Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Oct 22;75(Pt 11):1650–1656. doi: 10.1107/S2056989019013586

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

Nada Kheira Sebbar a,b, Brahim Hni b, Tuncer Hökelek c, Mohamed Labd Taha a, Joel T Mague d, Lhoussaine El Ghayati b,*, El Mokhtar Essassi b
PMCID: PMC6829709  PMID: 31709085

The title compound contains 1,4-benzo­thia­zine and 2,4-di­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are tied into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, enclosing Inline graphic(22) ring motifs.

Keywords: crystal structure, di­hydro­thia­zine, hydrogen bond, π-stacking, Hirshfeld surface

Abstract

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R 4 4(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic systems. These mol­ecules exhibit a wide range of biological applications, indicating the fact that the 1,4-benzo­thia­zine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications, such as the anti-inflammatory (Trapani et al., 1985; Gowda et al., 2011), anti­pyretic (Warren & Knaus, 1987), anti­microbial (Armenise et al., 2012; Rathore & Kumar, 2006), anti­viral (Malagu et al., 1998), anti­cancer (Gupta et al., 1985; Gupta & Gupta, 1991) and anti-oxidant (Zia-ur-Rehman et al., 2009) areas. They have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a ; Vidal et al., 2006) possessing anti­diabetic (Tawada et al., 1990) and anti­corrosion activities (Ellouz et al., 2016a ,b ; Sebbar et al., 2016a ). They also possess biological properties (Hni et al., 2019a ,b ; Sebbar et al., 2017; Ellouz et al., 2017a ,b , 2018). As a continuation of our research on the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we report here the synthesis of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one, (I), by the reaction of benzyl chloride with (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one and po­tassium carbonate in the presence of tetra-n-butyl­ammonium bromide (as catalyst). The mol­ecular and crystal structures, together with the Hirshfeld surface analysis, the inter­molecular inter­action energies and density functional theory (DFT) computational calculations were carried out at the B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p) levels, respectively, for (I) (see Scheme 1).graphic file with name e-75-01650-scheme1.jpg

Structural commentary  

The title compound, (I), contains 1,4-benzo­thia­zine and 2,4-di­chloro­benzyl­idene units (Fig. 1), where the di­hydro­thia­zine ring, B (atoms S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) of Q T = 0.4331 (10) Å, θ = 68.34 (16)° and φ = 333.95 (17)°. The planar rings A (C1–C6), C (C10–C15) and D (C17–C22) are oriented at dihedral angles of A/C = 60.49 (4)°, A/D = 79.69 (4)° and C/D = 41.29 (4)°. Atoms Cl1 and Cl2 are −0.0156 (3) and 0.0499 (4) Å from ring C and so are almost coplanar.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, enclosing Inline graphic(22) ring motifs (Bernstein et al., 1995) (Table 1 and Fig. 2). Offset π-stacking inter­actions between 2,4-di­chloro­phenyl rings C [atoms C10–C15; Cg3⋯Cg3i, where Cg3 is the centroid of ring C; symmetry code: (i) −x, −y + 1, −z + 1], may further stabilize the structure, with a centroid–centroid distance of 3.7701 (8) Å, together with π-inter­actions, i.e. C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg4 are the centroids of rings A (C1–C6) and D (C17–C22), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1ix 0.936 (19) 2.51 (2) 3.3346 (17) 147.7 (15)
C16—H16B⋯S1v 0.945 (16) 2.852 (16) 3.7011 (13) 149.9 (12)
C3—H3⋯Cg4ix 0.938 (17) 2.901 (17) 3.6428 (15) 136.8 (13)
C14—H14⋯Cg4x 0.971 (19) 2.710 (18) 3.5593 (15) 146.8 (14)
C18—H18⋯Cg1xi 0.979 (18) 2.969 (18) 3.6759 (16) 130.0 (13)

Symmetry codes: (v) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram, viewed along the a-axis direction, with C—HBnz⋯OThz and C—HMethy⋯SThz (Bnz = benzene, Thz = thia­zine and Methy = methyl­ene) hydrogen bonds shown, respectively, as black and light-purple dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Version 17.5; Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1, S1 and H4 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly suggest that there are π–π inter­actions in (I). The overall two-dimensional (2D) fingerprint plot (Fig. 6 a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C, S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (McKinnon et al., 2007) are illustrated in Figs. 6(b)–(h), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 29.1% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.17 Å, due to the short inter­atomic H⋯H contacts (Table 2). In the presence of C—H⋯π inter­actions, the pairs of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6 c), with a 27.5% contribution to the HS, arises from the H⋯C/C⋯H contacts (Table 2) and are viewed as pairs of spikes with the tips at d e + d i = 2.82 and 2.78 Å for thin and thick spikes, respectively. The pair of scattered points of the wings resulting in the fingerprint plots delineated into H⋯Cl/Cl⋯H (Fig. 6 d), with a 20.6% contribution to the HS, has a symmetrical distribution of points with the edges at d e + d i = 2.78 Å arising from the H⋯Cl/Cl⋯H contacts (Table 2). The pair of characteristic wings resulting in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 6 e), with a 7.0% contribution to the HS, arises from the O⋯H/H⋯O contacts (Table 2) and is viewed as a pair of spikes with the tips at d e + d i = 2.35 Å. The C⋯C contacts (Fig. 6 f) have an arrow-shaped distribution of points with the tip at d e = d i = 1.7 Å. Finally, the characteristic wings resulting in the fingerprint plots delineated into S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Figs. 6 g and 6h), with 4.0 and 2.2% contributions to the HS, arise from the S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Table 2) and are viewed with the tips at d e = d i = 2.70 Å and d e + d i = 3.46 Å, respectively.

Figure 3.

Figure 3

View of the 3D Hirshfeld surface of the title compound, plotted over d norm in the range −0.1634 to 1.5051 a.u.

Figure 4.

Figure 4

View of the 3D Hirshfeld surface of the title compound, plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u., using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 5.

Figure 5

Hirshfeld surface of the title compound plotted over shape-index.

Figure 6.

Figure 6

The full 2D fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) O⋯H/H⋯O, (f) C⋯C, (g) S⋯H/H⋯S and (h) Cl⋯C/C⋯Cl inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

Cl1⋯Cl1i 3.2439 (5) C6⋯C22 3.4830 (18)
Cl1⋯C14ii 3.4981 (14) C6⋯C12v 3.5828 (18)
Cl1⋯H9 2.647 (16) C7⋯C22 3.4391 (18)
Cl2⋯H19iii 2.96 (2) C10⋯C12ii 3.4871 (18)
Cl2⋯H9ii 3.044 (16) C14⋯C20iv 3.572 (2)
Cl2⋯H4iv 3.138 (18) C5⋯H16A 2.563 (16)
S1⋯Cl2v 3.5832 (5) C6⋯H22 2.904 (15)
S1⋯Cl2v 3.5832 (5) C8⋯H15 2.929 (18)
S1⋯N1 3.0801 (11) C16⋯H5 2.556 (18)
S1⋯C15 3.1625 (14) C17⋯H5 2.829 (18)
S1⋯C13v 3.6033 (13) C18⋯H3vi 2.998 (17)
S1⋯H15 2.578 (18) C21⋯H12i 2.845 (18)
O1⋯C17 3.2096 (16) H14⋯C20iv 2.964 (18)
O1⋯C4vi 3.3346 (17) H14⋯C21iv 2.899 (18)
O1⋯H9 2.406 (16) H14⋯C22iv 2.990 (18)
O1⋯H16B 2.345 (16) H15⋯C19iv 2.951 (18)
O1⋯H4vi 2.51 (2) H16B⋯S1v 2.852 (16)
N1⋯S1 3.0801 (11) H16B⋯C1v 2.973 (16)
N1⋯H22 2.552 (15) H18⋯C6v 2.934 (19)
C1⋯C12v 3.4639 (18) H5⋯H16A 2.16 (2)
C1⋯C13v 3.4372 (18) H12⋯H21i 2.46 (3)
C2⋯C12v 3.541 (2) H15⋯H21viii 2.51 (3)
C3⋯C3vii 3.485 (2) H16B⋯H18 2.51 (2)
C5⋯C22 3.4988 (19) H18⋯H22v 2.53 (2)
C5⋯C17 3.4201 (18)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C and S⋯H/H⋯S inter­actions in Figs. 7(a)–(f), respectively.

Figure 7.

Figure 7

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯Cl/Cl⋯H, (d) O⋯H/H⋯O, (e) C⋯C and (f) S⋯H/H⋯S inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the biggest roles in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies are calculated using CE–B3LYP/6-31G(d,p) energy model available in CrystalExplorer (CE) (Version 17.5; Turner et al., 2017), where a cluster of mol­ecules would need to be generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of the electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −20.3 (E ele), −2.6 (E pol), −79.4 (E dis), 60.7 (E rep) and −55.0 (E tot) for C—HBnz⋯OThz hydrogen-bonding inter­actions, and −5.8 (E ele), −1.0 (E pol), −51.0 (E dis), 39.3 (E rep) and −27.1 (E tot) for C—HMethy⋯SThz hydrogen-bonding inter­actions.

DFT calculations  

The optimized structure of (I) in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 3). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO clarifying the inevitable charge exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole mol­ecule. The energy band gap (ΔE = E LUMOE HOMO) of the mol­ecule was about 5.3364 eV, and the frontier mol­ecular orbital (FMO) energies, E HOMO and E LUMO, were −8.2479 and −2.9115 eV, respectively.

Table 3. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C11 1.7357 (13) 1.80981
Cl2—C13 1.7382 (13) 1.80489
S1—C8 1.7525 (12) 1.80120
S1—C1 1.7561 (13) 1.82629
O1—C7 1.2228 (16) 1.23968
N1—C7 1.3759 (16) 1.38157
N1—C6 1.4192 (16) 1.41776
N1—C16 1.4661 (16) 1.47048
C8—S1—C1 100.14 (6) 98.69028
C7—N1—C6 125.51 (10) 124.58623
C7—N1—C16 115.14 (10) 116.12685
C6—N1—C16 119.20 (10) 119.26679
C2—C1—C6 120.71 (12) 121.24260
C2—C1—S1 117.26 (10) 117.48822
C6—C1—S1 122.02 (10) 121.26667

Table 4. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −62249, 6662
E HOMO (eV) −8.2479
E LUMO (eV) −2.9115
Gap ΔE (eV) 5.3364
Dipole moment, μ (Debye) 3.4723
Ionization potential, I (eV) 8.2479
Electron affinity, A 2.9115
Electro negativity, χ 5.3364
Hardness, η 2.6682
Electrophilicity index, ω 5.8340
Softness, σ 0.3748
Fraction of electron transferred, ΔN 0.2662

Figure 8.

Figure 8

The energy band gap of the title compound.

Database survey  

A search in the Cambridge Structural Database (Groom et al., 2016; updated to June 2019) for compounds containing the fragment II (with R 1 = Ph and R 2 = C; see Scheme 2) gave 14 hits. With R 1 = Ph and R 2 = CH2C≡CH (IIa) (Sebbar et al., 2014a ), CH2COOH (IIb) (Sebbar et al., 2016c ), 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl (IIc) (Sebbar et al., 2016b ) and (3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl (IIf) (Sebbar et al., 2015b )] (Scheme 2), there are other examples with R 1 = 4-FC6H4 and R 2 = CH2C≡CH (IIa) (Hni et al., 2019a ), R 1 = 4-ClC6H4 and R 2 = CH2Ph2 (IId) (Ellouz et al., 2016c ), and R 1 = 2-ClC6H4 and R 2 = CH2C≡CH (IIa) (Sebbar et al., 2017) (Scheme 2). In all compounds, the configuration about the benzyl­idene-group C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite nonplanar, with the dihedral angle between the plane defined by the benzene ring plus the N and S atoms, and that defined by the N and S atoms and the other two C atoms separating them ranging from ca 29 (for IIa) to 36° (for IIf). The other two (IIa and IIc) have the benzo­thia­zine unit nearly planar, with corresponding dihedral angles of ca 3–4°.graphic file with name e-75-01650-scheme2.jpg

Synthesis and crystallization  

To a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (3.21 mmol), benzyl chloride (6.52 mmol) and potassium carbonate (6.51 mmol) in di­methyl­formamide (DMF; 17 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 82% yield.

Refinement  

The experimental details, including the crystal data, data collection and refinement, are summarized in Table 5. H atoms were located in a difference Fourier map and refined freely.

Table 5. Experimental details.

Crystal data
Chemical formula C22H15Cl2NOS
M r 412.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.0373 (7), 16.6798 (13), 12.511 (1)
β (°) 95.982 (2)
V3) 1875.6 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.25
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.59, 0.70
No. of measured, independent and observed [I > 2σ(I)] reflections 48886, 3847, 3650
R int 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.070, 1.05
No. of reflections 3847
No. of parameters 304
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.26

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Bruker, 2016).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013586/lh5925sup1.cif

e-75-01650-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013586/lh5925Isup2.hkl

e-75-01650-Isup2.hkl (306.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019013586/lh5925Isup3.cdx

CCDC references: 1957875, 1957875

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The support of NSF-MRI for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

Crystal data

C22H15Cl2NOS F(000) = 848
Mr = 412.31 Dx = 1.460 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 9.0373 (7) Å Cell parameters from 9943 reflections
b = 16.6798 (13) Å θ = 4.4–43.5°
c = 12.511 (1) Å µ = 4.25 mm1
β = 95.982 (2)° T = 150 K
V = 1875.6 (3) Å3 Block, colourless
Z = 4 0.14 × 0.13 × 0.09 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3847 independent reflections
Radiation source: INCOATEC IµS micro-focus source 3650 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.038
Detector resolution: 10.4167 pixels mm-1 θmax = 74.6°, θmin = 4.4°
ω scans h = −11→11
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −20→20
Tmin = 0.59, Tmax = 0.70 l = −15→15
48886 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 All H-atom parameters refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.6937P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3847 reflections Δρmax = 0.22 e Å3
304 parameters Δρmin = −0.26 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.32725 (3) 0.51603 (2) 0.51778 (3) 0.03318 (9)
Cl2 −0.08376 (4) 0.45362 (2) 0.78449 (3) 0.03443 (10)
S1 0.15102 (3) 0.21109 (2) 0.37534 (2) 0.02451 (9)
O1 0.29675 (11) 0.36735 (6) 0.18264 (8) 0.0318 (2)
N1 0.36671 (11) 0.23777 (6) 0.20360 (8) 0.0231 (2)
C1 0.29233 (13) 0.14621 (7) 0.34225 (10) 0.0235 (2)
C2 0.30706 (15) 0.07308 (8) 0.39669 (11) 0.0287 (3)
H2 0.2413 (19) 0.0621 (10) 0.4526 (14) 0.033 (4)*
C3 0.41257 (16) 0.01777 (8) 0.37140 (12) 0.0327 (3)
H3 0.4187 (18) −0.0323 (10) 0.4058 (13) 0.030 (4)*
C4 0.50780 (16) 0.03719 (8) 0.29531 (13) 0.0330 (3)
H4 0.579 (2) −0.0001 (12) 0.2780 (15) 0.042 (5)*
C5 0.49570 (15) 0.11045 (8) 0.24245 (11) 0.0285 (3)
H5 0.5655 (19) 0.1230 (11) 0.1921 (13) 0.035 (4)*
C6 0.38507 (13) 0.16533 (7) 0.26301 (10) 0.0233 (2)
C7 0.29726 (13) 0.30575 (7) 0.23567 (10) 0.0237 (2)
C8 0.22305 (13) 0.30312 (7) 0.33731 (10) 0.0223 (2)
C9 0.20587 (14) 0.37330 (7) 0.38765 (10) 0.0241 (2)
H9 0.2472 (18) 0.4183 (10) 0.3553 (13) 0.031 (4)*
C10 0.13615 (13) 0.38965 (7) 0.48567 (10) 0.0232 (2)
C11 0.18203 (13) 0.45583 (7) 0.55067 (10) 0.0239 (2)
C12 0.11763 (15) 0.47512 (8) 0.64272 (11) 0.0266 (3)
H12 0.152 (2) 0.5194 (11) 0.6845 (14) 0.040 (5)*
C13 0.00202 (14) 0.42783 (8) 0.67128 (10) 0.0261 (3)
C14 −0.04785 (15) 0.36229 (8) 0.61082 (11) 0.0283 (3)
H14 −0.130 (2) 0.3302 (11) 0.6306 (14) 0.038 (4)*
C15 0.01925 (15) 0.34384 (8) 0.51908 (11) 0.0271 (3)
H15 −0.019 (2) 0.3021 (11) 0.4758 (15) 0.042 (5)*
C16 0.43514 (15) 0.24544 (8) 0.10287 (10) 0.0261 (3)
H16A 0.4342 (18) 0.1915 (10) 0.0694 (13) 0.029 (4)*
H16B 0.3717 (18) 0.2771 (10) 0.0550 (13) 0.027 (4)*
C17 0.59004 (14) 0.28115 (7) 0.11411 (10) 0.0235 (2)
C18 0.65243 (16) 0.30239 (9) 0.02058 (11) 0.0311 (3)
H18 0.593 (2) 0.2943 (11) −0.0487 (15) 0.039 (5)*
C19 0.79411 (17) 0.33523 (9) 0.02566 (13) 0.0384 (3)
H19 0.835 (2) 0.3503 (12) −0.0383 (16) 0.050 (5)*
C20 0.87604 (17) 0.34739 (9) 0.12401 (14) 0.0382 (3)
H20 0.973 (2) 0.3695 (12) 0.1271 (15) 0.046 (5)*
C21 0.81497 (16) 0.32701 (8) 0.21707 (13) 0.0334 (3)
H21 0.874 (2) 0.3354 (11) 0.2875 (14) 0.040 (5)*
C22 0.67257 (15) 0.29448 (8) 0.21258 (11) 0.0273 (3)
H22 0.6283 (17) 0.2799 (9) 0.2793 (12) 0.024 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02604 (16) 0.03290 (17) 0.04160 (19) −0.00735 (12) 0.00829 (13) −0.00211 (13)
Cl2 0.03839 (18) 0.03495 (18) 0.03231 (17) 0.00967 (13) 0.01489 (13) 0.00164 (12)
S1 0.02266 (15) 0.02109 (15) 0.03075 (17) −0.00207 (11) 0.00738 (12) 0.00098 (11)
O1 0.0405 (5) 0.0264 (5) 0.0303 (5) 0.0018 (4) 0.0116 (4) 0.0066 (4)
N1 0.0226 (5) 0.0248 (5) 0.0224 (5) −0.0006 (4) 0.0050 (4) 0.0000 (4)
C1 0.0225 (6) 0.0217 (6) 0.0261 (6) −0.0018 (5) 0.0009 (5) −0.0017 (5)
C2 0.0297 (7) 0.0241 (6) 0.0321 (7) −0.0029 (5) 0.0017 (5) 0.0022 (5)
C3 0.0349 (7) 0.0215 (6) 0.0406 (8) 0.0005 (5) −0.0015 (6) 0.0025 (5)
C4 0.0295 (7) 0.0245 (6) 0.0446 (8) 0.0037 (5) 0.0022 (6) −0.0047 (6)
C5 0.0253 (6) 0.0267 (6) 0.0337 (7) −0.0007 (5) 0.0044 (5) −0.0047 (5)
C6 0.0225 (6) 0.0214 (6) 0.0255 (6) −0.0026 (5) 0.0004 (5) −0.0020 (5)
C7 0.0223 (6) 0.0241 (6) 0.0247 (6) −0.0015 (5) 0.0025 (5) 0.0010 (5)
C8 0.0194 (5) 0.0231 (6) 0.0246 (6) 0.0002 (4) 0.0034 (4) 0.0033 (4)
C9 0.0229 (6) 0.0224 (6) 0.0276 (6) 0.0000 (5) 0.0051 (5) 0.0036 (5)
C10 0.0228 (6) 0.0207 (6) 0.0265 (6) 0.0038 (5) 0.0041 (5) 0.0034 (4)
C11 0.0201 (6) 0.0224 (6) 0.0293 (6) 0.0025 (4) 0.0034 (5) 0.0033 (5)
C12 0.0259 (6) 0.0242 (6) 0.0293 (6) 0.0039 (5) 0.0015 (5) −0.0006 (5)
C13 0.0265 (6) 0.0260 (6) 0.0267 (6) 0.0083 (5) 0.0069 (5) 0.0042 (5)
C14 0.0279 (6) 0.0238 (6) 0.0350 (7) 0.0014 (5) 0.0111 (5) 0.0048 (5)
C15 0.0281 (6) 0.0222 (6) 0.0318 (7) −0.0001 (5) 0.0075 (5) 0.0002 (5)
C16 0.0273 (6) 0.0315 (7) 0.0196 (6) −0.0010 (5) 0.0033 (5) −0.0020 (5)
C17 0.0256 (6) 0.0215 (6) 0.0240 (6) 0.0032 (5) 0.0062 (5) 0.0002 (4)
C18 0.0344 (7) 0.0333 (7) 0.0271 (7) 0.0065 (6) 0.0104 (5) 0.0039 (5)
C19 0.0385 (8) 0.0330 (7) 0.0476 (9) 0.0061 (6) 0.0232 (7) 0.0101 (6)
C20 0.0270 (7) 0.0262 (7) 0.0630 (10) −0.0002 (5) 0.0123 (6) 0.0026 (6)
C21 0.0290 (7) 0.0262 (7) 0.0442 (8) −0.0002 (5) −0.0002 (6) −0.0042 (6)
C22 0.0294 (6) 0.0261 (6) 0.0265 (6) −0.0009 (5) 0.0042 (5) −0.0013 (5)

Geometric parameters (Å, º)

Cl1—C11 1.7357 (13) C10—C11 1.4076 (18)
Cl2—C13 1.7382 (13) C11—C12 1.3814 (18)
S1—C8 1.7525 (12) C12—C13 1.3854 (19)
S1—C1 1.7561 (13) C12—H12 0.940 (19)
O1—C7 1.2228 (16) C13—C14 1.3781 (19)
N1—C7 1.3759 (16) C14—C15 1.3874 (19)
N1—C6 1.4192 (16) C14—H14 0.971 (19)
N1—C16 1.4661 (16) C15—H15 0.928 (19)
C1—C2 1.3967 (18) C16—C17 1.5143 (18)
C1—C6 1.4000 (18) C16—H16A 0.993 (17)
C2—C3 1.387 (2) C16—H16B 0.945 (16)
C2—H2 0.981 (18) C17—C22 1.3899 (18)
C3—C4 1.387 (2) C17—C18 1.3965 (18)
C3—H3 0.938 (17) C18—C19 1.388 (2)
C4—C5 1.388 (2) C18—H18 0.979 (18)
C4—H4 0.94 (2) C19—C20 1.383 (2)
C5—C6 1.3990 (18) C19—H19 0.95 (2)
C5—H5 0.960 (18) C20—C21 1.382 (2)
C7—C8 1.4988 (17) C20—H20 0.95 (2)
C8—C9 1.3458 (18) C21—C22 1.392 (2)
C9—C10 1.4616 (17) C21—H21 0.993 (18)
C9—H9 0.948 (17) C22—H22 0.992 (16)
C10—C15 1.4024 (18)
Cl1···Cl1i 3.2439 (5) C6···C22 3.4830 (18)
Cl1···C14ii 3.4981 (14) C6···C12v 3.5828 (18)
Cl1···H9 2.647 (16) C7···C22 3.4391 (18)
Cl2···H19iii 2.96 (2) C10···C12ii 3.4871 (18)
Cl2···H9ii 3.044 (16) C14···C20iv 3.572 (2)
Cl2···H4iv 3.138 (18) C5···H16A 2.563 (16)
S1···Cl2v 3.5832 (5) C6···H22 2.904 (15)
S1···Cl2v 3.5832 (5) C8···H15 2.929 (18)
S1···N1 3.0801 (11) C16···H5 2.556 (18)
S1···C15 3.1625 (14) C17···H5 2.829 (18)
S1···C13v 3.6033 (13) C18···H3vi 2.998 (17)
S1···H15 2.578 (18) C21···H12i 2.845 (18)
O1···C17 3.2096 (16) H14···C20iv 2.964 (18)
O1···C4vi 3.3346 (17) H14···C21iv 2.899 (18)
O1···H9 2.406 (16) H14···C22iv 2.990 (18)
O1···H16B 2.345 (16) H15···C19iv 2.951 (18)
O1···H4vi 2.51 (2) H16B···S1v 2.852 (16)
N1···S1 3.0801 (11) H16B···C1v 2.973 (16)
N1···H22 2.552 (15) H18···C6v 2.934 (19)
C1···C12v 3.4639 (18) H5···H16A 2.16 (2)
C1···C13v 3.4372 (18) H12···H21i 2.46 (3)
C2···C12v 3.541 (2) H15···H21viii 2.51 (3)
C3···C3vii 3.485 (2) H16B···H18 2.51 (2)
C5···C22 3.4988 (19) H18···H22v 2.53 (2)
C5···C17 3.4201 (18)
C8—S1—C1 100.14 (6) C11—C12—C13 118.49 (12)
C7—N1—C6 125.51 (10) C11—C12—H12 120.1 (11)
C7—N1—C16 115.14 (10) C13—C12—H12 121.4 (11)
C6—N1—C16 119.20 (10) C14—C13—C12 121.49 (12)
C2—C1—C6 120.71 (12) C14—C13—Cl2 119.70 (10)
C2—C1—S1 117.26 (10) C12—C13—Cl2 118.79 (10)
C6—C1—S1 122.02 (10) C13—C14—C15 118.94 (12)
C3—C2—C1 120.17 (13) C13—C14—H14 120.9 (10)
C3—C2—H2 121.4 (10) C15—C14—H14 120.1 (10)
C1—C2—H2 118.5 (10) C14—C15—C10 122.24 (12)
C4—C3—C2 119.47 (13) C14—C15—H15 118.7 (12)
C4—C3—H3 120.7 (10) C10—C15—H15 118.9 (12)
C2—C3—H3 119.8 (10) N1—C16—C17 115.04 (10)
C3—C4—C5 120.59 (13) N1—C16—H16A 107.3 (9)
C3—C4—H4 119.6 (12) C17—C16—H16A 111.3 (9)
C5—C4—H4 119.7 (12) N1—C16—H16B 108.1 (10)
C4—C5—C6 120.71 (13) C17—C16—H16B 109.4 (10)
C4—C5—H5 118.7 (10) H16A—C16—H16B 105.2 (13)
C6—C5—H5 120.6 (11) C22—C17—C18 118.42 (12)
C5—C6—C1 118.24 (12) C22—C17—C16 123.41 (11)
C5—C6—N1 120.50 (11) C18—C17—C16 118.16 (12)
C1—C6—N1 121.26 (11) C19—C18—C17 120.85 (14)
O1—C7—N1 120.68 (11) C19—C18—H18 120.7 (11)
O1—C7—C8 120.54 (11) C17—C18—H18 118.5 (11)
N1—C7—C8 118.78 (10) C20—C19—C18 120.29 (14)
C9—C8—C7 117.09 (11) C20—C19—H19 119.3 (12)
C9—C8—S1 124.79 (10) C18—C19—H19 120.4 (12)
C7—C8—S1 117.88 (9) C21—C20—C19 119.32 (14)
C8—C9—C10 129.48 (12) C21—C20—H20 120.6 (11)
C8—C9—H9 114.8 (10) C19—C20—H20 120.1 (11)
C10—C9—H9 115.7 (10) C20—C21—C22 120.69 (14)
C15—C10—C11 116.15 (11) C20—C21—H21 119.2 (11)
C15—C10—C9 123.53 (12) C22—C21—H21 120.1 (11)
C11—C10—C9 120.29 (11) C17—C22—C21 120.43 (13)
C12—C11—C10 122.68 (12) C17—C22—H22 118.7 (9)
C12—C11—Cl1 117.23 (10) C21—C22—H22 120.9 (9)
C10—C11—Cl1 120.08 (10)
C8—S1—C1—C2 155.71 (10) S1—C8—C9—C10 4.6 (2)
C8—S1—C1—C6 −25.73 (11) C8—C9—C10—C15 −29.8 (2)
C6—C1—C2—C3 −1.12 (19) C8—C9—C10—C11 152.34 (13)
S1—C1—C2—C3 177.47 (10) C15—C10—C11—C12 0.42 (18)
C1—C2—C3—C4 3.0 (2) C9—C10—C11—C12 178.46 (11)
C2—C3—C4—C5 −1.7 (2) C15—C10—C11—Cl1 179.25 (9)
C3—C4—C5—C6 −1.5 (2) C9—C10—C11—Cl1 −2.71 (16)
C4—C5—C6—C1 3.35 (19) C10—C11—C12—C13 −0.78 (19)
C4—C5—C6—N1 −175.72 (12) Cl1—C11—C12—C13 −179.64 (9)
C2—C1—C6—C5 −2.05 (18) C11—C12—C13—C14 0.72 (19)
S1—C1—C6—C5 179.43 (9) C11—C12—C13—Cl2 −177.88 (9)
C2—C1—C6—N1 177.02 (11) C12—C13—C14—C15 −0.33 (19)
S1—C1—C6—N1 −1.50 (17) Cl2—C13—C14—C15 178.27 (10)
C7—N1—C6—C5 −158.93 (12) C13—C14—C15—C10 0.0 (2)
C16—N1—C6—C5 16.29 (17) C11—C10—C15—C14 0.00 (19)
C7—N1—C6—C1 22.03 (18) C9—C10—C15—C14 −177.97 (12)
C16—N1—C6—C1 −162.76 (11) C7—N1—C16—C17 84.01 (14)
C6—N1—C7—O1 174.42 (12) C6—N1—C16—C17 −91.69 (14)
C16—N1—C7—O1 −0.96 (17) N1—C16—C17—C22 9.68 (18)
C6—N1—C7—C8 −5.15 (18) N1—C16—C17—C18 −169.73 (11)
C16—N1—C7—C8 179.46 (10) C22—C17—C18—C19 0.7 (2)
O1—C7—C8—C9 −23.67 (18) C16—C17—C18—C19 −179.87 (13)
N1—C7—C8—C9 155.91 (11) C17—C18—C19—C20 0.1 (2)
O1—C7—C8—S1 150.91 (10) C18—C19—C20—C21 −0.4 (2)
N1—C7—C8—S1 −29.52 (15) C19—C20—C21—C22 0.1 (2)
C1—S1—C8—C9 −145.73 (11) C18—C17—C22—C21 −1.06 (19)
C1—S1—C8—C7 40.15 (10) C16—C17—C22—C21 179.53 (12)
C7—C8—C9—C10 178.71 (12) C20—C21—C22—C17 0.7 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x−1, −y+1/2, z+1/2; (v) x, −y+1/2, z−1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, −y, −z+1; (viii) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1ix 0.936 (19) 2.51 (2) 3.3346 (17) 147.7 (15)
C16—H16B···S1v 0.945 (16) 2.852 (16) 3.7011 (13) 149.9 (12)
C3—H3···Cg4ix 0.938 (17) 2.901 (17) 3.6428 (15) 136.8 (13)
C14—H14···Cg4x 0.971 (19) 2.710 (18) 3.5593 (15) 146.8 (14)
C18—H18···Cg1xi 0.979 (18) 2.969 (18) 3.6759 (16) 130.0 (13)

Symmetry codes: (v) x, −y+1/2, z−1/2; (ix) −x+1, y−1/2, −z+1/2; (x) x−1, −y−1/2, z−1/2; (xi) x, −y−1/2, z−3/2.

Funding Statement

This work was funded by NSF-MRI grant 1228232. Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to TH.

References

  1. Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.
  8. Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.
  9. Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.
  10. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.
  11. Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. [DOI] [PMC free article] [PubMed]
  12. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.
  13. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  14. Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106. [DOI] [PubMed]
  15. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  16. Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.
  17. Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.
  18. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  19. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  20. Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. [DOI] [PMC free article] [PubMed]
  21. Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
  22. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.
  23. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  24. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  25. Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
  26. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  27. Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. [DOI] [PubMed]
  28. Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. [DOI] [PMC free article] [PubMed]
  29. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
  30. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCrData, 1, x161012.
  31. Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.
  32. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.
  33. Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.
  34. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  38. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  39. Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. [DOI] [PubMed]
  40. Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376. [PubMed]
  41. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  42. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  43. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  44. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  45. Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, 2006, 591–593.
  46. Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.
  47. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013586/lh5925sup1.cif

e-75-01650-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013586/lh5925Isup2.hkl

e-75-01650-Isup2.hkl (306.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019013586/lh5925Isup3.cdx

CCDC references: 1957875, 1957875

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES