C14—C13—H13A 109.3
C10—N4—H1N4 118 (2) C12—C13—H13B 109.3
O1—C1—C2 120.4 (2) C14—C13—H13B 109.3
O1—C1—C6 124.07 (19) H13A—C13—H13B 107.9
C2—C1—C6 115.6 (2) C13—C14—C15 111.6 (3)
C3—C2—C1 123.0 (2) C13—C14—H14A 109.3
C3—C2—N1 115.8 (2) C15—C14—H14A 109.3
C1—C2—N1 121.2 (2) C13—C14—H14B 109.3
C4—C3—C2 120.1 (2) C15—C14—H14B 109.3
C4—C3—H3A 119.9 H14A—C14—H14B 108.0
C2—C3—H3A 119.9 C14—C15—C10 110.4 (2)
C3—C4—O4 125.0 (2) C14—C15—H15A 109.6
C3—C4—C5 119.2 (2) C10—C15—H15A 109.6
O4—C4—C5 115.8 (2) C14—C15—H15B 109.6
C4—C5—C6 122.3 (2) C10—C15—H15B 109.6
C4—C5—H5A 118.9 H15A—C15—H15B 108.1
C6—C5—H5A 118.9 S2—C16—H16A 109.5
C5—C6—C1 119.9 (2) S2—C16—H16B 109.5
C5—C6—C8 115.4 (2) H16A—C16—H16B 109.5
C1—C6—C8 124.71 (19) S2—C16—H16C 109.5
O4—C7—H7A 109.5 H16A—C16—H16C 109.5
O4—C7—H7B 109.5 H16B—C16—H16C 109.5
H7A—C7—H7B 109.5 S2—C17—H17A 109.5
O4—C7—H7C 109.5 S2—C17—H17B 109.5
H7A—C7—H7C 109.5 H17A—C17—H17B 109.5
H7B—C7—H7C 109.5 S2—C17—H17C 109.5
N2—C8—C6 128.5 (2) H17A—C17—H17C 109.5
N2—C8—H8A 115.8 H17B—C17—H17C 109.5
C6—C8—H8A 115.8
C8—N2—N3—C9 179.0 (2) C2—C1—C6—C5 −0.5 (3)
Pt1—N2—N3—C9 1.3 (3) O1—C1—C6—C8 −2.8 (4)
Pt1—O1—C1—C2 −178.56 (16) C2—C1—C6—C8 178.4 (2)
Pt1—O1—C1—C6 2.7 (3) N3—N2—C8—C6 −177.9 (2)
O1—C1—C2—C3 −179.6 (2) Pt1—N2—C8—C6 −0.2 (3)
C6—C1—C2—C3 −0.8 (3) C5—C6—C8—N2 −179.5 (2)
O1—C1—C2—N1 −0.1 (3) C1—C6—C8—N2 1.5 (4)
C6—C1—C2—N1 178.7 (2) N2—N3—C9—N4 −178.3 (2)
O2—N1—C2—C3 −176.5 (3) N2—N3—C9—S1 1.8 (3)
O3—N1—C2—C3 2.7 (4) C10—N4—C9—N3 178.0 (2)
O2—N1—C2—C1 4.0 (4) C10—N4—C9—S1 −2.2 (3)
O3—N1—C2—C1 −176.8 (3) Pt1—S1—C9—N3 −3.4 (2)
C1—C2—C3—C4 0.9 (4) Pt1—S1—C9—N4 176.77 (19)
N1—C2—C3—C4 −178.6 (2) C9—N4—C10—C11 162.2 (2)
C2—C3—C4—O4 180.0 (2) C9—N4—C10—C15 −76.0 (3)
C2—C3—C4—C5 0.4 (4) N4—C10—C11—C12 −179.2 (2)
C7—O4—C4—C3 4.7 (4) C15—C10—C11—C12 57.2 (3)
C7—O4—C4—C5 −175.7 (2) C10—C11—C12—C13 −54.9 (3)
C3—C4—C5—C6 −1.7 (4) C11—C12—C13—C14 53.0 (4)
O4—C4—C5—C6 178.7 (2) C12—C13—C14—C15 −54.0 (4)
C4—C5—C6—C1 1.8 (4) C13—C14—C15—C10 56.7 (4)
C4—C5—C6—C8 −177.2 (2) N4—C10—C15—C14 −178.6 (2)
O1—C1—C6—C5 178.3 (2) C11—C10—C15—C14 −57.9 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of chelate ring Pt1/S1/N2/N3/C9.

D—H···A D—H H···A D···A D—H···A
C17—H17A···O2 0.96 2.53 3.438 (4) 157
N4—H1N4···O5i 0.83 (3) 2.21 (3) 3.042 (2) 174 (2)
C17—H17B···N3ii 0.96 2.46 3.336 (3) 152
C17—H17C···O3iii 0.96 2.54 3.354 (4) 143
C12—H12A···Cg1iii 0.97 2.95 3.669 (3) 131

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) x−1, y, z.

Funding Statement

This work was funded by Universiti Sains Malaysia grant 1001/PKIMIA/811269. Universiti Sains Malaysia grant . The World Academy of Sciences grant .

References

  1. Anacona, J. R., Bastardo, E. & Camus, J. (1999). Transition Met. Chem. 24, 478–480.
  2. Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.
  3. Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791–798.
  4. Arafath, M. A., Al–Suede, F. S., Adam, F., Al–Juaid, S., Khadeer Ahamed, M. B. & Majid, A. M. (2019). Drug Dev. Res. In the press. [DOI] [PubMed]
  5. Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 1460–1462. [DOI] [PMC free article] [PubMed]
  6. Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016). J. Fluor. Chem. 191, 129–142.
  7. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hanifehpour, Y., Mirtamizdoust, B., Hatami, M., Khomami, B. & Joo, S. W. (2015). J. Mol. Struct. 1091, 43–48.
  10. Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
  11. Kovala-Demertzi, D., Demertzis, M. A., Filiou, E., Pantazaki, A. A., Yadav, P. N., Miller, J. R., Zheng, Y. & Kyriakidis, D. A. (2003). Biometals, 16, 411–418. [DOI] [PubMed]
  12. Kovala-Demertzi, D., Demertzis, M. A., Miller, J., Papadopoulou, C., Dodorou, C. & Filousis, G. (2001). J. Inorg. Biochem. 86, 555–563. [DOI] [PubMed]
  13. Kovala-Demertzi, D., Miller, J. R., Kourkoumelis, N., Hadjikakou, S. K. & Demertzis, M. A. (1999). Polyhedron, 18, 1005–1013.
  14. Kovala-Demertzi, D., Yadav, P. N., Demertzis, M. A. & Coluccia, M. (2000). J. Inorg. Biochem. 78, 347–354. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Nomiya, K., Tsuda, K. & Kasuga, N. (1998). J. Chem. Soc. Dalton Trans. pp. 1653–1660.
  17. Peyrone, M. (1844). Eur. J. Org. Chem. 51, 1–29.
  18. Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699. [DOI] [PubMed]
  19. Sajitha, N. R., Sithambaresan, M. & Kurup, M. R. P. (2014). Acta Cryst. E70, o987–o988. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402. [DOI] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Tarafder, M., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019012623/su5513sup1.cif

e-75-01486-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019012623/su5513Isup2.hkl

e-75-01486-Isup2.hkl (499.5KB, hkl)

CCDC reference: 1524712

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES