Skip to main content
Genetics, Selection, Evolution : GSE logoLink to Genetics, Selection, Evolution : GSE
. 2001 Dec 1;33(Suppl 1):S307–S318. doi: 10.1186/BF03500886

Quantification of bacterial populations in complex ecosystems using fluorescent in situ hybridization, confocal laser scanning microscopy and image analysis

Quantification des populations bactériennes des écosystèmes complexes par hybridation in situ en fluorescence, microscopie laser con-focale et analyse d’image

Théodore Bouchez 117,317, Patrick Dabert 117,, Michael Wagner 217, Jean-Jacques Godon 117, René Moletta 117
PMCID: PMC6781531

Abstract

A procedure for quantification of distinct bacterial populations in aggre-gated ecosystems was developed. It is based on fluorescent in situ hybridization coupled with confocal-laser-scanning microscopy and surface measurement of hybridized bacteria by image analysis. The proportion of a targeted bacterial species was ob-tained by comparison between the surface hybridized by a specific probe and the surface hybridized with a general bacterial reference probe. The accuracy of the re-sults obtained was evaluated by direct visual counting on the same sets of images. The analytical uncertainty of the image analysis procedure was determined and de-pended on the threshold values selected by the operator for cutting between signal and background fluorescence. The number of fields to be analyzed for reliable quantification was also determined. This procedure allows a quantification of the proportions of bacterial species in aggregated bacterial ecosystems which gives more accurate re-sults than visual counting because of the large number of bacteria counted. Moreover, since floc structures are preserved, it also gives information about the distribution of bacterial populations in the floc material which might reveal bacterial interactions within the community.

Keyword: fluorescent in situ hybridization, bacterial quantification, image analysis, activated sludge

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • [1].Amann R, Binder B, Olson R, Chisholm S, Devereux R, Stahl DA. Combi-nation of 16S rRNA-targeted oligonucleotide probes with flow cytometry for an-alyzing mixed microbial populations, Appl. Environ. Microbiol. 1990;56:1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Amann R, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in mi-crobiology, J. Bacteriol. 1990;172:762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Amann R, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner M. Ecological study of a bioaugmentation failure, Environ. Microbiol. 2000;2:179–190. doi: 10.1046/j.1462-2920.2000.00091.x. [DOI] [PubMed] [Google Scholar]
  • [5].Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-Like bacteria as dominant populations, Appl. Environ. Microbiol. 1998;64:3042–3051. doi: 10.1128/aem.64.8.3042-3051.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions, Syst. Appl. Microbiol. 1992;15:593–600. [Google Scholar]
  • [7].Mobarry B, Wagner M, Urbain V, Rittmann B, Stahl DA. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria, Appl. Environ. Microbiol. 1996;62:2156–2162. doi: 10.1128/aem.62.6.2156-2162.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Neef A. Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populations analyse in komplexen mikrobiellen Biozönosen, in: Lehrstuhl für Mikro-biologie München, Technische Universitat. 1997. [Google Scholar]
  • [9].Wagner M, Assmus B, Hartmann A, Hut zier P, Amann R. in situ analysis of microbial consortia in activated sludge using fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy, J. Microsc. 1994;176:181–187. doi: 10.1111/j.1365-2818.1994.tb03513.x. [DOI] [PubMed] [Google Scholar]
  • [10].Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D, Schleifer KH. Development of an rRNA-targeted Oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol. 1994;60:792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Wagner M, Rath G, Amann R, Koops HS, Schleifer KH. in situ Identification of ammonia-oxidizing bacteria, Syst. Appl. Microbiol. 1995;18:251–264. [Google Scholar]
  • [12].Wagner M, Rath G, Koops HP, Flood J, Amann R. in situ analysis of nitrifying bacteria in sewage treatment plants, Water Sci. Technol. 1996;34:237–244. [Google Scholar]

Articles from Genetics, Selection, Evolution : GSE are provided here courtesy of BMC

RESOURCES