Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 2004 Mar 29;18(2):91–128. doi: 10.1002/jcla.20009

Digital photography: A primer for pathologists

Roger S Riley 1,, Jonathan M Ben‐Ezra 1, Davis Massey 1, Rodney L Slyter 1, Gina Romagnoli 1
PMCID: PMC6807831  PMID: 15065212

Abstract

The computer and the digital camera provide a unique means for improving hematology education, research, and patient service. High quality photographic images of gross specimens can be rapidly and conveniently acquired with a high‐resolution digital camera, and specialized digital cameras have been developed for photomicroscopy. Digital cameras utilize charge‐coupled devices (CCD) or Complementary Metal Oxide Semiconductor (CMOS) image sensors to measure light energy and additional circuitry to convert the measured information into a digital signal. Since digital cameras do not utilize photographic film, images are immediately available for incorporation into web sites or digital publications, printing, transfer to other individuals by email, or other applications. Several excellent digital still cameras are now available for less than $2,500 that capture high quality images comprised of more than 6 megapixels. These images are essentially indistinguishable from conventional film images when viewed on a quality color monitor or printed on a quality color or black and white printer at sizes up to 11×14 inches. Several recent dedicated digital photomicroscopy cameras provide an ultrahigh quality image output of more than 12 megapixels and have low noise circuit designs permitting the direct capture of darkfield and fluorescence images.

There are many applications of digital images of pathologic specimens. Since pathology is a visual science, the inclusion of quality digital images into lectures, teaching handouts, and electronic documents is essential. A few institutions have gone beyond the basic application of digital images to developing large electronic hematology atlases, animated, audio‐enhanced learning experiences, multidisciplinary Internet conferences, and other innovative applications. Digital images of single microscopic fields (single frame images) are the most widely utilized in hematology education at this time, but single images of many adjacent microscopic fields can be stitched together to prepare “zoomable” panoramas that encompass a large part of a microscope slide and closely simulate observation through a real microscope. With further advances in computer speed and Internet streaming technology, the virtual microscope could easily replace the real microscope in pathology education. Later in this decade, interactive immersive computer experiences may completely revolutionize hematology education and make the conventional lecture and laboratory format obsolete. Patient care is enhanced by the transmission of digital images to other individuals for consultation and education, and by the inclusion of these images in patient care documents. In research laboratories, digital cameras are widely used to document experimental results and to obtain experimental data. J. Clin. Lab. Anal. 18:91–128, 2004. © 2004 Wiley‐Liss, Inc.

Keywords: photography, photomicrography, microscopy, microcomputers, tele‐pathology, optics, image processing, medical illustration

REFERENCES

  • 1. Balis UJ. Imaging input technology. Clin Lab Med 1997;17:151–174. [PubMed] [Google Scholar]
  • 2. Bergeron BP. The digital camera. What the ‘Polaroid of the 90s’ does best. Postgrad Med 1998;103:31–34. [DOI] [PubMed] [Google Scholar]
  • 3. Saltz JH. Digital pathology–the big picture. Hum Pathol 2000;31:779–780. [PubMed] [Google Scholar]
  • 4. Worldwide Consumer Digital Camera Forecast and Marker Overview, 2001–2006. Imerge Consulting Group, LLC, Belmont, CA, 2002; http://www.imerge.com
  • 5. InfoTrends Research Group Inc. , Norwell, MA. 2002. http://www.infotrends.rgi.com/home/infotrends.html
  • 6. Felten CL, Strauss JS, Okada DH, Marchevsky AM. Virtual microscopy: high resolution digital photomicrography as a tool for light microscopy simulation. Hum Pathol 1999;30:477–483. [DOI] [PubMed] [Google Scholar]
  • 7. Ray SF. Scientific photography and applied imaging. Woburn, MA: Focal Press; 1999. [Google Scholar]
  • 8. Jacobson RE, Ray SF, Attridge GG, Axford NR. Manual of photography photographic and digital imaging. Woburn, MA: Focal Press; 2000. [Google Scholar]
  • 9. Milburn K, Rowckwell R. Digital photography bible. New York: John Wiley & Sons; 2002. [Google Scholar]
  • 10. Davies A, Fennessy P. Digital imaging for photographers. Wolburn, MA: Focal Press; 2001. [Google Scholar]
  • 11. Freeman M. The complete guide to digital photography. Rochester, NY: Silver Pixel Press; 2001. [Google Scholar]
  • 12. Ang T. Dictionary of photography and digital imaging: the essential reference for the modern photograher. New York: Watson‐Guptill Publications; 2002. [Google Scholar]
  • 13. Ippolito J. Understanding digital photography. Albany, NY: Delmar Publishers; 2002. [Google Scholar]
  • 14. Long B. Complete digital photography. Hingham, MA: Charles River Media; 2001. [Google Scholar]
  • 15. Rosen MJ, Devries DL. Photography & digital imaging. Dubuque, IA: Kendall/Hunt Publishing Company; 2002. [Google Scholar]
  • 16. Chambers ML. Digital photography handbook. New York: Hungry Minds, Inc.; 2001. [Google Scholar]
  • 17. Grotta SW. Anatomy of a digital camera: image sensors. 2002http://www.optronics.com/support_digital_imaging.html
  • 18. Spring KR. Scientific imaging with digital cameras. Biotechniques 2000;29:70–76. [DOI] [PubMed] [Google Scholar]
  • 19. Hand WG. Practical guide to digital imaging for microscopy. Goleta, CA: Optronics; 2002. [Google Scholar]
  • 20. Nikon . Nikon digital imaging. Tokyo, Japan: Nikon Corp.; 2003. [Google Scholar]
  • 21. Flynn BO, Davidson MW. CCD resolution for optical microscopy, 2003, http://www.microscopyu.com/tutorials/flash/pixelcalc/index.html
  • 22. Tse CC. Anatomic pathology image capture using a consumer‐type digital camera. Am J Surg Pathol 1999;23:1555–1558. [DOI] [PubMed] [Google Scholar]
  • 23. Bennin B. Photomicrography for the multitude. Dermatol Online J 2001;7:21. [PubMed] [Google Scholar]
  • 24. Bergeron BP. Considering a digital video camera? Must‐have, might‐want, and what's‐that features. Postgrad Med 1999;106:33–34. [DOI] [PubMed] [Google Scholar]
  • 25. Hand WG. Video and digital microscopy: how do I choose? Goleta, CA: Optronics; 2003. [Google Scholar]
  • 26. Vetter JP. A systematic approach to colour photomicrography. 2. Cameras and photographic techniques. Med Biol Illus 1974;24:140–152. [PubMed] [Google Scholar]
  • 27. Vetter JP. Five common problems in color photomicrography. Pathologist 1984;38:163–170. [PubMed] [Google Scholar]
  • 28. Vetter JP. Guidelines for illustrations. Pediatr Neurosci 1985;12:38–42. [DOI] [PubMed] [Google Scholar]
  • 29. Vetter JP. Photomicrography: a translation into the vernacular. Part II—the specimen stage, the specimen, and the image‐forming system. J Biol Photogr 1987;55:135–142. [PubMed] [Google Scholar]
  • 30. Vetter JP. Photomicrography: a translation into the vernacular. Part I—the illuminating system. J Biol Photogr 1987;55:79–85. [PubMed] [Google Scholar]
  • 31. Vetter JP. Photomicrography: a translation into the vernacular. Part Part IV: producing high quality photomicrographs. J Biol Photogr 1988;56:89–108. [PubMed] [Google Scholar]
  • 32. Vetter JP. Photomicrography: a translation into the vernacular. Part III—the photographic system. J Biol Photogr 1988;56:53–64. [PubMed] [Google Scholar]
  • 33. Vetter JP. Biomedical photography. Woburn, MA: Focal Press; 1992. [Google Scholar]
  • 34. Scott ML. Exercises and calibrations in biomedical photomicrography. J Audiov Media Med 1996;19:69–76. [DOI] [PubMed] [Google Scholar]
  • 35. Peres MR. An overview of some professional digital cameras and their use on the light microscope. J Biol Photogr 1998;66:13–20. [PubMed] [Google Scholar]
  • 36. Goldstein DJ. Understanding the light microscope. Orlando, FL: Academic Press; 1999. [Google Scholar]
  • 37. Wingate RJ. Microscopy and photomicrography techniques. Methods Mol Biol 1999;97:711–733. [DOI] [PubMed] [Google Scholar]
  • 38. Rost FWD, Oldfield RJ. Photography with a microscope. Cambridge, UK: Cambridge University Press; 2000. [Google Scholar]
  • 39. Hill D. 2001.
  • 40. Kennedy D. A low‐cost vibration damping platform for photomicrography. J Biol Photogr 1992;60:71. [PubMed] [Google Scholar]
  • 41. Zieler HW. Photomicrography versus vibration. J Biol Photogr 1992;60:19. [PubMed] [Google Scholar]
  • 42. Burns BF. Creating low‐power photomicrographs using a 35 mm digital slide scanner. Am J Surg Pathol 1997;21:865–866. [DOI] [PubMed] [Google Scholar]
  • 43. Azumi N. Creating low‐power photomicrographs using a 35‐mm digital slide scanner. Am J Surg Pathol 1998;22:908. [DOI] [PubMed] [Google Scholar]
  • 44. Gebert A, Werner K, Posselt W. Use of a digital film scanner to enhance low‐power bright field photomicrography. Anat Embryol (Berl) 1998;198:435–438. [DOI] [PubMed] [Google Scholar]
  • 45. Ventura L, Leocata P, Colimberti P. Digital scanning of histologic sections. Am J Surg Pathol 1999;23:1435. [DOI] [PubMed] [Google Scholar]
  • 46. Ventura L, Chiominto A, Colimberti P, et al. Creating low‐power photomicrographs by digital scanning of histological sections. Pathologica 2000;92:9–12. [PubMed] [Google Scholar]
  • 47. Mai KT, Stinson WA, Swift J, Burns BF, Perkins DG. Creating digital images of pathology specimens by using a flatbed scanner. Histopathology 2001;39:323–325. [DOI] [PubMed] [Google Scholar]
  • 48. Matthews TJ, Denney PA. Digital imaging of surgical specimens using a wet scanning technique. J Clin Pathol 2001;54:326–327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Montague PR, Meyer M, Folberg R. Technique for the digital imaging of histopathologic preparations of eyes for research and publication. Ophthalmology 1995;102:1248–1251. [DOI] [PubMed] [Google Scholar]
  • 50. Leong AS, Visinoni F, Visinoni C, Milios J. An advanced digital image‐capture computer system for gross specimens: a substitute for gross description. Pathology 2000;32:131–135. [DOI] [PubMed] [Google Scholar]
  • 51. Kilbourne S, Dodd R. A primer on digital imaging–post production for still photography: Part 2. J Biol Photogr 1991;59:125–132. [PubMed] [Google Scholar]
  • 52. Kilbourne S, Dodd R. A primer on digital imaging–post production for still photography: Part 3. J Biol Photogr 1992;60:1–10. [PubMed] [Google Scholar]
  • 53. Kilbourne S. A primer on digital imaging–post production for still photography: part I. 1991. J Biol Photogr 1999;67:49–54. [PubMed] [Google Scholar]
  • 54. Ang T. Silver pixels: an introduction to the digital darkroom. New York: Amphoto; 2000. [Google Scholar]
  • 55. Evening M. Adobe Photoshop 6.0 for photographers. Oxford: Focal Press; 2001. [Google Scholar]
  • 56. Barry CJ, Yogesan K, Constable IJ, Eikelboom RH. A case for electronic manipulation of medical images? J Audiov Media Med 1999;22:15–20. [DOI] [PubMed] [Google Scholar]
  • 57. Dierks C. Legal aspects of telepathology. Anal Cell Pathol 2000;21:97–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Hayden JE. Digital manipulation in scientific images: some ethical considerations. J Biocommun 2000;27:11–19. [PubMed] [Google Scholar]
  • 59. Stanberry B. Telemedicine: barriers and opportunities in the 21st century. J Intern Med 2000;247:615–628. [DOI] [PubMed] [Google Scholar]
  • 60. Tsuchihashi Y, Okada Y, Ogushi Y, et al. The current status of medicolegal issues surrounding telepathology and telecytology in Japan. J Telemed Telecare 2000;6:S143–145. [DOI] [PubMed] [Google Scholar]
  • 61. Beals TF. Digital imaging in anatomic pathology. Lab Med 2001;32:327–330. [Google Scholar]
  • 62. Suvarna SK, Ansary MA. Histopathology and the ‘third great lie’. When is an image not a scientifically authentic image Histopathology? 2001;39:441–446. [DOI] [PubMed] [Google Scholar]
  • 63. Benosman R, Kang SB, editors. Panoramic vision. New York: Springer Verlag; 2001. [Google Scholar]
  • 64. Press A. Electronic publishing guide The essential resource for electronic publishing. San Jose: Adobe Press; 1998. [Google Scholar]
  • 65. Airey T. Creative digital printmaking: a photographer's guide to professional desktop printing. New York: Watson‐Guptill Publications; 2001. [Google Scholar]
  • 66. Bouton GD, Kubicek G, Bouton BM. Inside Photoshop 5; 1998.
  • 67. Ratner D. Real photographic prints from digital images. Dermatol Surg 2000;26:799–800. [DOI] [PubMed] [Google Scholar]
  • 68. Furness PN. The use of digital images in pathology. J Pathol 1997;183:253–263. [DOI] [PubMed] [Google Scholar]
  • 69. Sholehvar D. The age of digital imaging. ADVANCE for administrators of the laboratory. 2001;10:51–56. [Google Scholar]
  • 70. Weinberg DS. Digital imaging as a teaching tool for pathologists. Clin Lab Med 1997;17:229–244. [PubMed] [Google Scholar]
  • 71. Banjanovic B, Masic I. Telemedicine and telematics in medical education. Med Arh 1999;53:21–23. [PubMed] [Google Scholar]
  • 72. Lakatos J, Bodor T, Zidarics Z, Nagy J. Data processing of digital recordings of microscopic examination of urinary sediment. Clin Chim Acta 2000;297:225–237. [DOI] [PubMed] [Google Scholar]
  • 71. Afrin LB. Web access to the American Society of Hematology slide bank. Blood 1999;93:2425–2426. [PubMed] [Google Scholar]
  • 74. Evans JA, Wagner U, Santos CM, Hennighausen L. The interactive web‐based histology atlas system. Oncogene 2000;19:989–991. [DOI] [PubMed] [Google Scholar]
  • 75. Kronz JD, Silberman MA, Allsbrook WC Jr, et al. Pathology residents' use of a web‐based tutorial to improve Gleason grading of prostate carcinoma on needle biopsies. Hum Pathol 2000;31:1044–1050. [DOI] [PubMed] [Google Scholar]
  • 76. Landman A, Yagi Y, Gilbertson J, et al. Prototype web‐based continuing medical education using FlashPix images. Proc AMIA Symp 2000;462–466. [PMC free article] [PubMed]
  • 77. Szymas J. Teleeducation and telepathology for open and distance education. Anal Cell Pathol 2000;21:183–191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Nasim MM, Levy G, Nelson A. Web‐based pathology allows pathology conferences to be more interesting and educational: experience in SUNY downstate Brooklyn, New York. Arch Pathol Lab Med 2001;125:1021. [Google Scholar]
  • 79. Roach D, Hamza S, Jones KN, Anderson PG. Online image‐upload system facilitates collection and sharing of teaching materials for the pathology education instructional resource web site. Arch Pathol Lab Med 2001;125:1016. [Google Scholar]
  • 80. Smithson DJ. A model for the implementation of a hybrid digital clinical photographic service. J Audiov Media Med 2000;23:61–64. [DOI] [PubMed] [Google Scholar]
  • 81. Ikeda I, Urushihara K, Ono T. Widefield microscopy images of tissue sections by computer imaging techniques. J Histochem Cytochem 1997;45:461–466. [DOI] [PubMed] [Google Scholar]
  • 82. Nieder GL, Scott JN, Anderson MD. Using QuickTime virtual reality objects in computer‐assisted instruction of gross anatomy: Yorick–the VR skull. Clin Anat 2000;13:287–293. [DOI] [PubMed] [Google Scholar]
  • 83. Crudele M, Clapworthy GJ, Dong F, et al. Accessing a WWW reference library of 3D models of pathological organs to support medical education. Stud Health Technol Inform 1999;68:532–537. [PubMed] [Google Scholar]
  • 84. Rosebrock L. Creating a panorama of the heart with digital images. J Biocommun 2000;27:16–18. [PubMed] [Google Scholar]
  • 85. Bottcher P, Maierl J. Macroscopic cryosectioning: a simple new method for producing digital, three‐dimensional databases in veterinary anatomy. Anat Histol Embryol 1999;28:97–102. [DOI] [PubMed] [Google Scholar]
  • 86. Long M. Cookie sheets and frozen sections: the high‐tech world of telepathology. Telemed Today 1999;7:43–44. [PubMed] [Google Scholar]
  • 87. Tamai S. [Expert systems and automatic diagnostic systems in histopathology—a review]. Rinsho Byori 1999;47:126–131. [PubMed] [Google Scholar]
  • 88. Vari SG, Muller G, Lerner JM, Naber RD. Telepathology and imaging spectroscopy as a new modality in histopathology. Stud Health Technol Inform 1999;68:211–216. [PubMed] [Google Scholar]
  • 89. Furness P, Rashbass J. The virtual double‐headedmicroscope: telepathology for all? Histopathology 2000;36:182–183. [DOI] [PubMed] [Google Scholar]
  • 90. Gombas P. Informational aspects of telepathology in routine surgical pathology. Anal Cell Pathol 2000;21:141–147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Kayser K, Beyer M, Blum S, Kayser G. Recent developments and present status of telepathology. Anal Cell Pathol 2000;21:101–106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Mairinger T. Acceptance of telepathology in daily practice. Anal Cell Pathol 2000;21:135–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Schwarzmann P, Binder B, Klose R. Technical aspects of telepathology with emphasis on future development. Anal Cell Pathol 2000;21:107–126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Wells CA, Sowter C. Telepathology: a diagnostic tool for the millennium? J Pathol 2000;191:1–7. [DOI] [PubMed] [Google Scholar]
  • 95. Zhou J, Hogarth MA, Walters RF, Green R, Nesbitt TS. Hybrid system for telepathology. Hum Pathol 2000;31:829–833. [DOI] [PubMed] [Google Scholar]
  • 96. Della Mea V. Telepathology and other telemedicine fields: lessons to learn. Adv Clin Path 1999;3:107–109. [PubMed] [Google Scholar]
  • 97. Kayser K, Kayser G. Basic aspects of and recent developments in telepathology in Europe, with specific emphasis on quality assurance. Anal Quant Cytol Histol 1999;21:319–328. [PubMed] [Google Scholar]
  • 98. Bhatia RS. Telepathology: advantages and problems. J Assoc Physicians India 2000;48:456–457. [PubMed] [Google Scholar]
  • 99. Rashbass J. The impact of information technology on histopathology. Histopathology 2000;36:1–7. [DOI] [PubMed] [Google Scholar]
  • 100. Tanriverdi H, Iacono CS. Diffusion of telemedicine: a knowledge barrier perspective. Telemed J 1999;5:223–244. [DOI] [PubMed] [Google Scholar]
  • 101. Della Mea V, Cortolezzis D, Beltrami CA. The economics of telepathology–a case study. J Telemed Telecare 2000;6:S168–169. [DOI] [PubMed] [Google Scholar]
  • 102. Battmann A, Knitza R, Janzen S, et al. Telemedicine: application of telepathology‐remote microscopy for intraoperative diagnoses on frozen sections. Stud Health Technol Inform 2000;77:1127–1130. [PubMed] [Google Scholar]
  • 103. Winokur TS, McClellan S, Siegal GP, et al. A prospective trial of telepathology for intraoperative consultation (frozen sections). Hum Pathol 2000;31:781–785. [DOI] [PubMed] [Google Scholar]
  • 104. Tennstedt C, Sunkel‐Wehrstedt K, Vogel M, Hufnagl P. Diagnosis of congenital heart malformations—possibilities for the employment of telepathology. Anal Cell Pathol 2000;21:229–235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Hahn AW, Leon MA, Klein‐Leon S, et al. Delivery of laboratory data with world wide web technology. Biomed Sci Instrum 1997;33:252–256. [PubMed] [Google Scholar]
  • 106. Matsen JM. The regionalization of laboratory services at the University of Utah Medical Center. Associated Regional and University Pathologists Inc (ARUP)(ARUP). Arch Pathol Lab Med 1988;112:957–959. [PubMed] [Google Scholar]
  • 107. Oliver WR. Image processing in forensic pathology. Clin Lab Med 1998;18:151–180. [PubMed] [Google Scholar]
  • 108. Cruz D, Seixas M. A surgical pathology system for gross specimen examination. Proc AMIA Symp 1999;32:236–240. [PMC free article] [PubMed] [Google Scholar]
  • 109. Blitzer HL, Jacobia J. Forensic digital imaging and photography. San Diego, CA: Academic Press; 2001. [Google Scholar]
  • 110. Belanger AJ, Lopes AE, Sinard JH. Implementation of a practical digital imaging system for routine gross photography in an autopsy environment. Arch Pathol Lab Med 2000;124:160–165. [DOI] [PubMed] [Google Scholar]
  • 111. Gebert A, Preiss G. A simple method for the acquisition of high‐quality digital images from analog scanning electron microscopes. J Microsc 1998;191:297–302. [DOI] [PubMed] [Google Scholar]
  • 112. Cruz D, Valenti C, Dias A, Seixas M, Schmitt F. Digital image documentation for quality assessment. Arch Pathol Lab Med 2001;125:1430–1435. [DOI] [PubMed] [Google Scholar]
  • 113. McClanin S. Error reduction in surgical pathology through simplified communication of the pathologist with the clinician. Arch Pathol Lab Med 2001;125:1014. [Google Scholar]
  • 114. Kayser K, Beyer M, Blum S, Kayser G. Telecommunication—a new tool for quality assurance and control in diagnostic pathology. Folia Neuropathol 2000;38:79–83. [PubMed] [Google Scholar]
  • 115. Bornfleth H, Aldinger K, Hausmann M, Jauch A, Cremer C. Comparative genomic hybridization imaging by the one‐chip true‐color CCD camera kappa CF 15 MC. Cytometry 1996;24:1–13. [DOI] [PubMed] [Google Scholar]
  • 116. van Der Laak JA, Pahlplatz MM, Hanselaar AG, de Wilde PC. Hue‐saturation‐density (HSD) model for stain recognition in digital images from transmitted light microscopy. Cytometry 2000;39:275–284. [PubMed] [Google Scholar]
  • 117. Veropoulos K, Learmonth G, Campbell C, Knight B, Simpson J. Automated identification of tubercle bacilli in sputum. A preliminary investigation. Anal Quant Cytol Histol 1999;21:277–282. [PubMed] [Google Scholar]
  • 118. Dorge T, Carstensen JM, Frisvad JC. Direct identification of pure Penicillium species using image analysis. J Microbiol Methods 2000;41:121–133. [DOI] [PubMed] [Google Scholar]
  • 119. Ernsting K, Suner S, Jay G. Use of digital imaging of conjunctiva to predict hemoglobin concentration. Acad Emerg Med 2001;8:528–529. [Google Scholar]
  • 120. Vrolijk J, Sloos WC, Verwoerd NP, Tanke HJ. Applicability of a noncooled video‐rated CCD camera for detection of fluorescence in situ hybridization signals. Cytometry 1994;15:2–11. [DOI] [PubMed] [Google Scholar]
  • 121. Chen MY, Ott DJ, Rohde RP, et al. Cost‐effective poster and print production with digital camera and computer technology. AJR Am J Roentgenol 1997;169:955–957. [DOI] [PubMed] [Google Scholar]
  • 120. Frank MS, Dreyer KJ, Mehta A. The megapixel digital camera: value for creating publication‐quality illustrations. AJR Am J Roentgenol 1999;173:883–887. [DOI] [PubMed] [Google Scholar]
  • 123. Barker NJ, Zahurak M, Olson JL, et al. Digital imaging of black and white photomicrographs: impact of file size. Am J Surg Pathol 1998;22:1411–1416. [DOI] [PubMed] [Google Scholar]
  • 124. O'Brien MJ, Sotnikov AV. Digital imaging in anatomic pathology. Am J Clin Pathol 1996;106:S25–S32. [PubMed] [Google Scholar]
  • 125. McColl RI, Johnson A. The comparative effectiveness of conventional and digital image libraries. J Audiov Media Med 2001;24:8–15. [DOI] [PubMed] [Google Scholar]
  • 126. Agha Z, Weinstein RS, Dunn BE. Cost minimization analysis of telepathology. Am J Clin Pathol 1999;112:470–478. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES