Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Oct 31;75(Pt 11):1734–1737. doi: 10.1107/S2056989019014130

Crystal structure and Hirshfeld surface analysis of (E)-6-(4-hy­droxy-3-meth­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one

Said Daoui a,*, Cemile Baydere b, Fouad El Kalai a, Rafik Saddik c, Necmi Dege b, Khalid Karrouchi d, Noureddine Benchat a
PMCID: PMC6829713  PMID: 31709099

In the title com­pound, inter­molecular C—H⋯O, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Keywords: crystal structure, hydrogen bonding, Hirshfeld surface analysis, pyridazine

Abstract

In the title com­pound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R 2 2(8) motifs. These types of inter­actions lead to the formation of layers parallel to (12Inline graphic). The three-dimensional network is achieved by C—H⋯O inter­actions, including R 2 4(8) motifs. Inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π inter­actions and aromatic π–π stacking inter­actions are not observed.

Chemical context  

For decades the chemistry of pyridazinones has been an inter­esting field. This nitro­gen heterocycle became a scaffold of choice for the development of potential drug candidates (Akhtar et al., 2016; Dubey & Bhosle, 2015) because pyridazinone and its substituted derivatives are important pharmacophores possessing many different biological applications (Asif, 2014). Such com­pounds are used as anti-HIV (Livermore et al., 1993), anti­microbial (Sönmez et al., 2006), anti­convulsant (Partap et al., 2018), anti­hypertensive (Siddiqui et al., 2011), anti­depressant (Boukharsa et al., 2016), analgesic (Gökçe et al., 2009), anti-inflammatory (Barberot et al., 2018), anti­histaminic (Tao et al. 2012), cardiotonic (Wang et al., 2008) and herbicidal agents (Asif, 2013) or as glucan synthase inhibitors (Zhou et al., 2011).graphic file with name e-75-01734-scheme1.jpg

In continuation of our studies related to mol­ecular structures and Hirshfeld surface analysis of new heterocyclic derivatives (Daoui et al., 2019a ,b ; El Kalai et al., 2019; Karrouchi et al., 2015), we report herein on the synthesis, mol­ecular and crystal structures of (E)-6-(4-hy­droxy-3-meth­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one, as well as an analysis of the Hirshfeld surfaces.

Structural commentary  

In the title mol­ecule (Fig. 1), the configuration relative to the double bond at C5 and C6 is E. The dihydropyridazine ring has a screw-boat conformation, with an r.m.s. deviation of 0.166 Å for the ring atoms, with the maximum deviation from the ring being 0.178 (3) Å for the C3 atom; the C2 atom lies −0.177 (3) Å out of the plane in the opposite direction relative to the C3 atom. The dihedral angle between the dihydropyridazine ring mean plane and the benzene ring (C7–C12) is 0.77 (12)°, indicating an almost planar conformation of the molecule favouring delocalization over the C4—C5=C6—C7 bridge.

Figure 1.

Figure 1

The mol­ecular structure of the title com­pound. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are stacked in rows parallel to [100]. Notably, no significant C—H⋯π or π–π inter­actions are observed. O2—H2⋯O1i hydrogen bonds between the phenolic OH group and the carbonyl O atom of a neighbouring mol­ecule generate C(5) chains extending parallel to [101]. Likewise, N1—H1⋯O1ii hydrogen bonds between the N—H function of the di­hydro­pyridazine ring and the carbonyl O atom generate centrosymmetric dimers with an Inline graphic(8) motif. The two types of hydrogen bonding result in the formation of layers parallel to (12Inline graphic). A three-dimensional supra­molecular network is eventually formed through inter­molecular C13—H13A⋯O2iii and C13—H13C⋯O2iv hydrogen bonds with Inline graphic(8) motifs (Fig. 2 and Table 1).

Figure 2.

Figure 2

The crystal packing of the title com­pound, with N—H⋯O, O—H⋯O and C—H⋯O inter­actions shown as blue, green and black dashed lines, respectively.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.86 2.671 (2) 168
N1—H1⋯O1ii 0.86 2.02 2.875 (3) 170
C13—H13A⋯O2iii 0.96 2.51 3.465 (3) 172
C13—H13C⋯O2iv 0.96 2.57 3.489 (4) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one (CSD refcode TADQUL; Abourichaa et al., 2003) and (R)-(−)-6-(4-amino­phen­yl)-5-methyl-4,5-di­hydro­pyridazin-3(2H)-one (ADIGOK; Zhang et al., 2006). In the structure of TADQUL, the di­hydro­pyridazine ring adopts a half-chair conformation, with atoms C1, N2, N3 and C4 in a common plane, with C5 0.222 (2) Å and C6 0.262 (2) Å on opposite sides of this plane. The plane is almost coplanar with the 4-aminophenyl ring, the dihedral angle between the two planes being 1.73 (9) Å. In the crystal, hydrogen-bonded centrosymmetric dimers are observed. The O1=C1 bond length is 1.2316 (14) Å. The N3—C4, N2—N3 and N2—C1 bond lengths are 1.3464 (15), 1.3877 (14) and 1.2830 (15) Å, respectively. In the structure of ADIGOK, the asymmetric unit consists of two mol­ecules of the same enanti­omer, and the crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Hirshfeld surface analysis  

Hirshfeld surface analysis was used to qu­antify the inter­molecular inter­actions of the title com­pound, using CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surface analysis was planned using a standard (high) surface resolution with the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.7021 (red) to 2.2382 a.u. (blue). The surfaces mapped over relevant inter­molecular contacts are illustrated in Fig. 3. The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H inter­actions in Figs. 4(a)–(e), respectively. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H contacts are illustrated in Figs. 5(a)–(f), respectively. The largest inter­action is that of H⋯H, contributing 43.3% to the overall crystal packing. H⋯C/C⋯H contacts add a 19.3% contribution to the Hirshfeld surface, with the tips at d e + d i ∼ 2.72 Å. H⋯O/O⋯H contacts make a 22.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region d e + d i ∼ 2.70 Å in the fingerprint plot. H⋯O/O⋯H inter­actions arise from inter­molecular O—H⋯O hydrogen bonding and C—H⋯O contacts. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. C⋯N/N⋯C of 3.0% and H⋯N/N⋯H of 5.8%.

Figure 3.

Figure 3

(a) d norm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions, (b) d e mapped on the surface, (c) shape-index map of the title com­pound and (d) curvedness map of the title com­pound using a range from −4 to 4 Å.

Figure 4.

Figure 4

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/ C⋯H, (c) H⋯O/O⋯H, (d) C⋯N/N⋯C and (e) H⋯N/N⋯H inter­actions.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/ C⋯H, (d) H⋯O/O⋯H, (e) C⋯N/N⋯C and (f) H⋯N/N⋯H inter­actions.

Synthesis and crystallization  

To a solution of 6-(4-hy­droxy-3-meth­oxy­phen­yl)-4-oxohex-5-enoic acid (0.25 g, 1 mmol) in 20 ml of ethanol, an equimolar amount of hydrazine hydrate was added. The mixture was maintained under reflux until thin-layer chromatography (TLC) indicated the end of the reaction. After cooling, the precipitate which formed was filtered off, washed with ethanol and recrystallized from ethanol. Slow evaporation at room temperature led to the formation of single crystals of the title com­pound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on C atoms were placed in idealized positions and refined as riding, with C—H = 0.93–0.97 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise. The NH and OH hydrogens were located in a difference Fourier map and were constrained with N—H = 0.86 Å and U iso(H) = 1.2U eq(N), and O—H = 0.86 Å and U iso(H) = 1.5U eq(O), using a riding model.

Table 2. Experimental details.

Crystal data
Chemical formula C13H14N2O3
M r 246.26
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 6.0828 (9), 9.4246 (13), 11.1724 (16)
α, β, γ (°) 75.838 (11), 83.099 (12), 84.059 (11)
V3) 614.70 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.72 × 0.39 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.944, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 6563, 2426, 1506
R int 0.054
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.147, 1.00
No. of reflections 2426
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), Mercury (Macrae et al., 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b ) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019014130/wm5521sup1.cif

e-75-01734-sup1.cif (334.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014130/wm5521Isup3.hkl

e-75-01734-Isup3.hkl (194.3KB, hkl)

CCDC references: 1959568, 1959568

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C13H14N2O3 Z = 2
Mr = 246.26 F(000) = 260
Triclinic, P1 Dx = 1.330 Mg m3
a = 6.0828 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4246 (13) Å Cell parameters from 13077 reflections
c = 11.1724 (16) Å θ = 2.2–30.7°
α = 75.838 (11)° µ = 0.10 mm1
β = 83.099 (12)° T = 293 K
γ = 84.059 (11)° Prism, yellow
V = 614.70 (16) Å3 0.72 × 0.39 × 0.16 mm

Data collection

Stoe IPDS 2 diffractometer 1506 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.054
rotation method scans θmax = 26.0°, θmin = 2.2°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −7→7
Tmin = 0.944, Tmax = 0.989 k = −11→11
6563 measured reflections l = −13→13
2426 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0747P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2426 reflections Δρmax = 0.17 e Å3
165 parameters Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7518 (3) 0.88682 (19) 0.99156 (15) 0.0601 (5)
O3 0.4960 (3) 0.58008 (19) 0.11563 (16) 0.0614 (5)
O2 0.1290 (3) 0.7317 (2) 0.05778 (16) 0.0636 (5)
H2 0.016474 0.786724 0.044599 0.095*
N1 0.4947 (3) 0.9323 (2) 0.85757 (17) 0.0525 (5)
H1 0.429651 0.995567 0.896673 0.063*
N2 0.3918 (3) 0.9139 (2) 0.75870 (17) 0.0519 (5)
C9 0.3982 (4) 0.6576 (2) 0.1986 (2) 0.0497 (6)
C5 0.3927 (4) 0.8291 (3) 0.5807 (2) 0.0506 (6)
H5 0.252921 0.878478 0.572201 0.061*
C1 0.6829 (4) 0.8631 (3) 0.8987 (2) 0.0492 (6)
C4 0.5043 (4) 0.8412 (2) 0.6851 (2) 0.0472 (6)
C8 0.4803 (4) 0.6645 (3) 0.3066 (2) 0.0521 (6)
H8 0.616062 0.614251 0.326018 0.062*
C11 0.0780 (4) 0.8118 (3) 0.2494 (2) 0.0538 (6)
H11 −0.059111 0.860442 0.230853 0.065*
C7 0.3664 (4) 0.7445 (2) 0.3875 (2) 0.0496 (6)
C10 0.1954 (4) 0.7364 (2) 0.1681 (2) 0.0487 (6)
C6 0.4707 (4) 0.7544 (3) 0.4962 (2) 0.0549 (6)
H6 0.607897 0.702171 0.507391 0.066*
C12 0.1607 (4) 0.8164 (3) 0.3580 (2) 0.0552 (6)
H12 0.078822 0.867751 0.411814 0.066*
C13 0.7007 (4) 0.4965 (3) 0.1419 (3) 0.0614 (7)
H13A 0.745228 0.441469 0.079994 0.092*
H13B 0.682204 0.430200 0.222071 0.092*
H13C 0.812721 0.561367 0.141331 0.092*
C2 0.7972 (5) 0.7565 (3) 0.8299 (3) 0.0694 (8)
H2A 0.761992 0.658432 0.875007 0.083*
H2B 0.956271 0.761159 0.827335 0.083*
C3 0.7375 (4) 0.7807 (3) 0.7002 (2) 0.0673 (8)
H3A 0.836608 0.847839 0.645178 0.081*
H3B 0.760060 0.688125 0.675416 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0632 (11) 0.0804 (12) 0.0479 (10) 0.0136 (8) −0.0292 (8) −0.0331 (8)
O3 0.0642 (11) 0.0739 (11) 0.0579 (10) 0.0218 (8) −0.0273 (9) −0.0392 (9)
O2 0.0633 (12) 0.0859 (13) 0.0537 (10) 0.0146 (9) −0.0326 (9) −0.0349 (9)
N1 0.0536 (12) 0.0686 (13) 0.0448 (11) 0.0094 (9) −0.0204 (9) −0.0299 (10)
N2 0.0510 (12) 0.0670 (13) 0.0450 (11) 0.0068 (9) −0.0213 (9) −0.0237 (10)
C9 0.0569 (14) 0.0515 (13) 0.0479 (13) 0.0029 (11) −0.0190 (11) −0.0217 (11)
C5 0.0550 (14) 0.0602 (14) 0.0422 (12) 0.0029 (11) −0.0196 (11) −0.0185 (11)
C1 0.0539 (14) 0.0552 (14) 0.0427 (12) 0.0056 (11) −0.0182 (11) −0.0172 (11)
C4 0.0524 (14) 0.0522 (13) 0.0416 (12) 0.0007 (10) −0.0152 (11) −0.0168 (10)
C8 0.0533 (14) 0.0584 (14) 0.0511 (14) 0.0074 (11) −0.0248 (12) −0.0207 (11)
C11 0.0495 (13) 0.0675 (15) 0.0506 (14) 0.0090 (11) −0.0211 (11) −0.0237 (12)
C7 0.0579 (14) 0.0565 (14) 0.0412 (12) 0.0011 (11) −0.0181 (11) −0.0204 (11)
C10 0.0540 (14) 0.0560 (14) 0.0432 (13) −0.0004 (11) −0.0192 (11) −0.0202 (11)
C6 0.0601 (15) 0.0640 (15) 0.0467 (13) 0.0033 (12) −0.0229 (12) −0.0197 (12)
C12 0.0558 (15) 0.0681 (15) 0.0490 (14) 0.0056 (12) −0.0149 (12) −0.0274 (12)
C13 0.0656 (16) 0.0634 (15) 0.0600 (16) 0.0144 (12) −0.0203 (13) −0.0248 (13)
C2 0.0734 (18) 0.0867 (19) 0.0599 (16) 0.0316 (14) −0.0365 (14) −0.0406 (14)
C3 0.0576 (16) 0.098 (2) 0.0593 (16) 0.0136 (14) −0.0231 (13) −0.0423 (15)

Geometric parameters (Å, º)

O1—C1 1.241 (3) C8—H8 0.9300
O3—C9 1.362 (3) C11—C10 1.377 (3)
O3—C13 1.424 (3) C11—C12 1.379 (3)
O2—C10 1.355 (2) C11—H11 0.9300
O2—H2 0.8200 C7—C12 1.396 (3)
N1—C1 1.331 (3) C7—C6 1.462 (3)
N1—N2 1.387 (2) C6—H6 0.9300
N1—H1 0.8600 C12—H12 0.9300
N2—C4 1.288 (3) C13—H13A 0.9600
C9—C8 1.378 (3) C13—H13B 0.9600
C9—C10 1.406 (3) C13—H13C 0.9600
C5—C6 1.327 (3) C2—C3 1.493 (3)
C5—C4 1.451 (3) C2—H2A 0.9700
C5—H5 0.9300 C2—H2B 0.9700
C1—C2 1.480 (3) C3—H3A 0.9700
C4—C3 1.486 (3) C3—H3B 0.9700
C8—C7 1.394 (3)
C9—O3—C13 117.98 (17) O2—C10—C11 124.3 (2)
C10—O2—H2 109.5 O2—C10—C9 116.1 (2)
C1—N1—N2 127.3 (2) C11—C10—C9 119.54 (19)
C1—N1—H1 116.4 C5—C6—C7 127.7 (2)
N2—N1—H1 116.4 C5—C6—H6 116.1
C4—N2—N1 117.42 (18) C7—C6—H6 116.1
O3—C9—C8 126.0 (2) C11—C12—C7 120.5 (2)
O3—C9—C10 115.23 (18) C11—C12—H12 119.8
C8—C9—C10 118.8 (2) C7—C12—H12 119.8
C6—C5—C4 126.4 (2) O3—C13—H13A 109.5
C6—C5—H5 116.8 O3—C13—H13B 109.5
C4—C5—H5 116.8 H13A—C13—H13B 109.5
O1—C1—N1 120.4 (2) O3—C13—H13C 109.5
O1—C1—C2 123.3 (2) H13A—C13—H13C 109.5
N1—C1—C2 116.36 (19) H13B—C13—H13C 109.5
N2—C4—C5 115.5 (2) C1—C2—C3 114.4 (2)
N2—C4—C3 122.97 (19) C1—C2—H2A 108.7
C5—C4—C3 121.5 (2) C3—C2—H2A 108.7
C9—C8—C7 122.0 (2) C1—C2—H2B 108.7
C9—C8—H8 119.0 C3—C2—H2B 108.7
C7—C8—H8 119.0 H2A—C2—H2B 107.6
C10—C11—C12 121.0 (2) C4—C3—C2 113.3 (2)
C10—C11—H11 119.5 C4—C3—H3A 108.9
C12—C11—H11 119.5 C2—C3—H3A 108.9
C8—C7—C12 118.02 (19) C4—C3—H3B 108.9
C8—C7—C6 118.9 (2) C2—C3—H3B 108.9
C12—C7—C6 123.1 (2) H3A—C3—H3B 107.7
C1—N1—N2—C4 −12.5 (4) O3—C9—C10—O2 −3.3 (3)
C13—O3—C9—C8 0.8 (3) C8—C9—C10—O2 176.6 (2)
C13—O3—C9—C10 −179.3 (2) O3—C9—C10—C11 176.6 (2)
N2—N1—C1—O1 −177.3 (2) C8—C9—C10—C11 −3.5 (4)
N2—N1—C1—C2 1.2 (4) C4—C5—C6—C7 −177.5 (2)
N1—N2—C4—C5 −177.97 (19) C8—C7—C6—C5 177.4 (3)
N1—N2—C4—C3 −1.5 (3) C12—C7—C6—C5 0.0 (4)
C6—C5—C4—N2 −176.7 (3) C10—C11—C12—C7 0.2 (4)
C6—C5—C4—C3 6.8 (4) C8—C7—C12—C11 −2.2 (4)
O3—C9—C8—C7 −178.7 (2) C6—C7—C12—C11 175.2 (2)
C10—C9—C8—C7 1.4 (4) O1—C1—C2—C3 −159.6 (3)
C9—C8—C7—C12 1.4 (4) N1—C1—C2—C3 21.9 (4)
C9—C8—C7—C6 −176.1 (2) N2—C4—C3—C2 23.8 (4)
C12—C11—C10—O2 −177.4 (2) C5—C4—C3—C2 −160.0 (2)
C12—C11—C10—C9 2.7 (4) C1—C2—C3—C4 −32.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.86 2.671 (2) 168
N1—H1···O1ii 0.86 2.02 2.875 (3) 170
C13—H13A···O2iii 0.96 2.51 3.465 (3) 172
C13—H13C···O2iv 0.96 2.57 3.489 (4) 159

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z; (iv) x+1, y, z.

References

  1. Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o802–o803.
  2. Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. [DOI] [PubMed]
  3. Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.
  4. Asif, M. (2014). Rev. Med. Chem. 14, 1093–1103. [DOI] [PubMed]
  5. Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., SAPI, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. [DOI] [PubMed]
  6. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  7. Daoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352–1356. [DOI] [PMC free article] [PubMed]
  8. Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1030–1034. [DOI] [PMC free article] [PubMed]
  9. Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.
  10. El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895. [DOI] [PMC free article] [PubMed]
  11. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  12. Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. [DOI] [PMC free article] [PubMed]
  15. Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. [DOI] [PubMed]
  16. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  17. Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. [DOI] [PubMed]
  21. Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. [DOI] [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  24. Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. [DOI] [PubMed]
  25. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  26. Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. [DOI] [PubMed]
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999–o3000.
  29. Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019014130/wm5521sup1.cif

e-75-01734-sup1.cif (334.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019014130/wm5521Isup3.hkl

e-75-01734-Isup3.hkl (194.3KB, hkl)

CCDC references: 1959568, 1959568

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES