Skip to main content
PLOS ONE logoLink to PLOS ONE
. 2019 Oct 28;14(10):e0224396. doi: 10.1371/journal.pone.0224396

Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression

Kristina Hasakova 1, Richard Reis 2, Marian Vician 3, Michal Zeman 1, Iveta Herichova 1,*
Editor: Ondrej Slaby4
PMCID: PMC6816564  PMID: 31658284

Abstract

Colorectal cancer represents a leading cause of cancer death. MicroRNAs (miRNAs) are small non-coding RNA molecules that have been extensively studied in tumours, since changes in their levels can reveal patient prognosis. Cancer progression is also influenced by the circadian system whose functioning is based on the rhythmic expression of clock genes. Therefore, we performed macroarray screening of tumour and adjacent tissues in patients undergoing surgery for colorectal carcinoma. We identified 17 miRNAs showing expression that was more than 100 times higher in tumour tissue compared to adjacent tissue. From in silico analysis, miR-34a-5p was selected as showing a computer-predicted interaction with PER2. Real-time PCR revealed a negative correlation between expression of PER2 mRNA and miR-34a in patients with more advanced cancer stage. Expression of miR-34a was up-regulated in cancer tissue compared to adjacent tissue. High miR-34a expression was associated with better survival of patients. miR-34a showed lower expression levels in male patients with lymph node involvement, and a trend towards decreased expression in male patients with distant metastases. Male patients, but not female patients, with high expression of miR-34a and who were free of distant metastases and/or lymph node involvement showed better survival. Therefore, we proposed that expression of miR-34a was regulated in a sex-dependent manner and could be considered a marker of prognosis in earlier cancer stages in male patients.

Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer, and the fourth leading cause of cancer deaths worldwide [1]. Since colorectal tumour development is slow and asymptomatic, it can progress undetected, increasing the importance of early detection as the most effective way to reduce mortality. In recent years, altered levels of microRNAs (miRNA) in tumour tissue compared to healthy surrounding tissue and plasma have been reported, making miRNAs potentially useful molecules for the screening of malformations, including CRC [2, 3].

miRNAs are short non-coding RNAs that regulate gene expression by translation repression and/or degradation of mRNA by binding to the 3' untranslated regions of specific target genes [4]. It has been estimated that over 60% of human protein-coding genes are regulated by miRNAs [5]. Many genes involved in cellular processes such as proliferation, differentiation and apoptosis are targeted by miRNAs. Depending on the function of the target genes, miRNAs can exert either a tumour suppressing or tumour promoting influence. One of the first studies that identified altered levels of miRNAs in CRC was conducted by Michael et al. [6], who detected a lower expression of miR-143 and miR-145 in tumour tissue compared to adjacent tissue. Later, it was shown that up-regulation of miRNA expression in colon cancer tissue compared to healthy tissue was more frequent than its down-regulation [2], e.g., the up-regulation of miR-21, which targets the tumour suppressor genes programmed cell death protein 4 (PDCD4) and phosphatase and tensin homologue (PTEN) [79]. Since the pioneering studies in this field, the range of deregulated miRNAs in CRC has increased. In tumours of colorectal carcinoma up-regulated miRNAs include miR-17, miR-155, miR-146, miR-221, miR-31, miR196, miR-20a, miR92a, miR-130b, miR181b, miR-183, miR-196, miR-203, miR-215, miR-224 and miR-25, while down-regulated miRNAs include miR-10, miR-30, miR-22, miR-93, miR-126, miR-132, miR-139, miR-15, miR-195, miR340 and miR-106a [3, 10, 11].

The circadian system is an endogenous time-sensing system that enables organism to anticipate changes in the environment and adapt to them. Circadian rhythms refer to biological rhythms with a period close to 24 h, such as sleep/wake cycles, changes in hormonal levels or body temperature rhythm [12]. The circadian system is composed of the master oscillator situated in the suprachiasmatic nucleus (SCN) and peripheral oscillators located in most other tissues and cells of the mammalian body. Circadian rhythms are generated by a molecular transcriptional-translational feedback loop that consists of clock genes. Heterodimers composed of the transcription factors Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) induce expression of the core clock genes period 1–3 (PER 1–3) and cryptochrome 1–2 (CRY 1–2). When a complex containing PER:CRY is translocated to the nucleus, the protein products of the PER2 and CRY genes repress transcription of their own mRNAs by blocking BMAL1-CLOCK-mediated activity. After releasing PER:CRY complex inhibition, the basic feedback loop is closed. The whole process from induction of clock gene expression to release of PER:CRY repression takes approximately 24 h [13].

Disruption of the circadian system by modern lifestyles is becoming increasingly common, and growing evidences suggests that such changes may increase susceptibility to cancer in humans. Several epidemiological studies have revealed a positive association between shift-work and breast, colorectal and prostate cancer [1416]. Other evidence is provided by experiments with rodents that show the acceleration of tumour growth by induction of SCN lesions or chronic jet lag [17].

In previous studies, we identified altered mRNA levels of the clock genes PER2 and CRY2 in colorectal carcinoma tissue compared to healthy tissue. The expression of PER2 was significantly down-regulated in tumour tissue compared to adjacent tissue [18]. The tumour suppressive properties of PER2 have been previously demonstrated. Mutant mice with a deletion in the PAS-B domain of PER2 have increased sensitivity to γ-irradiation, with higher rates of malignant lymphomas compared to wild-type animals [19]. The down-regulation of PER2 in CRC cells increased protein levels of β-catenin and cyclin D, which accelerated tumour cell growth [20]. On the other hand, overexpression of PER2 in the mouse Lewis lung carcinoma cell line and mammary carcinoma cell line induced apoptosis connected with higher mRNA and protein expression of TP53 and the apoptotic protein Bax, and lower mRNA and protein levels of c-Myc and the anti-apoptotic Bcl-2 and Bcl-XL [21]. An altered rhythm of PER2 mRNA with lower mesor and amplitude in tumour tissue compared to normal colonic tissue was reported in mice with experimentally-induced colorectal carcinoma [22].

The circadian system and regulation mediated by miRNAs reciprocally influence each other. A distinct daily rhythm of miR-219 and miR-132 was observed in the SCN of mice; interestingly, miR-132 was inducible by light [23]. The rhythmic expression of miRNAs miR-96 and miR-182 was demonstrated in mouse retina, and weak daily rhythms in the expression of mir-16, mir-20a and mir-141 were observed in rat intestine [24, 25]. The precursor form of hepatocyte specific miR-122 exhibits a rhythmic expression; however, the mature strand does not oscillate due to its long half-life, which indicates circadian regulation at a transcriptional level [26]. The rhythmic mRNA expression of Dicer, an enzyme essential for miRNA biogenesis, was identified in the SCN, retina, liver and bone marrow of mice [27]. miRNAs also influence the circadian system. The loss of miRNAs in the liver in Dicerflox mice affected the cyclic expression of PER2 and PER1 mRNA and protein products, with a significant increase in the mesor and amplitude, while these changes were not observed in the expression of other studied clock genes [28]. Similarly, the miR-192⁄194 cluster was found to inhibit the expression of PER2 [29]. In addition, miR-34a was rhythmically expressed in H69 and cholangiocarcinoma cells, and PER1 was shown to be targeted by this miRNA [30].

Current study is focused on miRNAs that were deregulated in CRC and had a functional connection with the circadian system because of the possible synergic influence of these two factors on tumour progression. miRNAs involved in CRC progression were identified by macroarray analysis, and candidate miRNAs were investigated for an association with the clock gene PER2. As such, PER2 was used as a functional gate because of its involvement in the regulation of oncological malformations and the generation of circadian rhythms.

Materials and methods

The study included 64 adult patients with CRC. Characteristics of the cohort are provided in Table 1. All patients were exposed to standard hospital practice, with lights on from 6:00 a.m. to 9:00 p.m. The recruitment of the patients was conducted in the First Surgery Department of the Faculty of Medicine of Comenius University and the University Hospital Bratislava in Slovakia from September 2008 to May 2014. All patients were adults, Caucasian and Slovakian residents. Since samples were collected over several years, the cohort could be considered representative of a larger population. Participants were recruited from regular pre-surgery patients by the medical doctors that were co-authors of this study. The experimental protocol, which was in accordance with the Helsinki declaration and approved by the Ethics Committee of Comenius University in Bratislava, was explained to each patient, from whom written informed consent was obtained. Histopathological examinations were performed by a hospital pathologist, and only patients with histologically confirmed colorectal carcinoma were included in the study. During surgery, tissue samples were collected from the primary tumour, as well as from the resected colon ≥10 cm proximal and ≥2 cm distal of the tumour, in tissues considered to be healthy. Surgeries were conducted between 10:00 a.m. and 1:00 p.m. Tissue samples were collected in liquid nitrogen and then stored at -80°C until further processing. Large RNA and miRNA were extracted from 70 mg tissue samples using RNAzol, according to the manufacturer’s instructions (MRC, Inc., USA; Protocol for isolation of Large RNA and small RNA fractions).

Table 1. Gender, age, tumour location and clinicopathological characteristics of patients.

All patients n = 64 %
Gender    
  Male 38 59.4
  Female 26 40.6
Age
  Mean ± SEM (years)
Range (years)
69 ± 1.4
37–86
Tumour location
  Right-side 25 39.1
  Left-side 39 60.9
Grading stage
  G1 11 17.2
  G2 49 76.6
  G3 4 6.3
Clinical stage
  I 4 6.3
  IIA, IIB 29 45.3
  IIIA, IIIB 15 23.4
  IVA, IVB 16 25.0
TNM classification
Primary tumour invasion
  T1-T2 4 6.3
  T3 48 75.0
  T4 12 18.8
Regional lymph node
  N0 35 54.7
  N1 13 20.3
  N2 16 25.0
Distant metastasis
  M0 48 75.0
  M1 16 25.0

Right-side, anatomic location from caecum to transverse colon; Left-sided, anatomic location from descending colon to rectum; n, number of patients; G, tumour grading; T, tumour invasion; N, nodal status; M, distant metastasis; SEM, standard error of the mean.

miRNA profiling

To perform miRNA profiling, cDNA was synthesised from 2 μg of miRNA using a miScript II RT kit (Qiagen, Germany). For the identification of altered miRNAs, cDNA from the tumour was pooled from eight patients. Results were compared to pooled samples of adjacent tissue. Patients of both genders, representing the entire scale of clinicopathological features, were selected for screening. Profiling was performed using the miScript miRNA PCR Array Human Cancer Pathway Finder, according to the manufacturer’s instructions (Qiagen, Germany).

In silico analysis

For further analysis, we identified miRNAs with a connection to the circadian system. For this purpose, we employed the TargetScan database [31], in which we searched for miRNA that had predicted interactions with clock gene PER2 (S1 Table).

Real-time PCR

To perform real-time PCR, 1 μg of miRNA was polyadenylated using a Poly(A) Tailing kit (Life Technologies, USA). cDNA was then synthesised from 100 ng of polyadenylated template, using the ImProm-II Reverse Transcription kit (Promega, USA) and a primer with a universal tag of the following sequence, 5´-CAGGTCCAGTTTTTTTTTTTTTTTVN-3´ [32].

The detection of relative miRNA expression after profiling was performed by real-time PCR, using the miScript SYBR Green PCR kit (Qiagen, Germany) and the StepOnePlus Real-Time PCR System (Applied Biosystems, USA). Data were analysed by StepOne Software v 2.3. We performed arbitrary quantification where the standard curve was specific for a particular gene. Threshold default was 10 standard deviations above the mean fluorescence generated during baseline cycles. A default range of 3–15 cycles was used to establish the baseline and to calculate the Ct values for each sample in the run.

Specific primers used in the assays were: hsa-miR-34a-5p sense, 5´-GCAGTGGCAGTGTCTTAG-3´;antisense, 5´-GGTCCAGTTTTTTTTTTTTTTTACAAC-3´; and U6 (NR_004394.1) sense, 5´-GCTTCGGCAGCACATATACTAA-3´; antisense, 5´-AAAATATGGAA-CGCTTCACGA-3´. Details of PER2 measurements were as previously described [18]. Temperature cycles were 95°C for 15 min, and then 45 cycles of 55°C for 30 sec and 70°C for 30 sec. Expression of small nuclear RNA (snRNA) U6 was used for the normalisation of miRNA expression data. The specificity of the PCR reactions was validated by melting curve analysis and by sequencing.

Statistical analysis

The Mann–Whitney U test was used for the determination of expression level differences between tumour tissue and its adjacent tissue, as well as between the two groups. Expression values for the adjacent tissue were calculated as the average expression in the proximal and distal tissues. Linear regression analysis was used to determine the correlation between the expression of miRNAs and clock genes. A Kaplan–Meier survival curve and a log-rank test were used to evaluate the overall survival of patients in relation to the median miRNA expression. The starting point for the log-rank test was the day of the surgery. In the histograms, data were provided as a mean ± standard error of the mean (SEM). The level of significance was set at P < 0.05.

Results

Using miRNA macroarray profiling, we identified 17 miRNAs that showed a >100 times expression level in tumour tissue compared to adjacent tissue (Fig 1). From the TargetScan database for predicting miRNA targets, we selected hsa-miR-34a-5p for further analysis, because in silico analysis indicated interaction with clock PER2 (S1 Table).

Fig 1. Fold change of miRNA expression in tumour tissue compared to adjacent proximal tissue, according to macroarray analysis.

Fig 1

The solid line indicates the selection threshold set for expression which was 100 times higher in tumour tissue compared to proximal tissue.

The expression of miR-34a was significantly up-regulated in tumour tissue compared to matched adjacent tissues for the entire cohort (Mann-Whitney U test, P < 0.001; Fig 2A), as well in males and females separately (Mann-Whitney U test, P < 0.05; S1 Fig). For the entire cohort, Kaplan-Meier analysis showed significantly better overall survival for CRC patients with high miR-34a expression in tumour tissue compared to those showing low miR-34a expression (log-rank test, P = 0.039; Fig 2B). High and low levels of miR-34a expression were selected on the basis of the median.

Fig 2.

Fig 2

Expression of miR-34a-5p (A) in tumour and adjacent tissue in the whole cohort of patients. Data are provided as a mean ± SEM; ***P < 0.001 (n = 64; Mann-Whitney U test). (B) Kaplan-Meier survival curve for the entire cohort of patients with low miR-34a expression (≤ median, solid line) and high miR-34a expression (> median, dotted line) in tumour tissue. P = level of significance (log-rank test).

After splitting the cohort according to gender, we observed a significant down-regulation of miR-34a in the tumour tissue of male patients with lymph node metastases compared to male patients without lymph node metastases (Mann-Whitney U test; P < 0.05; Fig 3A). The same trend was preserved in male patients with distant metastases compared to patients without distant metastases (Mann-Whitney U test; P = 0.146; Fig 3A). These differences were not observed in female patients.

Fig 3.

Fig 3

The expression of miR-34a (A) in tumour tissue of female (n = 10) and male (n = 25) patients without (N0) and female (n = 16) and male (n = 13) patients with lymph node metastases (N1-2), and female (n = 19) and male (n = 29) patients without (M0) and female (n = 9) and male patients (n = 7) with distant metastases (M1). Data are provided as a mean ± SEM; *p < 0.05; Mann-Whitney U test. (B) Kaplan-Meier survival curve for male patients without/with lymph node metastases according to expression of miR-34a in tumour tissue. (C) Kaplan-Meier survival curve of male patients without/with distant metastasis according to expression of miR-34a in tumour tissue. The solid line indicates low miR-34a expression (≤ median) and the dotted line indicates high miR-34a expression (> median). P = level of significance (log-rank test).

The association between miR-34a expression and patient survival was also analysed in relationship to lymph node involvement and the occurrence of distant metastases. We observed a significant correlation between high miR-34a expression in the tumour tissue of males without lymph node involvement (log rank test, P = 0.016; Fig 3B) and better survival. High expression of miR-34a in male patients without distant metastases was also associated with better survival (log rank test; P = 0.021; Fig 3C). The expression of miR-34a did not significantly predict male survival in the more advanced stages (Fig 3B and 3C). The dependence of survival on cancer progression described above was not observed in females (S2 Fig).

miR-34a expression in tumour tissue correlated with the expression of its predicted target gene PER2, which was analysed previously [18]. A significant negative correlation was observed in the specific cohort of patients with cancer at clinical stage IIb and above, with metastases in a maximum of six lymph nodes (regression analysis, R = 0.426; y = -0,06762x + 1079; P = 0.043; Fig 4A), and in patients with T3 stage tumour invasion (tumour invaded through the muscularis propria into the pericolorectal tissues) and clinical stage III-IV (regression analysis; R = 0.450; y = -0,05630x + 1118; P = 0.035; Fig 4B).

Fig 4.

Fig 4

Regression analysis of miR-34a and PER2 expression: (A) in tumour tissue of patients with clinical stage IIb and above, with metastases in a maximum of six lymph nodes; and (B) patients with tumour invasion T3 (tumour invaded through the muscularis propria into the pericolorectal tissues) and clinical stage III-IV. Solid line represents significant correlation. R, correlation coefficient; P, level of significance (regression analysis).

Discussion

Macroarray screening identified miR-34a as an up-regulated miRNA in tumour tissue compared to adjacent proximal healthy tissue. Validation by real-time PCR confirmed the increase of miR-34a expression in tumour tissue compared to adjacent tissue for the entire cohort of patients. The expression of miR-34a was associated with patient survival.

miR-34a belongs to the miR-34 miRNA family (miR-34a, miR-34b, miR-34c), and shows robust expression in the brain, lungs and gastrointestinal tract of mice [33]. In humans, its chromosome location is 1p36, which is frequently deleted in malignant tissues, including colorectal tumours [34]. Recently, 77 validated targets of miR-34 family members were identified in various tissues. Most of them promote tumour development, e.g., cell cycle activators (c-Myc and CDK4/6), anti-apoptotic factor (Bcl2), activators of invasion (c-Met, Notch1 and Fra-1) and epithelial-mesenchymal transition inducing factor (SNAIL) [35]. miR-34a expression is promptly activated by DNA damage. It was shown that exposure of HCT116 cells to the DNA intercalating agent Adriamycin causes significant up-regulation of miR-34a. Up-regulation of miR-34a in mice spleen was also observed after cranial exposure to X-rays in females and males [36]. Transient over-expression of miR-34a in human colon cancer cell lines HCT116 and RKO inhibited proliferation and induced senescence-like phenotypes, and suppression of the transcription factor E2F1 [37]. These data supported a tumour suppressive role for miR-34a.

In the current study, the association between higher miR-34a expression in tumour tissue and better overall survival in the entire cohort of patients was consistent with previous data indicating the tumour suppressive properties of miR-34a. Patients with cancer at stages II and III with low miR-34a expression in the tumour showed a higher risk of recurrence than those with high miR-34a expression [38]. Similarly, patients with high miR-34a expression in the tumour had better survival rates than those with low miR-34a expression [39]. High miR-34a expression has only rarely been reported to be associated with worse survival [40].

One way in which miR-34a could improve survival results from its interaction with tumour suppressor TP53. Members of the miR-34 family are targets of TP53. p53 increases the expression of miR-34 through the p53-binding region located in the miR-34 promoter [41]. One of the targets of miR-34a is SIRT1 mRNA, which in turn regulates p53-dependent apoptosis by deacetylation and the inactivation of p53. Therefore, there is a positive feedback loop in which p53 induces miR-34a, which conversely down-regulates SIRT1. In this way, miR-34 indirectly increases p53 activity [42]. Interestingly, the induction of miR-34a after DNA damage was also detected in a p53-independent manner. Salzman et al. [43] noticed that there is a pool of mature miR-34a in the cell that remains inactive; however, after irradiation, miR-34 is immediately activated through 5´-end phosphorylation in an ataxia telangiectasia mutated (ATM) and RNA kinase Clp1-dependent manner, enabling association of miR-34a with Argonaute 2 (Ago2) [43]. Another way in which the miR-34 family contributes to tumour suppressive function is that miR-34a, miR-34b*, and miR-34c-5p inhibit the Wnt pathway by repression of Wnt ligand co-receptors (WNT1/3; LRP6), with HMG-box transcription factor (LEF1) and β-catenin. The loss of p53/miR-34 function increases Wnt activity and triggers a tissue-invasive phenotype in CRC cells [44]. In the current study, we did not observe an association between miR-34a expression and survival in either males or females with lymph node or distant metastases, indicating that miR-34a seemed to be a better survival prediction factor in the earlier stages of cancer development.

In silico analysis indicated that miR-34a interacted with PER2 expression. A negative correlation between miR-34a expression and PER2 expression in tumour tissue was confirmed after cohort clustering. We observed a significant negative correlation in patients with cancer at clinical stage IIb and above, with metastases in a maximum of six lymph nodes, and in patients with T3 stage tumour invasion (tumour invaded through the muscularis propria into the pericolorectal tissues) and clinical stages III-IV. This relationship has not reported previously been reported, although miR-34a has been shown to inhibit PER1 expression via the miR-34a conserved regulatory site [30]. It was also shown that PER2 expression inhibits cell cycle progression [20, 21], and is down-regulated in CRC, with a trend towards a more pronounced decrease with increasing grading stage [18, 4547]. We propose that miR-34a regulation of cancer progression could be partly explained via the PER2 gene as well. A negative correlation of PER2 and miR-34a was present only in patients with more advanced stages of CRC, which was consistent with miR-34a being preferentially associated with survival in patients at earlier cancer stages.

After splitting the cohort according to gender and clinicopathological features, we found that male patients with no lymph node involvement and without distant metastases showed a correlation between higher miR-34a expression in tumour tissue and better overall survival. This association was not observed in females. Sex-dependent differences in survival analyses can be related to the hormonal status of patients; however, the exact mechanism needs to be elucidated. Estradiol was found to down-regulate the expression of miR-34a in the oestrogen receptor α-positive breast cancer cell line-MCF-7 [48]. In our study, although there was trend towards lower expression of miR-34a in females compared to males, it was not statistically significant (S1 Fig). Since miR-34a was similarly expressed in colorectal tumour tissues in males and females, we proposed that its protective role might be mediated by some of its target molecules which showed gender-specific expression.

The expression of miR-34a was up-regulated in tumour tissue compared to adjacent tissue in the whole cohort, with this difference persisted after splitting the cohort according to gender. Previous reports on miR-34a expression in colorectal tumour tissue are inconsistent. The expression of miR-34a in colorectal tumours has been found to be down-regulated [38], up-regulated [49, 50], up-regulated as well as down-regulated [37], or dictated by the clinicopathological stage of patients, as it was found to be increased in higher grading stages [40]. The inconsistency in available data might result from differences in cohort clustering according to patient medical conditions and genders. In our cohort, miR-34a expression was decreased in male patients, but not female patients, with distant metastases and/or lymph node involvement. The gender-dependent feature of this observation would need further evaluation; however, the observed decrease in miR-34a expression could be explained by p53 signalling via the p53-binding region located in the miR-34 promoter. Meta-analysis of TP53 mutation status in CRC patients showed that around 29% of patients had a type of TP53 mutation connected with transcriptional inactivity, with patients that had tumours with vascular and lymphatic invasion showing higher frequencies of inactivating TP53 mutations [51]. However, miR-34a is regulated in a complex manner and other associated pathways have also been described.

Double-negative regulation between the transcription factor SNAIL, which triggers epithelial-mesenchymal transition, and miR-34a was found under in vitro conditions. miR-34a represses the expression of SNAIL, while SNAIL binds to the promoter of miR-34a and inhibits its transcription, forming a negative feedback loop [52]. A double-negative feedback loop was also found in the regulation of miR-34a through IL-6, which activates the oncogenic transcription factor STAT3, causing the direct repression of miR-34a. miR-34a inhibits the IL-6 receptor and stops IL-6–dependent STAT3 activation [53].

The regulation of miR-34a has also been studied in an epigenetic manner. The entire family of miR-34 is down-regulated by CpG hypermethylation of the miR-34a promoter, which has been observed in CRC but not in normal colonic mucosa [54, 55]. Notably, promoter methylation of miR-34a was higher in CRC tissue from patients with distant metastases and lymph node metastases, compared to those without these systemic manifestations [56]. This was consistent with the significant down-regulation of tumour miR-34a expression observed in the current study for male patients with lymph node metastases, compared to those without lymph node involvement. These data suggested that epigenetic silencing, which was more pronounced in CRC patients at a more advanced stage, might also contribute to the down-regulation observed in our study. Finally, Wang et al. [49] considered that miR-34a might act in regulatory circuits with positive and negative feedback loops, instead of just mediating unidirectional pathways in the carcinogenesis of CRC.

In conclusion, this study showed that the association of miR-34a with survival that was present in the entire cohort exerted sex-dependent features and differed according to clinicopathological conditions. Survival was more closely correlates with miR-34a in male patients at earlier cancer stages without distant metastases and/or node involvement, compared to males with CRC at more advanced stages. This was accompanied by a decrease in miR-34a expression in tumours of male patients with lymph node involvement and distant metastases, compared to those with earlier stages of cancer. This profile was not observed in females. Therefore, we propose that miR-34a in earlier cancer stages is regulated in a sex-dependent manner and that a protective role of miR-34a also involves at least one pathway with gender-specific regulation. Besides the well-known tumour suppressive role of miR-34a, we also reported a negative correlation between the expression of the clock gene PER2 and miR-34a. PER2 is believed to exert a tumour suppressive role; therefore, in this respect, miR-34a does not seem to play a beneficial role for patients. However, this correlation was only observed in patients with advanced cancer stages, where miR-34a association with survival was weaker. Therefore, we propose that the expression of miR-34a could be considered a better prognostic marker in earlier cancer stages in male patients, rather than female patients.

Supporting information

S1 Table. Results from in silico analysis with the TargetScan database http://www.targetscan.org/vert_72/.

(DOCX)

S1 Fig. Expression of miR-34a in tumour and adjacent tissue in male and female patients.

Data are provided as a mean ± SEM, * indicates an up-regulation in male tumour tissue compared to adjacent tissue (P < 0.05; n = 38; Mann-Whitney U test) ** indicate an up-regulation in female tumour tissue compared to adjacent tissue (P < 0.01; n = 26; Mann-Whitney U test).

(TIF)

S2 Fig. Kaplan-Meier survival curves for female patients according to expression of miR-34a in tumour tissue without/with lymph node metastases and without/with distant metastases.

The solid line indicates low miR-34a expression (≤ median) and the dotted line indicates high miR-34a expression (> median). P = level of significance (log-rank test).

(TIF)

Acknowledgments

This study was funded by APVV-14-0318, APVV-16-0209 and VEGA 1/0679/19.

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Funding Statement

This work was supported by APVV-14-0318, The Slovak Research and Development Agency, https://www.apvv.sk/?lang=en, to MZ; APVV-16-0209, The Slovak Research and Development Agency, https://www.apvv.sk/?lang=en, to IH; VEGA 1/0679/19, Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, https://www.minedu.sk/vedecka-grantova-agentura-msvvas-sr-a-sav-vega/, to IH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66: 683–691. 10.1136/gutjnl-2015-310912 [DOI] [PubMed] [Google Scholar]
  • 2.Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103: 2257–2261. 10.1073/pnas.0510565103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech. 2017;10: 197–214. 10.1242/dmm.027441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116: 281–297. 10.1016/s0092-8674(04)00045-5 [DOI] [PubMed] [Google Scholar]
  • 5.Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19: 92–105. 10.1101/gr.082701.108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1: 882–291. [PubMed] [Google Scholar]
  • 7.Slaby O, Svoboda M, Fabian P, Smerdova D, Knoflickova D, Bednarikova M, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007;72: 397–402. 10.1159/000113489 [DOI] [PubMed] [Google Scholar]
  • 8.Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, S. Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27: 2128–2136. 10.1038/sj.onc.1210856 [DOI] [PubMed] [Google Scholar]
  • 9.Xiong B, Cheng Y, Ma L, Zhang C. miR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42: 219–228. 10.3892/ijo.2012.1707 [DOI] [PubMed] [Google Scholar]
  • 10.Masuda T, Hayashi N, Kuroda Y, Ito S, Eguchi H, Mimori K. MicroRNAs as Biomarkers in Colorectal Cancer. Cancers (Basel). 2017;13: 9. pii: E124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;9: 5–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215: 15–25. 10.1083/jcb.201603076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15: R271–277. 10.1093/hmg/ddl207 [DOI] [PubMed] [Google Scholar]
  • 14.Cordina-Duverger E, Menegaux F, Popa A, Rabstein S, Harth V, Pesch B, et al. Night shift work and breast cancer: a pooled analysis of population-based case-control studies with complete work history. Eur J Epidemiol. 2018;33: 369–379. 10.1007/s10654-018-0368-x [DOI] [PubMed] [Google Scholar]
  • 15.Barul C, Richard H, Parent ME. Nightshift work and prostate cancer risk: results from the Canadian case-control study Am J Epidemiol. 2019; pii: kwz167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, et al. Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer. 2018;143: 2709–2717. 10.1002/ijc.31655 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009;8: 298–302. 10.1177/1534735409352085 [DOI] [PubMed] [Google Scholar]
  • 18.Hasakova K, Vician M, Reis R, Zeman M, Herichova I. Sex-dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int. 2018;35: 1423–1434. 10.1080/07420528.2018.1488722 [DOI] [PubMed] [Google Scholar]
  • 19.Fu L, Pelicano H, Liu J, Huang P, Lee C. The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111: 41–50. 10.1016/s0092-8674(02)00961-3 [DOI] [PubMed] [Google Scholar]
  • 20.Wood PA, Yang X, Taber A, Oh EY, Ansell C, Ayers SE. Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res. 2008;6: 1786–1793. 10.1158/1541-7786.MCR-08-0196 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hua H, Wang Y, Wan C, Liu Y, Zhu B, Yang C, et al. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006;97: 589–596. 10.1111/j.1349-7006.2006.00225.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Soták M, Polidarová L, Ergang P, Sumová A, Pácha J. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer. 2013;132: 1032–1041. 10.1002/ijc.27760 [DOI] [PubMed] [Google Scholar]
  • 23.Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP. MicroRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54: 813–829. 10.1016/j.neuron.2007.05.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282: 25053–25066. 10.1074/jbc.M700501200 [DOI] [PubMed] [Google Scholar]
  • 25.Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, et al. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res. 2010;316: 3512–3521. 10.1016/j.yexcr.2010.07.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. Integration of microRNA miR122 in hepatic circadian gene expression. Genes Dev. 2009;23: 1313–1326. 10.1101/gad.1781009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Yan Y, Salazar TE, Dominguez JM, Nguyen DV, Li Calzi S, Bhatwadekar AD, et al. Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes. PLoS One. 2013;8: e80029 10.1371/journal.pone.0080029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Du NH, Arpat AB, De Matos M, Gatfield D. Micro-RNAs shape circadian hepatic gene expression on a transcriptome- wide scale. eLife. 2014;3: e02510 10.7554/eLife.02510 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J. 2009;276: 5447–2455. 10.1111/j.1742-4658.2009.07229.x [DOI] [PubMed] [Google Scholar]
  • 30.Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol. 2016;64: 1295–304. 10.1016/j.jhep.2016.02.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4: e05005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011;11: 70 10.1186/1472-6750-11-70 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007;17: 1298–1307. 10.1016/j.cub.2007.06.068 [DOI] [PubMed] [Google Scholar]
  • 34.Agostini M, Knight RA. miR-34: from bench to bedside. Oncotarget. 2014;5: 872–881. 10.18632/oncotarget.1825 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool? Crit Rev Oncol Hematol. 2018;132: 1–8. 10.1016/j.critrevonc.2018.09.006 [DOI] [PubMed] [Google Scholar]
  • 36.Koturbash I, Zemp FJ, Kutanzi K, Luzhna L, Loree J, Kolb B, et al. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle. 2008;7: 1658–1667. 10.4161/cc.7.11.5981 [DOI] [PubMed] [Google Scholar]
  • 37.Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci. 2007;104: 15472–15477. 10.1073/pnas.0707351104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Gao J, Li N, Dong Y, Li S, Xu L, Li X. MiR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene. 2015;34: 4142–4152. 10.1038/onc.2014.348 [DOI] [PubMed] [Google Scholar]
  • 39.Zhang X, Ai F, Li X, Tian L, Wang X, Shen S, Liu F. MicroRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncol Lett. 2017;14: 2325–2333. 10.3892/ol.2017.6444 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Rapti SM, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. miR-34a overexpression predicts poor prognostic outcome in colorectal adenocarcinoma, independently of clinicopathological factors with established prognostic value. Clin Biochem. 2017;50: 918–924. 10.1016/j.clinbiochem.2017.06.004 [DOI] [PubMed] [Google Scholar]
  • 41.He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447: 1130–1134. 10.1038/nature05939 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105: 13421–13426. 10.1073/pnas.0801613105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7: 10954 10.1038/ncomms10954 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011;4: ra71 10.1126/scisignal.2001744 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Zeman M, Vician M, Monosikova J, Reis R, Herichova I. Deregulated expression of the per2 gene in human colorectal carcinoma. Mol Med Rep. 2008;1: 599–603. [PubMed] [Google Scholar]
  • 46.Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, et al. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011;28: 841–851. 10.3109/07420528.2011.615182 [DOI] [PubMed] [Google Scholar]
  • 47.Wang Y, Hua L, Lu C and Chen Z. Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J Surg Oncol. 2011;9: 166 10.1186/1477-7819-9-166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Zhao G, Guo J, Li D, Jia C, Yin W, Sun R, et al. MicroRNA-34a suppresses cell proliferation by targeting LMTK3 in human breast cancer mcf-7 cell line. DNA Cell Biol. 2013;32: 699–707. 10.1089/dna.2013.2130 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Wang MJ, Zhang P, Li Y, Liu GH, Zhou B, Zhan L, et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol. 2012;29: 3113–3118. 10.1007/s12032-012-0241-9 [DOI] [PubMed] [Google Scholar]
  • 50.Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M, et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer. 2009;9: 374 10.1186/1471-2407-9-374 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Iacopetta B, Russo A, Bazan V, Dardanoni G, Gebbia N, Soussi T, et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann Oncol. 2006;17: 842–847. 10.1093/annonc/mdl035 [DOI] [PubMed] [Google Scholar]
  • 52.Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 2011;10: 4256–4271. 10.4161/cc.10.24.18552 [DOI] [PubMed] [Google Scholar]
  • 53.Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124: 1853–1867. 10.1172/JCI73531 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7: 2591–2600. 10.4161/cc.7.16.6533 [DOI] [PubMed] [Google Scholar]
  • 55.Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of MicroRNA-34b/c and B-cell translocation Gene 4 Is associated with CpG Island methylation in colorectal cancer. Cancer Res. 2008;68: 4123–4132. 10.1158/0008-5472.CAN-08-0325 [DOI] [PubMed] [Google Scholar]
  • 56.Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2013;19: 710–720. 10.1158/1078-0432.CCR-12-1703 [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Ondrej Slaby

23 Jul 2019

PONE-D-19-15253

Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression

PLOS ONE

Dear Dr Herichova,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

We would appreciate receiving your revised manuscript by Sep 06 2019 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Ondrej Slaby

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1) Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2)  Please provide author names on the title page of your MS as Firstname Lastname. (Currently names are provided as Lastname Firstname, which might cause issues with PubMed on down the line.)

3) In your Methods section, please provide additional information about the participant recruitment method and the demographic details of your participants. Please ensure you have provided sufficient details to replicate the analyses such as: a) the recruitment date range (month and year), b) a description of any inclusion/exclusion criteria that were applied to participant recruitment, c) a statement as to whether your sample can be considered representative of a larger population, d) a description of how participants were recruited, and e) descriptions of where participants were recruited and where the research took place.

4) Please also provide the full name of the Ethics Committee that approved the study, and provide the approval or permit number that was issued when the study was approved.

5) We note that you have included the phrase “data not shown” in your manuscript. Unfortunately, this does not meet our data sharing requirements. PLOS does not permit references to inaccessible data. We require that authors provide all relevant data within the paper, Supporting Information files, or in an acceptable, public repository. Please add a citation to support this phrase or upload the data that corresponds with these findings to a stable repository (such as Figshare or Dryad) and provide and URLs, DOIs, or accession numbers that may be used to access these data. Or, if the data are not a core part of the research being presented in your study, we ask that you remove the phrase that refers to these data.

<h1>[Note: HTML markup is below. Please do not edit.]</h1>

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Partly

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: No

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: No

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The authors describe an interesting idea of circadian system regulation of miRNA expression in colorectal carcinoma. While the idea is very interesting, I have reservation to both the study design and the manuscript.

The authors need to proof read their manuscript, not only concerning usage of English per se but also scientific language (tumor, cancer when describing colorectal carcinoma - and then they should stick to that term). The nomenclature of genes is somewhat confusing, sometimes small italics, sometimes large italics when describing human genes.

Line 68 - when describing studies on CRC and miRNA, only 1 reference is used, there are many studies.....

line 69 - description of circadian system is unclear

line 70 - oncologic processes? what do you mean by that?

line 86 - please change p53 to TP53 if describing a gene (unclear)

Methods - please include a sentence if the ethics committee approval is in accordance with the Helsinki declaration

table 1 - please show age of patients at diagnosis as range

location of tumor - please explain left and right tumor location

grading and staging systems - please use the current nomenclature of grading system G1-G4

methods - i am unclear about the profiling - which pts were actually chosen for the microarray? how did you measure 2 ug of miRNA? i would think that it was 2 ug of total RNA...

why were the tumor samples and adjacent samples pooled for the profiling? this part is unclear. hy only 8 patients? how many arrays did the authors actually use?

real-time PCR - again, how did you isolate miRNA? or did you use total RNA with miRNA? what is arbitrary quantification? why did you use it?

the figures are missing the number of patients that were actually included in the analysis. CRC is a common disease, while the results are interesting, the number of patients is very low and should be increased.

Moreover, the authors failed to show any functional interactions between miR34a and the clock gene PER2 which should be included in this study ...the authors claim they showed this in the abstract but only a negative corelation was shown.

Reviewer #2: The paper does not include a proper introduction into the topic. A more detailed information on the mechanism of clock genes contribution to cancer should be given (not just a single reference).

- in the methods section it is not fully clear whether samples from "STAGE IV" patients were originating from primary carcinoma tissue or from metastatic tissue. In case of the former it would only be applicable to patients with synchronous metastases and as such it should be clearly described in the text.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2019 Oct 28;14(10):e0224396. doi: 10.1371/journal.pone.0224396.r002

Author response to Decision Letter 0


4 Sep 2019

Editorial comments:

When submitting your revision, we need you to address these additional requirements.

1) Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

We checked and corrected the manuscript according to PLOS ONE's style requirements.

2) Please provide author names on the title page of your MS as Firstname Lastname. (Currently names are provided as Lastname Firstname, which might cause issues with PubMed on down the line.)

Thank you for the comment, in revised MS we provided the authors names as first name and last name.

3) In your Methods section, please provide additional information about the participant recruitment method and the demographic details of your participants. Please ensure you have provided sufficient details to replicate the analyses such as: a) the recruitment date range (month and year), b) a description of any inclusion/exclusion criteria that were applied to participant recruitment, c) a statement as to whether your sample can be considered representative of a larger population, d) a description of how participants were recruited, and e) descriptions of where participants were recruited and where the research took place.

Additional information about participant recruitment method, exclusion criteria and demographic details was added into the method section.

We included text:

“The recruitment of the patients was conducted in the First Surgery Department of the Faculty of Medicine of Comenius University and the University Hospital Bratislava in Slovakia from September 2008 to May 2014. All patients were adults, Caucasian and Slovakian residents. Since samples were collected over several years, the cohort could be considered representative of a larger population. Participants were recruited from regular pre-surgery patients by the medical doctors that were co-authors of this study. The experimental protocol, which was in accordance with the Helsinki declaration and approved by the Ethics Committee of Comenius University in Bratislava, was explained to each patient, from whom written informed consent was obtained. Histopathological examinations were performed by a hospital pathologist, and only patients with histologically confirmed colorectal carcinoma were included in the study.”

4) Please also provide the full name of the Ethics Committee that approved the study, and provide the approval or permit number that was issued when the study was approved.

We provided the full name of the Ethic Committee in the chapter “Material and methods” and approval number.

Ethics Committee of the Comenius University in Bratislava (ECH 19001)

5) We note that you have included the phrase “data not shown” in your manuscript. Unfortunately, this does not meet our data sharing requirements. PLOS does not permit references to inaccessible data. We require that authors provide all relevant data within the paper, Supporting Information files, or in an acceptable, public repository. Please add a citation to support this phrase or upload the data that corresponds with these findings to a stable repository (such as Figshare or Dryad) and provide and URLs, DOIs, or accession numbers that may be used to access these data. Or, if the data are not a core part of the research being presented in your study, we ask that you remove the phrase that refers to these data.

We provided these data as a supplementary figure 2.

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Partly

Reviewer #2: Yes

________________________________________

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: No

Reviewer #2: Yes

________________________________________

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

________________________________________

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: No

Reviewer #2: Yes

________________________________________

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1:

The authors describe an interesting idea of circadian system regulation of miRNA expression in colorectal carcinoma. While the idea is very interesting, I have reservation to both the study design and the manuscript.

The authors need to proof read their manuscript, not only concerning usage of English per se but also scientific language (tumor, cancer when describing colorectal carcinoma - and then they should stick to that term).

Thank you for the comment, the manuscript was proofread and corrected by authors and also by professional agency (please, see attached certificate). We avoided the term “cancer tissue” which was replaced by “tumour tissue” in the whole manuscript.

The nomenclature of genes is somewhat confusing, sometimes small italics, sometimes large italics when describing human genes.

The manuscript was proofread and the nomenclature of genes were united according the web page:

https://www.biosciencewriters.com/Guidelines-for-Formatting-Gene-and-Protein-Names.aspx

paragraph:

Humans, non-human primates, chickens, and domestic species: Gene symbols contain three to six italicized characters that are all in upper-case (e.g., AFP). Gene symbols may be a combination of letters and Arabic numerals (e.g., 1, 2, 3), but should always begin with a letter; they generally do not contain Roman numerals (e.g., I, II, III), Greek letters (e.g., α, β, γ), or punctuation. Protein symbols are identical to their corresponding gene symbols except that they are not italicized (e.g., AFP).

Line 68 - when describing studies on CRC and miRNA, only 1 reference is used, there are many studies.....

We added more studies referring about changes of miRNA in CRC and included text:

„In tumours of colorectal carcinoma up-regulated miRNAs include miR-17, miR-155, miR-146, miR-221, miR-31, miR196, miR-20a, miR92a, miR-130b, miR181b, miR-183, miR-196, miR-203, miR-215, miR-224 and miR-25, while down-regulated miRNAs include miR-10, miR-30, miR-22, miR-93, miR-126, miR-132, miR-139, miR-15, miR-195, miR340 and miR-106a [3, 10, 11].”

line 69 - description of circadian system is unclear

The chapter “Introduction” describing the circadian system was completely rewritten.

line 70 - oncologic processes? what do you mean by that?

The word “oncologic processes” was omitted from the manuscript. The sentence was replaced. Chapter “Introduction” was rewritten.

line 86 - please change p53 to TP53 if describing a gene (unclear)

Thank you for your comment, nomenclature of gene TP53 was corrected in the whole manuscript.

Methods - please include a sentence if the ethics committee approval is in accordance with the Helsinki declaration

Thank you for the comment, the sentence claiming that ethics committee approval was in accordance with the Helsinki declaration was added in the chapter “Material and methods”.

table 1 - please show age of patients at diagnosis as range

Thank you for the comment. Patient age at the time of surgery was added into Table 1. Range was 37 - 86 years.

location of tumor - please explain left and right tumor location

Explanation of the right and left-sided tumour location was added to the Table 1 legend.

grading and staging systems - please use the current nomenclature of grading system G1-G4

Thank you for the suggestion, the nomenclature of grading system was changed in the Table 1.

methods - i am unclear about the profiling - which pts were actually chosen for the microarray? how did you measure 2 ug of miRNA? i would think that it was 2 ug of total RNA...

why were the tumor samples and adjacent samples pooled for the profiling? this part is unclear. hy only 8 patients? how many arrays did the authors actually use?

real-time PCR - again, how did you isolate miRNA? or did you use total RNA with miRNA? what is arbitrary quantification? why did you use it?

For the profiling purposes we selected eight patients of both gender that represent the entire scale of clinicopathological features of our cohort. We could not use of cDNA from the whole cohort because we needed only 40ul cDNA for the whole array and cohort consisted from 64 patients. Pipetting of too low volumes (less than 1µl) is not exact, therefore we selected representative part of cohort and validated data with the use of whole sample set (64 samples).

We used two arrays, one for tumour tissue and one for the proximal adjacent tissue. By comparison of results from these two arrays we selected miR-34a-5p as a candidate miRNA to be estimated in the whole cohort.

Arbitrary units are the most frequent way how to interpret gene expression data. We prepared calibration curve from logarithmically diluted sample with high expression that was used to calculate relative expression.

The concentration of miRNA was measured by spectrophotometry after miRNA isolation from tissue and its dilution in redistill water. 2µg of miRNA was calculated as a corresponding volume from a diluted sample. We performed isolation in two steps. We isolated large RNA (mRNA and ribosomal RNA) and small RNA molecules separately using RNAzol according to the manufacturer’s instructions (MRC, USA, Protocol for isolation of Large RNA and small RNA fractions). We did not use total RNA containing miRNA. https://www.mrcgene.com/wp-content/uploads/2017/04/RNAzolRTMarch2017.pdf

This information is provided in chapter “Material and methods”.

the figures are missing the number of patients that were actually included in the analysis.

Thank you for the comment. The number of patients were added into the figures or figure legends.

CRC is a common disease, while the results are interesting, the number of patients is very low and should be increased.

The sample size of our study (n=64) is comparable with other studies focused on the same topic published by European authors.

Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, et al. 2011. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 28(10):841–851. doi: 10.3109/07420528.2011.615182; cited by 67 papers, 19 patients in cohort

Mazzoccoli G, Colangelo T, Panza A, Rubino R, De Cata A, Tiberio C, Valvano MR, Pazienza V, Merla G, Augello B, et al. 2016. Deregulated expression of cryptochrome genes in human colorectal cancer. Mol Cancer. 15:6. doi: 10.1186/s12943-016-0492-8; cited by 12 papers , 50 patients in cohort

Karantanos T, Theodoropoulos G, Gazouli M, Vaiopoulou A, Karantanou C, Lymberi M, Pektasides D. 2013. Expression of clock genes in patients with colorectal cancer. Int J Biol Markers. 28(3):280-5. doi: 10.5301/jbm.5000033; cited by 29 papers, 42 patients in cohort

Krugluger W, Brandstaetter A, Kállay E, Schueller J, Krexner E, Kriwanek S, Bonner E, Cross HS. 2007. Regulation of genes of the circadian clock in human colon cancer: reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res. 67(16):7917-22; cited by 72 papers, 30 patients in cohort

Momma T, Okayama H, Saitou M, Sugeno H, Yoshimoto N, Takebayashi Y, Ohki S, Takenoshita S. 2017. Expression of circadian clock genes in human colorectal adenoma and carcinoma. Oncol Lett. 14(5):5319-5325. doi: 10.3892/ol.2017.6876; cited by 9 papers, 51 patients in cohort

Huisman SA, Ahmadi AR, IJzermans JN, Verhoef C, van der Horst GT, de Bruin RW. 2016. Disruption of clock gene expression in human colorectal liver metastases. Tumour Biol. 37(10):13973-13981; cited by 6 papers, 15 patienst in cohort

Mostafaie N, Kállay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS, Huber KR, Krugluger W. 2009. Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog. 48(7):642-7. doi: 10.1002/mc.20510. cited by 64 papers, 20 patienst in cohort

Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J. 2006. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 19;5:29. Cited by 684 papers, 12 patients in cohort

Moreover, the authors failed to show any functional interactions between miR34a and the clock gene PER2 which should be included in this study ...the authors claim they showed this in the abstract but only a negative corelation was shown.

Statement that functional interactions between miR-34a and PER2 exists was removed from abstract and replaced by statement: “From in silico analysis, miR-34a-5p was selected as showing a computer-predicted interaction with PER2.”

Reviewer #2:

The paper does not include a proper introduction into the topic. A more detailed information on the mechanism of clock genes contribution to cancer should be given (not just a single reference).

Thank you for the comment. We rewrote the chapter “Introduction” and described mechanism of clock gene (and particularly PER2) contribution to cancer progression in more detail.

- in the methods section it is not fully clear whether samples from "STAGE IV" patients were originating from primary carcinoma tissue or from metastatic tissue. In case of the former it would only be applicable to patients with synchronous metastases and as such it should be clearly described in the text.

Samples from patients with distant metastases were obtained from the primary tumour tissue. This information was added to the chapter “Materials and methods” (line 146).

Attachment

Submitted filename: Response to Reviewers.doc

Decision Letter 1

Ondrej Slaby

14 Oct 2019

Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression

PONE-D-19-15253R1

Dear Dr. Herichova,

We are pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it complies with all outstanding technical requirements.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

Ondrej Slaby

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: (No Response)

Reviewer #2: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: (No Response)

Reviewer #2: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: (No Response)

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: (No Response)

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The authors have addressed all issues. The manuscript has been greatly improved. However, I believe that discussion should be slightly rewritten - the authors start with a short summary of their study but a more appropriate start would be to discuss CRC and the importance of easily obtainable markers for prognosis of patients.

Reviewer #2: (No Response)

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Acceptance letter

Ondrej Slaby

18 Oct 2019

PONE-D-19-15253R1

Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression

Dear Dr. Herichova:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Ondrej Slaby

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Table. Results from in silico analysis with the TargetScan database http://www.targetscan.org/vert_72/.

    (DOCX)

    S1 Fig. Expression of miR-34a in tumour and adjacent tissue in male and female patients.

    Data are provided as a mean ± SEM, * indicates an up-regulation in male tumour tissue compared to adjacent tissue (P < 0.05; n = 38; Mann-Whitney U test) ** indicate an up-regulation in female tumour tissue compared to adjacent tissue (P < 0.01; n = 26; Mann-Whitney U test).

    (TIF)

    S2 Fig. Kaplan-Meier survival curves for female patients according to expression of miR-34a in tumour tissue without/with lymph node metastases and without/with distant metastases.

    The solid line indicates low miR-34a expression (≤ median) and the dotted line indicates high miR-34a expression (> median). P = level of significance (log-rank test).

    (TIF)

    Attachment

    Submitted filename: Response to Reviewers.doc

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES