Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Oct 29;75(Pt 11):1759–1762. doi: 10.1107/S2056989019014142

Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-di­carb­oxy­lic acid and DEF is N,N-di­ethyl­formamide)

Nathalie Saffon-Merceron a, Alain Vigroux a, Pascal Hoffmann a,*
PMCID: PMC6829708  PMID: 31709104

The zinc metal organic framework poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.

Keywords: crystal structure; metal–organic framework; naphthalenedi­carb­oxy­lic acid; N,N-di­ethyl­formamide; zinc carboxyl­ates

Abstract

A zinc metal–organic framework, namely poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.

Chemical context  

In a preceding study, we showed how the presence of a small amount of added organic acids in the solvent N,N-di­ethyl­formamide (DEF), under solvothermal conditions, can be crucial in steering the production of new MOF (metal–organic framework) structures, as exemplified by the formation of two new zinc–terephthalate MOFs based on the trinuclear Zn3(O2CR)6 secondary building unit (SBU) and containing the formate anion, solvothermally obtained from the well-studied MOF-5 system Zn/H2BDC/DEF (H2BDC = benzene-1,4-dicarboxylic acid) in the presence of small amounts of added formic acid (Saffon-Merceron et al., 2015). Here, another ligand, NDC2− (H2NDC = naphthalene-2,6-di­carb­oxy­lic acid) is considered to further study the influence of added formic acid in DEF in MOF synthesis. The NDC2− ligand has been widely used previously to prepare a number of MOFs (Gangu et al., 2017), including IRMOF-8 belonging to the isoreticular MOF series IRMOF-1-16, which have the same underlying topology as MOF-5 with oxygen-centred Zn4O tetra­hedra as nodes but linked by different organic mol­ecules (Rosi et al., 2003). As a control, we first successfully synthesized IRMOF-8, as already described, from H2NDC and Zn(NO3)2·6H2O in DEF using a common solvothermal route (Rowsell et al., 2004). Under the same experimental conditions but in DEF containing ca 1.8% added formic acid, an unidentified crystalline powder was obtained, seemingly in a pure phase, that did not correspond to any known NDC-based MOF. However, in the presence of zinc(II) acetate as the metal source instead of zinc(II) nitrate, we successfully isolated a new 2D coordination network, [Zn(NDC)(DEF)]n (1), identified by satisfactory elemental analysis and single-crystal X-ray diffraction.

Structural commentary  

Complex 1 crystallizes in the triclinic P Inline graphic space group, with an asymmetric unit containing one Zn2+ cation, one fully deprotonated NDC2− ligand and a Zn-coordinated DEF mol­ecule. Each ZnII ion is penta­coordinated by five O atoms [Zn1—O1 = 2.543 (5) Å, Zn1—O2 = 1.949 (2) Å, Zn1—O3 = 2.026 (2) Å, Zn1—O4(DEF) = 1.979 (2) Å and Zn1—O5 = 1.980 (2) Å] from three individual NDC2− anions and one DEF mol­ecule in a tetra­gonal pyramidal configuration. The SBU consists of doubly-bridged dinuclear units of ZnII atoms in a ‘windmill’ fashion (Fig. 1), with a Zn⋯Zn distance of 3.652 (1) Å, where each pair of Zn atoms is linked by two NDC2− anions and each Zn atom is linked by a further NDC2− anion and a DEF mol­ecule (Fig. 2). The two carboxyl­ate groups of the same NDC2− anion adopt either a μ111 (O1 and O2) or a μ211 (O3 and O5) coordination mode.graphic file with name e-75-01759-scheme1.jpg

Figure 1.

Figure 1

The structural model of the zinc windmill (or pw2) SBU found in MOF 1 (left) and of a typical zinc four-blade paddlewheel (pw4) cluster (right).

Figure 2.

Figure 2

The mol­ecular structure of MOF 1, with displacement ellipsoids drawn at the 50% probability level, showing the labelling sheme and the disordered ethyl group of DEF. [Symmetry codes: (i) −x + 1, −y − 1, −z + 1; (ii) x + 1, y − 1, z; (iii) −x − 1, −y, −z + 2; (iv) x − 1, y, z + 1; (v) −x, −y, −z + 1.]

Supra­molecular features  

The structure of 1 shows a three-dimensional (3D) supramolecular framework built of zigzag-shaped two-dimensional (2D) stacked layers. Neighbouring 2D layers are inter­connected through nonclassical hydrogen-bonding inter­actions between carboxyl­ate O atoms (O1 and O3) and β-H atoms of NDC2− ligands with COO⋯H—Cβ—NDC distances of 3.307 (4) (O1—C4) and 3.548 (4) Å (O3—C12). Other inter­actions contributing to the stability of the framework involve Hcentroid–π inter­actions of H16—C16 (DEF hydrogens) and the centroids [Cg1iii is the centroid of the C2–C5/C5v/C6v ring and Cg2iv is the centroid of the C5/C6/C2v–C5v ring; symmetry codes: (iii) x + 1, y + 1, z; (iv) −x, −y + 1, −z + 2; (v) −x − 1, −y, −z + 2] of the aromatic rings of the NDC2− ligands, with Cg⋯H distances of 2.99 Å (Fig. 3 and Table 1). The layers are stacked in a self-locking fashion in a 3D supra­molecular framework (Fig. 4), which has open channels with dimensions of approximately 7.85 × 12.55 Å2 largely occupied by the Zn-coordinated DEF mol­ecules (Fig. 5). It is noteworthy that since 1 has been obtained in a DEF solution containing small amounts of formic acid, formate ligands are not present in the framework.

Figure 3.

Figure 3

Hcentroid–π inter­action found in MOF 1 with DEF H atoms (H16) located near the centroid of the NDC2− aromatic ring (all H atoms have been omitted for clarity, except for the DEF-H16 H atoms involved in the inter­actions).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C5/C5vii/C6vii and C5/C6/C2vii–C5vii rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1iv 0.95 2.39 3.307 (4) 161
C12—H12⋯O3v 0.95 2.63 3.548 (4) 156
C16—H16⋯Cg1vi 0.95 2.99 3.520 (17) 114
C16—H16⋯Cg2vii 0.95 2.99 3.520 (17) 114

Symmetry codes: (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 4.

Figure 4

View of the two-dimensional layers in MOF 1 stacked in a self-locking fashion yielding the three-dimensional supra­molecular framework.

Figure 5.

Figure 5

View of the two-dimensional stacked layers in MOF 1 along the crystallographic (a) a, (b) b and (c) c axes.

Database survey  

Naphthalene di­carb­oxy­lic acid derivatives (H2NDCs), including 1,4-, 1,8- and 2,6-NDC, have been, due to their stability, richness in coordination modes and structural rigidity, widely used as organic mol­ecules in the synthesis of novel MOF structures with a variety of metal ions, such as ZnII, CdII, CoII, NiII, MnII or AgI. Among all the 2,6-NDC/Zn-based MOFs, two are closely related to MOF 1, i.e. a MOF of formula [Zn2(2,6-NDC)2(DMF)2]n (Yang et al., 2013), in which the two carboxyl­ate groups of all the NDC ligands have two different coordination modes (μ111 and μ211), and MOF-105 and its derivatives of generic formula [Zn2(2,6-NDC)2(DMF)2] (Eddaoudi et al., 2002; Devi et al., 2004; Shahangi Shirazi et al., 2015; Yue et al., 2015), in which all NDC-carboxyl­ates have a μ211 coordination mode, with a typical pw4 paddle-wheel structure motif, [M 2(CO2)4]. For MOF 1, the two carboxyl­ate groups of the same NDC2− ligand adopt either a μ111 (O1 and O2) or a μ211 (O3 and O5) coordination mode, giving an uncommon pw2 paddle-wheel (‘windmill’) structural feature, [M 2(CO2)2].

Synthesis and crystallization  

MOF 1 was synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate. 2,6-H2NDC (87.3 mg, 0.4 mmol, 1.0 equiv.) and Zn(OAc)2·2H2O (224 mg, mol, 2.5 equiv.) were dissolved in DEF (10 ml) containing formic acid (185 µl, 12 equiv.) and sealed in a glass vial. The vial was heated in an oven to 110 °C for 17 h. After cooling to room temperature, the reaction was allowed to stand until colorless crystals suitable for X-ray diffraction formed. For further characterizations, the crystals were collected by filtration, washed with DEF several times, and dried at 373 K under vacuum. Ele­mental analysis (%) for C17H17NO5Zn based on the formula [Zn(NDC)(DEF)] found (calculated): C 53.00 (53.63), H 4.47 (4.50), N 3.39 (3.68), Zn 17.51 (17.17). FT–IR (cm−1): 2979, 2938, 1647, 1602, 1586, 1557, 1494, 1460, 1406, 1385, 1361, 1348. The identity of the as-synthesized bulk material was confirmed by com­paring the powder X-ray diffraction (PXRD) pattern with that simulated from the crystal structure (Fig. 6). After heating a sample of 1 at 463 K under vaccum for 8 h, coordinated DEF mol­ecules were eliminated, as evidenced by FT–IR (loss of bands at 2979, 2938 and 1647 cm−1). Elemental analysis (%) for C12H6O4Zn based on the formula [Zn(NDC)] found (calculated): C 48.85 (51.56), H 2.75 (2.16), N 0.22 (0.00), Zn 21.47 (23.39). It should be noted that after removal of DEF, MOF 1 lost its crystallinity, as evidenced by the PXRD pattern.

Figure 6.

Figure 6

PXRD patterns (a) simulated from the single-crystal data of 1 and (b) measured from a sample of 1 prepared from 2,6-H2NDC and Zn(OAc)2 in DEF containing formic acid.

Refinement  

The ethyl groups of DEF were disordered over two positions, for which the occupancies were refined, converging to 0.51 and 0.49. The SAME, DELU and SIMU restraints were applied to model the disorder (Sheldrick, 2008). All H atoms were fixed geometrically and treated as riding, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.0 Å (CH), with U iso(H) = 1.5U eq(C) for methyl H atoms or 1.2U eq(C) otherwise. Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(C12H6O4)(C15H11NO)]
M r 380.68
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 193
a, b, c (Å) 7.9134 (5), 8.3006 (5), 12.6413 (8)
α, β, γ (°) 97.873 (4), 91.620 (4), 91.991 (5)
V3) 821.57 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.52
Crystal size (mm) 0.10 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.863, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 13141, 3336, 2436
R int 0.075
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.081, 1.00
No. of reflections 3336
No. of parameters 237
No. of restraints 41
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.37

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989019014142/zl2761sup1.cif

e-75-01759-sup1.cif (405.9KB, cif)

CCDC references: 1959604, 1959604

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Zn(C12H6O4)(C15H11NO)] Z = 2
Mr = 380.68 F(000) = 392
Triclinic, P1 Dx = 1.539 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9134 (5) Å Cell parameters from 1701 reflections
b = 8.3006 (5) Å θ = 2.5–21.5°
c = 12.6413 (8) Å µ = 1.52 mm1
α = 97.873 (4)° T = 193 K
β = 91.620 (4)° Block, colourless
γ = 91.991 (5)° 0.10 × 0.04 × 0.04 mm
V = 821.57 (9) Å3

Data collection

Bruker SMART APEXII CCD area detector diffractometer 3336 independent reflections
Radiation source: fine-focus selaed tube 2436 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1 Rint = 0.075
phi and ω scans θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.863, Tmax = 0.942 k = −10→10
13141 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0318P)2] where P = (Fo2 + 2Fc2)/3
3336 reflections (Δ/σ)max = 0.001
237 parameters Δρmax = 0.33 e Å3
41 restraints Δρmin = −0.37 e Å3
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.02528 (5) 0.13460 (5) 0.62683 (3) 0.02329 (12)
O1 −0.0138 (3) 0.0539 (3) 0.8118 (2) 0.0495 (7)
O2 −0.1959 (3) 0.1010 (3) 0.68613 (17) 0.0311 (5)
O3 0.0472 (2) −0.1661 (2) 0.52376 (16) 0.0249 (5)
O4 0.1080 (3) 0.3581 (3) 0.68413 (19) 0.0376 (6)
O5 0.2353 (2) 0.0121 (2) 0.60995 (16) 0.0267 (5)
C1 −0.1604 (4) 0.0679 (4) 0.7800 (3) 0.0292 (8)
C2 −0.3060 (4) 0.0478 (4) 0.8506 (2) 0.0229 (7)
C3 −0.4729 (4) 0.0766 (4) 0.8157 (3) 0.0259 (7)
H3 −0.491459 0.106685 0.746526 0.031*
C4 −0.6065 (4) 0.0621 (4) 0.8792 (2) 0.0253 (7)
H4 −0.716770 0.083839 0.854527 0.030*
C5 −0.5832 (3) 0.0151 (3) 0.9818 (2) 0.0204 (7)
C6 −0.7197 (4) −0.0032 (4) 1.0501 (2) 0.0247 (7)
H6 −0.831308 0.016042 1.026474 0.030*
C7 0.1971 (4) −0.1257 (4) 0.5574 (2) 0.0232 (7)
C8 0.3342 (4) −0.2464 (4) 0.5386 (2) 0.0231 (7)
C9 0.2888 (4) −0.4062 (4) 0.5012 (2) 0.0266 (7)
H9 0.173329 −0.437095 0.484564 0.032*
C10 0.4136 (4) −0.5243 (4) 0.4875 (2) 0.0241 (7)
C11 0.5046 (4) −0.1977 (4) 0.5621 (3) 0.0281 (8)
H11 0.534020 −0.086805 0.587033 0.034*
C12 0.6283 (4) −0.3091 (4) 0.5492 (3) 0.0285 (8)
H12 0.743193 −0.274861 0.564835 0.034*
C13 0.2535 (5) 0.4026 (4) 0.7188 (3) 0.0369 (9)
H13 0.341309 0.327989 0.705702 0.044*
C14 0.1574 (6) 0.6627 (5) 0.7929 (4) 0.0628 (13)
H14A 0.078313 0.652571 0.729974 0.075*
H14B 0.208053 0.774681 0.803717 0.075*
C15 0.0611 (7) 0.6341 (6) 0.8898 (4) 0.0970 (18)
H15A 0.013080 0.522378 0.879973 0.145*
H15B −0.030364 0.710761 0.899858 0.145*
H15C 0.137829 0.650364 0.952935 0.145*
N1 0.2922 (4) 0.5454 (4) 0.7719 (2) 0.0448 (8)
C16 0.4576 (17) 0.6215 (19) 0.815 (2) 0.061 (4) 0.516 (8)
H16A 0.487379 0.713730 0.775639 0.074* 0.516 (8)
H16B 0.447852 0.665014 0.890959 0.074* 0.516 (8)
C17 0.5911 (12) 0.5053 (11) 0.8035 (8) 0.065 (3) 0.516 (8)
H17A 0.563272 0.415235 0.843378 0.098* 0.516 (8)
H17B 0.698301 0.559271 0.831750 0.098* 0.516 (8)
H17C 0.601884 0.462995 0.727791 0.098* 0.516 (8)
C16' 0.4774 (18) 0.575 (2) 0.8054 (19) 0.062 (4) 0.484 (8)
H16C 0.544874 0.496333 0.760003 0.074* 0.484 (8)
H16D 0.513676 0.685674 0.792220 0.074* 0.484 (8)
C17' 0.5149 (13) 0.5600 (11) 0.9178 (7) 0.074 (3) 0.484 (8)
H17D 0.426986 0.611745 0.962205 0.110* 0.484 (8)
H17E 0.625043 0.613689 0.939854 0.110* 0.484 (8)
H17F 0.517878 0.444637 0.926528 0.110* 0.484 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0191 (2) 0.0234 (2) 0.0272 (2) 0.00401 (14) 0.00315 (15) 0.00116 (15)
O1 0.0203 (14) 0.086 (2) 0.0477 (17) 0.0087 (13) 0.0085 (12) 0.0236 (15)
O2 0.0277 (13) 0.0404 (14) 0.0263 (13) 0.0025 (10) 0.0067 (11) 0.0068 (11)
O3 0.0184 (12) 0.0277 (12) 0.0302 (13) 0.0040 (9) 0.0037 (10) 0.0087 (10)
O4 0.0358 (15) 0.0268 (13) 0.0474 (16) 0.0019 (10) 0.0016 (12) −0.0052 (11)
O5 0.0258 (12) 0.0249 (13) 0.0286 (13) 0.0078 (9) 0.0039 (10) −0.0010 (10)
C1 0.0237 (19) 0.0315 (19) 0.033 (2) 0.0043 (14) 0.0064 (16) 0.0037 (16)
C2 0.0208 (17) 0.0233 (17) 0.0232 (18) 0.0008 (13) 0.0028 (14) −0.0022 (14)
C3 0.0250 (18) 0.0267 (18) 0.0270 (19) 0.0046 (14) 0.0008 (15) 0.0064 (15)
C4 0.0172 (17) 0.0308 (19) 0.0277 (19) 0.0021 (13) −0.0044 (14) 0.0042 (15)
C5 0.0170 (16) 0.0211 (16) 0.0222 (17) 0.0014 (12) −0.0003 (13) 0.0003 (13)
C6 0.0143 (16) 0.0288 (18) 0.0308 (19) 0.0031 (13) −0.0004 (14) 0.0027 (15)
C7 0.0287 (19) 0.0256 (18) 0.0176 (17) 0.0068 (14) 0.0075 (14) 0.0079 (14)
C8 0.0220 (17) 0.0257 (18) 0.0224 (18) 0.0067 (13) 0.0039 (14) 0.0046 (14)
C9 0.0188 (17) 0.0334 (19) 0.0284 (19) 0.0058 (14) 0.0032 (14) 0.0050 (15)
C10 0.0215 (17) 0.0276 (18) 0.0241 (17) 0.0035 (13) 0.0036 (14) 0.0049 (14)
C11 0.0274 (19) 0.0260 (19) 0.031 (2) 0.0038 (14) 0.0026 (15) 0.0018 (15)
C12 0.0233 (18) 0.0271 (18) 0.034 (2) −0.0003 (14) 0.0039 (15) 0.0011 (15)
C13 0.042 (2) 0.032 (2) 0.037 (2) 0.0006 (16) −0.0029 (18) 0.0063 (17)
C14 0.089 (4) 0.027 (2) 0.067 (3) −0.006 (2) 0.010 (3) −0.012 (2)
C15 0.111 (5) 0.084 (4) 0.087 (4) −0.011 (3) 0.037 (4) −0.023 (3)
N1 0.057 (2) 0.0383 (19) 0.0367 (19) −0.0130 (16) −0.0097 (16) 0.0030 (15)
C16 0.077 (6) 0.051 (8) 0.053 (6) −0.018 (5) −0.018 (5) 0.006 (6)
C17 0.063 (6) 0.069 (6) 0.066 (6) −0.014 (4) −0.011 (5) 0.022 (5)
C16' 0.076 (6) 0.052 (9) 0.055 (6) −0.028 (6) −0.023 (6) 0.013 (7)
C17' 0.100 (7) 0.061 (6) 0.059 (6) −0.021 (5) −0.016 (5) 0.015 (5)

Geometric parameters (Å, º)

Zn1—O2 1.949 (2) C11—C12 1.368 (4)
Zn1—O4 1.979 (2) C11—H11 0.9500
Zn1—O5 1.980 (2) C12—H12 0.9500
Zn1—O3i 2.026 (2) C13—N1 1.302 (4)
Zn1—C1 2.571 (3) C13—H13 0.9500
O1—C1 1.231 (4) C14—N1 1.474 (5)
O2—C1 1.280 (4) C14—C15 1.503 (6)
O3—C7 1.267 (3) C14—H14A 0.9900
O4—C13 1.246 (4) C14—H14B 0.9900
O5—C7 1.264 (4) C15—H15A 0.9800
C1—C2 1.496 (4) C15—H15B 0.9800
C2—C6ii 1.368 (4) C15—H15C 0.9800
C2—C3 1.419 (4) N1—C16 1.488 (11)
C3—C4 1.358 (4) N1—C16' 1.517 (11)
C3—H3 0.9500 C16—C17 1.452 (17)
C4—C5 1.413 (4) C16—H16A 0.9900
C4—H4 0.9500 C16—H16B 0.9900
C5—C6 1.420 (4) C17—H17A 0.9800
C5—C5ii 1.424 (5) C17—H17B 0.9800
C6—H6 0.9500 C17—H17C 0.9800
C7—C8 1.504 (4) C16'—C17' 1.47 (2)
C8—C9 1.378 (4) C16'—H16C 0.9900
C8—C11 1.406 (4) C16'—H16D 0.9900
C9—C10 1.413 (4) C17'—H17D 0.9800
C9—H9 0.9500 C17'—H17E 0.9800
C10—C12iii 1.422 (4) C17'—H17F 0.9800
C10—C10iii 1.426 (6)
O2—Zn1—O4 107.22 (9) C8—C11—H11 119.8
O2—Zn1—O5 136.08 (9) C11—C12—C10iii 120.5 (3)
O4—Zn1—O5 103.46 (9) C11—C12—H12 119.7
O2—Zn1—O3i 99.73 (8) C10iii—C12—H12 119.7
O4—Zn1—O3i 100.55 (9) O4—C13—N1 123.8 (3)
O5—Zn1—O3i 104.71 (8) O4—C13—H13 118.1
O2—Zn1—C1 28.93 (9) N1—C13—H13 118.1
O4—Zn1—C1 100.44 (10) N1—C14—C15 111.5 (4)
O5—Zn1—C1 115.09 (9) N1—C14—H14A 109.3
O3i—Zn1—C1 128.55 (9) C15—C14—H14A 109.3
C1—O2—Zn1 103.60 (19) N1—C14—H14B 109.3
C7—O3—Zn1i 119.47 (19) C15—C14—H14B 109.3
C13—O4—Zn1 127.3 (2) H14A—C14—H14B 108.0
C7—O5—Zn1 107.70 (19) C14—C15—H15A 109.5
O1—C1—O2 122.1 (3) C14—C15—H15B 109.5
O1—C1—C2 121.0 (3) H15A—C15—H15B 109.5
O2—C1—C2 116.8 (3) C14—C15—H15C 109.5
O1—C1—Zn1 74.8 (2) H15A—C15—H15C 109.5
O2—C1—Zn1 47.47 (15) H15B—C15—H15C 109.5
C2—C1—Zn1 163.8 (2) C13—N1—C14 118.8 (3)
C6ii—C2—C3 119.1 (3) C13—N1—C16 131.2 (8)
C6ii—C2—C1 120.6 (3) C14—N1—C16 110.0 (8)
C3—C2—C1 120.3 (3) C13—N1—C16' 115.1 (9)
C4—C3—C2 121.2 (3) C14—N1—C16' 126.1 (9)
C4—C3—H3 119.4 C17—C16—N1 111.5 (12)
C2—C3—H3 119.4 C17—C16—H16A 109.3
C3—C4—C5 120.7 (3) N1—C16—H16A 109.3
C3—C4—H4 119.7 C17—C16—H16B 109.3
C5—C4—H4 119.7 N1—C16—H16B 109.3
C4—C5—C6 122.4 (3) H16A—C16—H16B 108.0
C4—C5—C5ii 119.0 (3) C16—C17—H17A 109.5
C6—C5—C5ii 118.6 (3) C16—C17—H17B 109.5
C2ii—C6—C5 121.4 (3) H17A—C17—H17B 109.5
C2ii—C6—H6 119.3 C16—C17—H17C 109.5
C5—C6—H6 119.3 H17A—C17—H17C 109.5
O5—C7—O3 122.1 (3) H17B—C17—H17C 109.5
O5—C7—C8 118.2 (3) C17'—C16'—N1 114.1 (15)
O3—C7—C8 119.6 (3) C17'—C16'—H16C 108.7
C9—C8—C11 120.8 (3) N1—C16'—H16C 108.7
C9—C8—C7 118.7 (3) C17'—C16'—H16D 108.7
C11—C8—C7 120.5 (3) N1—C16'—H16D 108.7
C8—C9—C10 120.1 (3) H16C—C16'—H16D 107.6
C8—C9—H9 119.9 C16'—C17'—H17D 109.5
C10—C9—H9 119.9 C16'—C17'—H17E 109.5
C9—C10—C12iii 121.8 (3) H17D—C17'—H17E 109.5
C9—C10—C10iii 119.2 (4) C16'—C17'—H17F 109.5
C12iii—C10—C10iii 118.9 (3) H17D—C17'—H17F 109.5
C12—C11—C8 120.4 (3) H17E—C17'—H17F 109.5
C12—C11—H11 119.8

Symmetry codes: (i) −x, −y, −z+1; (ii) −x−1, −y, −z+2; (iii) −x+1, −y−1, −z+1.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C5/C5ii/C6ii and C5/C6/C2ii–C5ii rings, respectively. [Symmetry code: (ii) -x-1, -y, -z+2.]

D—H···A D—H H···A D···A D—H···A
C4—H4···O1iv 0.95 2.39 3.307 (4) 161
C12—H12···O3v 0.95 2.63 3.548 (4) 156
C16—H16···Cg1vi 0.95 2.99 3.520 (17) 114
C16—H16···Cg2vii 0.95 2.99 3.520 (17) 114

Symmetry codes: (iv) x−1, y, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) −x, −y+1, −z+2.

References

  1. Bruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Devi, R. N., Edgar, M., Gonzalez, J., Slawin, A. M. Z., Tunstall, D. P., Grewal, P., Cox, P. A. & Wright, P. A. (2004). J. Phys. Chem. B, 108, 535–543.
  3. Eddaoudi, M., Kim, J., Vodak, D., Sudik, A., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Proc. Natl Acad. Sci. USA, 99, 4900–4904. [DOI] [PMC free article] [PubMed]
  4. Gangu, K. K., Maddila, S. & Jonnalagadda, S. B. (2017). Inorg. Chim. Acta, 466, 308–323.
  5. Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. [DOI] [PubMed]
  6. Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666–5667. [DOI] [PubMed]
  7. Saffon-Merceron, N., Barthélémy, M.-C., Laurent, C., Fabing, I., Hoffmann, P. & Vigroux, A. (2015). Inorg. Chim. Acta, 426, 15–19.
  8. Shahangi Shirazi, F. & Akhbari, K. (2015). Inorg. Chim. Acta, 436, 1–6.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Yang, S. Y., Yuan, H. B., Xu, X. B. & Huang, R. B. (2013). Inorg. Chim. Acta, 403, 53–62.
  13. Yue, H., Shi, Z., Wang, Q., Du, T., Ding, Y., Zhang, J., Huo, N. & Yang, S. (2015). RSC Adv. 5, 75653–75658.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S2056989019014142/zl2761sup1.cif

e-75-01759-sup1.cif (405.9KB, cif)

CCDC references: 1959604, 1959604

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES