Abstract
Comparative ecophysiology is highly valuable approach to reveal adaptive traits linked with specific ecological niches. Although long-term in vitro preserved fungal isolates are often used for analyses, only sparse data is available about the effect of such handling on fungal physiology. The purpose of our data is to show the effect of long-term in vitro preservation of fungal strains on their metabolic profiles. This data is related to research paper “Adaptive traits of bark and ambrosia beetle-associated fungi” (Veselská et al., 2019). Biolog MicroPlates™ for Filamentous fungi were used to compare metabolic profiles between freshly isolated and long-term in vitro preserved strains of two Geosmithia species. Additionally, carbon utilization profiles of 35 Geosmithia species were assessed, including plant pathogen G. morbida and three ambrosia species. Data also shows differences in carbon utilization profiles among diverse ecology types presented in the genus Geosmithia.
Keywords: Fungi, Metabolic profile, Biolog microarray, Fungal physiology, In vitro preservation, Comparative ecophysiology
Specifications Table
| Subject area | Microbiology |
| More specific subject area | Fungal physiology |
| Type of data | Table, graph |
| How data was acquired | Biolog MicroPlateTMfor Filamentous fungi, plate reader INFINITE M200 TECAN (Tecan Instrument, Austria) with MAGELLAN software, PAST program |
| Data format | Analyzed data, Raw data in supplementary material |
| Experimental factors | Species ecology and time of preservation, i.e. short vs. long-term. |
| Experimental features | Fungal conidia were inoculated into Biolog MicroPlatesTMfor Filamentous fungi and the absorbance at 750 nm was recorded to assess fungal growth. Comparative ecophysiology and comparison of freshly isolated and long-term in vitro preserved fungal strains were assessed using statistical program PAST. |
| Data source location | Collection location, plant and beetle hosts are in Table 1 |
| Data accessibility | Data is with this article. |
| Related research article | Veselská, T., Skelton, J., Kostovčík, M., Hulcr, J., Baldrian, P., Chudíčková, M., Cajthaml, T., Vojtová, T., Garcia-Fraile, P. and Kolařík, M., 2019. Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecology. 41, 165–176.https://doi.org/10.1016/j.funeco.2019.06.005. |
Value of the Data
|
1. Data
Biolog MicroPlate™ for Filamentous fungi was used to assess carbon sources utilization profiles of Geosmithia fungi living in symbiosis with bark beetles [1]. Their ecology spans from facultative to obligatory ambrosia symbiosis and from saprotrophic to pathogenic nourishment of severe phytopathogen G. morbida (Table 1). The aims were to test whether metabolic profiles of Geosmithia species are modified by their ecology and whether long-term preservation of strains has effect on their metabolic profiles. The distinct metabolic profiles belonging to particular ecology types are pictured in Fig. 1 and Table S1. The similarity in metabolic profiles of freshly isolated and long-term preserved strains of Geosmithia sp. 5 and G. langdonii is shown in Fig. 1 and Table S1. Raw data containing growth value of individual strains on each carbon source is presented in Table S1. Raw data is helpful for further identification of adaptive traits of important ambrosia and pathogenic species.
Table 1.
List of Geosmithia species.
| Species | Ecology type | Strain code | Culture collection | Strain code in Fig. 1 | Substrate (mostly as insect vector/plant hosts) | Locality | Year of isolation | Reference |
|---|---|---|---|---|---|---|---|---|
| G. sp. 1 | PF, G | 1_1790 | CCF4529 | 1 | Hypoborus ficus/Ficus carica | Azerbaijan, Shaki Rayonu | 2006 | [6] |
| G. sp. 2 | PF, G | 2_1510 | CCF4270 | 2 | Scolytus kirschii/Ulmus minor | Italy, Termoli | 2004 | [6] |
| G. sp. 4 | PF, G | 4_1722 | CCF4278 | 4 | Pteleobius vittatus F./Ulmus laevis | Czech R., Břeclav | 2004 | [7] |
| G. putterillii | PF, G | 6_103 | CCF3342 | 6 | Scolytus rugulosus/Prunus sp. | Czech R., Velemín | 2000 | [8] |
| G. flava | PF, G | 7_264 | CCF3354 | 7 | Hylesinus fraxini/Fraxinus excelsior | Slovakia, Muráň castle | 2002 | [8] |
| G. sp. 8 | PF, HWS | 8_124 | CCF3350 | 8a | Scolytus intricatus/Quercus sp. | Czech R., Prague | 2001 | [7] |
| 8_1712a | CCF4277 | 8b | Scolytus intricatus/Quercus cerris | Bulgaria, Kardzaly | 2005 | [7] | ||
| 37_1806 | CCF4207 | 8c | Scolytid beatle/Acacia smithii | Australia, Eungella, Credition Hall | 2006 | [6] | ||
| G. sp. 11 | PF, G | 11_551 | CCF3555 | 11 | Scolytus intricatus/Quercus pubescens | Hungary, Vilányi hegy Mts. | 2003 | [7] |
| G. sp. 12 | PF, HWS | 12_284 | CCF4300 | 12a | Ernoporicus fagi/Fagus silvatica | Slovakia, Pieniny National Park | 2002 | [7] |
| 12_1632 | CCF4274 | 12b | Hylesinus varius/Fraxinus excelsior | Czech R., Pacov | 2005 | [7] | ||
| G. ulmacea | PF, HWS | 13_924 | CCF4601 | 13 | Scolytus multistriatus/Ulmus minor | Czech R., Hodonín, Bulhary | 2004 | [7] |
| G. obscura | PF, G | 17_391 | CCF3424 | 17 | Taphrorychus bicolor/Fagus sylvatica | Czech R., Louny, Hřivice | 2003 | [7] |
| G. lavendula | PF, G | 18_1219 | CCF4268 | 18a | Hypoborus ficus/Ficus carica | Croatia, Dalmatia, Sibenik | 2005 | [6] |
| 18_1781 | CCF4285 | 18b | Hypoborus ficus/Ficus carica | Azerbaijan, Baki Sahari, Baku | 2006 | [6] | ||
| G. sp. 19 | PF, G | 19_1085a | CCF3658 | 19 | Hypoborus ficus/Ficus carica | Italy, Molise, Termoli | 2004 | [6] |
| G. sp. 20 | PF, G | 20_764 | CCF4527 | 20 | Phloetribus scarabeoides/Olea europea | Syria, Krak des Chevaliers | 2004 | [6] |
| G. sp. 21 | PF, G | 21_1665 | CCF4530 | 21 | Hypoborus ficus/Ficus carica | Spain, Rosal de la Frontera | 2005 | [6] |
| G. sp. 22 | PF, G | 22_739 | CCF3645 | 22 | Phloetribus scarabeoides/Olea europea | Jordan, Wadi al Mujib | 2004 | [6] |
| G. morbida | HWS, P | 41_1218 | CCF3879 (CBS 124664) | 41a | Pityophthorus juglandis/J. nigra | USA, Colorado, Boulder | 2007 | [9] |
| 41_U173 | CCF4576 | 41b | Pityophthorus juglandis/J. nigra | USA, California, Rio Oso | 2009 | [9] | ||
| 41_U1259.55 | – | 41c | Pityophthorus juglandis/Juglans sp. | USA, Oregon | 2008 | [9] | ||
| 41_U1259.59 | – | 41d | Pityophthorus juglandis/Juglans sp. | USA, Oregon | 2008 | [9] | ||
| G. sp. 9 | PF, SP | 9_1210 | CCF3703 | 9 | Cryphalus piceae/Abies alba | Poland, Myślenice | 2005 | [10] |
| G. sp. 16 | PF, SP | 16_08 m | CCF4201 | 16 | Pityophthorus pityographus/Picea abies | Poland, Czajowice | 2007 | [11] |
| G. sp. 24 | PF, SP | 24_RJ06ka | CCF4525 | 24 | Pityogenes bidentatus/Pinus sylvestris | Poland, Zaborze | 2007 | [11] |
| G. sp. 26 | PF, SP | 26_1796 | CCF4223 | 26 | Pityophthorus pityographus/Pinus silvestris | Czech R., Seník | 2006 | [11] |
| G. sp. 27 | PF, SP | 27_0919 | CCF4206 | 27 | Pityogenes bidentatus/Pinus silvestris | Poland, Żurada | 2006 | [11] |
| G. sp. 28 | PF, SP | 28_279 | CCF4210 | 28 | Polygraphus poligraphus/Picea abies | Poland, Chyszówki | 2007 | [11] |
| G. sp. 30 | PF, SP | 30_09 m | CCF4209 | 30 | Pityophthorus pityographus/Picea abies | Poland, Czajowice | 2007 | [11] |
| G. sp. 31 | PF, SP | 31_21k | CCF4526 | 31 | Pityophthorus pityographus/Pinus sylivestris | Poland, Czajowice | 2007 | [11] |
| G. sp. 29 | PF, SP | 33_1827b | CCF4221 | 33 | Pityophthorus pityographus + Cryphalus piceae/Abies alba | Czech R., Boubín hill | 2008 | [11] |
| G. sp. 30 | PF, SP | 34_1833 | CCF4208 | 34 | Cryphalus abietis/Abies alba | Czech R., Jílové u Prahy | 2008 | [11] |
| G. sp. 25 | PF, SP | 35_1835 | CCF4205 | 25 | C. piceae + P. pityographus/Abies alba | Czech R., Plešné jezero lake | 2008 | [11] |
| G. sp. 5 | PF, G | 5_U1.2c.25 | CNR28 | 5a | Scolytus multistriatus/Ulmus minor | Czech R., Středokluky | 2009 | [2] |
| 5_U6.3e.35 | CNR48 | 5b | Scolytus multistriatus/Ulmus minor | Czech R., Velký Osek | 2009 | [2] | ||
| 5_U7.8b | CNR30 | 5c | Scolytus multistriatus/Ulmus laevis | Czech R., Velký Osek | 2009 | [2] | ||
| 5_U8.1a | CNR49 | 5d | Scolytus multistriatus/Ulmus minor | Czech R., Maršovice | 2009 | [2] | ||
| 5_U8.1b | – | 5e | Scolytus multistriatus/Ulmus minor | Czech R., Maršovice | 2009 | [2] | ||
| 5_U8.12b | – | 5f | Scolytus multistriatus/Ulmus minor | Czech R., Maršovice | 2009 | [2] | ||
| 5_580 | – | 5g | Hypoborus ficus/Ficus carica | France, Biaritz, Ondres | 2003 | [6] | ||
| 5_1550 | CCF4271 | 5h | Scolytus intricatus/Quercus petraea | Czech R., Mlynářův luh, 1997 | 1997 | [7] | ||
| 5_137 m | CCF4215 | 5i | Pityophthorus pityographus galleries/Picea abies | Poland, Szydłowiec | 2007 | [11] | ||
| G. omnicola | PF, G | 10_989 | CCF3560 | 10a | Scolytus pygmaeus/Ulmus minor | Czech R., Břeclav | 2004 | [7] |
| 10_1788 | CCF4286 | 10b | Hypoborus ficus/Ficus carica | Azerbaijan, Suvalan | 2006 | [6] | ||
| 10_U2.6a | CNR5 | 10c | Scolytus multistriatus/Ulmus minor | Czech R., Středokluky | 2009 | [2] | ||
| 10_U7.5a | CNR8 | 10d | Scolytus multistriatus/Ulmus laevis | Czech R., Velký Osek | 2009 | [2] | ||
| 10_942 | – | 10e | Hypoborus ficus/Ficus carica | Croatia, Brač Island | 2004 | [6] | ||
| G. langdonii | PF, G | 15_U5.3a | CNR11 | 15a | Scolytus multistriatus/Ulmus minor | Czech R., Velký Osek | 2009 | [2] |
| 15_U7.9a | CNR6 | 15b | Scolytus multistriatus/Ulmus laevis | Czech R., Velký Osek | 2009 | [2] | ||
| 15_U8.6c | CNR117 | 15c | Scolytus multistriatus/Ulmus minor | Czech R., Maršovice | 2009 | [2] | ||
| 15_U8.12a | – | 15d | Scolytus multistriatus/Ulmus minor | Czech R., Maršovice | 2009 | [2] | ||
| 15_1645 | – | 15e | Scolytus multistriatus/Ulmus laevis | Czech R., Neratovice | 2005 | [12] | ||
| 15_1683 | CCF4276 | 15f | Ernoporus tiliae/Tilia sp. | Czech R., Nové Hrady | 2005 | [7] | ||
| 15_1603c | CCF3562 | 15g | Phloeosinus thujae/Thuja occidentalis | Czech R., Poříčí nad Sázavou | 2005 | [7] | ||
| 15_1619 | CCF4272 | 15h | bostrichid beetle/Pistacia lentiscus | Portugal, Sesimbra | 2005 | [6] | ||
| G. cnesini | AF | 29_1820 | CCF4292 | 29 | Cnesinus lecontei/Croton draco | Costa Rica, Heredia | 2007 | [13] |
| G. microcorthyli | AF | 38_A2 | CCF3861 | 38 | Microcorthylus sp./Cassia grandis | Costa Rica, Heredia | 2006 | [14] |
| G. eupagioceri | AF | 39_A1 | CCF3754 | 39 | Eupagiocerus dentipes/Paullinia renesii | Costa Rica, Heredia | 2006 | [14] |
| G. rufescencs | AAF | 42_1821 | CCF4524 | 42 | Cnesinus lecontei/Croton draco | Costa Rica, Heredia | 2007 | [14] |
Ecology: PF – association with phloem feeding beetles, G – generalist, SF – specialists to Fagus, SP – specialist to Pinaceae, HWS – hardwood specialists, P – pathogen, AF –ambrosia fungi, AAF – auxiliary ambrosia fungi.
Fig. 1.
Principal component analysis (PCA) plot of the metabolic profiles of 60 Geosmithia strains and comparison of “new” and “old” strains of G. sp. 5 and G. langdonii. Different ecology types as follow: diamond – long-term co-evolved specialists, dot, triangle, star – facultative symbionts, cross – obligatory symbiont, inverted triangle – auxiliary ambrosial fungi, polygon, square – hardwood specialists, square – pathogen, triangle – new (5a-f) and old (5g-i) strains of G. sp. 5, star – new (15a-d) and old (15e-h) strains of G. langdonii. Based on one-way NPMANOVA, facultative generalists were significantly (p < 0.005) different from long-term co-evolved specialists and phytopathogen.
2. Experimental design, materials and methods
2.1. Fungal strains
The metabolic profiles of 60 strains belonging to 35 Geosmithia species (Table 1) were analyzed. These strains are deposited in the Culture Collection of Fungi (CCF) or at Institute of Microbiology of the Czech Academy of Sciences for several years. Then, two species, G. sp. 5 and G. langdonii, were chosen and the effect of long-term in vitro preservation (0–10 years) on fungal carbon assimilation profiles was observed. Fresh strains of these species were isolated from active beetle galleries in 2009 and identified as it is described in Pepori et al. [2]. These strains were analyzed within a 2 months on Biolog MicroPlates™ for Filamentous fungi. Altogether, three “old” and six “new” strains of G. sp. 5 and four “old” and four “new” strains of G. langdonii were compared. The species classification follows Kolařík et al. [3].
2.2. Biolog MicroPlate™ for Filamentous fungi
Biolog MicroPlate™ for Filamentous fungi contains 95 different dried carbon sources and one negative control. Fungal conidia from grown cultures were transferred into the inoculating fluid (0.25% Phytagel, 0.03% Tween 40) by rolling a swab across sporulating areas to get the final transmittance of 75 ± 2%. The inoculated plates (200 μl per well) were then incubated in the dark at 25 °C and absorbance at 750 nm was used to measure mycelial growth at 24, 48, 72, 96 and 168 h. An absorbance reading taken 96 h after the inoculation was included in the analysis, because sporulation occurred in some strains after that time. Two technical replicates per strain were prepared.
2.3. Statistical analysis
The absorbance of the negative control was subtracted from all substrates within one plate and negative values were assigned a value of zero [4]. Biolog™ data were visualized on PCA (Principal Component Analysis) in PAST program [5]. The statistical significance of the type of ecology was evaluated by one-way NPMANOVA with Bonferroni-corrected p values using Bray-Curtis distance and 9999 permutations.
Acknowledgments
The project was founded by Czech Science Foundation project GACR 16-15293Y.
Footnotes
Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104568.
Contributor Information
Tereza Veselská, Email: tereza.veselska@biomed.cas.cz.
Miroslav Kolařík, Email: mkolarik@biomed.cas.cz.
Conflict of Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supplementary data
The following is the Supplementary data to this article:
References
- 1.Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., Cajthaml T., Vojtová T., Garcia-Fraile P., Kolařík M. Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol. 2019;41:165–176. doi: 10.1016/j.funeco.2019.06.005. [DOI] [Google Scholar]
- 2.Pepori A.L., Kolařík M., Bettini P.P., Vettraino A.M., Santini A. Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biol. 2015;119:1063–1074. doi: 10.1016/j.funbio.2015.08.003. [DOI] [PubMed] [Google Scholar]
- 3.Kolařík M., Hulcr J., Tisserat N., De Beer W., Kostovčík M., Kolaříková Z., Seybold S.J., Rizzo D.M. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia. 2017;109:185–199. doi: 10.1080/00275514.2017.1303861. [DOI] [PubMed] [Google Scholar]
- 4.Garland J.L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 1996;28:213–221. doi: 10.1016/0038-0717(95)00112-3. [DOI] [Google Scholar]
- 5.Hammer O., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9. [Google Scholar]
- 6.Kolařík M., Kostovcik M., Pazoutova S. Host range and diversity of the genus Geosmithia (Ascomycota : Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol. Res. 2007;111:1298–1310. doi: 10.1016/j.mycres.2007.06.010. [DOI] [PubMed] [Google Scholar]
- 7.Kolařík M., Kubatova A., Hulcr J., Pazoutova S. Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb. Ecol. 2008;56:198–199. doi: 10.1007/s00248-008-9371-1. [DOI] [PubMed] [Google Scholar]
- 8.Kolařík M., Kubatova A., Pazoutova S., Srutka P. Morphological and molecular characterisation of Geosmithia putterillii, G-pallida comb. nov and G-flava sp nov., associated with subcorticolous insects. Mycol. Res. 2004;108:1053–1069. doi: 10.1017/S0953756204000796. [DOI] [PubMed] [Google Scholar]
- 9.Kolařík M., Freeland E., Utley C., Tisserat N. Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia. 2011;103:325–332. doi: 10.3852/10-124. [DOI] [PubMed] [Google Scholar]
- 10.Jankowiak R., Kolařík M. Fungi associated with the fir bark beetle Cryphalus piceae in Poland. For. Pathol. 2010;40:133–144. doi: 10.1111/j.1439-0329.2009.00620.x. [DOI] [Google Scholar]
- 11.Kolařík M., Jankowiak R. Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microb. Ecol. 2013;66:682–700. doi: 10.1007/s00248-013-0228-x. [DOI] [PubMed] [Google Scholar]
- 12.Kolařík M., Kubatova A., Cepicka I., Pazoutova S., Srutka P. A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycol. Res. 2005;109:1323–1336. doi: 10.1017/S0953756205003965. [DOI] [PubMed] [Google Scholar]
- 13.Kolařík M., Hulcr J., Kirkendall L.R. New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica. Czech Mycol. 2015;67 doi: 10.33585/cmy.67103. [DOI] [Google Scholar]
- 14.Kolařík M., Kirkendall L.R. Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales) Fungal Biol. 2010;114:676–689. doi: 10.1016/j.funbio.2010.06.005. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.

