Skip to main content
. Author manuscript; available in PMC: 2019 Dec 6.
Published in final edited form as: Biometrics. 2019 Jun 17;75(4):1299–1309. doi: 10.1111/biom.13075

Table 1.

Examples of unstructured and structured penalty terms

Unstructured penalties J (β)
Lasso (Tibshirani, 1996) β1
Ridge (Hoerl and Kennard, 1970) β22
Elastic net (Zou and Hastie, 2005) αβ1+(1α)β22;α[0,1]
Structured penalties J (β)
Isotropic total variation (Rudin et al., 1992) Dβ2,1; matrix D encodes spatial structure
Fused lasso* (Tibshirani et al., 2005) αβ1 + (1 – α)∥Dβ1; α ∈ [0, 1]
Graph net** (Grosenick et al., 2013) αβ1+(1α)Dβ22;α[0,1]
Group lasso (Yuan and Lin, 2006) gGpgβg2; groups G form a partition of β
Sparse group lasso (Simon et al., 2013) αβ1+(1α)gGpgβg2;α[0,1]
*

Also known as anisotropic total variation–l1

**

Also known as sparse graph Laplacian