Skip to main content
Neural Regeneration Research logoLink to Neural Regeneration Research
. 2019 Aug 7;14(12):2104–2111. doi: 10.4103/1673-5374.262589

Novel circular RNAs expressed in brain microvascular endothelial cells after oxygen-glucose deprivation/recovery

Wei Liu 1,#, Chao Jia 2,#, Li Luo 3,4,#, Hai-Lian Wang 1, Xiao-Li Min 5, Jiang-Hui Xu 1, Li-Qing Ma 1, Xia-Min Yang 1, Ying-Wei Wang 1,*, Fei-Fei Shang 3,*
PMCID: PMC6788225  PMID: 31397348

graphic file with name NRR-14-2104-g001.jpg

Keywords: circRNAs, endothelial cells, RNA sequencing, cerebral ischemia reperfusion injury, microRNAs, neural regeneration

Abstract

Circular RNAs (circRNAs) are generated by head-to-tail splicing and are ubiquitously expressed in all multicellular organisms. Their important biological functions are increasingly recognized. Cerebral ischemia reperfusion injury-induced brain microvascular endothelial cell dysfunction is an initial stage of blood-brain barrier disruption. The expression profile and potential function of circRNAs in brain microvascular endothelial cells is unknown. Rat brain microvascular endothelial cells were extracted and cultured in glucose-free medium for 4 hours with 5% CO2 and 95% N2, and the medium was then replaced with complete growth medium for 6 hours. The RNA in these cells was then extracted. The circRNA was identified by Find_circ and CIRI2 software. Functional and pathway enrichment analysis of genes that were common to differentially expressed mRNAs and circRNA host genes was performed by the Database for Annotation, Visualization and Integrated Discovery Functional Annotation Tool. Miranda software was used to predict microRNAs that were potentially sponged by circRNAs. Furthermore, cytoscape depicted the circR-NA-microRNA interaction network. The results showed that there were 1288 circRNAs in normal and oxygen-glucose deprived/recovered primary brain microvascular endothelial cells. There are 211 upregulated and 326 downregulated differentially expressed circRNAs. The host genes of these differentially expressed circRNAs overlapped with those of differentially expressed mRNAs. The shared genes were further studied by functional enrichment analyses, which revealed that circRNAs may contribute to calcium ion function and the cyclic guanosine 3′,5′-monophosphate (CAMP) dependent protein kinase (PKα) signaling pathway. Next, quantitative reverse transcription polymerase chain reaction assays were performed to detect circRNA levels transcribed from the overlapping host genes. Eight out of the ten circRNAs with the highest fold-change identified by sequencing were successfully verified. Subsequently, the circRNA-microRNA interaction networks of these eight circRNAs were explored by bioinformatic analysis. These results demonstrate that altered circRNAs may be important in the pathogenesis of cerebral ischemia reperfusion injury and consequently may also be potential therapeutic targets for cerebral ischemia diseases. All animal experiments were approved by the Chongqing Medical University Committee on Animal Research, China (approval No. CQMU20180086) on March 22, 2018.


Chinese Library Classification No. R446; R743; R741

Introduction

The blood-brain barrier consists of brain microvascular endothelial cells (BMECs), astrocytes, microglial cells, and pericytes and the microvasculature in the brain delivers oxygen and nutrients to neurocytes. Under physiological con-ditions, the blood-brain barrier selectively allows molecules to pass through the barrier to protect the central nervous system. In particular, BMECs can express special transport proteins to carry glucose, amino acids, and other factors. BMECs also secrete neurotrophins and enzymes to nourish neural cells and degrade harmful molecules. Thus, BMECs contribute to revascularization and neurological recovery after ischemic injury (Yu et al., 2015; Toth and Nielsen, 2018).

Circular RNAs (circRNAs) have recently been described as novel regulatory noncoding RNAs (Barrett et al., 2015). circRNAs are transcribed from the exons and introns of genes and form covalently closed head-to-tail (or backspliced) circularized transcripts (Hansen et al., 2013; Barrett et al., 2015). circRNAs can act as competing endogenous RNA or microRNA (miRNA) sponges. circRNAs play important roles in stroke and endothelial function. For example, circRNA-ZNF609 adsorbs miR-615-5p, which withstands oxidative stress and promotes vascular endothelial cell mi-gration (Liu et al., 2017b). Furthermore, circRNA Hectd1 acts as a sponge that inhibits miR-142 and contributes to ischemic stroke via astrocyte activation (Han et al., 2018). Therefore, we suggest that circRNAs are worthy of further exploration.

BMECs contribute significantly to integrity and function of the brain vasculature. Oxygen and nutrient deprivation may induce BMEC dysfunction and increased blood-brain barrier permeability (Yu et al., 2015). However, how oxy-gen-glucose shortages affect circRNAs in BMECs is unknown. Here, we used RNA sequencing to measure the global changes of circRNAs in BMECs subjected to oxygen-glucose deprivation (OGD)/recovery (OGD/R) treatment. Differentially expressed (DE) circRNAs as well as potential mechanisms were explored.

Materials and Methods

Isolation and cultivation of primary BMECs

All animal methods were approved by the Chongqing Medical University Committee on Animal Research, China (approval No. CQMU20180086) on March 22, 2018. Adult male Sprague-Dawley rats aged 6 weeks and weighing 160–200 g were housed in a specific-pathogen-free animal room of the Animal Breeding Center of Chongqing Medical University, China [license No. SYXK (Yu) 2017-0023]. Eight rats were anesthetized by inhalation of isoflurane (2% in oxygen) (RWD Life Science, Shenzhen, China), euthanized, and their brains collected. Tissue was homogenized and then centrifuged at 720 × g for 5 minutes at 4°C. The supernatant was discarded, and the pellet resuspended in phosphate-buffered saline. This was then layered over 15 mL 18% dextran and centrifuged at 4500 × g for 20 minutes at 4°C. The pellet was resuspended in 10 mL phosphate-buffered saline (containing 0.1% bovine serum albumin). Ten milliliters of the suspension were added to 100 µL collagenase (100 mg/mL), 40 µL DNase I (10 mg/mL) and 100 µL N-alpha-tosyl-L-lysine chloromethyl ketone hydrochloride (14.7 µg/mL) and digested for 1 hour at 37°C. After centrifugation at 1000 × g for 5 minutes, the pellet was resuspended in 2 mL phosphate-buffered saline containing 0.1% bovine serum albumin and 100 µL biotin-labeled anti-CD31 antibody (DSB-X Biotin Protein Labeling Kit, Thermo Fisher, Waltham, MA, USA). After incubation for 10 minutes at 4°C, BMECs were isolated with a Dynabeads FlowComp Flexi Kit (Thermo Fisher). Finally, bead-free cells were cultured in ordinary medium. The medium comprised DMEM basic medium (Thermo Fisher), 10% fetal bovine serum, 20 mg/L endothelial cell growth supplement (ECGS), 2 mM L-glutamine and 100 mg/L heparin sodium (Plácido et al., 2017; Sawaguchi et al., 2017). The endothelial cell markers, factor VIII and CD31 (Thermo Fisher), were used to identify BMECs by immunofluorescence (Bachetti and Morbidelli, 2000).

OGD/R treatment

Cells at 90–100% confluency were digested with trypsin and re-seeded in new dishes. The passage dilution was 1:4. Passage 6 BMECs were subjected to OGD/R treatment. At 48 hours after seeding, the medium was replaced by glu-cose-free medium, which was prebubbled with 95% N2 and 5% CO2 for 1 hour. BMECs were then cultured in an incubator flushed with 5% CO2 and 95% N2. The chamber was sealed and kept at 37°C for 4 hours with an oxygen concentration of < 0.2%. Upon OGD termination, the cells were placed back into a normal incubator (5% CO2, 95% air at 37°C), and the medium was replaced with complete growth medium. Control BMECs were not exposed to OGD. The cells were harvested for further analyses after 6 hours.

RNA extraction and sequencing

A total of 5 µg of RNA per sample was prepared using TRIzol reagent according to the manufacturer’s recommenda-tions (Thermo Fisher). A Nanodrop 2000 (Thermo Fisher), an Agilent Bioanalyzer 2100 (Agilent, USA) and agarose gel electrophoresis were used to determine RNA quality. Samples with an optical density (OD)260/280 between 1.7–2.0, OD260/230 > 2, 28S/18S > 1.8 and RNA integrity number > 9 were considered reliable. Five samples of equal mass in each group were mixed. An Epicentre Ribozero ribosomal RNA Removal Kit (Epicentre, Madison, WI, USA) was used to remove ribosomal RNA, and RNase R (Epicentre) was used to digest linear RNA. Subsequently, sequencing libraries were generated using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following the manufacturer’s recommendations. After cluster generation, the libraries were sequenced on an Illumina Hiseq 4000 platform, and 150-bp paired-end reads were generated.

For mRNA sequencing, ribosomal RNA was removed from 3 µg of total RNA. Sequencing libraries were generated directly without linear RNA digestion. Sequencing and DE circRNA/mRNA analysis were completed by Novogene, Beijing, China.

Bioinformatic analysis

Find_circ (GitHub, San Francisco, CA, USA) and CIRI2 (GitHub) software were used to identify circRNAs (Memczak et al., 2013; Gao et al., 2018). Raw data were normalized by standardized TPM (transcripts per million clean tags). The DESeq R package (1.10.1) (Bioconductor, Riverside, CA, USA) calculated differences in the expression of circRNAs.

For mRNA analysis, bowtie2 (v2.2.8) (Johns Hopkins University, Baltimore, MD, USA) and HISAT2 (v2.0.4) (Johns Hopkins University) mapped data to the reference genome. Cuffdiff (v2.1.1) (GenePattern, CA, USA) was used to calculate FPKMs (expected number of Fragments Per Kilobase of transcript sequence per Million base pairs sequenced) of mRNA. Next, the FPKM value was used to calculate mRNA differential expression.

The intersecting genes of DE circRNA host genes and DE mRNAs were subjected to functional and pathway enrichment analysis by the Database for Annotation, Visualization and Integrated Discovery (DAVID) Functional Annotation Tool (DAVID Bioinformatic Team, Frederick, USA) (Huang da et al., 2009). Miranda software (cBio-MSKCC, New York, USA) was used to predict the miRNAs that were potentially sponged by circRNAs (John et al., 2004). Cytoscape (NIGMS, Bethesda, MD, USA) depicted the circRNA-miRNA interaction network (Shannon et al., 2003).

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

As described previously (Shang et al., 2016), RNA was extracted using TRIzol reagent (Thermo Fisher). Two mi-crograms of RNA were reverse-transcribed to cDNA using a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher). qRT-PCR was performed with 20 µL SYBR Green reaction mix containing specific primers (Sangon Biotech, Shanghai, China) using a standard protocol The primers are listed in Additional Table 1. Each group had five experimental replicates; and each experimental replicate was performed three times. The Ct value of target circRNAs was normalized to the geometrical average of glyceraldehyde-3-phosphate dehydrogenase, β-actin and U6.

Additional Table 1.

The list of CircRNAs primers

ID Primers sequence Length (bp)
novel_circ_0000173 F: 5’-AAG GAC GTG CTG TCG GTG GAG AGT-3’ R: 5’-GCA GCA AGC GGC AAT TAA CAG AGA CC-3’ 103
novel_circ_0004586 F: 5’-CTC CTG CCC TGC TGT GTC CCA TAT CT-3’ R: 5’-CCA CCC ACC ACT GAG AAC AAG CCA AA-3’ 268
novel_circ_0003342 F: 5’-TGC TGA GGT GTG GGT GCT GTC A-3’ R: 5’-ACA GTG GTG TGA AGG CTC CAG C-3’ 157
novel_circ_0004860 F: 5’-TGG TCT TCT TTG TTC AGG GCC TTG TT-3’ R: 5’-TGG TGG TCA CCC AGT TTG GGT TAT AC-3’ 185
novel_circ_0002085 F: 5’-GGT CTT CCT CCT GAT GTG AGC TGA AC-3’ R: 5’-ACA ACA AAG GCA GAG ACT GGC GTT T-3’ 216
novel_circ_0003760 F: 5’-ACC TAA AGG AAG CAA GGA CCC GAC AA-3’ R: 5’-CCT TCT TCA GGA CCT TGA GGC AGT AC-3’ 105
novel_circ_0002086 F: 5’-GGT TTA TTT CTG TTG GCT TCA GTG CAG T-3’ R: 5’-CCC AGG ATA CAT TGA CCC GGA TTC TTT G-3’ 116
novel_circ_0000456 F: 5’-GCT GAC AGG ACC CGA CGA TGG CTT T-3’ R: 5’-CAA CGC ATT CTG CTG ATG CAC CTC CA-3’ 108
novel_circ_0001606 F: 5’-TGG TGG TCG TCC GCA TGG TGT T-3’ R: 5’-AAA GAT CTG CTG CCC GGT GAA CCC-3’ 109
novel_circ_0002023 F: 5’-CCG TGT GGC TCC GCA AGT GAA TCT T-3’ R: 5’-CAG CAA CTC CAG TGA CCG TGC CAA G-3’ 116

F: Forward primer; R: reversed primer.

Statistical analysis

For sequencing, a model based on negative binomial distribution was used. The resulting P values were adjusted to q values using Benjamini and Hochberg’s approach for controlling the false discovery rate. In DAVID enrichment anal-ysis, Fisher’s exact test was used to determine whether the proportions of those falling into each category differed by group. P value was adopted to measure the gene enrichment in annotation terms. In the bubble chart, the number of genes that fall into each category divided by the total number of this category was the RichFactor. Bubble chart analysis was performed using OmicShare tools (Genedenovo, Guangzhou, China). qRT-PCR analysis was performed using Student’s t-test with a two-tailed P value (GraphPad Software Company, San Diego, CA, USA). All summary statistics of the results are presented as the mean ± standard error of the mean (SEM). P < 0.05 was considered statistically significant.

Results

Identification of differentially expressed circRNAs

At least 10G of clean sequencing data were obtained from each sample for further analysis. The intersection of the Find_circ and CIRI2 software results identified 1195 circRNAs in the control group and 1109 circRNAs in the OGD/R group (Memczak et al., 2013; Gao et al., 2018), with 1016 circRNAs found in both groups (Figure 1A). The detailed information of all 1288 identified circRNAs is shown in Additional Table 2 (2MB, pdf) , including chromosome, length, strand, host genes and expression level. Most circRNAs were transcribed from exons and circRNAs were uniformly distributed across chromosomes. We selected 10 representative chromosomes to show the distribution of circRNAs (Figure 1B).

Figure 1.

Figure 1

Profile of circular RNAs (circRNAs) in brain microvascular endothelial cells in control (Ctrl) and oxygen glucose deprivation/recovery (OGD/R) groups.

(A) RNA sequencing identified 1195 circRNAs in the Ctrl group and 1109 circRNAs in the OGD/R group. Among these circRNAs, 1016 circRNAs existed in both groups. (B) The circRNAs were uniformly distributed across chromosomes. Ten representative chromosomes are shown. (C) Volcano plot showing the global change in circRNAs. A q value (ordinate) < 0.01 and fold change (abscissa) > 2 defined the differentially expressed circRNAs. The blue dots represent the unchanged circRNAs. (D) Heatmaps show 211 upregulated and 326 downregulated circRNAs in primary brain microvascular endothelial cells after OGD/R treatment. FC: Fold change.

Next, we performed a global analysis of the DE circRNAs in the OGD/R and control BMECs. Standardized TPM values were applied to compare gene expression between two groups (Zhou et al., 2010). The fold change (FC) in the expression of each circRNA was calculated as the log2 ratio using normalized TPM values (Audic and Claverie, 1997). Subsequently, the resulting q values for all genes were corrected for multiple tests using a DEGseq adjustment (Wang et al., 2010). A Volcano Plot was used to show the filter and distribution of DE circRNAs (Figure 1C). Finally, the circRNAs with FC > 2 and q values < 0.01 were identified as DE circRNAs. As shown in Figure 1D, there were 211 upregulated and 326 downregulated circRNAs in OGD/R-treated cells. The detailed information is shown in Additional Table 3. These results demonstrate that OGD/R dramatically altered circRNA expression profiles in vascular endothelial cells. Ischemia-reperfusion-induced endothelial dysfunction has been attributed to angiogenesis, oxidative stress, and inflammation (Guo et al., 2018; Pang et al., 2018; Zhu et al., 2018). Whether the OGD/R-induced circRNA alterations participate in endothelial dysfunction by affecting these responses remains to be determined in future studies.

Additional Table 3.

The list of differentially expressed circRNAs

ID OGD/R Ctrl log2.Fold_c p.value q.value Expression change
novel_circ_0000007 979.7346 474.0868 1.0472 1.63E-44 5.22E-45 up
novel_circ_0000012 1110.366 474.0868 1.2278 1.55E-63 7.84E-64 up
novel_circ_0000062 2612.625 0 12.351 0 0 up
novel_circ_0000083 1045.05 355.5651 1.5554 9.69E-84 1.22E-83 up
novel_circ_0000104 457.2095 118.5217 1.9477 2.70E-50 9.10E-51 up
novel_circ_0000123 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0000147 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000153 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000167 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0000170 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0000211 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0000217 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0000228 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0000238 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000243 2286.047 0 12.159 0 0 up
novel_circ_0000257 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000261 979.7346 177.7826 2.4623 0 0 up
novel_circ_0000301 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0000327 914.4189 414.826 1.1403 2.97E-47 9.81E-48 up
novel_circ_0000328 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0000335 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0000353 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000360 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0000368 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0000371 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000377 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0000379 457.2095 118.5217 1.9477 2.70E-50 9.10E-51 up
novel_circ_0000396 587.8407 0 10.199 4.93E-96 9.65E-96 up
novel_circ_0000407 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0000431 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0000446 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0000447 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0000456 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0000486 783.7876 296.3043 1.4034 7.08E-55 2.46E-55 up
novel_circ_0000533 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000619 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0000665 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0000667 587.8407 0 10.199 4.93E-96 9.65E-96 up
novel_circ_0000691 1632.891 0 11.673 0 0 up
novel_circ_0000714 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0000766 718.472 296.3043 1.2779 3.42E-44 1.09E-44 up
novel_circ_0000776 979.7346 474.0868 1.0472 1.63E-44 5.22E-45 up
novel_circ_0000784 783.7876 0 10.614 0 0 up
novel_circ_0000791 1045.05 355.5651 1.5554 9.69E-84 1.22E-83 up
novel_circ_0000814 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0000863 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0000883 522.5251 237.0434 1.1403 1.00E-27 2.48E-28 up
novel_circ_0000908 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0000988 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0001002 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001012 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001025 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0001031 653.1564 0 10.351 0 0 up
novel_circ_0001041 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0001051 2090.1 1007.434 1.0529 1.01E-93 1.86E-93 up
novel_circ_0001053 783.7876 0 10.614 0 0 up
novel_circ_0001073 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001090 718.472 355.5651 1.0148 1.35E-31 3.64E-32 up
novel_circ_0001092 3004.519 0 12.553 0 0 up
novel_circ_0001121 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001156 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001158 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001167 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0001221 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001225 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0001235 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001237 1306.313 533.3477 1.2924 3.40E-80 4.09E-80 up
novel_circ_0001275 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0001300 522.5251 237.0434 1.1403 1.00E-27 2.48E-28 up
novel_circ_0001327 587.8407 237.0434 1.3103 8.75E-38 2.61E-38 up
novel_circ_0001339 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0001425 457.2095 118.5217 1.9477 2.70E-50 9.10E-51 up
novel_circ_0001428 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0001498 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001503 979.7346 414.826 1.2399 4.47E-57 1.98E-57 up
novel_circ_0001517 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0001523 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0001541 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001551 1371.628 651.8694 1.0732 6.21E-64 3.54E-64 up
novel_circ_0001589 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001606 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0001624 1045.05 474.0868 1.1403 9.39E-54 3.26E-54 up
novel_circ_0001670 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001676 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001687 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0001688 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001696 457.2095 118.5217 1.9477 2.70E-50 9.10E-51 up
novel_circ_0001736 1110.366 0 11.117 0 0 up
novel_circ_0001737 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001739 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0001744 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0001764 783.7876 355.5651 1.1403 9.47E-41 2.91E-41 up
novel_circ_0001811 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001814 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0001841 1567.575 770.3911 1.0249 6.51E-68 4.43E-68 up
novel_circ_0001850 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0001894 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0001898 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0001910 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001943 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001962 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0001996 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002023 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0002025 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0002053 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0002067 653.1564 177.7826 1.8773 7.23E-68 4.86E-68 up
novel_circ_0002086 587.8407 118.5217 2.3103 1.37E-78 1.32E-78 up
novel_circ_0002090 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0002105 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0002193 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0002208 718.472 177.7826 2.0148 2.44E-81 3.04E-81 up
novel_circ_0002217 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0002226 1175.681 296.3043 1.9883 0 0 up
novel_circ_0002230 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0002240 2743.257 0 12.422 0 0 up
novel_circ_0002241 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0002242 1306.313 0 11.351 0 0 up
novel_circ_0002255 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0002289 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002327 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002336 653.1564 237.0434 1.4623 1.00E-48 3.37E-49 up
novel_circ_0002346 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0002397 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0002409 522.5251 237.0434 1.1403 1.00E-27 2.48E-28 up
novel_circ_0002433 849.1033 0 10.73 0 0 up
novel_circ_0002493 718.472 296.3043 1.2779 3.42E-44 1.09E-44 up
novel_circ_0002513 1045.05 296.3043 1.8184 0 0 up
novel_circ_0002520 1306.313 355.5651 1.8773 0 0 up
novel_circ_0002540 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002559 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002570 1567.575 770.3911 1.0249 6.51E-68 4.43E-68 up
novel_circ_0002599 849.1033 0 10.73 0 0 up
novel_circ_0002643 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0002649 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0002667 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0002679 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002715 849.1033 237.0434 1.8408 1.69E-85 2.19E-85 up
novel_circ_0002740 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002743 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0002812 2155.416 1007.434 1.0973 0 0 up
novel_circ_0002853 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0002859 979.7346 237.0434 2.0472 0 0 up
novel_circ_0002877 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002881 587.8407 0 10.199 4.93E-96 9.65E-96 up
novel_circ_0002894 849.1033 355.5651 1.2558 1.26E-50 4.30E-51 up
novel_circ_0002903 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0002958 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0002986 979.7346 414.826 1.2399 4.47E-57 1.98E-57 up
novel_circ_0002991 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0002999 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0003074 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0003096 1110.366 533.3477 1.0579 5.53E-51 1.89E-51 up
novel_circ_0003103 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003115 653.1564 0 10.351 0 0 up
novel_circ_0003129 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0003154 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003162 783.7876 237.0434 1.7253 1.10E-72 1.01E-72 up
novel_circ_0003222 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0003226 1828.838 651.8694 1.4883 0 0 up
novel_circ_0003243 653.1564 177.7826 1.8773 7.23E-68 4.86E-68 up
novel_circ_0003259 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0003270 783.7876 237.0434 1.7253 1.10E-72 1.01E-72 up
novel_circ_0003274 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0003280 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0003377 1045.05 355.5651 1.5554 9.69E-84 1.22E-83 up
novel_circ_0003426 1436.944 0 11.489 0 0 up
novel_circ_0003437 1110.366 414.826 1.4205 2.57E-78 2.46E-78 up
novel_circ_0003459 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003471 1502.26 592.6085 1.342 4.26E-97 9.01E-97 up
novel_circ_0003487 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0003492 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0003520 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0003528 522.5251 177.7826 1.5554 9.16E-43 2.85E-43 up
novel_circ_0003530 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003535 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003591 979.7346 0 10.936 0 0 up
novel_circ_0003621 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0003630 457.2095 0 9.8367 3.80E-79 3.69E-79 up
novel_circ_0003686 522.5251 118.5217 2.1403 3.83E-64 2.40E-64 up
novel_circ_0003730 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0003754 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0003760 718.472 118.5217 2.5998 0 0 up
novel_circ_0003787 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0003829 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0003844 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0003856 783.7876 296.3043 1.4034 7.08E-55 2.46E-55 up
novel_circ_0003868 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0004003 979.7346 474.0868 1.0472 1.63E-44 5.22E-45 up
novel_circ_0004015 783.7876 237.0434 1.7253 1.10E-72 1.01E-72 up
novel_circ_0004057 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0004100 457.2095 118.5217 1.9477 2.70E-50 9.10E-51 up
novel_circ_0004120 326.5782 0 9.3513 6.42E-61 2.91E-61 up
novel_circ_0004238 1502.26 592.6085 1.342 4.26E-97 9.01E-97 up
novel_circ_0004333 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0004399 718.472 355.5651 1.0148 1.35E-31 3.64E-32 up
novel_circ_0004468 2547.31 1125.956 1.1778 0 0 up
novel_circ_0004527 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0004605 1045.05 414.826 1.333 1.89E-67 1.26E-67 up
novel_circ_0004616 522.5251 0 10.029 9.88E-88 1.52E-87 up
novel_circ_0004652 1045.05 177.7826 2.5554 0 0 up
novel_circ_0004711 522.5251 237.0434 1.1403 1.00E-27 2.48E-28 up
novel_circ_0004761 391.8938 0 9.6143 3.13E-70 2.21E-70 up
novel_circ_0004762 391.8938 118.5217 1.7253 3.16E-37 9.25E-38 up
novel_circ_0004783 914.4189 296.3043 1.6258 4.70E-78 4.47E-78 up
novel_circ_0004796 1306.313 651.8694 1.0028 4.73E-55 1.66E-55 up
novel_circ_0004890 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0004913 587.8407 0 10.199 4.93E-96 9.65E-96 up
novel_circ_0004933 718.472 237.0434 1.5998 2.14E-60 9.66E-61 up
novel_circ_0004934 457.2095 177.7826 1.3627 1.98E-31 5.23E-32 up
novel_circ_0004961 326.5782 118.5217 1.4623 3.32E-25 7.63E-26 up
novel_circ_0005050 391.8938 177.7826 1.1403 3.37E-21 7.14E-22 up
novel_circ_0000010 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0000032 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000045 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0000068 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000070 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0000077 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000101 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000113 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000141 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0000158 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0000173 130.6313 948.1736 -2.8597 0 0 down
novel_circ_0000178 130.6313 474.0868 -1.8597 1.11E-44 3.61E-45 down
novel_circ_0000182 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0000204 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000210 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0000224 261.2625 592.6085 -1.1816 2.42E-28 6.10E-29 down
novel_circ_0000245 326.5782 829.6519 -1.3451 7.94E-48 2.63E-48 down
novel_circ_0000282 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000297 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0000305 457.2095 1066.695 -1.2222 1.97E-52 6.79E-53 down
novel_circ_0000306 130.6313 592.6085 -2.1816 2.83E-68 1.96E-68 down
novel_circ_0000333 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000342 195.9469 533.3477 -1.4446 6.55E-35 1.87E-35 down
novel_circ_0000404 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0000406 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000408 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000414 522.5251 1066.695 -1.0296 1.22E-39 3.72E-40 down
novel_circ_0000428 261.2625 651.8694 -1.3191 7.92E-37 2.30E-37 down
novel_circ_0000434 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0000442 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000470 522.5251 1185.217 -1.1816 5.50E-55 1.92E-55 down
novel_circ_0000471 0 1837.086 -11.843 0 0 down
novel_circ_0000475 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0000480 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000482 0 592.6085 -10.211 6.25E-95 1.17E-94 down
novel_circ_0000494 457.2095 1422.26 -1.6373 0 0 down
novel_circ_0000501 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000507 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000525 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000601 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0000604 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0000638 1045.05 2133.391 -1.0296 1.54E-77 1.45E-77 down
novel_circ_0000640 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0000642 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0000643 1306.313 2666.738 -1.0296 1.76E-96 3.66E-96 down
novel_circ_0000673 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000686 587.8407 1363 -1.2133 1.01E-65 6.50E-66 down
novel_circ_0000707 130.6313 651.8694 -2.3191 8.94E-81 1.08E-80 down
novel_circ_0000719 849.1033 2785.26 -1.7138 0 0 down
novel_circ_0000721 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0000757 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000781 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0000812 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0000815 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0000836 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000850 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0000871 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0000884 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0000926 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000936 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000964 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0000976 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0000991 849.1033 2133.391 -1.3291 0 0 down
novel_circ_0001048 261.2625 829.6519 -1.667 6.75E-66 4.38E-66 down
novel_circ_0001049 457.2095 1363 -1.5759 1.37E-98 2.99E-98 down
novel_circ_0001082 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0001089 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001096 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0001099 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001114 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0001115 0 592.6085 -10.211 6.25E-95 1.17E-94 down
novel_circ_0001138 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0001163 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001170 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0001183 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0001250 261.2625 592.6085 -1.1816 2.42E-28 6.10E-29 down
novel_circ_0001260 326.5782 770.3911 -1.2382 3.85E-39 1.16E-39 down
novel_circ_0001274 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001279 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001280 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001283 195.9469 533.3477 -1.4446 6.55E-35 1.87E-35 down
novel_circ_0001290 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001310 261.2625 948.1736 -1.8597 1.47E-87 2.07E-87 down
novel_circ_0001312 326.5782 948.1736 -1.5377 1.11E-66 7.34E-67 down
novel_circ_0001316 326.5782 829.6519 -1.3451 7.94E-48 2.63E-48 down
novel_circ_0001345 0 1244.478 -11.281 0 0 down
novel_circ_0001348 261.2625 651.8694 -1.3191 7.92E-37 2.30E-37 down
novel_circ_0001367 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001384 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001390 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0001412 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001413 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001429 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0001443 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001446 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0001490 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0001506 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001524 261.2625 770.3911 -1.5601 1.09E-55 4.70E-56 down
novel_circ_0001588 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0001621 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001626 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001630 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001643 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0001653 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0001675 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001690 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0001726 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001732 0 3200.086 -12.644 0 0 down
novel_circ_0001768 195.9469 533.3477 -1.4446 6.55E-35 1.87E-35 down
novel_circ_0001777 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0001779 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0001790 0 1422.26 -11.474 0 0 down
novel_circ_0001804 195.9469 592.6085 -1.5966 1.01E-44 3.30E-45 down
novel_circ_0001866 130.6313 474.0868 -1.8597 1.11E-44 3.61E-45 down
novel_circ_0001871 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001902 195.9469 711.1302 -1.8597 3.96E-66 2.60E-66 down
novel_circ_0001904 326.5782 829.6519 -1.3451 7.94E-48 2.63E-48 down
novel_circ_0001920 0 770.3911 -10.589 0 0 down
novel_circ_0001926 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0001938 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001953 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001963 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0001969 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001972 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0001986 261.2625 592.6085 -1.1816 2.42E-28 6.10E-29 down
novel_circ_0002027 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0002037 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0002039 522.5251 1303.739 -1.3191 6.65E-72 5.25E-72 down
novel_circ_0002062 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002085 130.6313 711.1302 -2.4446 1.24E-93 2.25E-93 down
novel_circ_0002118 261.2625 533.3477 -1.0296 1.23E-20 2.56E-21 down
novel_circ_0002122 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002127 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0002141 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0002145 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002155 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002177 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0002182 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0002185 326.5782 711.1302 -1.1227 4.86E-31 1.27E-31 down
novel_circ_0002191 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0002239 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002246 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002254 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002278 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002374 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0002385 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002418 261.2625 651.8694 -1.3191 7.92E-37 2.30E-37 down
novel_circ_0002437 195.9469 770.3911 -1.9751 1.52E-77 1.43E-77 down
novel_circ_0002448 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002452 326.5782 711.1302 -1.1227 4.86E-31 1.27E-31 down
novel_circ_0002457 0 651.8694 -10.348 0 0 down
novel_circ_0002463 6727.511 15170.78 -1.1732 0 0 down
novel_circ_0002469 391.8938 1066.695 -1.4446 4.51E-68 3.09E-68 down
novel_circ_0002477 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002486 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002562 0 651.8694 -10.348 0 0 down
novel_circ_0002600 1763.522 4859.39 -1.4623 0 0 down
novel_circ_0002618 0 2311.173 -12.174 0 0 down
novel_circ_0002663 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002670 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0002672 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0002692 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0002741 326.5782 770.3911 -1.2382 3.85E-39 1.16E-39 down
novel_circ_0002744 326.5782 770.3911 -1.2382 3.85E-39 1.16E-39 down
novel_circ_0002746 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002748 195.9469 533.3477 -1.4446 6.55E-35 1.87E-35 down
novel_circ_0002772 195.9469 711.1302 -1.8597 3.96E-66 2.60E-66 down
novel_circ_0002778 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0002781 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0002791 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0002807 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002818 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002819 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0002821 195.9469 1185.217 -2.5966 0 0 down
novel_circ_0002824 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0002837 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0002847 457.2095 1066.695 -1.2222 1.97E-52 6.79E-53 down
novel_circ_0002849 195.9469 533.3477 -1.4446 6.55E-35 1.87E-35 down
novel_circ_0002856 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0002875 130.6313 592.6085 -2.1816 2.83E-68 1.96E-68 down
novel_circ_0002901 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0002915 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0002928 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0002933 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002939 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0002952 326.5782 770.3911 -1.2382 3.85E-39 1.16E-39 down
novel_circ_0003011 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003044 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003068 587.8407 1659.304 -1.4971 0 0 down
novel_circ_0003086 0 592.6085 -10.211 6.25E-95 1.17E-94 down
novel_circ_0003088 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0003118 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003119 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0003126 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0003130 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003138 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003153 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003160 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003173 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003201 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003206 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003211 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003214 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003229 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003254 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003256 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003312 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003316 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003319 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003327 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003342 130.6313 770.3911 -2.5601 0 0 down
novel_circ_0003355 195.9469 651.8694 -1.7341 3.67E-55 1.29E-55 down
novel_circ_0003364 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003402 326.5782 1185.217 -1.8597 0 0 down
novel_circ_0003432 0 888.9128 -10.796 0 0 down
novel_circ_0003438 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0003441 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003453 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003462 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0003468 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0003499 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0003501 130.6313 651.8694 -2.3191 8.94E-81 1.08E-80 down
novel_circ_0003509 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003532 261.2625 829.6519 -1.667 6.75E-66 4.38E-66 down
novel_circ_0003553 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003563 1306.313 2963.043 -1.1816 0 0 down
novel_circ_0003564 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003586 261.2625 533.3477 -1.0296 1.23E-20 2.56E-21 down
novel_circ_0003587 261.2625 533.3477 -1.0296 1.23E-20 2.56E-21 down
novel_circ_0003608 1240.997 3081.564 -1.3122 0 0 down
novel_circ_0003620 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0003632 0 3081.564 -12.589 0 0 down
novel_circ_0003645 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003646 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003649 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003659 522.5251 1600.043 -1.6145 0 0 down
novel_circ_0003661 195.9469 829.6519 -2.082 2.40E-89 4.32E-89 down
novel_circ_0003680 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003695 130.6313 474.0868 -1.8597 1.11E-44 3.61E-45 down
novel_circ_0003702 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003746 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0003748 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0003750 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0003764 326.5782 1066.695 -1.7076 3.60E-87 4.72E-87 down
novel_circ_0003800 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003806 261.2625 533.3477 -1.0296 1.23E-20 2.56E-21 down
novel_circ_0003816 0 770.3911 -10.589 0 0 down
novel_circ_0003825 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0003832 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003849 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0003862 326.5782 888.9128 -1.4446 5.01E-57 2.21E-57 down
novel_circ_0003869 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0003907 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003940 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0003947 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0003952 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0003970 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0003973 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0003977 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004011 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004013 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0004021 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004024 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004061 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004062 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0004067 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004105 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004118 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004121 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004129 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004164 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004180 0 829.6519 -10.696 0 0 down
novel_circ_0004188 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004193 326.5782 1066.695 -1.7076 3.60E-87 4.72E-87 down
novel_circ_0004198 587.8407 1303.739 -1.1492 1.22E-57 5.47E-58 down
novel_circ_0004220 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0004229 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0004249 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004311 261.2625 651.8694 -1.3191 7.92E-37 2.30E-37 down
novel_circ_0004330 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0004335 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004340 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004354 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004384 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004444 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004454 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0004457 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0004500 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004522 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0004542 130.6313 414.826 -1.667 8.02E-34 2.21E-34 down
novel_circ_0004547 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004586 130.6313 888.9128 -2.7665 0 0 down
novel_circ_0004590 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0004593 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0004601 0 474.0868 -9.889 6.37E-80 6.85E-80 down
novel_circ_0004608 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0004628 0 888.9128 -10.796 0 0 down
novel_circ_0004653 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0004661 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004706 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004707 0 414.826 -9.6964 4.73E-72 3.76E-72 down
novel_circ_0004728 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004736 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0004743 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0004758 195.9469 474.0868 -1.2747 7.44E-26 1.78E-26 down
novel_circ_0004820 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004824 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004833 195.9469 414.826 -1.082 9.99E-18 1.94E-18 down
novel_circ_0004846 261.2625 711.1302 -1.4446 5.66E-46 1.86E-46 down
novel_circ_0004855 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004860 130.6313 770.3911 -2.5601 0 0 down
novel_circ_0004861 391.8938 1066.695 -1.4446 4.51E-68 3.09E-68 down
novel_circ_0004866 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004935 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004941 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0004943 130.6313 355.5651 -1.4446 7.99E-24 1.76E-24 down
novel_circ_0004944 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0004969 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0004989 130.6313 533.3477 -2.0296 3.29E-56 1.42E-56 down
novel_circ_0004997 0 355.5651 -9.474 6.97E-64 3.54E-64 down
novel_circ_0005014 0 296.3043 -9.2109 2.33E-55 8.23E-56 down
novel_circ_0005016 391.8938 829.6519 -1.082 7.57E-34 2.14E-34 down
novel_circ_0005018 130.6313 651.8694 -2.3191 8.94E-81 1.08E-80 down
novel_circ_0005035 0 533.3477 -10.059 1.54E-87 2.07E-87 down
novel_circ_0005045 130.6313 296.3043 -1.1816 5.87E-15 1.05E-15 down
novel_circ_0005052 0 474.0868 -9.889 6.37E-80 6.85E-80 down

OGD/R,oxygen-glucose deprivation/recovery; Ctrl, control

Functional enrichment of the overlapping host genes for DE circRNAs and mRNAs

circRNAs are synthesized via backsplicing and are generated from mRNA precursors. Several circRNAs can also reg-ulate the expression of their host genes (Barrett et al., 2015). Therefore, characterizing the function of these mRNAs may enhance our understanding of the features of circRNAs. We analyzed the genes that colocalized on chromosomes with these DE circRNAs and found that the exonic and intronic circRNAs originated from 416 host genes (Figure 2B).

Figure 2.

Figure 2

Functional annotation clustering of differentially expressed (DE) circular RNAs (circRNAs) combined with DE mRNAs.

(A) Heatmaps show mRNAs with FC > 2 in the control (Ctrl) and oxygen glucose deprivation/recovery (OGD/R) groups. There were 448 upregulated and 439 downregulated mRNAs. (B) The intersection of DE mRNA host genes and DE circRNA host genes. A total of 36 genes were identified in the intersection. (C, D) The functional (C) and signaling (D) pathway enrichment analyses of these genes, respectively. The P value indicates significance for enrichment. P < 0.05 was considered significant. The RichFactor is calculated as the number of genes that fall into each category divided by the total number in that category. The size of the circle reflects the absolute number of genes that fall into each category. FC: Fold change.

Next, RNA sequencing was used to explore the mRNA profile of BMECs. After quality trimming of raw reads, 13G high-quality data remained. We mapped the clean reads to the Ensembl human genome database. The proportion of total reads in the OGD/R and control transcriptome libraries that mapped to the genome ranged from 92.9% to 93.2%. Cuffdiff calculated the FPKM of each transcript and the FC of DE mRNAs. We set the threshold as FC > 2.0 and P < 0.05 and identified 808 DE mRNAs, including 448 upregulated mRNAs and 439 downregulated mRNAs (Figure 2A and B).

To predict the potential function of the DE circRNAs, software was used to identify the host genes of the DE circRNAs and DE mRNAs. Figure 2B shows the intersection of host genes for DE circRNAs and DE mRNA. A total of 36 genes were identified to transcribe both DE mRNA and circRNA and were then subjected to functional and pathway enrichment analysis. In Figure 2C and D, the color of the bubble distinguishes the P value, and the size represents the number of genes that are enriched. More detailed information is shown in Additional Table 4. We identified calcium ion export, cellular calcium ion homeostasis and calcium ion transmembrane transport to be significantly enriched functional terms and the calcium signaling pathway as a top term in pathway enrichment analysis.

Additional Table 4.

The list of functional and signal pathway enrichment

Term Genes
Functional enrichment list
GO:1901660~calcium ion export Slc8a1, Atp2b1
GO:0010468~regulation of gene expression ATPBS, Thoc2, Rc3h2, Bcl11b
GO:0006874~cellular calcium ion homeostasis ATPBS, Slc8a1, Atp2b1
GO:0001666~response to hypoxia ATPBS, Slc8a1, Kcnma1, Flt1
GO:0009791~post-embryonic development Slc8a1, Rc3h2, Bcl11b
GO:0070588~calcium ion transmembrane transport Slc8a1, Atp2b1, Cacna1d
GO:0007568~aging Kcnma1, Atp2b1, Flt1, Cacna1d
GO:0030007~cellular potassium ion homeostasis ATPBS, Kcnma1
GO:0045475~locomotor rhythm Mapk10, Kcnma1
GO:0007165~signal transduction Ptprm, Srgap2, Magi3, Bcl11b, Cap2
GO:0006883~cellular sodium ion homeostasis ATPBS, Slc8a1
GO:0070509~calcium ion import Slc8a1, Cacna1d
GO:0002028~regulation of sodium ion transport Slc8a1, Wnk1
GO:0001782~B cell homeostasis Sos2, Rc3h2
GO:0001824~blastocyst development ATPBS, Thoc2
GO:0050769~positive regulation of neurogenesis Spen, Man2a1
GO:0001569~patterning of blood vessels Flt1, Sema5a
GO:0051924~regulation of calcium ion transport Slc8a1, Cacna1d
GO:0006468~protein phosphorylation Mapk10, Flt1, Nek4, Wnk1
GO:0045909~positive regulation of vasodilation Ptprm, Kcnma1
GO:0007628~adult walking behavior Kcnma1, Oxr1
GO:0060048~cardiac muscle contraction ATPBS, Slc8a1
GO:0048286~lung alveolus development Man2a1, Rc3h2
GO:0010923~negative regulation of phosphatase activity Tmem132d, Wnk1
Pathway enrichment list
rno04022:cGMP-PKG signaling pathway ATPBS, Ppp3cc, Slc8a1, Kcnma1, Atp2b1, Cacna1d
rno04020:Calcium signaling pathway Ppp3cc, Slc8a1, Atp2b1, Cacna1d
rno04024:cAMP signaling pathway ATPBS, Mapk10, Atp2b1, Cacna1d
rno04924:Renin secretion Ppp3cc, Kcnma1, Cacna1d
rno04970:Salivary secretion ATPBS, Kcnma1, Atp2b1
rno04911:Insulin secretion ATPBS, Kcnma1, Cacna1d
rno04912:GnRH signaling pathway Mapk10, Sos2, Cacna1d
rno04010:MAPK signaling pathway Mapk10, Sos2, Ppp3cc, Cacna1d
rno04972:Pancreatic secretion ATPBS, Kcnma1, Atp2b1
rno04360:Axon guidance Srgap2, Ppp3cc, Sema5a
rno04728:Dopaminergic synapse Mapk10, Ppp3cc, Cacna1d
rno04261:Adrenergic signaling in cardiomyocytes ATPBS, Atp2b1, Cacna1d
rno04510:Focal adhesion Mapk10, Sos2, Flt1
rno04973:Carbohydrate digestion and absorption ATPBS, Cacna1d
rno04014:Ras signaling pathway Mapk10, Sos2, Flt1

Validation of the DE circRNAs

Next, we continued to investigate the circRNAs transcribed from the overlapping host genes (Figure 2B). We adopted qRT-PCR to verify changes in the expression of circRNAs. According to the FC value, we selected the five most up-regulated or downregulated circRNAs for expression validation. As shown in Figure 3A and B, the quantification of circRNA expression was well correlated with the qRT-PCR results. Nine out of ten circRNA candidates identified in the samples were successfully amplified by qRT-PCR using the RevertAid First Strand cDNA Synthesis Kit and SYBR Green PCR Kits (Thermo Fisher). Additionally, the PCR results of eight circRNAs were consistent with sequencing, demonstrating the high reliability of the high-throughput RNA sequencing of circRNA.

Figure 3.

Figure 3

The microRNA (miRNA)-circular RNA (circRNA) interaction network map.

(A, B) The five most upregulated or downregulated circRNAs, the host genes of which were identified in both the differentially expressed (DE) mRNA and DE circRNA analyses, were selected for verification. One circRNA was not successfully amplified by quantitative reverse transcription-polymerase chain reaction (RT-PCR). The quantification of eight circRNAs was consistent with the RNA sequencing results. (C) The miRNA-circRNA interaction network map of these eight circRNAs created by bioinformatic analysis. ①novel_circ_0003760; ②novel_circ_0002086; ③novel_circ_0001606; ④;novel_circ_0002023; ⑤novel_circ_0000173; ⑥novel_circ_0004586; ⑦nov-el_circ_0003342; ⑧novel_circ_0004860. Red dots indicate miRNAs.

circRNA-miRNA network analysis

Recent studies have shown that some circRNAs act as miRNA sponges (Hansen et al., 2013). To determine the possible miRNA targets of OGD/R-induced DE circRNAs, Miranda software was employed to analyze the binding sites of DE circRNAs and miRNAs. Figure 3C shows the circRNA-miRNA interaction networks of the eight circRNAs verified by qRT-PCR. A detailed list of the predicted circRNA-miRNA interactions is provided in Additional Table 5. In cerebral ischemia, some miRNAs are sponged by circRNAs. For instance, circRNA DLGAP4 functions as an endogenous miR-143 sponge to inhibit miR-143 activity, resulting in the inhibition of endothelial-mesenchymal transition by regulating tight junction protein and mesenchymal cell marker expression (Bai et al., 2018). Our results also show that miR-143 may interact with novel_circ_0003342 (Figure 3C).

Additional Table 5.

The list of the predicted circRNA-miRNA interactions

miRNA CircRNAs
rno-let-7g-3p novel_circ_0004860
rno-miR-1188-5p novel_circ_0003342
rno-miR-122-5p novel_circ_0004860
rno-miR-124-3p novel_circ_0004586
rno-miR-128-3p novel_circ_0003342
rno-miR-129-1-3p novel_circ_0001606
rno-miR-129-2-3p novel_circ_0001606
rno-miR-1297 novel_circ_0004586
rno-miR-1306-5p novel_circ_0001606
rno-miR-134-3p novel_circ_0004860
rno-miR-1-3p novel_circ_0004860
rno-miR-143-3p novel_circ_0003342
rno-miR-143-5p novel_circ_0004586
rno-miR-148a-5p novel_circ_0003760
rno-miR-148b-5p novel_circ_0003760
rno-miR-17-2-3p novel_circ_0000173
rno-miR-17-2-3p novel_circ_0002086
rno-miR-18a-5p novel_circ_0004586
rno-miR-190a-3p novel_circ_0004860
rno-miR-191a-3p novel_circ_0000173
rno-miR-191a-3p novel_circ_0002086
rno-miR-193b-5p novel_circ_0004860
rno-miR-196a-5p novel_circ_0003760
rno-miR-196b-3p novel_circ_0000173
rno-miR-196b-5p novel_circ_0003760
rno-miR-196c-5p novel_circ_0003760
rno-miR-1b novel_circ_0004860
rno-miR-201-5p novel_circ_0000173
rno-miR-203a-5p novel_circ_0004586
rno-miR-204-3p novel_circ_0000173
rno-miR-206-3p novel_circ_0004860
rno-miR-211-3p novel_circ_0000173
rno-miR-211-3p novel_circ_0004860
rno-miR-214-3p novel_circ_0004586
rno-miR-216a-3p novel_circ_0003342
rno-miR-218a-1-3p novel_circ_0000173
rno-miR-23b-5p novel_circ_0004586
rno-miR-25-3p novel_circ_0003342
rno-miR-26a-3p novel_circ_0003342
rno-miR-296-3p novel_circ_0003760
rno-miR-29a-3p novel_circ_0002023
rno-miR-29b-3p novel_circ_0002023
rno-miR-29c-3p novel_circ_0002023
rno-miR-3065-3p novel_circ_0002023
rno-miR-3065-3p novel_circ_0003342
rno-miR-3075 novel_circ_0000173
rno-miR-3084a-5p novel_circ_0002023
rno-miR-3084b-5p novel_circ_0002023
rno-miR-3084c-5p novel_circ_0002023
rno-miR-30b-3p novel_circ_0000173
rno-miR-30c-1-3p novel_circ_0001606
rno-miR-30c-2-3p novel_circ_0001606
rno-miR-323-5p novel_circ_0004860
rno-miR-32-5p novel_circ_0003342
rno-miR-327 novel_circ_0003760
rno-miR-336-5p novel_circ_0000173
rno-miR-344a-5p novel_circ_0002023
rno-miR-344b-3p novel_circ_0000173
rno-miR-345-3p novel_circ_0004860
rno-miR-349 novel_circ_0003760
rno-miR-34a-5p novel_circ_0003342
rno-miR-34b-5p novel_circ_0003342
rno-miR-34c-5p novel_circ_0003342
rno-miR-3559-5p novel_circ_0004586
rno-miR-3560 novel_circ_0000173
rno-miR-3561-3p novel_circ_0004586
rno-miR-3564 novel_circ_0004860
rno-miR-3569 novel_circ_0002023
rno-miR-3576 novel_circ_0003760
rno-miR-3584-5p novel_circ_0000173
rno-miR-3585-5p novel_circ_0000173
rno-miR-3588 novel_circ_0000173
rno-miR-3590-5p novel_circ_0001606
rno-miR-3591 novel_circ_0001606
rno-miR-361-3p novel_circ_0000173
rno-miR-362-5p novel_circ_0000173
rno-miR-363-3p novel_circ_0003342
rno-miR-383-3p novel_circ_0004586
rno-miR-410-5p novel_circ_0003760
rno-miR-412-3p novel_circ_0001606
rno-miR-448-5p novel_circ_0003342
rno-miR-449a-5p novel_circ_0003342
rno-miR-449c-5p novel_circ_0003342
rno-miR-450a-3p novel_circ_0000173
rno-miR-465-5p novel_circ_0001606
rno-miR-466b-5p novel_circ_0004860
rno-miR-484 novel_circ_0002023
rno-miR-494-5p novel_circ_0003760
rno-miR-496-5p novel_circ_0003760
rno-miR-500-5p novel_circ_0000173
rno-miR-505-5p novel_circ_0002023
rno-miR-509-5p novel_circ_0002023
rno-miR-542-3p novel_circ_0003342
rno-miR-544-3p novel_circ_0000173
rno-miR-547-5p novel_circ_0000173
rno-miR-6315 novel_circ_0004860
rno-miR-6316 novel_circ_0000173
rno-miR-6320 novel_circ_0000173
rno-miR-6329 novel_circ_0003342
rno-miR-6334 novel_circ_0002023
rno-miR-672-3p novel_circ_0000173
rno-miR-674-5p novel_circ_0004586
rno-miR-742-3p novel_circ_0003342
rno-miR-761 novel_circ_0004586
rno-miR-880-3p novel_circ_0002086
rno-miR-883-3p novel_circ_0002086
rno-miR-92a-3p novel_circ_0003342
rno-miR-92b-3p novel_circ_0003342
rno-miR-935 novel_circ_0003342

Discussion

Lin et al. (2016) explored the circRNA profile of mouse hippocampal HT22 cells in an OGD/R model and identified several DE circRNAs that may be involved in apoptosis, metabolism and immunoreaction. A further study also identified 1027 DE circRNAs in a middle cerebral artery occlusion model (Liu et al., 2017a). However, none of the circRNAs that we identified in BMECs overlapped with those identified in neural cells or tissues in previous papers. In view of the specificity of circRNA expression, endothelial cells and neural cells likely have different expression profiles in hypoxic-ischemic conditions. These newly identified circRNAs might also contribute to the features and functions of BMECs.

We analyzed the intersection of DE circRNA and DE mRNA host genes. The results indicate the circRNAs are closely related to calcium ions. Calcium signaling plays an important role in the regulation of vascular endothelial cell function. For example, increased calcium binds to calmodulin and interacts with related proteins to release vasodilators, such as nitric oxide and prostacyclin (Yamamoto et al., 2000). Differences in the amplitude and duration of intracellular calcium oscillations contribute to the differential activation of various transcription factors, leading to regulated gene expression (Chen et al., 2019). This is consistent with the high score for “regulation of gene expression” in our results. Additionally, “response to hypoxia” had a high enrichment score. Therefore, we suggest that circRNAs transcribed from the 36 genes identified may play important roles in calcium ion regulation during cerebral ischemia-reperfusion injury.

Surprisingly, the most significant term in the pathway results was cyclic guanosine 3′,5′-monophosphate (cGMP)-cGMP-dependent protein kinase (PKG) signaling. The first mechanism proposed for cGMP-dependent relaxation of smooth muscle was the reduction of free intracellular cytosolic calcium concentration (Johnson and Lincoln, 1985). Several sites of action have been proposed to account for cGMP-dependent regulation of cytosolic calcium, and these have been reviewed (Lincoln et al., 2001). Nitric oxide-cGMP signaling was recognized by the 1998 Nobel Prize in Physiology and Medicine (Arnold et al., 1977). Nitric oxide diffuses across vascular smooth muscle cell membranes and activates the enzyme-soluble guanylate cyclase, which catalyzes the conversion of guanosine tri-phosphate into cGMP (Denninger and Marletta, 1999). cGMP activates PKG, which promotes multiple phosphorylation of targets, lowering cellular calcium concentrations and promoting vascular relaxation (Surks et al., 1999). The cGMP-PKG pathway also decreases calcium release, which inhibits caspase-3 activation and apoptosis. Therefore, identification of this term in our pathway enrichment analysis is consistent with the identification of calcium ion terms in the functional enrichment analysis.

circRNA was first identified in 1976 by Sanger et al. (1976). circRNAs are not susceptible to degradation by RNA exonucleases because of their covalently closed circular structure that lacks accessible ends (Altesha et al., 2019). These characteristics give circRNAs significantly longer half-lives than linear RNAs. BMEC-released circRNAs can be easily detected in plasma; for example circHectd1 is significantly increased in the plasma of model stroke mice (Han et al., 2018). circRNAs are, therefore, potential candidates for diagnostic and prognostic biomarkers of disease.

miRNAs negatively regulate gene expression by partial base pairing with the untranslated region of its target mRNA. But interaction of the miRNA seed region with the mRNA is not unidirectional. Transcribed pseudogenes, long noncoding RNAs and circRNAs compete for the same pool of miRNAs, thereby regulating miRNA activity. This phenomenon of regulating other RNA transcripts by competing for shared miRNAs is performed by RNAs termed competing endogenous RNAs. The binding and holding of miRNAs by circRNAs has been termed the “sponging effect”, which results in the increased expression of miRNA target mRNAs (Altesha et al., 2019). In the present study, we obtained several circRNA-miRNA networks by bioinformatics. Some of the miRNAs have been reported in cerebral ischemia reperfusion injury. For example, miR-26a can promote endothelial lumen formation and cell proliferation in BMECs via the phosphatidylinositol 3′-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase pathway (Liang et al., 2018). In addition, overexpression of miR-544 ameliorated the inflammation and apoptotic responses in brain tissue after ischemia reperfusion by down-regulating the expression of interleukin-1 receptor-associated kinase 4 (Fang et al., 2018). Moreover, miR-124, one the most abundant miRNAs in the central nervous system, is a potential partner of novel_circ_0004586. miR-124 plays multiple functions in brain ischemia, such as in inflammation, glycolysis and cell damage (Zhu et al., 2014; Hamzei Taj et al., 2016; Caruso et al., 2017). Future research should explore the regulatory mechanisms of circRNAs and functional miRNAs.

The most significant result of the present study is the association of circRNAs with calcium ion-related pathways. Calcium overload is well known to be induced by brain ischemia and oxygen and glucose deprivation and to induce dysfunctional adenosine triphosphate and cell damage. Targeting calcium ion-related proteins, such as sodium-calcium exchanger, voltage-sensitive calcium channels, transient receptor potential channels, and N-methyl-D-aspartate recep-tors has been confirmed to be an effective treatment (Khananshvili, 2013; Kumar et al., 2014). cGMP and PKGs are widely involved in the physiological processes of the vascular system. This pathway stimulates endothelial cell prolif-eration and inhibits vascular smooth muscle cell proliferation. Dysfunction of the cGMP-PKG signaling pathway at any step of the cascade has been implicated in numerous vascular diseases, ranging from cerebral ischemia to atherosclerosis and angiogenesis (Zhang et al., 2003; Tsai and Kass, 2009). In future studies we will, therefore, explore the mechanism between circRNAs and calcium ion-related pathways.

In the present study, we used rat BMECs to detect DE circRNAs and mRNAs after OGD/R injury. Bioinformatics predicted the functions of circRNAs and indicated downstream pathways. We believe this will be benefit treatment strategies for cerebral ischemia reperfusion injury. However, one contentious question is whether animal samples and in vitro experimental results can be used to predict responses in human. circRNAs are poorly conserved among species (Chen and Yang, 2015) and all biological functions are determined by the genes of the individual. Every species has a unique genetic code for the biological activities associated with that species (Shanks et al., 2009). Currently, nine out of ten experimental drugs fail in clinical studies because we cannot accurately predict how they will behave in people based on laboratory and animal studies (Shanks et al., 2009). Therefore, we will explore the circRNAs from the present study that are homologous with human orthologs.

In summary, a number of previously unrecorded circRNAs have been revealed to be differentially expressed in primary BMECs after OGD/R treatment. Furthermore, calcium ion and cGMP-PKG signaling pathways may be important regulatory targets of circRNAs. Altered circRNAs may be important in the pathogenesis of cerebral ische-mia-reperfusion injury and, consequently, may be potential therapeutic targets for cerebral ischemia diseases.

Additional files:

Additional Table 1: The list of CircRNAs primers.

Additional Table 2 (2MB, pdf) : Identified 1288 circRNAs by RNA sequencing.

Additional Table 2

Identified 1288 circRNAs by RNA sequencing

Additional Table 3: The list of differentially expressed circRNAs.

Additional Table 4: The list of functional and signal pathway enrichment.

Additional Table 5: The list of the predicted circRNA-miRNA interactions.

Footnotes

Conflicts of interest: The authors declare no conflicts of interest.

Financial support: This work was supported by the National Natural Science Foundation for Young Scientists of China, No. 81601058 (to WL); and Basic Research and Frontier Science Exploration Foundation of Yuzhong District, Chongqing, China, No. 20180106 (to FFS). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

Institutional review board statement: All animal methods were approved and guided by the Chongqing Medical University Committee on Animal Research (approval No. CQMU20180086) on March 22, 2018.

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement: Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open peer reviewer: Fei Ding, Nantong University, China.

Funding: This work was supported by the National Natural Science Foundation for Young Scientists of China, No. 81601058 (to WL); and Basic Research and Frontier Science Exploration Foundation of Yuzhong District, Chongqing, China, No. 20180106 (to FFS).

P-Reviewer: Ding F; C-Editor: Zhao M; S-Editors: Yu J, Li CH; L-Editors: Yu J, Song LP; T-Editor: Jia Y

References

  • 1.Altesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234:5588–5600. doi: 10.1002/jcp.27384. [DOI] [PubMed] [Google Scholar]
  • 2.Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophos-phate levels in various tissue preparations. Proc Natl Acad Sci U S A. 1977;74:3203–3207. doi: 10.1073/pnas.74.8.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7:986–995. doi: 10.1101/gr.7.10.986. [DOI] [PubMed] [Google Scholar]
  • 4.Bachetti T, Morbidelli L. Endothelial cells in culture: a model for studying vascular functions. Pharmacol Res. 2000;42:9–19. doi: 10.1006/phrs.1999.0655. [DOI] [PubMed] [Google Scholar]
  • 5.Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38:32–50. doi: 10.1523/JNEUROSCI.1348-17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015;4:e07540. doi: 10.7554/eLife.07540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, D’Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, et al. Identification of microRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation. 2017;136:2451–2467. doi: 10.1161/CIRCULATIONAHA.117.028034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–388. doi: 10.1080/15476286.2015.1020271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Chen ZZ, Yuan WM, Xiang C, Zeng DP, Liu B, Qin KR. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells. Biomech Model Mechanobiol. 2019;18:189–202. doi: 10.1007/s10237-018-1076-x. [DOI] [PubMed] [Google Scholar]
  • 10.Denninger JW, Marletta MA. Guanylate cyclase and the .NO/ cGMP signaling pathway. Biochim Biophys Acta. 1999;1411:334–350. doi: 10.1016/s0005-2728(99)00024-9. [DOI] [PubMed] [Google Scholar]
  • 11.Fang R, Zhao NN, Zeng KX, Wen Q, Xiao P, Luo X, Liu XW, Wang YL. MicroRNA-544 inhibits inflammatory response and cell apoptosis after cerebral ischemia reperfusion by targeting IRAK4. Eur Rev Med Pharmacol Sci. 2018;22:5605–5613. doi: 10.26355/eurrev_201809_15825. [DOI] [PubMed] [Google Scholar]
  • 12.Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19:803–810. doi: 10.1093/bib/bbx014. [DOI] [PubMed] [Google Scholar]
  • 13.Guo ZN, Jin H, Sun H, Zhao Y, Liu J, Ma H, Sun X, Yang Y. Antioxidant melatonin: potential functions in improving cerebral autoregulation after subarachnoid hemorrhage. Front Physiol. 2018;9:1146. doi: 10.3389/fphys.2018.01146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials. 2016;91:151–165. doi: 10.1016/j.biomaterials.2016.03.025. [DOI] [PubMed] [Google Scholar]
  • 15.Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018;14:1164–1184. doi: 10.1080/15548627.2018.1458173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388. doi: 10.1038/nature11993. [DOI] [PubMed] [Google Scholar]
  • 17.Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. [DOI] [PubMed] [Google Scholar]
  • 18.John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Johnson RM, Lincoln TM. Effects of nitroprusside, glyceryl trinitrate, and 8-bromo cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol. 1985;27:333–342. [PubMed] [Google Scholar]
  • 20.Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Aspects Med. 2013;34:220–235. doi: 10.1016/j.mam.2012.07.003. [DOI] [PubMed] [Google Scholar]
  • 21.Kumar VS, Gopalakrishnan A, Naziroglu M, Rajanikant GK. Calcium ion--the key player in cerebral ischemia. Curr Med Chem. 2014;21:2065–2075. doi: 10.2174/0929867321666131228204246. [DOI] [PubMed] [Google Scholar]
  • 22.Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3485–3492. doi: 10.26355/eurrev_201806_15175. [DOI] [PubMed] [Google Scholar]
  • 23.Lin SP, Ye S, Long Y, Fan Y, Mao HF, Chen MT, Ma QJ. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun. 2016;471:52–56. doi: 10.1016/j.bbrc.2016.01.183. [DOI] [PubMed] [Google Scholar]
  • 24.Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol (1985) 2001;91:1421–1430. doi: 10.1152/jappl.2001.91.3.1421. [DOI] [PubMed] [Google Scholar]
  • 25.Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017a;8:86535–86547. doi: 10.18632/oncotarget.21238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q, Yan B. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics. 2017b;7:2863–2877. doi: 10.7150/thno.19353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928. [DOI] [PubMed] [Google Scholar]
  • 28.Pang D, Wang L, Dong J, Lai X, Huang Q, Milner R, Li L. Integrin alpha5beta1-Ang1/Tie2 receptor cross-talk regulates brain endo-thelial cell responses following cerebral ischemia. Exp Mol Med. 2018;50:117. doi: 10.1038/s12276-018-0145-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Plácido AI, Pereira CM, Correira SC, Carvalho C, Oliveira CR, Moreira PI. Phosphatase 2A inhibition affects endoplasmic reticulum and mitochondria homeostasis via cytoskeletal alterations in brain endothelial cells. Mol Neurobiol. 2017;54:154–168. doi: 10.1007/s12035-015-9640-1. [DOI] [PubMed] [Google Scholar]
  • 30.Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–3856. doi: 10.1073/pnas.73.11.3852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, Murohara T, Kato K, Sundaram S, Stanley P, Okajima T. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. Elife. 2017;6:e24419. doi: 10.7554/eLife.24419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Shang FF, Xia QJ, Liu W, Xia L, Qian BJ, You L, He M, Yang JL, Wang TH. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle. Sci Rep. 2016;6:22884. doi: 10.1038/srep22884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4:2. doi: 10.1186/1747-5341-4-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environ-ment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science. 1999;286:1583–1587. doi: 10.1126/science.286.5444.1583. [DOI] [PubMed] [Google Scholar]
  • 36.Toth AE, Nielsen MS. Analysis of the trafficking system in blood-brain barrier models by high content screening microscopy. Neural Regen Res. 2018;13:1883–1884. doi: 10.4103/1673-5374.239435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther. 2009;122:216–238. doi: 10.1016/j.pharmthera.2009.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136–138. doi: 10.1093/bioinformatics/btp612. [DOI] [PubMed] [Google Scholar]
  • 39.Yamamoto K, Korenaga R, Kamiya A, Ando J. Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 puri-noceptors. Circ Res. 2000;87:385–391. doi: 10.1161/01.res.87.5.385. [DOI] [PubMed] [Google Scholar]
  • 40.Yu QJ, Tao H, Wang X, Li MC. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke. Neural Regen Res. 2015;10:1882–1891. doi: 10.4103/1673-5374.170324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Zhang R, Wang L, Zhang L, Chen J, Zhu Z, Zhang Z, Chopp M. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res. 2003;92:308–313. doi: 10.1161/01.res.0000056757.93432.8c. [DOI] [PubMed] [Google Scholar]
  • 42.Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5:e15224. doi: 10.1371/journal.pone.0015224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Zhu F, Liu JL, Li JP, Xiao F, Zhang ZX, Zhang L. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci. 2014;52:148–155. doi: 10.1007/s12031-013-0155-9. [DOI] [PubMed] [Google Scholar]
  • 44.Zhu S, Gao X, Huang K, Gu Y, Hu Y, Wu Y, Ji Z, Wang Q, Pan S. Glibenclamide enhances the therapeutic benefits of early hypothermia after severe stroke in rats. Aging Dis. 2018;9:685–695. doi: 10.14336/AD.2017.0927. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional Table 2

Identified 1288 circRNAs by RNA sequencing


Articles from Neural Regeneration Research are provided here courtesy of Wolters Kluwer -- Medknow Publications

RESOURCES