Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2017 Mar 20;37(3):420–422. [Article in Chinese] doi: 10.3969/j.issn.1673-4254.2017.03.26

皮肤源性前体细胞的研究进展

Research progress of skin-derived precursor cells

陈 若思 1,2, 苗 勇 1, 胡 志奇 1,*
PMCID: PMC6780441  PMID: 28377365

Abstract

皮肤源性前体细胞(SKPs)是一种能从胚胎及成年真皮中提取的神经嵴来源的新的前体细胞,因其具有来源丰富、易于获取、具有多向分化潜能、无伦理限制等优点,在疾病治疗等方面均具有重要的研究意义和良好的应用前景。本文就SKPs的来源、定位、增殖与分化等对其研究进展作一综述。SKPs来源于胚胎神经嵴,但不同部位的SKPs来源亦略有不同。SKPs广泛存在于皮肤真皮中,DP是SKPs的一个富集龛,真皮层内的毛细血管周即是SKPs的另一富集龛,但关于SKPs体内富集龛位置的确定,仍需进一步的探索。SKPs可行自体移植并具有多向分化潜能,在机体多种组织修复和疾病治疗中有着重要的研究价值。

Keywords: 皮肤源性前体细胞, 成体干细胞, 组织工程, 毛发再生


皮肤含有多种前体细胞及干细胞,包括表皮干细胞、多种毛囊干细胞、真皮间充质干细胞(MSCs)、黑素干细胞、内皮及造血干细胞等[1]。皮肤干细胞的研究对于创伤修复、器官再生、疾病的预防和治疗等均具有重要意义。近年来,随着研究深入,另一种位于皮肤真皮组织中的中胚层干细胞,即皮肤源性前体细胞(SKPs),因其具有来源丰富、易于获取、多向分化能力强等优点,日渐受到研究者们的重视,尤被认为是未来治疗神经系统相关疾病的重要细胞来源。本文重点就SKPs的生物学特性及其在再生医学的功能性应用方面的研究进展作一综述。

1. SKPs的来源

2001年,Toma等[2]首次运用从脑组织中提取神经干细胞的方法在小鼠皮肤中分离出一种新的细胞群,这种细胞在体外呈现出悬浮的聚集性生长状态,不但表达巢蛋白和纤维连接蛋白,在体外特定条件下,也可分化为神经外胚层及中胚层种系的细胞,传代1年后仍具有分化能力,因此将其称之为SKPs。研究者们据此推测SKPs可能是一种潜在的人们未知的真皮干细胞。尽管SKPs可如MSCs一样表达纤维连接蛋白,且能在一定条件下分化为中胚层细胞,但二者并不是相同的。比如:SKPs在培养时呈悬浮生长而MSCs则为贴壁生长;MSCs可大量表达波形蛋白、纤维连接蛋白和少量角蛋白;SKPs则表达巢蛋白、纤维连接蛋白,但不表达波形蛋白及角蛋白。为了明确SKPs 的来源,2004 年,Fernandes等[3]利用遗传图谱,显微解剖等技术,首次提出了SKPs为神经嵴来源干细胞。他们利用Wnt1-Cre;Rosa26LacZ 种系追踪小鼠标记神经嵴干细胞,发现SKPs表达胚胎神经嵴干细胞的相关基因。qRT-PCR结果显示SKPs表达早期神经嵴关键的转录因子基因如slug,snail,twist,Pax3和Sox9。2006年,Wong等[4]的实验结果与Fernandes等类似,也表明SKPs是一种神经嵴源性的干细胞。2010年,Zhao等[5]在猪皮肤中分离培养得到SKPs,并报告猪SKPs 表达多能性相关基因POU2F1,SOX2,NANOG,STAT3 及神经嵴标志基因p75NTR,TWIST1,PAX3,SNAI2,SOX9,SOX10。这也支持了SKPs是神经嵴来源的观点。Jinno 等[6]利用Wnt1-cre;Z/EG和Myf5-cre;Rosa26YFP种系追踪小鼠进行研究,发现小鼠面部皮肤SKPs来自神经嵴,躯干背部皮肤的SKPs来自体节,腹部皮肤SKPs来自侧板。综上所述,SKPs被认为是一种来源于神经嵴的干细胞,但不同部位的SKPs来源亦略有不同,这种差异还有待进一步研究。

2. SKPs的定位

皮肤中神经嵴来源的细胞群包括Merkel细胞[7]、黑素细胞[8]及位于毛囊外毛根鞘从bulge区到毛囊底部基质的细胞[9]。SKPs在胚胎及新生皮肤中易于分离培养,但其提取率依然较低。为了提高SKPs 的获取率,Fernandes等[3]尝试从鼠背部皮肤毛囊及触须中分离培养出SKPs,并利用SKPs表达特定胚胎转录因子的特点,发现小鼠毛囊的毛乳头(DP)是内源性SKPs的一个富集龛。研究者主要通过以下3点进行论证:(1)DP与SKPs 同样表达slug,snail,twist 等胚胎转录因子。(2)SKPs表达巢蛋白,versican,Wnt5a等DP细胞特定标记物;(3)出生后小鼠触须DP中含有nestin+的球状聚集生长细胞群,且能分化成神经元及平滑肌细胞。小鼠触须及面部毛囊DP内基本均为神经嵴来源细胞,Hunt 等[10]通过显微分离及成球实验证明通过触须DP分离培养SKPs的效率是整个面部皮肤的1000倍。Biernaskie 等[11]的研究进一步深入阐述了SKPs的定位。他们发现从小鼠背部皮肤获得的SKPs均表达转录因子Sox2;免疫荧光结果显示Sox2表达于毛囊的DP及毛球部周围真皮鞘(DS);利用Sox2:EGFP转基因荧光小鼠,作者证明SKPs来源于Sox2+的毛囊真皮细胞。DP在毛囊再生过程中起重要诱导作用,研究者们早已发现从DP分离出的细胞具有惊人的多能性,能诱导分化为间充质细胞系和造血细胞系[12-13]。最近,Rahmani 等[14]利用αSMA-;dsRed 荧光标记小鼠,将处于毛囊生长期的α-SMA+ CD34- ITGa8-的DS细胞分选后进行检测,发现α-SMA+ CD34- ITGa8- DS细胞出现在新生毛囊的DP 及DS中;在毛囊退行期,所标记的上述细胞又退回至DS内。该研究结果表明:DS内含有一种自我更新的真皮干细胞,能在毛发周期中分化为DS和DP。那么,我们是否能据此推测:目前的研究表明DP是SKPs的一个富集龛[3, 10],但由于DS内含有分化为DP的真皮干细胞,那么DS是否才是SKPs真正的富集龛?

除了DP以外,SKPs也存在于真皮中其他毛囊结构(如bulge区)或毛囊外结构中[4]。Ruetze等[15]从人腹部无毛囊区域皮肤中也分离出了SKPs,结果表明所分选的这些SKPs主要来源于真皮层内的毛细血管周。作者据此认为真皮层内的毛细血管周即是SKPs的另一富集龛。此外,Toma[16]在新生儿包皮真皮中也分离出SKPs,证明了无毛囊真皮组织中亦含有SKPs,但其所获得的SKPs是否来源于真皮层的毛细血管周仍不明了。因此,关于SKPs体内富集龛位置的确定,仍需进一步的探索。

3. SKPs的增殖与分化

分离培养的SKPs,在特定的分化条件下,能向神经嵴谱系及中胚层谱系分化,成为周围神经系统的外周神经元、施旺细胞[17-19];中胚层谱系的成骨细胞、成脂细胞、平滑肌细胞、造血细胞、胰岛细胞、成纤维细胞等[11, 19-23]

Kubo等[24]将VHL蛋白转入SKPs中,结果表明转染后的SKPs不仅可分化为多巴胺样神经元,也可缓解帕金森大鼠模型的症状,这种多巴胺样神经元可为未来帕金森的治疗研究提供种子细胞。Kang等[20]将小鼠皮肤SKPs分化而来的间充质干细胞与羟基磷灰石/磷酸钙混合物移植到大鼠颅骨缺损处。观察4周,可见在颅骨缺损处有骨结构再生,且没有畸胎瘤的发生。SKPs 来源的间充质干细胞可作为组织工程骨修复的自体细胞来源。Biernaskie 等[11]将体外培养至少6 代的大鼠SKPs作体外Patch assays,7个实验组中有5个可诱导毛发再生;再将此SKPs 移植到成年裸小鼠皮肤,可见SKPs 参与体内毛囊DP 与DS 的再生,并分化为fibronectin-,vimentin+的真皮成纤维细胞及α-sma+的肌成纤维细胞。由此证明SKPs可能起着真皮干细胞的作用,可分化形成真皮中的细胞并诱导毛发再生。有趣的是,Lako等[12]和Jahoda等[13]通过实验证实:体外培养的DP或DS在特定条件下可分化为成骨、成脂及造血系统细胞,DP和DS被认为是真皮中富含前体细胞的一个龛室。Fernandes等[3]的研究证明DP是内源性SKPs的一个富集龛,那么Jahoda和Lako实验中分化为中胚层的细胞是否SKPs, 而并非DP或DS细胞?该结论仍需进一步研究证实。虽然Fernandes等[3]的研究证明DP 是内源性SKPs的一个富集龛,但研究亦证明:在正常的毛发生长期早期,DS中部分细胞迁至DP中;而在生长期晚期,DP细胞数量则逐渐减少[25],DS被认为是DP 的一个补充[14],而在毛囊诱导实验中,标记的DP细胞能分化为DS细胞[26],而毛球部周围的DS细胞也同样可分化为DP细胞[27]。Rahmani等[14]利用α-SMAdsRed敲入鼠证明DS中存在一种自我更新的真皮干细胞,体外培养时表现出自我更新能力,体内移植实验显示其能在毛发周期中再生DP及其他真皮细胞。这些研究表明毛囊DP与DS中存在部分细胞可互相迁移。那么,互相迁移的细胞是否为SKPs?也即:DS和DP内均含有SKPs,而SKPs在DS和DP中处于一个动态调节的过程?因此,对于SKPs仍存在许多疑问,SKPs与DP细胞、DS细胞和真皮层内的成纤维细胞之间的关系及SKPs增殖分化的相关机制仍未明确,仍有待进一步的探索和研究。

SKPs的分化能力及分化条件的探索,在组织工程机体各器官修复具有重大作用。研究者们还发现在培养基中加入特定的分化因子,SKPs能分化为肌前体细胞[28]、肝细胞样细胞[29]及胰岛分泌细胞[30]。随着SKPs 分化能力的研究,SKPs的应用前景也得到不断的拓展。

Biography

陈若思,博士,访问学者,E-mail: chenrscy@hotmail.com

Funding Statement

国家自然科学基金(31170949,81471900);高等学校博士学科点专项科研基金(201244331100);广东省自然科学基金(2015A030311001);广州市健康医疗协同创新重大专项(201508020262);南方医科大学南方医院院长基金(2013Z013)

Supported by National Natural Science Foundation of China(31170949,81471900)

Contributor Information

陈 若思 (Ruosi CHEN), Email: chenrscy@hotmail.com.

胡 志奇 (Zhiqi HU), Email: doctorhzqnew@163.com.

References

  • 1.Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20(8):847–56. doi: 10.1038/nm.3643. [Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches[J]. Nat Med, 2014, 20(8): 847-56. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84. doi: 10.1038/ncb0901-778. [Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin[J]. Nat Cell Biol, 2001, 3(9): 778-84. ] [DOI] [PubMed] [Google Scholar]
  • 3.Fernandes KJ, Mckenzie IA, Mill P, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93. doi: 10.1038/ncb1181. [Fernandes KJ, Mckenzie IA, Mill P, et al. A dermal niche for multipotent adult skin-derived precursor cells[J]. Nat Cell Biol, 2004, 6(11): 1082-93. ] [DOI] [PubMed] [Google Scholar]
  • 4.Wong CE, Paratore C, Dours-Zimmermann MT, et al. Neural crestderived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol. 2006;175(6):1005–15. doi: 10.1083/jcb.200606062. [Wong CE, Paratore C, Dours-Zimmermann MT, et al. Neural crestderived cells with stem cell features can be traced back to multiple lineages in the adult skin[J]. J Cell Biol, 2006, 175(6): 1005-15. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhao MT, Bennett MW, Zhang X, et al. Contribution to neural and mesodermal lineages by porcine skin-derived progenitors (SKPs) in vivo. Cell Cycle. 2010;9(10):2040–1. doi: 10.4161/cc.9.10.11688. [Zhao MT, Bennett MW, Zhang X, et al. Contribution to neural and mesodermal lineages by porcine skin-derived progenitors (SKPs) in vivo[J]. Cell Cycle, 2010, 9(10): 2040-1. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Jinno H, Morozova O, Jones KL, et al. Convergent Genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells. 2010;28(11):2027–40. doi: 10.1002/stem.v28:11. [Jinno H, Morozova O, Jones KL, et al. Convergent Genesis of an adult neural crest-like dermal stem cell from distinct developmental origins[J]. Stem Cells, 2010, 28(11): 2027-40. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Szeder V, Grim M, Halata Z, et al. Neural crest origin of mammalian Merkel cells. Dev Biol. 2003;253(2):258–63. doi: 10.1016/S0012-1606(02)00015-5. [Szeder V, Grim M, Halata Z, et al. Neural crest origin of mammalian Merkel cells[J]. Dev Biol, 2003, 253(2): 258-63. ] [DOI] [PubMed] [Google Scholar]
  • 8.Green SA, Simoes CM, Bronner ME. Evolution of vertebrates as viewed from the crest. Nature. 2015;520(7548):474–82. doi: 10.1038/nature14436. [Green SA, Simoes CM, Bronner ME. Evolution of vertebrates as viewed from the crest [J]. Nature, 2015, 520(7548): 474-82. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sieber-Blum M, Grim M, Hu YF, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2):258–69. doi: 10.1002/(ISSN)1097-0177. [Sieber-Blum M, Grim M, Hu YF, et al. Pluripotent neural crest stem cells in the adult hair follicle[J]. Dev Dyn, 2004, 231(2): 258-69. ] [DOI] [PubMed] [Google Scholar]
  • 10.Hunt DP, Morris PN, Sterling J, et al. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells. 2008;26(1):163–72. doi: 10.1634/stemcells.2007-0281. [Hunt DP, Morris PN, Sterling J, et al. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin[J]. Stem Cells, 2008, 26(1): 163-72. ] [DOI] [PubMed] [Google Scholar]
  • 11.Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell. 2009;5(6):610–23. doi: 10.1016/j.stem.2009.10.019. [Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells [J]. Cell Stem Cell, 2009, 5(6): 610-23. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lako M, Armstrong L, Cairns PM, et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. https://www.ncbi.nlm.nih.gov/pubmed/12244134#. J Cell Sci. 2002;115(Pt 20):3967–74. doi: 10.1242/jcs.00060. [Lako M, Armstrong L, Cairns PM, et al. Hair follicle dermal cells repopulate the mouse haematopoietic system[J]. J Cell Sci, 2002, 115(Pt 20): 3967-74. ] [DOI] [PubMed] [Google Scholar]
  • 13.Jahoda CC, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol. 2003;12(6):849–59. doi: 10.1111/exd.2003.12.issue-6. [Jahoda CC, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages[J]. Exp Dermatol, 2003, 12(6): 849-59. ] [DOI] [PubMed] [Google Scholar]
  • 14.Rahmani W, Abbasi S, Hagner A, et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell. 2014;31(5):543–58. doi: 10.1016/j.devcel.2014.10.022. [Rahmani W, Abbasi S, Hagner A, et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type[J]. Dev Cell, 2014, 31(5): 543-58. ] [DOI] [PubMed] [Google Scholar]
  • 15.Ruetze M, Knauer T, Gallinat S, et al. A novel niche for skin derived precursors in non-follicular skin. J Dermatol Sci. 2013;69(2):132–9. doi: 10.1016/j.jdermsci.2012.10.007. [Ruetze M, Knauer T, Gallinat S, et al. A novel niche for skin derived precursors in non-follicular skin[J]. J Dermatol Sci, 2013, 69(2): 132-9. ] [DOI] [PubMed] [Google Scholar]
  • 16.Toma JG, Mckenzie IA, Bagli D, et al. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005;23(6):727–37. doi: 10.1634/stemcells.2004-0134. [Toma JG, Mckenzie IA, Bagli D, et al. Isolation and characterization of multipotent skin-derived precursors from human skin [J]. Stem Cells, 2005, 23(6): 727-37. ] [DOI] [PubMed] [Google Scholar]
  • 17.Mozafari S, Laterza C, Roussel D, et al. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest. 2015;125(9):3642–56. doi: 10.1172/JCI80437. [Mozafari S, Laterza C, Roussel D, et al. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice[J]. J Clin Invest, 2015, 125(9): 3642-56. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Biernaskie J, Sparling JS, Liu J, et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007;27(36):9545–59. doi: 10.1523/JNEUROSCI.1930-07.2007. [Biernaskie J, Sparling JS, Liu J, et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury[J]. J Neurosci, 2007, 27(36): 9545-59. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mckenzie IA, Biernaskie J, Toma JG, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60. doi: 10.1523/JNEUROSCI.1007-06.2006. [Mckenzie IA, Biernaskie J, Toma JG, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system[J]. J Neurosci, 2006, 26(24): 6651-60. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kang HK, Min SK, Jung SY, et al. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. https://www.spandidos-publications.com/resources/images/bannerijmm.jpg. Int J Mol Med. 2011;28(6):1001–11. doi: 10.3892/ijmm.2011.785. [Kang HK, Min SK, Jung SY, et al. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo [J]. Int J Mol Med, 2011, 28(6): 1001-11. ] [DOI] [PubMed] [Google Scholar]
  • 21.Sato H, Ebisawa K, Takanari K, et al. Skin-derived precursor cells promote wound healing in diabetic mice. Ann Plast Surg. 2015;74(1):114–20. doi: 10.1097/SAP.0000000000000342. [Sato H, Ebisawa K, Takanari K, et al. Skin-derived precursor cells promote wound healing in diabetic mice[J]. Ann Plast Surg, 2015, 74(1): 114-20. ] [DOI] [PubMed] [Google Scholar]
  • 22.Shu B, Xie JL, Xu YB, et al. Directed differentiation of skin-derived precursors into fibroblast-like cells. https://www.ncbi.nlm.nih.gov/pubmed/24817943. Int J Clin Exp Pathol. 2014;7(4):1478–86. [Shu B, Xie JL, Xu YB, et al. Directed differentiation of skin-derived precursors into fibroblast-like cells[J]. Int J Clin Exp Pathol, 2014, 7 (4): 1478-86. ] [PMC free article] [PubMed] [Google Scholar]
  • 23.Mehrabi M, Mansouri K, Hosseinkhani S, et al. Differentiation of human skin-derived precursor cells into functional islet-like insulinproducing cell clusters. In Vitro Cell Dev Biol Anim. 2015;51(6):595–603. doi: 10.1007/s11626-015-9866-2. [Mehrabi M, Mansouri K, Hosseinkhani S, et al. Differentiation of human skin-derived precursor cells into functional islet-like insulinproducing cell clusters[J]. In Vitro Cell Dev Biol Anim, 2015, 51 (6): 595-603. ] [DOI] [PubMed] [Google Scholar]
  • 24.Kubo A, Yoshida T, Kobayashi N, et al. Efficient Generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein. Stem Cells Dev. 2009;18(10):1523–32. doi: 10.1089/scd.2008.0379. [Kubo A, Yoshida T, Kobayashi N, et al. Efficient Generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein[J]. Stem Cells Dev, 2009, 18(10): 1523-32. ] [DOI] [PubMed] [Google Scholar]
  • 25.Tobin DJ, Gunin A, Magerl M, et al. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations. J Investig Dermatol Symp Proc. 2003;8(1):80–6. doi: 10.1046/j.1523-1747.2003.12177.x. [Tobin DJ, Gunin A, Magerl M, et al. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations [J]. J Investig Dermatol Symp Proc, 2003, 8(1): 80-6. ] [DOI] [PubMed] [Google Scholar]
  • 26.Waters JM, Richardson GD, Jahoda CA. Hair follicle stem cells. Semin Cell Dev Biol. 2007;18(2):245–54. doi: 10.1016/j.semcdb.2007.02.003. [Waters JM, Richardson GD, Jahoda CA. Hair follicle stem cells[J]. Semin Cell Dev Biol, 2007, 18(2): 245-54. ] [DOI] [PubMed] [Google Scholar]
  • 27.Mcelwee KJ, Kissling S, Wenzel E, et al. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol. 2003;121(6):1267–75. doi: 10.1111/j.1523-1747.2003.12568.x. [Mcelwee KJ, Kissling S, Wenzel E, et al. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla[J]. J Invest Dermatol, 2003, 121(6): 1267-75. ] [DOI] [PubMed] [Google Scholar]
  • 28.Qiu Z, Miao C, Li J, et al. Skeletal myogenic potential of mouse skin-derived precursors. Stem Cells Dev. 2010;19(2):259–68. doi: 10.1089/scd.2009.0058. [Qiu Z, Miao C, Li J, et al. Skeletal myogenic potential of mouse skin-derived precursors[J]. Stem Cells Dev, 2010, 19(2): 259-68. ] [DOI] [PubMed] [Google Scholar]
  • 29.De Kock J, Vanhaecke T, Biernaskie J, et al. Characterization and hepatic differentiation of skin-derived precursors from adult foreskin by sequential exposure to hepatogenic cytokines and growth factors reflecting liver development. Toxicol In Vitro. 2009;23(8):1522–7. doi: 10.1016/j.tiv.2009.08.014. [De Kock J, Vanhaecke T, Biernaskie J, et al. Characterization and hepatic differentiation of skin-derived precursors from adult foreskin by sequential exposure to hepatogenic cytokines and growth factors reflecting liver development[J]. Toxicol In Vitro, 2009, 23(8): 1522-7. ] [DOI] [PubMed] [Google Scholar]
  • 30.Guo W, Miao C, Liu S, et al. Efficient differentiation of insulin-p roducing cells from skin-derived stem cells. Cell Prolif. 2009;42(1):49–62. doi: 10.1111/cpr.2009.42.issue-1. [Guo W, Miao C, Liu S, et al. Efficient differentiation of insulin-p roducing cells from skin-derived stem cells[J]. Cell Prolif, 2009, 42 (1): 49-62.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES