Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 1999 Jun 22;13(4):158–165. doi: 10.1002/(SICI)1098-2825(1999)13:4<158::AID-JCLA4>3.0.CO;2-0

Changes in concanavalin A‐reactive proteins in neurological disorders

Luciano Saso 1, Giovanni Valentini 1, Maria Grazia Leone 1, Eleonora Grippa 1, Renzo Guglielmi 2, Luciana Paris 2, Gianpaolo Cantore 2, Bruno Silvestrini 1,
PMCID: PMC6807750  PMID: 10414595

Abstract

Changes of glycosylation of cerebrospinal fluid proteins such as α2‐macroglobulin, and prostaglandin D synthase were studied by lectin blotting, using concanavalin A, in multiple sclerosis (n = 42) and neuropathies (n = 20) in comparison to neurological controls (n = 22). The concanavalin A‐reactivity of α2‐macroglobulin, which was increased in the neuropathies but not in multiple sclerosis compared to controls, correlated with the total concanavalin A‐reactivity in controls and neuropathies but not in multiple sclerosis, indicating that the protein could be abnormally glycosylated in the latter disease. Although the concentration and the concanavalin A‐reactivity of prostaglandin D synthase were not significantly different in the three groups, the two parameters correlated only in neuropathies but not in controls or multiple sclerosis, probably due to the high heterogeneity of the protein. These changes deserve to be studied in further detail in view of their potential clinical applications. J. Clin. Lab. Anal. 13:158–165, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: multiple sclerosis, prostaglandin D synthase, α2‐macroglobulin, α1‐antitrypsin, β2‐microglobulin, glycosylation

REFERENCES

  • 1. Silvestrini B, Guglielmotti A, Saso L, Cheng CY. Changes in concanavalin A‐reactive proteins in inflammatory disorders. Clin Chem 1989;35:2207–11. Medline [PubMed] [Google Scholar]
  • 2. Silvestrini B, Guglielmotti A, Saso L, et al. Development of an enzyme‐linked immunosorbent assay with a monoclonal antibody prepared α1‐antitrypsin for diagnostic screening of inflammatory disorders. Clin Chem 1990;36:277–282. Medline [PubMed] [Google Scholar]
  • 3. Silvestrini B, Bombardieri S, Caranti S, et al. The use of a monoclonal antibody against α1‐antitrypsin in diagnostic screening of inflammatory disorders. Int J Immunoth 1991;7:197–204. [Google Scholar]
  • 4. Saso L, Silvestrini B, Zwain I, et al. Abnormal glycosylation of hemopexin in arthritic rats can be blocked by bindarit. J Rheumatol 1992;19:1859–1867. Medline [PubMed] [Google Scholar]
  • 5. Saso L, Silvestrini B, Lahita R, Cheng CY. Changes of immunoreactivity in α1‐antitrypsin in patients with autoimmune diseases. Inflammation 1993;17:383–400. Medline [DOI] [PubMed] [Google Scholar]
  • 6. Saso L, Silvestrini B, Guglielmotti A, Lahita R, Cheng CY. Abnormal glycosylation of α2‐macroglobulin, a non‐acute‐phase protein, in patients with autoimmune diseases. Inflammation 1993;17:465–479. Medline [DOI] [PubMed] [Google Scholar]
  • 7. Guglielmotti A, Silvestrini B, Saso L, Zwain I, Chen CY. Chronic inflammatory response in the rat can be blocked by bindarit. Biochem Mol Biol Int 1993;29:747–756. Medline [PubMed] [Google Scholar]
  • 8. Panzironi C, Silvestrini B, Mo MY, Lahita R, Mruk D, Cheng CY. An increase in the carbohydrate moiety of alpha 2‐macroglobulin is associated with systemic lupus erythematosus (SLE). Biochem Mol Biol Int 1997;43:1305–1322. Medline [DOI] [PubMed] [Google Scholar]
  • 9. Cioli V, Ciarniello MG, Guglielmotti A, et al. A new protein antidenaturant agent, bindarit, reduces secondary phase inflammation in Freund's adjuvant injected rats. J Rheumatol 1992;19:1735–42. Medline [PubMed] [Google Scholar]
  • 10. Pawlowski T, Aeschlimann A, Kahn MF, Vaith P, Mackiewicz SH, Mueller W. Microheterogeneity of acute phase proteins in the differentiation of polymyalgia rheumatica from polymyositis. J Rheumatol 1990;17:1187–1192. Medline [PubMed] [Google Scholar]
  • 11. Mackiewicz A, Marcinkowska‐Pieta R, Ballou S, Mackiewicz S, Kushner I. Microheterogeneity of α1‐acid glycoprotein in the detection of intercurrent infection in systemic lupus erythematosus. Arth Rheumat 1987;30:513–518.Medline [DOI] [PubMed] [Google Scholar]
  • 12. Mackiewicz A, Pawlowski T, Mackiewicz‐Pawlowska A, Wiktorowicz K, Mackiewicz S. Microheterogeneity forms of α1‐acid glycoprotein as indicators of rheumatoid arthritis activity. Clin Chim Acta 1987;163:185–190. Medline [DOI] [PubMed] [Google Scholar]
  • 13. Stibler H, Allgulander C, Borg S, Kjellin KG. Abnormal microheterogeneity of transferrin in serum and cerebrospinal fluid in alcoholism. Acta Med Scand 1978;204:49–56. Medline [DOI] [PubMed] [Google Scholar]
  • 14. De Jong G, Feelders R, Van Noort WL, Van Eijk HG. Transferrin microheterogeneity as a probe in normal and disease states. Glycoconj J 1995;12:219–226. Medline [DOI] [PubMed] [Google Scholar]
  • 15. Hoffmann A, Nimtz M, Getzlaff R, Conradt HS. “Brain‐type” N‐glycosylation of asialo‐transferrin from human cerebrospinal fluid. FEBS Lett 1995;359:164–168. Medline [DOI] [PubMed] [Google Scholar]
  • 16. Mazzarello P, Poloni M, Pinelli P. Microheterogeneity of CSF α2‐macroglobulin in multiple sclerosis and other neurological diseases. A study performed by direct immunofixation after isoelectric focusing. Acta Neurol Belg 1985;85:222–228. Medline [PubMed] [Google Scholar]
  • 17. Hoffmann A, Conradt HS, Gross G, Nimtz M, Lottspeich F, Wurster U. Purification and chemical characterization of β‐trace protein from human cerebrospinal fluid: its identification as prostaglandin D synthase. J Neurochem 1993;61:451–456. Medline [DOI] [PubMed] [Google Scholar]
  • 18. Watanabe K, Urade Y, Mader M, Murphy C. Identification of β‐trace as prostaglandin D synthase. Biochem Biophys Res Commun 1994;203:1110–1116. Medline [DOI] [PubMed] [Google Scholar]
  • 19. Hoffmann A, Nimtz M, Wurster U, Conradt HS. Carbohydrate structures of β‐trace protein from human cerebrospinal fluid: evidence for “brain‐type” N‐glycosylation. J Neurochem 1994;63:2185–2196. Medline [DOI] [PubMed] [Google Scholar]
  • 20. Pohl S, Hoffmann A, Rudiger A, Nimtz M, Jaeken J, Conradt HS. Hypoglycosylation of a brain glycoprotein (β‐trace protein) in CDG syndromes due to phosphomannomutase deficiency and N‐acetylglucosaminyl‐transferase II deficiency. Glycobiology 1997;7:1077–1084. Medline [DOI] [PubMed] [Google Scholar]
  • 21. Hiraoka A, Arato T, Tominaga I, Eguchi N, Oda H, Urade Y. Sodium dodecyl sulfate‐capillary gel electrophoretic analysis of molecular mass microheterogeneity of β‐trace protein in cerebrospinal fluid from patients with central nervous system diseases. J Chromatogr A 1998;802:143–148. Medline [DOI] [PubMed] [Google Scholar]
  • 22. Schieven GL, Blank A, Dekker CA. Ribonucleases of human cerebrospinal fluid: detection of altered glycosylation relative to their serum counterparts. Biochemistry 1982;21:5148–5155. Medline [DOI] [PubMed] [Google Scholar]
  • 23. Bernard CC, Kerlero de Rosbo N. Definite multiple sclerosis: an autoimmune disease of multifactorial etiology. Curr Opin Immunol 1992;4760–765. [DOI] [PubMed] [Google Scholar]
  • 24. Rastogi SC, Clausen J. Abnormalities in native and dissociated α2‐macroglobulin isolated from definite multiple sclerosis serum. Clin Chim Acta 1980;107:141–144. Medline [DOI] [PubMed] [Google Scholar]
  • 25. Rastogi SC, Clausen J, Fog T. Abnormal serum α2‐macroglobulin in definite multiple sclerosis. Eur Neurol 1981;20:33–39. Medline [DOI] [PubMed] [Google Scholar]
  • 26. Back SA, Alhadeff JA. Differential isoform profiles of α2‐macroglobulin from plasma of patients with chronic‐progressive or relapsing‐remitting definite multiple sclerosis. Clin Chim Acta 1992;211:27–36. Medline [DOI] [PubMed] [Google Scholar]
  • 27. Tibbling G, Link H, Ohman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest 1977;37:385–390. Medline [DOI] [PubMed] [Google Scholar]
  • 28. Link H, Tibbling G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in definite multiple sclerosis. Scand J Clin Lab Invest 1977;37:397–401. Medline [DOI] [PubMed] [Google Scholar]
  • 29. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. Medline [DOI] [PubMed] [Google Scholar]
  • 30. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 1992;24:145–149. Medline [PubMed] [Google Scholar]
  • 31. Burnette WN. Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate‐polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radiolabeled protein A. Anal Biochem 1981;112:195–203. Medline [DOI] [PubMed] [Google Scholar]
  • 32. Hawkes R. Identification of concanavalin A‐binding proteins after sodium dodecyl sulfate‐polyacrylamide gels and protein blotting. Anal Biochem 1982;123:143–146. Medline [DOI] [PubMed] [Google Scholar]
  • 33. Leone MG, Saso L, Del Vecchio A, Mo MY, Silvestrini B, Cheng CY. Micropurification of two human cerebrospinal fluid proteins by high performance electrophoresis chromatography. J Neurochem 1993;61:533–540. Medline [DOI] [PubMed] [Google Scholar]
  • 34. Tourtellotte WW. Cerebrospinal fluid and its reactions in diseases In: Minckler J, editor. Pathology of the nervous system. New York: McGraw‐Hill; 1968. [Google Scholar]
  • 35. Lonberg‐Holm K, Reed DL, Roberts RC, Hebert RR, Hillman MC, Kutney RM. Three high molecular weight protease inhibitors of rat plasma. Isolation, characterization, and acute phase changes. J Biol Chem 1987;262:438–445. Medline [PubMed] [Google Scholar]
  • 36. Sottrup‐Jensen, L . α2‐Macroglobulin and related thiol ester plasma proteins In: Putnam FW, editor. The plasma proteins, vol. V New York: Academic Press; 1987. p 191–291. [Google Scholar]
  • 37. Clausen J. Proteins in normal cerebrospinal fluid not found in serum. Proc Soc Exp Biol Med 1961;107:170. [DOI] [PubMed] [Google Scholar]
  • 38. Thompson EG, editor. The CSF proteins: a biochemical approach. Amsterdam: Elsevier; 1988. [Google Scholar]
  • 39. Link H, Olson JE. β‐trace protein concentration in CSF in neurological disorders. Acta Neurol Scand 1972;48:57–68. Medline [DOI] [PubMed] [Google Scholar]
  • 40. Melegos DN, Freedman MS, Diamandis EP. Prostaglandin D synthase concentration in cerebrospinal fluid and serum of patients with neurological disorders. Prostaglandins Med 1997;54:463–474. [DOI] [PubMed] [Google Scholar]
  • 41. Carrieri PB, Indaco A, Maiorino A, et al. Cerebrospinal fluid β2‐microglobulin in definite multiple sclerosis and AIDS dementia complex. Neurol Res 1992;14:282–283. Medline [DOI] [PubMed] [Google Scholar]
  • 42. Beyne P, Lisovoski F, Got L, Ayache P, Delacoux E. β2 Microglobulin in cerebrospinal fluid in neurology. Presse Med 1995;24:1071–1074. Medline [PubMed] [Google Scholar]
  • 43. Bjerrum OW, Bach FW, Zeeberg I. Increased level of cerebrospinal fluid β2‐microglobulin is related to neurologic impairment in definite multiple sclerosis. Acta Neurol Scand 1988;78:72–75. Medline [DOI] [PubMed] [Google Scholar]
  • 44. Adachi N, Tshukagoshi H, Murakami F, Kanai M. β2‐Microglobulin levels in cerebrospinal fluid—the levels in various neurological diseases and their comparison with those in serum. Rinsho Shinkeigaku 1978;18:351–357. Medline [PubMed] [Google Scholar]
  • 45. Us Ö Lolli F, Baig S, Link H. Intrathecal synthesis of β2‐microglobulin in definite multiple sclerosis and aseptic meningo‐encephalitis. Acta Neurol Scand 1989;80:598–602. Medline [DOI] [PubMed] [Google Scholar]
  • 46. Adachi N. β2‐Microglobulin levels in the cerebrospinal fluid: their value as a disease marker. A review of the recent literature. Eur Neurol 1991;31:181–185. Medline [DOI] [PubMed] [Google Scholar]
  • 47. Watson MA, Scott MG. Clinical utility of biochemical analysis of cerebrospinal fluid. Clin Chem 1995;41:343–360. Medline [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES