Skip to main content
. Author manuscript; available in PMC: 2019 Dec 6.
Published in final edited form as: Biometrics. 2019 Jun 17;75(4):1299–1309. doi: 10.1111/biom.13075

Table 2.

Comparison of estimators applied to ABIDE dataset

Training set (n = 175)
Test set (n = 44)
Method α γ Estimator * Optimal λ CVMSE MSE r p MSE r p
Glmnet 0.0 Ridge 2627 1646.7 954.3 0.879 < 0.001 1325.8 0.285 0.060
0.01 Elastic Net 289 1661.2 935.7 0.883 < 0.001 1305.4 0.320 0.034
FSGL 1.0 1.0 Lasso 1848 1674.2 1689.1 0.159 0.036 1426.7 0.035 0.821
0.2 1.0 Sparse Group Lasso 521 1674.4 1572.0 0.383 < 0.001 1427.8 0.069 0.654
0.2 0.8 Fused Sparse Group Lasso 604 1673.9 1633.2 0.254 < 0.001 1434.3 0.038 0.805
0.0 0.8 Fused Group Lasso 604 1674.3 1641.2 0.232 0.002 1435.4 0.032 0.838
Adaptive FSGL 1.0 1.0 Adaptive Lasso 814 1368.1 120.1 0.986 < 0.001 1193.1 0.406 0.006
0.2 1.0 Adaptive Sparse Group Lasso 4041 1373.2 129.1 0.985 < 0.001 1203.1 0.397 0.008
0.2 0.8 Adaptive Fused Sparse Group Lasso 1097 1338.9 168.6 0.977 < 0.001 1165.2 0.437 0.003
0.0 0.8 Adaptive Fused Group Lasso 1424 1477.2 144.2 0.981 < 0.001 1211.6 0.394 0.008
*

Note: λ for glmnet R package is scaled by factor n−1.

Mean total sum of squares for training set = 1697.5; Mean total sum of squares for test set = 1428.0. ABIDE: Autism Brain Imaging Data Exchange; FSGL: fused sparse group lasso; CVMSE: cross-validation mean squared error; MSE: mean squared error; r: Pearson correlation.