Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 2004 Sep 3;18(5):265–270. doi: 10.1002/jcla.20035

Rapid detection of bordetella pertussis by real‐time PCR using SYBR green I and a LightCycler instrument

S K Poddar 1,
PMCID: PMC6807937  PMID: 15356876

Abstract

A polymerase chain reaction (PCR) assay in real‐time for detection of B. pertussis using SYBR green I as the reporter fluorophore and LightCycler instrument (a thermocycler coupled to a fluorescence detection device) was established and evaluated. The amplified amplicon using series diluted control prototype strain (ATCC strain #9797) of B. pertussis was analyzed for the fluorescent melting profile, and melting temperature (Tm) was determined. When examined, amplicons using a representative set of clinical isolates of B. pertussis were found to have the same Tm value (86 ± 0.5°C, the specificity parameter of detection) as the control prototype strain as expected. Amplified product was also analyzed and detected by agarose gel electrophoresis. The detection limit by fluorescent profile and Tm analysis was 10‐fold better than that detected by agarose gel analysis. J. Clin. Lab. Anal. 18:265–270, 2004. © 2004 Wiley‐Liss, Inc.

Keywords: B. pertussis, real‐time PCR, melting temperature (Tm), LightCycler

REFERENCES

  • 1. Cherry JD. Historical review of pertussis and the classical vaccine. J Infect Dis 1996;174(suppl 3):S259–S263. [DOI] [PubMed] [Google Scholar]
  • 2. Stojanov S, Liese J, Belohradsky BH. Hospitalization and complications in children under 2 years of age with Bordetella pertussis infection. Infection 2000;28:106–110. [DOI] [PubMed] [Google Scholar]
  • 3. Khetsuriani NK, Bisgard DR, Prevots M, et al. Pertussis outbreak in an elementary school with high vaccination coverage. Pediatr Infect Dis J 2001;20:1108–1112. [DOI] [PubMed] [Google Scholar]
  • 4. He Q, Viljanen MK, Arvilommi H, Aittanen B, Mertsola J. Whooping cough caused by Bordetella pertussis and Bordetella parapertussis in an immunized population. JAMA 1998;280:635–637. [DOI] [PubMed] [Google Scholar]
  • 5. SenZilet LC, Halperin SA, Spika M, Alagaratnam A, Morris A, Smith B. Pertussis is a frequent cause of prolonged cough illness in adults and adolescents. Clin Infect Dis 2001;32:1691–1697. [DOI] [PubMed] [Google Scholar]
  • 6. Strebel P, Nordin J, Edwards K, et al. Population‐based incidence of pertussis among adolescents and adults, Minnesota, 1995–1996. J Infect Dis 2001;183:1353–1359. [DOI] [PubMed] [Google Scholar]
  • 7. Cherry JD. Epidemiological, clinical and laboratory aspects of pertussis in adults. Clin Infect Dis 1999;28:S112–S117. [DOI] [PubMed] [Google Scholar]
  • 8. Loeffelholz MJ, Thompson CJ, Long KS, Gilchrist MJR. Comparison of PCR, culture and direct fluorescent‐antibody testing for detection of Bordetella pertussis . J Clin Microbiol 1999;37:2872–2876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Muller FC, Hoppe JE, Wirsing von König CH. Laboratory diagnosis of pertussis: state of the art in 1997. J Clin Microbiol 1997;35:2435–2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Kösters K, Riffelmann M, Dohrn B, Wirsing von König CH. Comparison of five commercial enzyme‐linked immunosorbent assays for detection of antibodies to Bordetella pertussis. Clin Diagn Lab Immunol 2000;7:422–426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Glare EM, Paton JC, Premier RR, Lawrence AJ, Nisbet IT. Analysis of repetitive DNA sequence from Bordetella pertussis and its application to the diagnosis of pertussis using the polymerase chain reaction. J Clin Microbiol 1990;28:1982–1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Poddar SK, Sawyer MH, Connor JD. Evaluation of PCR assays in presence of antibody to thermostable DNA polymerases for detection of microbial agents: avoiding false negative results for specimen containing low titer agent. J Clin Lab Anal 1998;12:238–241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Poddar SK. Detection of adenovirus using PCR and molecular beacon. J Virol Method 1999;82:19–26. [DOI] [PubMed] [Google Scholar]
  • 14. Poddar SK. Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus. Mol Cell Probes 2000;14:25–32. [DOI] [PubMed] [Google Scholar]
  • 15. Poddar SK, Le CT. B. pertussis detection by spectrofluorometry using polymerase chain reaction (PCR) and a molecular beacon probe. Mol Cell Probes 2001;15:161–167. [DOI] [PubMed] [Google Scholar]
  • 16. Aldea C, Alvarez CP, Folgueira L, Delgado R, Otero JR. Rapid detection of herpes simplex virus DNA in genital ulcers by real‐time PCR using SYBR green I dye as the detection signal. J Clin Microbiol 2002;40:1060–1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Poddar SK. Detection and discrimination of B. pertussis and B. holmesii by real‐time PCR targeting IS481 using a beacon probe and probe‐target melting analysis. Mol Cell Probes 2003;17:91–93. [DOI] [PubMed] [Google Scholar]
  • 18. O'Mahony J, Hill C. A real time PCR assay for the detection and quantitation of Mycobacterium avium subsp. paratuberculosis using SYBR green I and the LightCycler. J Microbiol Methods 2002;51:283–293. [DOI] [PubMed] [Google Scholar]
  • 19. Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J Clin Microbiol 2000;38:1552–1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Templeton KE, Scheltinga SA, van der Zee A, et al. Evaluation of real‐time PCR for detection of and discrimination between Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii for clinical diagnosis. J Clin Microbiol 2003;41:4121–4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Kösters K, Reischl U, Schmetz J, Riffelmann M, Wirsing von König CH. Real‐time LightCycler PCR for detection and discrimination of Bordetella pertussis and Bordetella parapertussis . J Clin Microbiol 2002;5:1719–1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Reischl U, Lehn N, Sanden GN, Loeffelholz MJ. Real ‐time PCR assay targeting IS481 of Bordetella pertussis and molecular basis of detecting Bordetella holmesii. J Clin Microbiol 2001;39:1963–1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Loeffelholz MJ, Thompson CJ, Long KS, Gilchrist MJR. Detection of Bordetella holmesii using IS481 PCR assay. J Clin Microbiol 2000;38:467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Mazengia E, Silvia EA, Peppe JA, Timperi R, George H. Recovery of Bordetella holmesii from patients with pertussis‐like symptom: use of pulsed‐field gel electrophoresis to characterize circulating strains. J Clin Microbiol 2000;38:2330–2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Stibitz S. IS481 and IS1002 of Bordetella pertussis create a 6 base pair duplication upon insertion at a consensus target site. J Bacteriol 1998;180:4963–4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Furuya D, Yagihashi A, Endoh T, et al. Simultaneous amplification of Bordetella repeated insertion sequences and toxin promotor region gene by polymerase chain reaction. Immunopharmacol Immunotoxicol 1999;21:55–63. [DOI] [PubMed] [Google Scholar]
  • 27. Li ZM, Jansen DL, Finn TM, et al. Identification of Bordetella pertussis infections by shared‐primer PCR. J Clin Microbiol 1994;32:783–789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Douglas E, Coole JG, Parton R, McPheat W. Identification of Bordetella pertussis in nasopharyngeal swabs by PCR amplification of a region of the adenylate cyclase gene. J Med Microbiol 1993;38:140–144. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES