Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2019 Oct 31;9:15756. doi: 10.1038/s41598-019-52374-4

Gene expression profile analysis of ileum transcriptomes in pigs fed Gelsemium elegans plants

Chong-Yin Huang 1,2, Kun Yang 1,2, Jun-Jie Cao 1,2, Yu-Juan Li 1,2, Zi-Yuan Wang 1,2, Hui Yu 1,2, Zhi-Liang Sun 1,2, Xiaofeng Zheng 1,2, Zhao-Ying Liu 1,2,
PMCID: PMC6823445  PMID: 31673142

Abstract

Gelsemium elegans is a flowering plant in the Loganiaceae. Because it can promote the growth of pigs and sheep, it is widely used, including in veterinary clinics, but little information is available about its biological effects. Here, we used high-throughput sequencing to characterize the differentially expressed genes (DEGs) in the ileums of pigs between a control group and a group fed Gelsemium elegans for 45 days. We found that Gelsemium elegans affected many inflammatory and immune pathways, including biological processes such as defense responses, inflammation and immune responses. Moreover, this study identified several important genes related to the anti-inflammatory activity of Gelsemium elegans (e.g., CXCL-8, IL1A, and CSF2), which will be beneficial for further study of the pharmacological mechanisms and clinical applications of Gelsemium elegans.

Subject terms: Sequencing, Transcriptomics

Introduction

Gelsemium is an herb in the family Loganiaceae. Gelsemium mainly includes three species with different regional distributions: Gelsemium sempervirens (L.), Gelsemium rankinii Small, and Gelsemium elegans Benth. Gelsemium elegans is mainly distributed in southeast Asia and has been used as a traditional Chinese medicine for treating neuropathic pain, rheumatoid pain, spasms, skin ulcers and cancer for many years1,2. In China, the plant is mainly distributed near the middle and lower reaches of the Yangtze River, especially in the warm coastal areas of the Fujian and Guangxi provinces. However, Gelsemium elegans, a poisonous plant, exerts obvious toxicity toward the human body. Poisoning has often been reported after people have eaten Gelsemium elegans by mistake3. After poisoning, patients suffer from symptoms such as dizziness, sweating, nausea, vomiting, muscle relaxation, limb paralysis, dyspnea, coma and convulsion4,5. The nervous system is depressed, and death is caused by respiratory depression46; This toxicity limits the applications of this plant.

Interestingly, in Chinese folk medicine, Gelsemium elegans is often used in animals to prevent parasite infestation and to promote growth. Its effect is obvious in pigs and sheep. In the Compendium of Materia Medica, it is recorded that people who eat Gelsemium by mistake die, while sheep that eat Gelsemium grow large and fat7. Chen et al. recorded that Gelsemium, which is regularly given to pigs and sheep, can invigorate the stomach, kill parasites and fatten the animals8. These statements show that Gelsemium not only is nontoxic when eaten by animals such as pigs and sheep but also has the effects of fattening the animals and preventing disease. Therefore, it is critical to study the mechanisms of the effects of Gelsemium elegans on the pig intestinal tract.

In this experiment, high-throughput transcriptome sequencing technology was used to examine changes at the transcriptome level in the pig ileum under the influence of Gelsemium elegans. High-throughput sequencing has characteristics including a short sequencing time, low cost, and high sequence quantity9. Transcriptomics, an important component of functional genomics research, can be used to study overall gene function and structure, revealing specific biological processes and molecular mechanisms that are involved in the process of disease occurrence10. Therefore, the purposes of this study were to clarify the possible mechanisms of the effects of Gelsemium elegans on the intestinal tract as a whole based on high-throughput sequencing, to provide new data to reveal the molecular mechanisms of the pharmacological effects of Gelsemium elegans and to provide important references for further in-depth study of the mechanisms of the effects of Gelsemium elegans.

Results

Transcriptome sequencing data quality testing

Transcriptome sequencing was performed on a total of 6 samples from the experimental group and the control group (Table 1), and an average of 52.168 M reads were obtained. After removing the linker fragments and the low-quality fragments, a total of 51.171 M high-quality clean reads were obtained; the Q20% of the clean reads in each sample was above 96.80%, and the Q30% was above 91.60%, indicating that the sequencing quality was good and provided good original data for subsequent data assembly. Upon comparing the clean reads to the reference genome, an average of 49.135 M could be mapped, which accounted for 96% of the total number of sequences. The comparison showed that the alignment efficiency was good.

Table 1.

Statistics from digital gene expression sequencing.

Sample_name C1 C2 C3 G1 G2 G3
Raw reads 53351960 52203452 62621280 50860180 53702840 40267710
Clean reads 52354682 50836840 61569634 49898956 52727580 39636068
Clean bases (Gb) 7.39 7.24 8.70 7.05 7.49 5.63
Q20(%) 97.10% 96.95% 97.10% 96.80% 96.95% 97.45%
Q30(%) 92.20% 91.90% 92.20% 91.60% 91.80% 92.95%
Total mapped 50591699 (96.60%) 49185332 (96.80%) 58949697 (95.70%) 47391403 (95%) 50409079 (95.60%) 38280432 (96.60%)
Multiple mapped 2682859 2066081 3841841 3278765 3483805 2173146
Uniquely mapped 47908840 47119251 55107856 44112638 46925274 36107286
Reads map to ‘+‘ 23954389 23559590 27553907 22056319 23462604 18053653
Reads map to ‘-‘ 23954451 23559661 27553949 22056319 23462670 18053633
Non-Splice reads 26179110 26211625 31002946 24250115 26227333 20306368
Splice reads 21729730 20907626 24104910 19862523 20697941 15800918

C1~3: ileum tissue samples from the control group; G1~3: ileum tissue samples from the experimental group.

Gene expression statistics

HTSeq11 was used to quantify the expression level of each sample gene to obtain the raw counts, which were the input data for the next differential expression analysis. Then, the raw counts for each sample were standardized to obtain the FPKM value of each sample gene, and the expression levels of six sample genes were determined (Table 2). The number of highly expressed genes (FPKM > 50) in each ileum sample was maintained at approximately 800, while the number of genes with low expression or no expression (FPKM < 1) was above 7000 in all samples.

Table 2.

The number of genes in different FPKM expression intervals in all samples.

Group FPKM interval
0~1 1~5 5~10 10~20 20~50 >50
C1 7510 (37.81%) 4396 (22.13%) 2955 (14.88%) 2350 (11.83%) 1690 (8.51%) 961 (4.84%)
C2 7754 (39.04%) 4578 (23.05%) 2760 (13.9%) 2268 (11.42%) 1525 (7.68%) 977 (4.92%)
C3 8249 (41.53%) 4632 (23.32%) 2622 (13.2%) 2040 (10.27%) 1403 (7.07%) 916 (4.61%)
G1 8087 (40.72%) 4722 (23.77%) 2785 (14.02%) 2066 (10.4%) 1360 (6.85%) 842 (4.24%)
G2 8035 (40.45%) 4641 (23.37%) 2718 (13.68%) 2156 (10.85%) 1416 (7.12%) 896 (4.51%)
G3 7602 (38.27%) 4620 (23.26%) 2905 (14.63%) 2380 (11.98%) 1467 (7.39%) 888 (4.47%)

Screening of differentially expressed genes

Taking a |log2 (fold change)| ≥ 1, a P-value ≤ 0.05 and an FDR (adjusted for P-value) ≤ 0.05 as the screening conditions, the experimental group and the control group were compared and analyzed. A total of 446 differentially expressed genes (DEGs) were screened in this experiment, of which 237 genes were upregulated and 209 genes were downregulated.

GO classification of differentially expressed genes

GO annotation was conducted for the DEGs, and a total of 30 significant GO terms were enriched. As shown in Fig. 1, the DEGs were mainly enriched in biological processes such as defense responses, humoral immune responses, inflammatory responses, and immune system processes, which indicates that intake of Gelsemium elegans leads to changes in immune and inflammatory response processes in animal bodies. In the cellular component category, the cell periphery, plasma membrane, extracellular region and plasma membrane part terms were most prominent; in the molecular function category, receptor activity/receptor binding was the main term.

Figure 1.

Figure 1

GO classifications of the differentially expressed genes in intestinal tissues from the Gelsemium elegans group and the control group. The differentially expressed genes were classified into three categories: biological process, cellular component, and molecular function.

Enrichment of differentially expressed gene pathways

As shown in Fig. 2, 446 DEGs between the experimental group and the control group were enriched in signaling pathways related to inflammation and the immune response, including the complement and coagulation cascade pathway, the IL-17 signaling pathway, the rheumatoid arthritis pathway and the hematopoietic cell lineage pathway, with relatively high enrichment rates.

Figure 2.

Figure 2

Pathway enrichment results of the differentially expressed genes. The X-axis represents the enrichment factor value, and the Y-axis represents the pathway name. The color represents the P-value (significance: P ≤ 0.05), and the size of the point represents the number of genes. The enrichment factor represents the ratio of the enriched genes to the background genes.

The genes enriched in the pathways are shown in Table 3. Statistical analyses showed that CXCL-8, IL1A, C3, C5, CSF2, C2, CXCL-2, FOS, AMCF-II, and C8G were involved in at least three of the above pathways, suggesting that these genes may be important hubs for communication between different signaling pathways. Further statistical analyses showed that CXCL-8, CSF2 and AMCF-II are all involved in the cytokine–cytokine receptor interaction pathway and the rheumatoid arthritis pathway, which are related to inflammation, suggesting that these two pathways may be key pathways in inflammation-related reaction processes.

Table 3.

Pathway enrichment gene expression.

Gene symbol Gene description Gene ID Gene family Log2(Fold Change) P value
IL1A interleukin 1 alpha ENSSSCG00000008090 IL-1 family −1.12 0.0063
IL1RL2 interleukin 1 receptor like 2 ENSSSCG00000023550 3.55 0.0002
IL20RA interleukin 20 receptor subunit alpha ENSSSCG00000004157 chemokine receptor family −1.16 0.0146
IL5RA interleukin 5 receptor subunit alpha ENSSSCG00000011528 chemokine receptor family −1.36 0.0191
CCL28 C-C motif chemokine ligand 28 ENSSSCG00000016871 Intercrine beta(chemokine CC)family −1.37 <0.0001
CCR2 C-C chemokine receptor type 2 ENSSSCG00000024311 −1.16 <0.0001
TNFRSF11A TNF receptor superfamily member 11a ENSSSCG00000004898 tumor necrosis factor receptor superfamily −1.15 <0.0001
LTA Sus scrofa lymphotoxin alpha (LTA), mRNA. ENSSSCG00000001403 tumor necrosis factor family. 2.61 0.0289
CSF2 granulocyte-macrophage colony-stimulating factor precursor ENSSSCG00000023737 GM-CSF family −2.02 0.0003
FOS proto-oncogene c-Fos ENSSSCG00000002383 FOS subfamily 1.06 <0.0001
CXCL8 Sus scrofa C-X-C motif chemokine ligand 8 (CXCL8), mRNA. ENSSSCG00000008953 CXC chemokine family −1.21 0.0007
CXCL2 C-X-C motif chemokine 2 precursor ENSSSCG00000008959 CXC chemokine family −1.73 0.0011
AMCF-II Alveolar macrophage chemotactic factor 2 ENSSSCG00000008957 CXC chemokine family −2.17 <0.0001
INHBA Inhibin beta A chain ENSSSCG00000035077 TGF-β family −1.09 0.0083
DEFB1 Sus scrofa defensin beta 1 (DEFB1), mRNA. ENSSSCG00000029990 Beta-defensin family 1.67 0.0051
S100A8 Sus scrofa S100 calcium binding protein A8 (S100A8), mRNA. ENSSSCG00000006590 S-100 family −3.05 0.0074
ANPEP alanyl aminopeptidase, membrane ENSSSCG00000001849 peptidase M1 family 1.01 0.0113
CD38 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 ENSSSCG00000008742 ADP-ribosyl cyclase family −1.03 <0.0001
C4BPB complement component 4 binding protein beta ENSSSCG00000015661 −1.64 <0.0001
C4BPA Sus scrofa complement component 4 binding protein, alpha (C4BPA), mRNA. ENSSSCG00000015662 −1.18 0.0110
C8G complement C8 gamma chain ENSSSCG00000005840 calycin superfamily 2.17 0.0217
F11 ENSSSCG00000032653 peptidase S1 family −1.71 0.0241
C2 complement C2 ENSSSCG00000001422 peptidase S1 family −1.01 <0.0001
C3 complement C3 ENSSSCG00000013551 −1.52 0.0006
C5 complement C5 ENSSSCG00000005512 −1.26 0.0010
NFKBIZ NFKB inhibitor zeta ENSSSCG00000011951 −1.19 <0.0001

QRT-PCR verification results

The correlation analysis results of the qRT-PCR and RNA-seq data were similar (Fig. 3), which suggests that the transcriptome sequencing data are highly reproducible and accurate.

Figure 3.

Figure 3

Relative expression of the candidate genes by qRT-PCR. Three samples were included in each group, and three replicates for each sample were performed. The relative expression level was measured by qRT-PCR. These data are expressed as the mean ± SD relative to the control. aP < 0.05 compared with the control group.

Discussion

RNA-seq technology is an ideal high-throughput sequencing method that greatly improves the speed and efficiency of identifying new genes or biomarkers12,13. Therefore, in this study, the RNA-seq technique was used to determine the transcriptomic effects of Gelsemium elegans on the pig ileum, and 446 DEGs were obtained. A total of 237 genes were upregulated, and 209 genes were downregulated in the ileum tissue of the experimental group compared with that of the control group. At the same time, we found 14 important pathways. These results provide the basis for a better understanding of the molecular mechanisms of Gelsemium elegans in pigs.

The results of expression analysis of inflammatory response-related genes showed that the inflammatory genes in the experimental group were generally downregulated. First, genes associated with inflammatory-related receptors and signaling pathways, such as the cytokine–cytokine receptor interaction pathway and the IL-17 signaling pathway, suggesting that cytokine–cytokine receptor action is inhibited and that intercellular signal transmission is weakened under Gelsemium treatment14,15. Most of the genes enriched in inflammatory response-related pathways, such as the rheumatoid arthritis pathway, and related metabolic processes in inflammation, such as the complement and coagulation cascade pathways, were downregulated, indicating that the intestinal inflammatory response of the experimental group was inhibited.

The downregulated genes associated with the complement and coagulation cascades pathway in the experimental group compared with the control group were C4BPB, C4BPA, F11, C2, C3 and C5, among which C3 is a local inflammatory reaction process mediator that can induce smooth muscle contraction, increase vascular permeability and promote mast cells and leukocytes to release histamine. C3 also plays the role of an inflammatory cell chemical inducer in chronic inflammation. In addition, C5 is an effective chemokine that stimulates leukocyte movement and induces leukocytes to migrate to inflammatory sites. The complement and coagulation cascades were all downregulated, which may have been related to the inhibition of inflammatory reactions. This finding shows that Gelsemium elegans might reduce inflammatory cell infiltration by reducing the levels of cytokines related to the complement and coagulation cascades.

The IL-17 signaling pathway is involved in the pathogenesis of many inflammatory and autoimmune diseases, including rheumatoid arthritis16 and psoriasis. S100A8 is a calcium-zinc binding protein (with significantly downregulated expression) belonging to the low–molecular weight S100 protein family that participates in the migration process of neutrophils to inflammatory sites1, can bind with TLR4 and AGER receptors, and activates the MAP kinase and NF-K-B signaling processes, thus leading to expansion of the proinflammatory cascade and playing an important role in inflammatory process and immune response regulation.

In the rheumatoid arthritis pathway, a total of 5 DEGs were enriched, among which IL-8/CXCL-8 is a key mediator related to inflammation belonging to the CXC family of chemokines that is usually released in response to inflammatory stimulation. IL-8/CXCL-8 plays a key role in neutrophil recruitment, and degranulation17 is considered to be an inflammatory mediator of gingivitis18 and psoriasis. In a study of Gelsemium elegans, some researchers developed an injectable solution and oral liquid from a water extract of Gelsemium elegans and applied it to the treatment of psoriasis and neurodermatitis19. The downregulation of the CXCL-8 gene is consistent with the anti-inflammatory activities of Gelsemium elegans and emphasizes the role of CXCL-8 in the pharmacological activities of Gelsemium elegans. CSF2, also known as granulocyte-macrophage colony-stimulating factor (GM-CSF), is a monomeric glycoprotein. Clinical tests have revealed its proinflammatory effect. Studies have shown that CSF2 is highly expressed in joints with rheumatoid arthritis, and inflammation and injury can be reduced by blocking CSF2. IL-1α/IL1A, which are members of the IL-1 cytokine family together with IL-1β, can induce the release of IL-2 and mainly play a role in regulating and initiating inflammatory reactions. Studies have found that blocking the activity of IL-1α is likely to be useful for the treatment of skin diseases such as acne20. IL-1β is an important mediator of inflammatory reactions that can induce many kinds of self-inflammatory diseases. Experiments have found that intestinal ecological imbalance can induce osteomyelitis in an IL-1β-dependent manner21.

A large number of studies have indicated that Gelsemium elegans has strong anti-inflammatory activity2224. Researchers have used transcriptome analysis to study SH-SY5Y neurons in humans treated with low concentrations of Gelsemium alkaloids and found significant changes in related regulatory genes of the inflammatory response signaling pathway23. Some researchers have also found that medium and high doses of Gelsemium could significantly inhibit the mitosis process in vaginal epithelial cells and promote the formation of epidermal granules in mouse tail scales. At the same time, the level of IL-2 in the serum of experimental mice was found to be significantly reduced in three dose groups24. Koumine, which is one of the major Gelsemium alkaloids, has been found to reduce the levels of the proinflammatory factors TNF and IL-1, attenuate collagen-induced increases in fibrillary protein content, and inhibit astrocyte activation and proinflammatory factor–mediated pain25,26.

Using qPCR and Western blot analysis, Yuan et al. found that koumine can inhibit the release of inflammatory mediators and cytokines such as TNF-α, IL-6 and IL-1β27. Similarly, studies have shown that IL-1α28, CXCL829, CSF230, C331, C532 and S100A833 were consistent at the mRNA and protein levels. However, Yang et al. found that koumine can selectively inhibit the proliferation of T cells, especially CD4+ T (Th) cells, reducing the levels of inflammatory cytokines (Th1 cytokines IFN-γ, IL-1β, 2, 6, 12, TNF-α and Th17-α cytokines IL-17A)34. Aggarwal A. et al. found that rheumatoid arthritis is closely related to polarity deviation in Th cells and systemic disorder of inflammatory and anti-inflammatory cell networks35. It is worth noting that macrophages can release IL-1α, which acts on Th cells to regulate their activity. These studies suggest that Gelsemium elegans may regulate the polarity deviation of Th cells by inhibiting the expression of IL-1α, thus reducing the production of inflammatory factors. In this study, the expression of many inflammatory cytokine genes was inhibited, and the levels of these cytokines entering the blood to reach corresponding lesions were decreased; these changes achieved an anti-inflammatory effect by restoring the balance of the network.

Conclusions

In this study, we reported the ileum transcriptome profiles of three-way hybrid weaned piglets fed two different diets (a complete diet without antibacterial drugs and a complete diet containing 2% Gelsemium elegans herb without antibacterial drugs) and carried out detection and DEG identification. The results showed that Gelsemium elegans affected many inflammatory and immune pathways, including biological processes such as defense responses, inflammation and immune responses. More importantly, this study identified several important genes (e.g., CXCL-8, IL1A, and CSF2). These data provide a clearer understanding for elucidating the molecular mechanisms of the pharmacological actions of Gelsemium, such as its anti-inflammatory effects.

Materials and Methods

Animals and treatments

In this study, 6 healthy castrated male ternary hybrid piglets approximately 60 days old and weighing 20 ± 2 kg were obtained from Hunan Xinwufeng, Yong’an branch (Hunan, China), and randomly divided into control and Gelsemium elegans treatment groups. The control group was a blank control group fed a complete diet without antibacterial drugs, and the Gelsemium elegans group was an experimental group. The diet was prepared by adding 2% Gelsemium elegans powder to a complete diet without antibacterial drugs. The formula and nutritional level of the complete diet are shown in Table 4. After 45 days of continuous feeding, administration was stopped, and all piglets were fasted for 24 hours. The piglets were slaughtered within one day after stopping the drug, and a sterile blade was used to take ileum tissue from the control group and the experimental group. The tissue samples were washed in distilled water to remove blood and placed into centrifuge tubes. The tubes were sealed with sealing film and quickly placed in liquid nitrogen for storage. The samples were stored at −80 °C until RNA extraction. This experiment was carried out in accordance with the Guidelines for the Care and Use of Laboratory Animals of China and approved by the Animal Care and Use Committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (IACUC# 201302).

Table 4.

Composition and nutritional level of the complete diet.

Ingredients Ratio (%)
Corn 52.99
Expanded corn 10.00
Soybean meal 20.00
Fish meal 1.50
Soybean oil 0.80
Fine powder 0.72
Salt 0.30
Sucrose 2.50
Premixa 2.59
Total 100.00
Nutrient levels b
DE (MJ/kg) 14.20
Crude Protein(%) 19.00
Calcium (%) 0.80
Available phosphorus (%) 0.50
Lysine (%) 1.40
Methionine (%) 0.84
L-Threonine (%) 0.40

(a)Premix is provided per kilogram of daily ration: VA 2200 IU; VD 220 IU; VE 62 mg; VK3 3.00 mg; VB1 3.00 mg; VB6 3.60 mg; VB12 0.02 mg; Biotin 0.45 mg; Pantothenic acid 10 mg; Nicotinic acid 30 mg; Choline chloride 500 mg; Mn 50 mg; Fe 150 mg; Zn 2200 mg; Cu 200 mg; I 0.3 mg; Se 0.3 mg. (b)The crude protein level in the table is the measured value, and the other is the calculated value.

Extraction of total RNA

Total RNA was isolated from each sample using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The integrity and purity of the RNA were detected by agarose gel electrophoresis (Tianneng, China) and with a NanoDrop (Thermo, USA), and the RNA concentration was accurately quantified with a Qubit instrument (Invitrogen, USA).

Construction of the sequencing library

The mRNA was enriched by magnetic beads with Oligo(dT), and then, the mRNA was randomly broken into short fragments of approximately 200 bp. Using mRNA as a template, first-strand cDNA was synthesized by reverse transcription using random primers. For synthesis of the second strand of cDNA, dTTP in the dNTP mixture was replaced by dUTP. The cDNA product was purified with AMPure XP beads (Beckman, USA); then, the double-stranded ends were blunted with End Repair Mix, and poly-A tails and sequencing linkers were added. The USER enzyme was used to digest the double-stranded cDNA to make a library containing only single-stranded cDNA. PCR (Life, USA) enrichment was performed, and the final cDNA library was obtained after 15 cycles of amplification.

Transcriptome sequencing

An Illumina HiSeq sequencing platform (Illumina, USA) was used, and the 2*150 sequencing mode was adopted to construct a qualified cDNA library for double-terminal (PE) sequencing by Shanghai Jingneng Biotechnology Limited (Shanghai, China).

Processing and analysis of sequencing results

According to the distribution feature that the low-mass fraction of Illumina sequencing data is usually concentrated at the end, the raw sequencing data were filtered to obtain clean reads. Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) software was used to remove the linker sequence fragments and low-mass fragments from the 3’ ends of the raw data. Finally, high-quality clean reads were obtained, and the clean reads and pig reference genome sequences were sequence-matched with STAR software36. The obtained alignment results were based on the positional information files of the known transcripts on the genome, and transcripts with expression values of 0 were removed with StringTie software37. Then, the transcripts for all samples assembled with StringTie were reassembled to obtain new transcripts. BLASTX software was used to carry out sequence alignment with the UniProt (http://www.uniprot.org/downloads), GO (http://geneontology.org/) and KEGG (http://www.genome.jp/) databases to obtain corresponding unigene functional annotation information.

Differential expression analysis

The FPKM values were used to calculate the gene expression levels in the samples, and differential expression was screened between the experimental group samples and the control group samples using DESeq. 2 software. DEGs were identified by using a log2|fold change| ≥ 1, a P-value ≤ 0.05 and an FDR (adjusted for P-value) ≤ 0.05 as the screening conditions. GO functional enrichment analysis38 and KEGG pathway enrichment analysis39 for the DEGs were performed.

Validation of RNA-seq data by quantitative real-time PCR (qRT-PCR)

Validation was performed by using the same RNA used for sequencing. qRT-PCR was performed on selected DEGs, including C3, CXCL-8, FOS, LTA, S100A8, IL1RL2, NOX1, KCNJ16, FMO1, MT2B and MT1A. Primer sequences were designed using the NCBI primer design tool and synthesized by Qingke Xinye Biotechnology Limited (Changsha, China). Fluorescence quantitative detection was performed using a TIANLONG TL988 fluorescence quantitative PCR instrument (Xi’an Tianlong Technology Limited). Each sample was analyzed in triplicate, and the expression of the target genes was standardized by GAPDH expression. The reaction protocol comprised one cycle of 95 °C for 1 min followed by forty cycles of 95 °C for 10 s, 60 °C for 5 s and 72 °C for 10 s. The gene expression was calculated by using the comparative Ct (2−ΔΔCt) method.

Acknowledgements

This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2017JJ1017) and Scientific Research Fund of Hunan Provincial Education Department (No. 18A088).

Author contributions

K.Y. and Z.Y.L. participated in creating the experimental design; C.Y.H., K.Y., J.J.C., Y.J.L., Z.Y.W. and H.Y. handled animals and collected samples; C.Y.H., X.F.Z., Z.Y.L. and Z.L.S. analyzed the data and discussed the obtained results; C.Y.H. and Z.Y.L. wrote the manuscript; C.Y.H. formatted the figures and tables. All authors read and approved the manuscript.

Data availability

The datasets analyzed during the current study are available in the NCBI Sequence Read Archive (SRA) under BioProject ID: PRJNA 552943.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Rujjanawate C, Kanjanapothi D, Panthong A. Pharmacological effect and toxicity of alkaloids from Gelsemium elegans Benth. J Ethnopharmacol. 2003;89:91–95. doi: 10.1016/S0378-8741(03)00267-8. [DOI] [PubMed] [Google Scholar]
  • 2.Xu Y, et al. Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacology, biochemistry, and behavior. 2012;101:504–514. doi: 10.1016/j.pbb.2012.02.009. [DOI] [PubMed] [Google Scholar]
  • 3.Zhou Z, et al. Poisoning: A Case with 8 Months of Follow-up and Review of the Literature. Front Neurol. 2017;8:204. doi: 10.3389/fneur.2017.00204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Xie, L. J. & Han, X. F. Mechanism,clinical characteristics and management of Gelsemium elegans poisoning. Adverse Drug Reactions Journal (2006).
  • 5.Fung H, Lam K, Lam S, Wong O, Kam C. Two Cases of Gelsemium Elegans Benth. Poisoning. Hong Kong Journal of Emergency Medicine. 2007;14:221–224. doi: 10.1177/102490790701400405. [DOI] [Google Scholar]
  • 6.Xiang H, et al. Lethal poisoning with Gelsemium elegans in Guizhou, China. Public health. 2016;136:185–187. doi: 10.1016/j.puhe.2016.02.031. [DOI] [PubMed] [Google Scholar]
  • 7.Zhonghua Bencao (Chinese Herbal Medicine). 213–215 (Shanghai Science and Technology Publishing House, 1999).
  • 8.Chen W, Yang Y, Wu S. Determination the content of koumine, gelsemine and humantenmine in Fujian Gelsemium elegant. J Fujian Univ TCM. 2011;21:48–50. [Google Scholar]
  • 9.Shaffer C. Next-generation sequencing outpaces expectations. Nature biotechnology. 2007;25:149. doi: 10.1038/nbt0207-149. [DOI] [PubMed] [Google Scholar]
  • 10.Qi YX, Liu YB, Rong WH. New transcriptome techniques: RNA-Seq and its application. (Chinese) Genetics. 2011;33:1191–1202. doi: 10.3724/sp.j.1005.2011.01191. [DOI] [PubMed] [Google Scholar]
  • 11.Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hayes DN, Kim WY. The next steps in next-gen sequencing of cancer genomes. The Journal of clinical investigation. 2015;125:462–468. doi: 10.1172/JCI68339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yang H-J, Ratnapriya R, Cogliati T, Kim J-W, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Progress in retinal and eye research. 2015;46:1–30. doi: 10.1016/j.preteyeres.2015.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Dalla-Torre CA, et al. Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC cancer. 2006;6:237. doi: 10.1186/1471-2407-6-237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Napolioni V, et al. Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. European journal of human genetics: EJHG. 2011;19:353–359. doi: 10.1038/ejhg.2010.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Annals of the New York Academy of Sciences. 2011;1217:60–76. doi: 10.1111/j.1749-6632.2010.05825.x. [DOI] [PubMed] [Google Scholar]
  • 17.Harada A, et al. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of leukocyte biology. 1994;56:559–564. doi: 10.1002/jlb.56.5.559. [DOI] [PubMed] [Google Scholar]
  • 18.Huang GT, Haake SK, Kim JW, Park NH. Differential expression of interleukin-8 and intercellular adhesion molecule-1 by human gingival epithelial cells in response to Actinobacillus actinomycetemcomitans or Porphyromonas gingivalis infection. Oral microbiology and immunology. 1998;13:301–309. doi: 10.1111/j.1399-302X.1998.tb00711.x. [DOI] [PubMed] [Google Scholar]
  • 19.C C. Pharmaceutials containing diphenhydramine and echinacea and eupatorium and gelsemium and lachesis extracts for the treatment of psorias is and neurodermatitis. Chemical Abstracts. 1989;110:412. [Google Scholar]
  • 20.de Sousa VD, Novel IC. pharmacological approaches for the treatment of acne vulgaris. Expert opinion on investigational drugs. 2014;23:1389–1410. doi: 10.1517/13543784.2014.923401. [DOI] [PubMed] [Google Scholar]
  • 21.Lukens JR, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516:246–249. doi: 10.1038/nature13788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Qu J, et al. Bisindole alkaloids with neural anti-inflammatory activity from Gelsemium elegans. J Nat Prod. 2013;76:2203–2209. doi: 10.1021/np4005536. [DOI] [PubMed] [Google Scholar]
  • 23.Marzotto M, et al. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens. Bmc Complementary & Alternative Medicine. 2014;14:104. doi: 10.1186/1472-6882-14-104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Zhang, L. L., Huang, C. Q., Zhang, Z. Y. & Wang, Z. R. & Lin J. M. Therapeutic Effect of Gelsemium elegans on Psoriasis-like Animal Model. (Chinese) Journal of the first military medical university, 547–549(2005).
  • 25.Yang J, et al. Effects of Koumine on Adjuvant- and Collagen-Induced Arthritis in Rats. Journal of Natural Products. 2016;79:2635. doi: 10.1021/acs.jnatprod.6b00554. [DOI] [PubMed] [Google Scholar]
  • 26.Jin, G. L. et al. The analgesic effect and possible mechanisms by which koumine alters type II collagen-induced arthritis in rats. Journal of Natural Medicines, 1–9 (2018). [DOI] [PubMed]
  • 27.Yuan ZH, et al. Effect of Koumine on LPS-induced RAW264. 7 cell inflammation. (Chinese) Chinese Veterinary Journal. 2017;37:1553–1557. [Google Scholar]
  • 28.Das L, Vinayak M. Curcumin attenuates carcinogenesis by down regulating proinflammatory cytokine interleukin-1 (IL-1α and IL-1β) via modulation of AP-1 and NF-IL6 in lymphoma bearing mice. International immunopharmacology. 2014;20:141–147. doi: 10.1016/j.intimp.2014.02.024. [DOI] [PubMed] [Google Scholar]
  • 29.Dragon S, et al. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. American journal of physiology. Lung cellular and molecular physiology. 2007;292:L1023–1029. doi: 10.1152/ajplung.00306.2006. [DOI] [PubMed] [Google Scholar]
  • 30.Sun Y, Guo QM, Liu DL, Zhang MZ, Shu R. In vivo expression of Toll-like receptor 2, Toll-like receptor 4, CSF2 and LY64 in Chinese chronic periodontitis patients. Oral diseases. 2010;16:343–350. doi: 10.1111/j.1601-0825.2009.01630.x. [DOI] [PubMed] [Google Scholar]
  • 31.Singer L, et al. Inherited complement C3 deficiency: reduced C3 mRNA and protein levels in a Laotian kindred. Clinical immunology and immunopathology. 1996;81:244–252. doi: 10.1006/clin.1996.0185. [DOI] [PubMed] [Google Scholar]
  • 32.Xu D, et al. Complement C5 Gene Confers Risk for Acute Anterior Uveitis. Investigative ophthalmology & visual science. 2015;56:4954–4960. doi: 10.1167/iovs.15-16645. [DOI] [PubMed] [Google Scholar]
  • 33.Chimenti MS, et al. S100A8/A9 in psoriatic plaques from patients with psoriatic arthritis. The Journal of international medical research. 2016;44:33–37. doi: 10.1177/0300060515598900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Yang, J. Regulation Mechanism of Koumine on T Helper Cell Polarization Against Rheumatoid Arthritis. (Chinese) Fujian Medical University (2017).
  • 35.Aggarwal A, Srivastava R, Agrawal S. T cell responses to citrullinated self-peptides in patients with rheumatoid arthritis. Rheumatology International. 2013;33:2359–2363. doi: 10.1007/s00296-013-2731-2. [DOI] [PubMed] [Google Scholar]
  • 36.Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Franceschini A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research. 2012;41:D808–D815. doi: 10.1093/nar/gks1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research. 2009;37:1–13. doi: 10.1093/nar/gkn923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000;28:27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets analyzed during the current study are available in the NCBI Sequence Read Archive (SRA) under BioProject ID: PRJNA 552943.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES