Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 2006 May 23;20(3):98–104. doi: 10.1002/jcla.20108

Natriuretic peptide Val7Met substitution and risk of coronary artery disease in Greek patients with familial hypercholesterolemia

George VZ Dedoussis 1,, Sandy Maumus 2, John Skoumas 3, Despoina M Choumerianou 1, Christos Pitsavos 3, Christodoulos Stefanadis 3, Sophie Visvikis‐Siest 2
PMCID: PMC6807625  PMID: 16721833

Abstract

Atrial natriuretic peptide (ANP or NPPA) is the precursor protein of the form of amyloidosis called isolated atrial amyloid (IAA), which is related to the increased incidence of cardiac pathological conditions with age. Familial hypercholesterolemia (FH) patients are characterized by high concentrations of low‐density lipoprotein cholesterol (LDL‐C), which frequently gives rise to premature coronary artery disease (CAD). However, not all FH patients have the same clinical phenotype. The aim of the present study was to assess the relationship between ANP polymorphisms and apolipoprotein (Apo) A1 levels and CAD risk in FH patients. Transition T2238C, which leads to ANP with two additional arginines, and G664A (Val7Met) were investigated with lipid values and clinical phenotype in 83 FH patients. ApoA1 and HDL cholesterol levels were lower in GA patients compared to GG homozygotes for the G664A polymorphism. No association was found between the G664A polymorphism and CAD in our population. Moreover, ApoA1 and high‐density lipoprotein cholesterol (HDL‐C) levels did not differ among the different genotypes of the T2238C polymorphism, even after adjusting for age and sex. The 664A allele of the ANP polymorphism is associated with lower levels of ApoA1 and HDL‐C in FH patients, but not with CAD risk. Concerning the T2238C polymorphism, no effect was found on lipid parameters or CAD incidence. J. Clin. Lab. Anal. 20:98–104, 2006. © 2006 Wiley‐Liss, Inc.

Keywords: ANP, polymorphism, G664A, FH, Apo‐A1, HDL‐C, coronary artery disease

REFERENCES

  • 1. Golstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia In: Scriver CR, Beadet AL, Sly W, Valle D, editors. The metabolic and molecular basis of inherited disease. 7th ed New York: McGraw‐Hill; 1995. p 1981–2029. [Google Scholar]
  • 2. Takahashi M, Hoshii Y, Kawano H, et al. Ultrastructural evidence for the formation of amyloid fibrils within cardiomyocytes in isolated atrial amyloid. Amyloid 1998;5:35–42. [DOI] [PubMed] [Google Scholar]
  • 3. Maioli E, Torricelli C, Santucci A, Martelli P, Pacini A. Plasma factors controlling atrial natriuretic peptide (ANP) aggregation: role of lipoproteins. Biochim Biophys Acta 2001;1536:123–132. [DOI] [PubMed] [Google Scholar]
  • 4. Rye KA, Clay MA, Barter PJ. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 1999;145:227–238. [DOI] [PubMed] [Google Scholar]
  • 5. Barter PJ. Hugh Sinclair lecture: the regulation and remodeling of HDL by plasma factors. Atheroscler Suppl 2002;3:39–47. [DOI] [PubMed] [Google Scholar]
  • 6. Nanjee MN, Brinton EA. Very small apolipoprotein A‐I containing particles from human plasma: isolation and quantification by high‐performance size‐exclusion chromatography. Clin Chem 2000;46:207–223. [PubMed] [Google Scholar]
  • 7. Tall AR. An overview of reverse cholesterol transport. Eur Heart J Suppl A 1998;19:A31–A35. [PubMed] [Google Scholar]
  • 8. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002;161:1–16. [DOI] [PubMed] [Google Scholar]
  • 9. Maioli E, Torricelli C, Santucci A, Martelli P, Pacini A. Plasma factors controlling atrial natriuretic peptide (ANP) aggregation: role of lipoproteins. Biochim Biophys Acta 2001;1536:123–132. [DOI] [PubMed] [Google Scholar]
  • 10. Rutledge D, Sun Y, Ross E. Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J Hypertens 1995;13:953–955. [DOI] [PubMed] [Google Scholar]
  • 11. Kato N, Sugiyiama T, Morita H, et al. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin Sci 2000;98:251–258. [PubMed] [Google Scholar]
  • 12. Halushka MK, Fan JB, Bentley K, et al. Patterns of single‐nucleotide polymorphisms in candidate genes for blood‐pressure homeostasis. Nat Genet 1999;22:239–247. [DOI] [PubMed] [Google Scholar]
  • 13. Cheng S, Pallaud C, Grow MA, et al. A multilocus genotyping assay for cardiovascular disease. Clin Chem Lab Med 1998;36:561–566. [DOI] [PubMed] [Google Scholar]
  • 14. Nissen H, Guldberg P, Hansen AB, Petersen NE, Horder M. Clinically applicable mutation screening in familial hypercholesterolemia. Hum Mutat 1996;8:168–177. [DOI] [PubMed] [Google Scholar]
  • 15. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. New Engl J Med 1998;339:321–328. [DOI] [PubMed] [Google Scholar]
  • 16. Estrada V, Tellez MJ, Moya J, Fernandez‐Durango R, Egido J, Fernandez Cruz AF. High plasma levels of endothelin‐1 and atrial natriuretic peptide in patients with acute ischemic stroke. Am J Hypertens 1994;7:1085–1089. [DOI] [PubMed] [Google Scholar]
  • 17. Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R. N‐terminal pro‐B‐type natriuretic peptide and long‐term mortality in stable coronary heart disease. N Engl J Med 2005;17:352:666–675. [DOI] [PubMed] [Google Scholar]
  • 18. Kato J, Kitamura K, Matsui E, et al. Plasma adrenomedullinand natriuretic peptides in patients with essential or malignant hypertension. Hypertens Res 1999;22:61–65. [DOI] [PubMed] [Google Scholar]
  • 19. Kato N, Ikeda K, Nabika T, et al. Evaluation of the atrial natriuretic peptide gene in stroke. Atherosclerosis 2002;163:279–286. [DOI] [PubMed] [Google Scholar]
  • 20. Hassan A, Ali N, Dong Y, Carter ND, Markus HS. Atrial natriuretic peptide gene G664A polymorphism and the risk of ischemic cerebrovascular disease. Neurology 2001;57:1726–1728. [DOI] [PubMed] [Google Scholar]
  • 21. Rubattu S, Stanzione R, Di Angelantonio E, et al. Atrial natriuretic peptide gene polymorphisms and risk of ischemic stroke in humans. Stroke 2004;35:814–818. [DOI] [PubMed] [Google Scholar]
  • 22. Rubattu S, Ridker P, Stampfer MJ, Volpe M, Hennekens CH, Lindpaintner K. The gene encoding atrial natriuretic peptide and the risk of human stroke. Circulation 1999;100:1722–1726. [DOI] [PubMed] [Google Scholar]
  • 23. Dedoussis GV, Skoumas J, Pitsavos C, et al. FH clinical phenotype in Greek patients with LDL‐R defective vs. negative mutations. Eur J Clin Invest 2004;34:402–409. [DOI] [PubMed] [Google Scholar]
  • 24. Carmena‐Ramon RF, Ordovas JM, Ascaso JF, Real J, Priego MA, Carmena R. Influence of genetic variation at the apo A‐I gene locus on lipid levels and response to diet in familial hypercholesterolemia. Atherosclerosis 1998;139:107–113. [DOI] [PubMed] [Google Scholar]
  • 25. Seidman CE, Bloch KD, Klein KA, Smith JA, Seidman JG. Nucleotide sequences of the human and mouse atrial natriuretic factor genes. Science 1984;226:1206–1209. [DOI] [PubMed] [Google Scholar]
  • 26. Gruchala M, Ciecwierz D, Wasag B, et al. Association of the ScaI atrial natriuretic peptide gene polymorphism with nonfatal myocardial infarction and extent of coronary artery disease. Am Heart J 2003;145:125–131. [DOI] [PubMed] [Google Scholar]
  • 27. Nannipieri M, Manganiello M, Pezzatini A, De Bellis A, Seghieri G, Ferrannini E. Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension. Hypertension 2001;37:1416–1422. [DOI] [PubMed] [Google Scholar]
  • 28. Barley J, Carter ND, Cruickshank JK, et al. Renin and atrial natriuretic peptide restriction fragment length polymorphisms: association with ethnicity and blood pressure. J Hypertens 1991;9:993–996. [DOI] [PubMed] [Google Scholar]
  • 29. Ramasawmy R, Kotea N, Lu CY, Sayada C, Baligadoo S, Krishnamoorthy R. Investigation of the polymorphic ScaI site by a PCR‐based assay at the human atrial natriuretic peptides (hANP) gene locus. Hum Genet 1992;90:323–324. [DOI] [PubMed] [Google Scholar]
  • 30. Garfagnini A, Devoto G, Rosselli P, Boggiano P, Venturini M. Relationship between HDL‐cholesterol and apolipoprotein A1 and the severity of coronary artery disease. Eur Heart J 1995;16:465–470. [DOI] [PubMed] [Google Scholar]
  • 31. Rye KA, Clay MA, Barter PJ. Remodeling of high‐density lipoproteins by plasma factors. Atherosclerosis 1999;145:227–238. [DOI] [PubMed] [Google Scholar]
  • 32. Torricelli C, Capurro E, Santucci A, et al. Small HDL form via ApoA‐I a complex with atrial natriuretic peptide. Biochem Biophys Res Commun 2004;315:16–21. [DOI] [PubMed] [Google Scholar]
  • 33. Pitsavos C, Panagiotakos DB, Chrysohoou C, Kavouras S, Stefanadis C. The associations between physical activity, inflammation, and coagulation markers, in people with metabolic syndrome: the ATTICA study. Eur J Cardiovasc Prev Rehabil 2005;12:151–158. [DOI] [PubMed] [Google Scholar]
  • 34. Dedoussis GV, Panagiotakos DB, Chrysohoou C, et al. Effect of interaction between adherence to a Mediterranean diet and the methylenetetrahydrofolate reductase 677C–>T mutation on homocysteine concentrations in healthy adults: the ATTICA study. Am J Clin Nutr 2004;80:849–854. [DOI] [PubMed] [Google Scholar]
  • 35. Pitsavos C, Panagiotakos DB, Chrysohoou C, Stefanadis C. Epidemiology of cardiovascular risk factors in Greece: aims, design and baseline characteristics of the ATTICA study. BMC Public Health 2003;20:32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Hauser ER, Crossman DC, Granger CB, et al. A genomewide scan for early‐onset coronary artery disease in 438 families: the GENECARD study. Am J Hum Genet 2004;5:436–447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES