Skip to main content
Data in Brief logoLink to Data in Brief
. 2019 Sep 26;27:104568. doi: 10.1016/j.dib.2019.104568

Fungal metabolic profile dataset was not influenced by long-term in vitro preservation of strains

Tereza Veselská a,b, Miroslav Kolařík a,b,
PMCID: PMC6820071  PMID: 31687429

Abstract

Comparative ecophysiology is highly valuable approach to reveal adaptive traits linked with specific ecological niches. Although long-term in vitro preserved fungal isolates are often used for analyses, only sparse data is available about the effect of such handling on fungal physiology. The purpose of our data is to show the effect of long-term in vitro preservation of fungal strains on their metabolic profiles. This data is related to research paper “Adaptive traits of bark and ambrosia beetle-associated fungi” (Veselská et al., 2019). Biolog MicroPlates™ for Filamentous fungi were used to compare metabolic profiles between freshly isolated and long-term in vitro preserved strains of two Geosmithia species. Additionally, carbon utilization profiles of 35 Geosmithia species were assessed, including plant pathogen G. morbida and three ambrosia species. Data also shows differences in carbon utilization profiles among diverse ecology types presented in the genus Geosmithia.

Keywords: Fungi, Metabolic profile, Biolog microarray, Fungal physiology, In vitro preservation, Comparative ecophysiology


Specifications Table

Subject area Microbiology
More specific subject area Fungal physiology
Type of data Table, graph
How data was acquired Biolog MicroPlateTMfor Filamentous fungi, plate reader INFINITE M200 TECAN (Tecan Instrument, Austria) with MAGELLAN software, PAST program
Data format Analyzed data, Raw data in supplementary material
Experimental factors Species ecology and time of preservation, i.e. short vs. long-term.
Experimental features Fungal conidia were inoculated into Biolog MicroPlatesTMfor Filamentous fungi and the absorbance at 750 nm was recorded to assess fungal growth. Comparative ecophysiology and comparison of freshly isolated and long-term in vitro preserved fungal strains were assessed using statistical program PAST.
Data source location Collection location, plant and beetle hosts are in Table 1
Data accessibility Data is with this article.
Related research article Veselská, T., Skelton, J., Kostovčík, M., Hulcr, J., Baldrian, P., Chudíčková, M., Cajthaml, T., Vojtová, T., Garcia-Fraile, P. and Kolařík, M., 2019. Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecology. 41, 165–176.https://doi.org/10.1016/j.funeco.2019.06.005.
Value of the Data
  • Comparative ecophysiology is valuable tool for tracing of species adaptive traits and identification of potential virulence factors in plant, animal and human pathogenic fungi. Usually, long-term in vitro preserved isolates are used for physiological analysis, but little is known about the effect of such handling on fungal physiology. Presented data investigate the reliability of using the long-term preserved fungal cultures for physiological analysis.

  • Data disproves negative effect of long-term preservation on fungal metabolic profile, which enables researchers to use such strains for physiological studies.

  • Data shows metabolic profiles of carbon utilization for most of Geosmithia species which includes also ambrosia fungi and severe phytopathogen G. morbida.

  • Raw data provides growth values on each carbon source. This is helpful for further identification of adaptive traits of these important species.

1. Data

Biolog MicroPlate™ for Filamentous fungi was used to assess carbon sources utilization profiles of Geosmithia fungi living in symbiosis with bark beetles [1]. Their ecology spans from facultative to obligatory ambrosia symbiosis and from saprotrophic to pathogenic nourishment of severe phytopathogen G. morbida (Table 1). The aims were to test whether metabolic profiles of Geosmithia species are modified by their ecology and whether long-term preservation of strains has effect on their metabolic profiles. The distinct metabolic profiles belonging to particular ecology types are pictured in Fig. 1 and Table S1. The similarity in metabolic profiles of freshly isolated and long-term preserved strains of Geosmithia sp. 5 and G. langdonii is shown in Fig. 1 and Table S1. Raw data containing growth value of individual strains on each carbon source is presented in Table S1. Raw data is helpful for further identification of adaptive traits of important ambrosia and pathogenic species.

Table 1.

List of Geosmithia species.

Species Ecology type Strain code Culture collection Strain code in Fig. 1 Substrate (mostly as insect vector/plant hosts) Locality Year of isolation Reference
G. sp. 1 PF, G 1_1790 CCF4529 1 Hypoborus ficus/Ficus carica Azerbaijan, Shaki Rayonu 2006 [6]
G. sp. 2 PF, G 2_1510 CCF4270 2 Scolytus kirschii/Ulmus minor Italy, Termoli 2004 [6]
G. sp. 4 PF, G 4_1722 CCF4278 4 Pteleobius vittatus F./Ulmus laevis Czech R., Břeclav 2004 [7]
G. putterillii PF, G 6_103 CCF3342 6 Scolytus rugulosus/Prunus sp. Czech R., Velemín 2000 [8]
G. flava PF, G 7_264 CCF3354 7 Hylesinus fraxini/Fraxinus excelsior Slovakia, Muráň castle 2002 [8]
G. sp. 8 PF, HWS 8_124 CCF3350 8a Scolytus intricatus/Quercus sp. Czech R., Prague 2001 [7]
8_1712a CCF4277 8b Scolytus intricatus/Quercus cerris Bulgaria, Kardzaly 2005 [7]
37_1806 CCF4207 8c Scolytid beatle/Acacia smithii Australia, Eungella, Credition Hall 2006 [6]
G. sp. 11 PF, G 11_551 CCF3555 11 Scolytus intricatus/Quercus pubescens Hungary, Vilányi hegy Mts. 2003 [7]
G. sp. 12 PF, HWS 12_284 CCF4300 12a Ernoporicus fagi/Fagus silvatica Slovakia, Pieniny National Park 2002 [7]
12_1632 CCF4274 12b Hylesinus varius/Fraxinus excelsior Czech R., Pacov 2005 [7]
G. ulmacea PF, HWS 13_924 CCF4601 13 Scolytus multistriatus/Ulmus minor Czech R., Hodonín, Bulhary 2004 [7]
G. obscura PF, G 17_391 CCF3424 17 Taphrorychus bicolor/Fagus sylvatica Czech R., Louny, Hřivice 2003 [7]
G. lavendula PF, G 18_1219 CCF4268 18a Hypoborus ficus/Ficus carica Croatia, Dalmatia, Sibenik 2005 [6]
18_1781 CCF4285 18b Hypoborus ficus/Ficus carica Azerbaijan, Baki Sahari, Baku 2006 [6]
G. sp. 19 PF, G 19_1085a CCF3658 19 Hypoborus ficus/Ficus carica Italy, Molise, Termoli 2004 [6]
G. sp. 20 PF, G 20_764 CCF4527 20 Phloetribus scarabeoides/Olea europea Syria, Krak des Chevaliers 2004 [6]
G. sp. 21 PF, G 21_1665 CCF4530 21 Hypoborus ficus/Ficus carica Spain, Rosal de la Frontera 2005 [6]
G. sp. 22 PF, G 22_739 CCF3645 22 Phloetribus scarabeoides/Olea europea Jordan, Wadi al Mujib 2004 [6]
G. morbida HWS, P 41_1218 CCF3879 (CBS 124664) 41a Pityophthorus juglandis/J. nigra USA, Colorado, Boulder 2007 [9]
41_U173 CCF4576 41b Pityophthorus juglandis/J. nigra USA, California, Rio Oso 2009 [9]
41_U1259.55 41c Pityophthorus juglandis/Juglans sp. USA, Oregon 2008 [9]
41_U1259.59 41d Pityophthorus juglandis/Juglans sp. USA, Oregon 2008 [9]
G. sp. 9 PF, SP 9_1210 CCF3703 9 Cryphalus piceae/Abies alba Poland, Myślenice 2005 [10]
G. sp. 16 PF, SP 16_08 m CCF4201 16 Pityophthorus pityographus/Picea abies Poland, Czajowice 2007 [11]
G. sp. 24 PF, SP 24_RJ06ka CCF4525 24 Pityogenes bidentatus/Pinus sylvestris Poland, Zaborze 2007 [11]
G. sp. 26 PF, SP 26_1796 CCF4223 26 Pityophthorus pityographus/Pinus silvestris Czech R., Seník 2006 [11]
G. sp. 27 PF, SP 27_0919 CCF4206 27 Pityogenes bidentatus/Pinus silvestris Poland, Żurada 2006 [11]
G. sp. 28 PF, SP 28_279 CCF4210 28 Polygraphus poligraphus/Picea abies Poland, Chyszówki 2007 [11]
G. sp. 30 PF, SP 30_09 m CCF4209 30 Pityophthorus pityographus/Picea abies Poland, Czajowice 2007 [11]
G. sp. 31 PF, SP 31_21k CCF4526 31 Pityophthorus pityographus/Pinus sylivestris Poland, Czajowice 2007 [11]
G. sp. 29 PF, SP 33_1827b CCF4221 33 Pityophthorus pityographus + Cryphalus piceae/Abies alba Czech R., Boubín hill 2008 [11]
G. sp. 30 PF, SP 34_1833 CCF4208 34 Cryphalus abietis/Abies alba Czech R., Jílové u Prahy 2008 [11]
G. sp. 25 PF, SP 35_1835 CCF4205 25 C. piceae + P. pityographus/Abies alba Czech R., Plešné jezero lake 2008 [11]
G. sp. 5 PF, G 5_U1.2c.25 CNR28 5a Scolytus multistriatus/Ulmus minor Czech R., Středokluky 2009 [2]
5_U6.3e.35 CNR48 5b Scolytus multistriatus/Ulmus minor Czech R., Velký Osek 2009 [2]
5_U7.8b CNR30 5c Scolytus multistriatus/Ulmus laevis Czech R., Velký Osek 2009 [2]
5_U8.1a CNR49 5d Scolytus multistriatus/Ulmus minor Czech R., Maršovice 2009 [2]
5_U8.1b 5e Scolytus multistriatus/Ulmus minor Czech R., Maršovice 2009 [2]
5_U8.12b 5f Scolytus multistriatus/Ulmus minor Czech R., Maršovice 2009 [2]
5_580 5g Hypoborus ficus/Ficus carica France, Biaritz, Ondres 2003 [6]
5_1550 CCF4271 5h Scolytus intricatus/Quercus petraea Czech R., Mlynářův luh, 1997 1997 [7]
5_137 m CCF4215 5i Pityophthorus pityographus galleries/Picea abies Poland, Szydłowiec 2007 [11]
G. omnicola PF, G 10_989 CCF3560 10a Scolytus pygmaeus/Ulmus minor Czech R., Břeclav 2004 [7]
10_1788 CCF4286 10b Hypoborus ficus/Ficus carica Azerbaijan, Suvalan 2006 [6]
10_U2.6a CNR5 10c Scolytus multistriatus/Ulmus minor Czech R., Středokluky 2009 [2]
10_U7.5a CNR8 10d Scolytus multistriatus/Ulmus laevis Czech R., Velký Osek 2009 [2]
10_942 10e Hypoborus ficus/Ficus carica Croatia, Brač Island 2004 [6]
G. langdonii PF, G 15_U5.3a CNR11 15a Scolytus multistriatus/Ulmus minor Czech R., Velký Osek 2009 [2]
15_U7.9a CNR6 15b Scolytus multistriatus/Ulmus laevis Czech R., Velký Osek 2009 [2]
15_U8.6c CNR117 15c Scolytus multistriatus/Ulmus minor Czech R., Maršovice 2009 [2]
15_U8.12a 15d Scolytus multistriatus/Ulmus minor Czech R., Maršovice 2009 [2]
15_1645 15e Scolytus multistriatus/Ulmus laevis Czech R., Neratovice 2005 [12]
15_1683 CCF4276 15f Ernoporus tiliae/Tilia sp. Czech R., Nové Hrady 2005 [7]
15_1603c CCF3562 15g Phloeosinus thujae/Thuja occidentalis Czech R., Poříčí nad Sázavou 2005 [7]
15_1619 CCF4272 15h bostrichid beetle/Pistacia lentiscus Portugal, Sesimbra 2005 [6]
G. cnesini AF 29_1820 CCF4292 29 Cnesinus lecontei/Croton draco Costa Rica, Heredia 2007 [13]
G. microcorthyli AF 38_A2 CCF3861 38 Microcorthylus sp./Cassia grandis Costa Rica, Heredia 2006 [14]
G. eupagioceri AF 39_A1 CCF3754 39 Eupagiocerus dentipes/Paullinia renesii Costa Rica, Heredia 2006 [14]
G. rufescencs AAF 42_1821 CCF4524 42 Cnesinus lecontei/Croton draco Costa Rica, Heredia 2007 [14]

Ecology: PF – association with phloem feeding beetles, G – generalist, SF – specialists to Fagus, SP – specialist to Pinaceae, HWS – hardwood specialists, P – pathogen, AF –ambrosia fungi, AAF – auxiliary ambrosia fungi.

Fig. 1.

Fig. 1

Principal component analysis (PCA) plot of the metabolic profiles of 60 Geosmithia strains and comparison of “new” and “old” strains of G. sp. 5 and G. langdonii. Different ecology types as follow: diamond – long-term co-evolved specialists, dot, triangle, star – facultative symbionts, cross – obligatory symbiont, inverted triangle – auxiliary ambrosial fungi, polygon, square – hardwood specialists, square – pathogen, triangle – new (5a-f) and old (5g-i) strains of G. sp. 5, star – new (15a-d) and old (15e-h) strains of G. langdonii. Based on one-way NPMANOVA, facultative generalists were significantly (p < 0.005) different from long-term co-evolved specialists and phytopathogen.

2. Experimental design, materials and methods

2.1. Fungal strains

The metabolic profiles of 60 strains belonging to 35 Geosmithia species (Table 1) were analyzed. These strains are deposited in the Culture Collection of Fungi (CCF) or at Institute of Microbiology of the Czech Academy of Sciences for several years. Then, two species, G. sp. 5 and G. langdonii, were chosen and the effect of long-term in vitro preservation (0–10 years) on fungal carbon assimilation profiles was observed. Fresh strains of these species were isolated from active beetle galleries in 2009 and identified as it is described in Pepori et al. [2]. These strains were analyzed within a 2 months on Biolog MicroPlates™ for Filamentous fungi. Altogether, three “old” and six “new” strains of G. sp. 5 and four “old” and four “new” strains of G. langdonii were compared. The species classification follows Kolařík et al. [3].

2.2. Biolog MicroPlate™ for Filamentous fungi

Biolog MicroPlate™ for Filamentous fungi contains 95 different dried carbon sources and one negative control. Fungal conidia from grown cultures were transferred into the inoculating fluid (0.25% Phytagel, 0.03% Tween 40) by rolling a swab across sporulating areas to get the final transmittance of 75 ± 2%. The inoculated plates (200 μl per well) were then incubated in the dark at 25 °C and absorbance at 750 nm was used to measure mycelial growth at 24, 48, 72, 96 and 168 h. An absorbance reading taken 96 h after the inoculation was included in the analysis, because sporulation occurred in some strains after that time. Two technical replicates per strain were prepared.

2.3. Statistical analysis

The absorbance of the negative control was subtracted from all substrates within one plate and negative values were assigned a value of zero [4]. Biolog™ data were visualized on PCA (Principal Component Analysis) in PAST program [5]. The statistical significance of the type of ecology was evaluated by one-way NPMANOVA with Bonferroni-corrected p values using Bray-Curtis distance and 9999 permutations.

Acknowledgments

The project was founded by Czech Science Foundation project GACR 16-15293Y.

Footnotes

Appendix A

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104568.

Contributor Information

Tereza Veselská, Email: tereza.veselska@biomed.cas.cz.

Miroslav Kolařík, Email: mkolarik@biomed.cas.cz.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

The following is the Supplementary data to this article:

Multimedia component 1
mmc1.xlsx (58.1KB, xlsx)

References

  • 1.Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., Cajthaml T., Vojtová T., Garcia-Fraile P., Kolařík M. Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol. 2019;41:165–176. doi: 10.1016/j.funeco.2019.06.005. [DOI] [Google Scholar]
  • 2.Pepori A.L., Kolařík M., Bettini P.P., Vettraino A.M., Santini A. Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biol. 2015;119:1063–1074. doi: 10.1016/j.funbio.2015.08.003. [DOI] [PubMed] [Google Scholar]
  • 3.Kolařík M., Hulcr J., Tisserat N., De Beer W., Kostovčík M., Kolaříková Z., Seybold S.J., Rizzo D.M. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia. 2017;109:185–199. doi: 10.1080/00275514.2017.1303861. [DOI] [PubMed] [Google Scholar]
  • 4.Garland J.L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 1996;28:213–221. doi: 10.1016/0038-0717(95)00112-3. [DOI] [Google Scholar]
  • 5.Hammer O., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9. [Google Scholar]
  • 6.Kolařík M., Kostovcik M., Pazoutova S. Host range and diversity of the genus Geosmithia (Ascomycota : Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol. Res. 2007;111:1298–1310. doi: 10.1016/j.mycres.2007.06.010. [DOI] [PubMed] [Google Scholar]
  • 7.Kolařík M., Kubatova A., Hulcr J., Pazoutova S. Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb. Ecol. 2008;56:198–199. doi: 10.1007/s00248-008-9371-1. [DOI] [PubMed] [Google Scholar]
  • 8.Kolařík M., Kubatova A., Pazoutova S., Srutka P. Morphological and molecular characterisation of Geosmithia putterillii, G-pallida comb. nov and G-flava sp nov., associated with subcorticolous insects. Mycol. Res. 2004;108:1053–1069. doi: 10.1017/S0953756204000796. [DOI] [PubMed] [Google Scholar]
  • 9.Kolařík M., Freeland E., Utley C., Tisserat N. Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia. 2011;103:325–332. doi: 10.3852/10-124. [DOI] [PubMed] [Google Scholar]
  • 10.Jankowiak R., Kolařík M. Fungi associated with the fir bark beetle Cryphalus piceae in Poland. For. Pathol. 2010;40:133–144. doi: 10.1111/j.1439-0329.2009.00620.x. [DOI] [Google Scholar]
  • 11.Kolařík M., Jankowiak R. Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microb. Ecol. 2013;66:682–700. doi: 10.1007/s00248-013-0228-x. [DOI] [PubMed] [Google Scholar]
  • 12.Kolařík M., Kubatova A., Cepicka I., Pazoutova S., Srutka P. A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycol. Res. 2005;109:1323–1336. doi: 10.1017/S0953756205003965. [DOI] [PubMed] [Google Scholar]
  • 13.Kolařík M., Hulcr J., Kirkendall L.R. New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica. Czech Mycol. 2015;67 doi: 10.33585/cmy.67103. [DOI] [Google Scholar]
  • 14.Kolařík M., Kirkendall L.R. Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales) Fungal Biol. 2010;114:676–689. doi: 10.1016/j.funbio.2010.06.005. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.xlsx (58.1KB, xlsx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES