Skip to main content
Journal of Clinical Laboratory Analysis logoLink to Journal of Clinical Laboratory Analysis
. 2003 Aug 18;17(5):184–194. doi: 10.1002/jcla.10091

Quantification of chemotherapeutic target gene mRNA expression in human breast cancer biopsies: Comparison of real‐time reverse transcription‐PCR vs. Relative quantification reverse transcription‐PCR utilizing DNA sequencer analysis of PCR products

Agnes Juhasz 1,, Paul Frankel 5, Catherine Cheng 6,12, Hector Rivera 3, Reena Vishwanath 7,12, Alice Chiu 8,12, Kim Margolin 1, Yun Yen 1, Edward M Newman 2, Tim Synold 1, Sharon Wilczynski 4, Heinz‐Josef Lenz 9, David Gandara 10, Kathy S Albain 11, Jeffrey Longmate 5, James H Doroshow 1
PMCID: PMC6808165  PMID: 12938148

Abstract

The solid tumor mRNA expression of genes related to the mechanism of action of certain antineoplastic agents is often predictive of clinical efficacy. We report here on the development of a rapid and practical real‐time RT‐PCR method to quantify genetic expression in solid tumors. The genes examined are related to the intracellular pharmacology of gemcitabine and cisplatin, two drugs that are used in the treatment of several types of advanced cancer. We evaluated target gene mRNA levels from breast tumor samples using two quantitative RT‐PCR methods: 1) an improved relative RT‐PCR method using fluorescence‐labeled primers, automated PCR set up, and GeneScan® analysis software; and 2) real‐time RT‐PCR with redesigned primers using an ABI 7900HT instrument, with additional postprocessing of the data to adjust for efficiency differences across the target genes. Using these methods, we quantified mRNA expression levels of deoxycytidine kinase (dCK), deoxycytidylate deaminase (dCDA), the M1 and M2 subunits of ribonucleotide reductase (RRM1, RRM2), and excision cross complementation group 1 (ERCC1) in 35 human “fresh” frozen breast cancer biopsies. While both assay methods were substantially more rapid than traditional RT‐PCR, real‐time RT‐PCR appeared to be superior to the amplification end‐point measurement in terms of precision and high throughput, even when a DNA sequencer was used to assess fluorescence‐labeled PCR products. This reproducible, highly sensitive real‐time RT‐PCR method for the detection and quantification of the mRNAs for dCK, dCDA, RRM1, RRM2, and ERCC1 in human breast cancer biopsies appears to be more informative and less time‐consuming than either classical radioisotope‐dependent RT‐PCR or the technique utilizing GeneScan® analysis described herein. By allowing the measurement of intratumoral target gene expression, these new methods may prove useful in predicting the clinical utility of gemcitabine‐ and platinum‐containing chemotherapy programs in patients with solid tumors. J. Clin. Lab. Anal. 17:184–194, 2003. © 2003 Wiley‐Liss, Inc.

Keywords: real‐time RT‐PCR, gene expression, gemcitabine and cisplatin, breast cancer biopsy


Abbreviations
RT‐PCR

reverse transcription polymerase chain reaction

dCK

deoxycytidine kinase

dCDA

deoxycytidylate deaminase

RRM1/RRM2

ribonucleotide reductase M1/M2 subunit

ERCC1

excision repair cross complementation group 1

REFERENCES

  • 1. Lenz H‐J, Danenberg K, Schnieders B, et al. Quantitative analysis of folylglutamate synthetase gene expression in tumor tissues by the polymerase chain reaction: marked variation of expression among leukemia patients. Oncol Res 1994;6:329–335. [PubMed] [Google Scholar]
  • 2. Horikoshi T, Danenberg KD, Stadlbauer THW, et al. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT‐diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res 1992;52:108–116. [PubMed] [Google Scholar]
  • 3. Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19:4298–4304. [DOI] [PubMed] [Google Scholar]
  • 4. Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted‐infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997;15:3223–3229. [DOI] [PubMed] [Google Scholar]
  • 5. Gan Y, Mo Y, Kalns JE, et al. Expression of DT‐diaphorase and cytochrome P450 reductase correlates with mitomycin C activity in human bladder tumors. Clin Cancer Res 2001;7:1313–1319. [PubMed] [Google Scholar]
  • 6. Edelman MJ, Gandara DR. Promising new agents in the treatment of non‐small cell lung cancer. Cancer Chemother Pharmacol 1996;37:385–393. [DOI] [PubMed] [Google Scholar]
  • 7. Carmichael J, Possinger K, Phillip P, et al. Advanced breast cancer: a phase II trial with gemcitabine. J Clin Oncol 1995;13:2731–2736. [DOI] [PubMed] [Google Scholar]
  • 8. Plunkett W, Huang P, Searchy CE, Gandhi V. Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol 1996;23:3–15. [PubMed] [Google Scholar]
  • 9. Bergman AM, Ruiz van Haperen V WT, Veerman G, Kuiper CM, Peters GJ. Synergistic interaction between cisplatin and gemcitabine in ovarian and colon cancer cell lines In: Sahota A, Taylor M, editors. Purine and pyrimidine metabolism in man. Vol. VIII New York: Plenum Press; 1995. p 139–143. [Google Scholar]
  • 10. Bergman AM, Cristalli G, Vittori S, Wang J, Eriksson S, Peters GJ. Biological activity of 1‐deazapurine nucleotides: role of deoxycytidine kinase? Nucleosides Nucleotides 1999;18:897–898. [DOI] [PubMed] [Google Scholar]
  • 11. Kroep JR, van Moorsel CJA, Veerman G, et al. Role of deoxycytidine kinase (dCK), thymidine kinase 2 (TK2), and deoxycytidine deaminase (dCDA) in the antitumor activity of gemcitabine (dFdC) In: Griesmacher A, editor. Purine and pyrimidine metabolism in man. Vol. IX New York: Plenum Press; 1998. p 657–660. [DOI] [PubMed] [Google Scholar]
  • 12. Ruiz van Haperen VWT, Veerman G, Braakhuis BJM, et al. Deoxycytidine kinase and deoxycytidine deaminase activities in human tumour xenografts. Eur J Cancer 1993;29A:2132–2137. [DOI] [PubMed] [Google Scholar]
  • 13. Bouffard D, Laliberte J, Momparler RL. Kinetic studies on 2′,2′‐difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993;45:1857–1861. [DOI] [PubMed] [Google Scholar]
  • 14. Heinemann V, Xu Y‐Z, Chubb S, et al. Cellular elimination of 2′,2′‐difluorodeoxycytidine 5′‐triphosphate: a mechanism of self‐potentiation. Cancer Res 1992;52:533–539. [PubMed] [Google Scholar]
  • 15. Neff T, Blau CA. Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol 1996;24:1340–1346. [PubMed] [Google Scholar]
  • 16. Ruiz van Haperen VWT, Veerman G, Eriksson S, Stegmann APA, Peters GJ. Introduction of resistance to 2′,2′,‐difluorodeoxy‐cytidine in the human ovarian cancer cell line A2780. Semin Oncol 1995;22:35–41. [PubMed] [Google Scholar]
  • 17. Heinemann V, Xu YZ, Chubb S, et al. Inhibition of ribonucleotide reduction in CCRF‐CEM cells by 2′,2′‐difluorodeoxycytidine. Mol Pharmacol 1990;38:567–572. [PubMed] [Google Scholar]
  • 18. Goan Y‐G, Zhou B, Hu E, Mi S, Yen Y. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2′,2′‐difluorodeoxycytidine in human KB cancer cell line. Cancer Res 1999;59:4204–4207. [PubMed] [Google Scholar]
  • 19. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res 2001;478:23–43. [DOI] [PubMed] [Google Scholar]
  • 20. Dabholkar M, Vionnet J, Bostick‐Bruton F, Yu JJ, Reed E. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum‐based chemotherapy. J Clin Invest 1994;94:703–708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Stoehlmacher J, Ghaderi V, Iqbal S, et al. A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res 2001;21:3075–3080. [PubMed] [Google Scholar]
  • 22. Damia G, Guidi G, D'Incalci M. Expression of genes involved in nucleotide excision repair and sensitivity to cisplatin and melphalan in human cancer cell lines. Eur J Cancer 1998;34:1783–1788. [DOI] [PubMed] [Google Scholar]
  • 23. Li Q, Yu JJ, Mu C, et al. Association between the level of ERCC1 expression and the repair of cisplatin‐induced DNA damage in human ovarian cancer cells. Anticancer Res 2000;20:645–652. [PubMed] [Google Scholar]
  • 24. Li Q, Gardner K, Zhang L, Tsang B, Bostick‐Bruton F, Reed E. Cisplatin induction of ERCC1 mRNA expression in A2780/CP70 human ovarian cancer cells. J Biol Chem 1998;273:23419–23425. [DOI] [PubMed] [Google Scholar]
  • 25. O'Connell CD, Tian J, Juhasz A, Wenz H‐M, Atha DH. Development of standard reference materials for diagnosis of p53 mutations: analysis by slab gel single strand conformation polymorphism. Electrophoresis 1998;19:164–171. [DOI] [PubMed] [Google Scholar]
  • 26. Doroshow JH, Tetef M, Margolin K, et al. Significant activity of gemcitabine and cisplatin in both heavily‐ and minimally‐pretreated metastatic breast cancer patients [abstract]. Proc Am Soc Clin Oncol 2000;19:155a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Bieche I, Olivi M, Champeme MH, Vidaud D, Lidereau R, Vidaud M. Novel approach to quantitative polymerase chain reaction using real‐time detection: application to the detection of gene amplification in breast cancer. Int J Cancer 1998;78:661–666. [DOI] [PubMed] [Google Scholar]
  • 28. Pongers‐Willemse MJ, Verhagen OJHM, Tibbe GJM, et al. Real‐time PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan® probes. Leukemia 1998;12:2006–2014. [DOI] [PubMed] [Google Scholar]
  • 29. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird PW. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 1999;59:2302–2306. [PubMed] [Google Scholar]
  • 30. de Kok JB, Ruers TJM, van Muijen GNP, van Bokhoven A, Willems HL, Swinkels DW. Real‐time quantification of human telomerase reverse transcriptase mRNA in tumors and healthy tissues. Clin Chem 2000;46:313–318. [PubMed] [Google Scholar]
  • 31. Kielar D, Dietmaier W, Langmann T, et al. Rapid quantification of human ABCAI mRNA in various cell types and tissues by real‐time reverse transcription‐PCR. Clin Chem 2001;47:2089–2097. [PubMed] [Google Scholar]
  • 32. Toernqvist L, Vartia P, Vartia YO. How should relative changes be measured? Am Stat 1985;39:43–46. [Google Scholar]
  • 33. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310. [PubMed] [Google Scholar]
  • 34. Wedemeyer N, Göhde W, Pötter T. Flow cytometric analysis of reverse transcription‐PCR products: quantification of p21WAFI/CIPI and proliferating cell nuclear antigen mRNA. Clin Chem 2000;46:1057–1064. [PubMed] [Google Scholar]
  • 35. O'Connell CD, Juhasz A, Kuo C, Reeder DJ, Hoon DSB. Detection of tyrosinase mRNA in melanoma by reverse transcription‐PCR and electrochemiluminescence. Clin Chem 1998;44:1161–1169. [PubMed] [Google Scholar]
  • 36. Fille M, Shanley JD, Aslanzadeh J. Quantitative RT‐PCR using a PCR‐generated competitive internal standard In: Siebert P, editor. The PCR technique: RT‐PCR. Westborough, MA: Eaton Publishing; 1998. p 189–193. [Google Scholar]
  • 37. Miller‐Linholm AK, LaBenz CJ, Ramey J, Bedows E, Ruddon RW. Human chorionic gonadotropin‐β gene expression in first trimester placenta. Endocrinology 1997;138:5459–5465. [DOI] [PubMed] [Google Scholar]
  • 38. Dippel E, Assaf C, Hummel M, et al. Clonal T‐cell receptor γ‐chain gene rearrangement by PCR‐based GeneScan® analysis in advanced cutaneous T‐cell lymphoma: a critical evaluation. J Pathol 1999;188:146–154. [DOI] [PubMed] [Google Scholar]
  • 39. Fernandez PM, Pluta LJ, Fransson‐Steen R, Goldsworthy TL, Fox TR. Reverse transcription‐polymerase chain reaction‐based methodology to quantify differential gene expression directly from microdissected regions of frozen tissue sections. Mol Carcinogen 1997;20:317–326. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Laboratory Analysis are provided here courtesy of Wiley

RESOURCES