A 1:1 epimeric mixture of 2(R,S)-(4-nitrophenyl)-3-[(4-nitrobenzylidene)amino]-5(S)-(propan-2-yl)imidazolidin-4-one was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine moiety to provide a 4-nitrobenzylidine derivative, followed by a cyclization reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring.
Keywords: crystal structure, Hirshfeld surface analysis, PIXEL calculations, epimeric mixture
Abstract
A 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxobutanehydrazine and 4-nitrobenzaldehyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine group to provide a 4-nitrobenzylidene derivative, followed by a cyclization reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbonyl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π interactions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.
Chemical context
Imidazolidin-4-ones have been widely studied (Blackmore & Thompson, 2011 ▸) due to their wide range of uses, for example, as chiral ligands in catalysis (Lin et al., 2013 ▸; Mondini et al., 2013 ▸; Seebach et al., 2008 ▸; Puglisi et al., 2013 ▸) and for their biological activities (Elrod & Worley, 1999 ▸; Gomes et al., 2004 ▸; Guerra et al., 2011 ▸; Barrow et al., 2007 ▸). As a consequence of their utility, there are a number of well-established synthetic routes, in particular those involving chiral synthesis (Blackmore & Thompson, 2011 ▸; Eyilcim et al., 2018 ▸; Li et al., 2004 ▸; Vale et al., 2008 ▸, 2009 ▸; Catalano et al., 2011 ▸; Xu et al., 2010 ▸). As part of our studies on nitrogen-containing heterocyclic compounds, we report the crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, 1.
Structural commentary
The title compound, 1, contains one molecule each of the epimers in the asymmetric unit. The 3-[(4-nitrobenzylidene)amino]-2(S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolA and the 3-[(4-nitrobenzylidene)amino]-2(R)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolB (see Figs. 1 ▸ a and 1b). In MolA, the configurations at atoms C12 and C14 are S. In MolB, the configurations at atoms C12 and C14 are R and S, respectively (Fig. 1 ▸). The asymmetric unit is shown in Fig. 1 ▸(c).
Figure 1.
Compound 1, showing the molecular structures and numbering schemes for (a) MolA and (b) MolB. Displacement ellipsoids are drawn at the 50% probability level. (c) The asymmetric unit containing MolA and MolB, with rings designated as A, B and C.
In both molecules, the imidazoline rings are puckered, the puckers in each case being a twist at C12—N13 and C22—N23 in MolA and MolB, respectively. In the case of MolA, the Cremer & Pople puckering parameters (Cremer & Pople, 1975 ▸) are Q(2) of 0.287 (2)Å and φ(2) of 54.7 (5)° for reference bond N11—C12; for MolB, Q(2) is 0.103 (3)Å and φ(2) is 230.3 (15)° for reference bond N21—C22. In MolA, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C121) is 45.83 (18)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 28.04 (12)° and between the two benzene rings is 69.86 (11)°. In MolB, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C221) is 59.83 (13)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 6.86 (13)° and between the two benzene rings is 66.38 (11).
Supramolecular features
Intermolecular interactions and contacts
As seen, each of the molecules of the asymmetric unit (Fig. 1 ▸ c) has two nitro groups, whose O atoms can act as acceptors for hydrogen bonding, and three rings that are able to participate in π–π stacking. Fig. 1 ▸(c) shows the two molecules labelled for the nitro O atom and the oxo atoms (O15 and O25), as well as the identification of ring A (benzene rings with pivot atoms C131 and C231), B (benzene rings with pivot atoms C121 and C221) and C (imidazoline rings).
A PLATON analysis (Spek, 2009 ▸) indicates the possibility in 1 of N—H⋯O(nitro), C—H⋯O(nitro) and C—H⋯O(oxo) hydrogen bonds, and C—H⋯π, N—O⋯π and π–π intermolecular interactions. All details of the hydrogen bonding (molecular contacts) and π–π stacking are given in Tables 1 ▸ and 2 ▸, respectively. Noticeable among these is the three-centred hydrogen bond between N23 in MolB and the nitro-group atoms O128/O129 in MolA (symmetry code: x + 1, y − 1, z + 1), which generate chains running parallel to the [1
1] direction. Within the chosen asymmetric unit (see Fig. 1 ▸
c), the benzene rings with pivot atoms C131 and C231 are π–π stacked, forming a dimer. This stacking is supplemented by the C22—H22⋯O139, C243—H24D⋯O138 and C12—H12⋯O239 weak hydrogen bonds. Details are given in Tables 1 ▸ and 2 ▸. Such π–π-linked dimers are linked by further π–π interactions, forming a π–π stacked column, which extends along the a axis by unit translation (see Table 2 ▸). The C122—H122⋯O129 and C224—H224⋯O229 weak hydrogen bonds
supplement the interdimer π–π stacking (Fig. 2 ▸). These π–π-stacked dimers are also linked by the N23—H23⋯O128/O129 hydrogen bond described above; this interaction creates chains, which propagate parallel to the [1
1] direction (Fig. 3 ▸, see Table 1 ▸ for details). The C112—H112⋯ O15 and C212—H21⋯O25 are possible intramolecular hydrogen bonds. The C133—H133⋯O15(x, y − 1, z) and C233—H233⋯O25(x, y − 1, z) hydrogen bonds, found by PLATON, separately create C(9) chains that propagate in the direction of the b axis. There is one intermolecular C—H⋯π interaction involving C143—H14A⋯Cg2(x, y + 1, z) [Cg2 is the centroid of the benzene ring with pivot atom C121(x, y + 1, z)], with an H⋯Cg2 distance of 2.95°, an angle at H of 128° and a C143⋯Cg2 distance of 3.638 (3)°.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N23—H23⋯O128i | 0.89 (4) | 2.55 (4) | 3.338 (3) | 147 (3) |
| N23—H23⋯O129i | 0.89 (4) | 2.36 (4) | 3.202 (3) | 159 (3) |
| C112—H112⋯O15 | 0.95 | 2.30 | 2.822 (3) | 114 |
| C212—H212⋯O25 | 0.95 | 2.16 | 2.832 (3) | 127 |
| C133—H133⋯O15ii | 0.95 | 2.29 | 3.154 (3) | 151 |
| C233—H233⋯O25iii | 0.95 | 2.36 | 3.141 (3) | 139 |
| C243—H24D⋯O138 | 0.98 | 2.52 | 3.480 (3) | 165 |
| C122—H122⋯O129iv | 0.95 | 2.48 | 3.212 (3) | 134 |
| C222—H222⋯O229v | 0.95 | 2.60 | 3.297 (3) | 131 |
| C226—H226⋯O139iv | 0.95 | 2.57 | 3.197 (3) | 124 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Table 2. Analysis of short ring interactions with the Cg–Cg distances.
| Cg(I) | Cg(J) | Cg–Cg | Slippage |
|---|---|---|---|
| Cg3 | Cg6(x − 1, y, z) | 3.6278 (13) | 1.394 |
| Cg3 | Cg6(x, y, z) | 3.7548 (13) | 1.772 |
| Cg6 | Cg3(x + 1, y, z) | 3.6277 (13) | 1.433 |
| Cg6 | Cg3(x, y, z) | 3.7548 (13) | 1.672 |
Notes: Cg(I) = plane number I, Cg–Cg = distance between ring centroids (Å), slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Å). Cg3 and Cg6 are the centroids of the rings with pivot atoms C131 and C231, respectively.
Figure 2.
Dimers of π–π stacked MolA and MolB, which comprise the asymmetric unit, further linked by π–π interactions extending the chain by unit translation along the a axis. The π–π interactions are augmented by C—H⋯O hydrogen bonds.
Figure 3.
Part of a chain of molecules linked by N23⋯·O128/129 hydrogen bonds connect the asymmetric unit dimers into a chain. Only the atoms in the N23⋯O128/O129 three-centred hydrogen bond are labelled for clarity.
Hirshfeld surface and quantitative analyses of intermolecular interactions
Hirshfeld surfaces (Spackman & Jayatilaka, 2009 ▸) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002 ▸) provide complementary information concerning the intermolecular interactions deduced from the PLATON analysis. The Hirshfeld analysis, generated using CrystalExplorer (Version 3.1; Wolff et al., 2012 ▸) and mapped over d norm (ranging from −0.329 to 1.708), indicated red areas related to specific intermolecular short contacts (see Figs. 4 ▸–7 ▸ ▸ ▸).
Figure 4.
Interactions connecting molecule pairs I and II, and a view of the Hirsfeld surface.
Figure 5.
Top: interactions connecting molecule pair III and a view of the Hirshfeld surface. Middle: interactions connecting molecule pair IV and a view of the Hirshfeld surface. Bottom: interactions connecting molecule pair V and a view of the Hirshfeld surface.
Figure 6.
Molecular pairs involved in substructures VI and VII, made by the green stick molecule at (x, y, z) with the [colour missing?] colour atoms molecules at (−x, y + 1, z + 1) (VI) and (x, y − 1, z) (VII). The grey molecule in pair VI is considered to act as the conduit for electronic interactions, while in pair VII, the conduit is considered to be MolB (blue) of the asymmetric unit.
Figure 7.
The molecular pairs involved in substructures VII and IX. The figure also depicts the Hirshfeld surface images.
Briefly, the Hirshfeld surface analysis revealed that in MolA all the O atoms participate in hydrogen bonding, but in MolB only three do, the exception being O238 in ring A. A summary of these interactions is made in Table 3 ▸. Carbonyl atoms O15 or O25 of heterocyclic ring C and nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two similar molecules, i.e. MolA⋯MolA or MolB⋯MolB. Those pairs interact in a similar way. All the nitro-group O atoms of MolA (O128, O129, O138 and O139) act as acceptors for H atoms of MolB.
Table 3. Summary of the hydrogen bonding.
| p-NO2 (ring A) | p-NO2 (ring B) | (ring C) | ||||
|---|---|---|---|---|---|---|
| O138/O238 | O139/O239 | O128/O228 | O129/O229 | O15/O25 | N—H13/N—H23 | |
| MolA | A⋯B (III) | A⋯B (V) | A⋯B (IV) | A⋯B (II) A⋯B (IV) | A⋯A (I) | |
| MolB | B⋯A (III) | B⋯B (IX) | B⋯B (VIII) | B⋯A (IV) | ||
PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003 ▸, 2008 ▸), were run in order to calculate the total stabilization energy of the crystal packing, E tot, distributed as Coulombic, E Coul, polarization, E pol, dispersion, E disp, and repulsion, E rep, terms. Partial analysis of the PIXEL calculations have been made and the results obtained were used to identify pairs of molecules within the crystal network that most contribute to the total energy of the packing.
The compound crystallized with two molecules (MolA and MolB) in the asymmetric unit and each has five O atoms that may be involved in the formation of hydrogen bonds, which are labelled in Fig. 1 ▸(c). In short, each molecule has two 4-NO2-phenyl substituents, one substituent connected to the imine C atom, ring A (pivot atoms C131 and C231 in MolA and MolB, respectively), and the other to the imidazoline ring, ring C (pivot atoms C121 and C221 in MolA and MolB, respectively). In addition, there is a carbonyl O atom in heterocyclic ring C (pivot atoms N11 and N21 in MolA and MolB, respectively), together with a potential donor, i.e. the –NH group on the same ring.
The Hirshfeld surface mapped over d norm ranging from −0.329 to 1.708 for 1 show various red areas due to intramolecular short contacts (refer to Figs. 4 ▸–7 ▸ ▸ ▸). Briefly, the analysis revealed that in MolA all the O atoms participate in hydrogen bonds, while only one of the nitro O atoms of ring A of MolB establishes interactions. A summary of these interactions is made in Table 3 ▸. The carbonyl O atom of heterocyclic ring C and the nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two molecules with the same labels, that is A⋯A or B⋯B. These pairs interact in a similar way. In contrast, it seems that all the O atoms of MolA act as acceptors for H atoms of MolB. Some C⋯π interactions that define some substructures are identified in Table 3 ▸.
PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003 ▸, 2008 ▸), give a total stabilization energy of −170.4 kJ mol−1 for the crystal packing, distributed as follows: E Coul = −78.4, E pol = −30.6, E disp = −199.51 and E rep = 138.2 kJ mol−1 for Coulombic, polarization, dispersion and repulsion energies, respectively. The polarization term is clearly less important than the Coulombic one. Partial analysis of the PIXEL calculations was also carried out to identify pairs of molecules within the crystal framework that contribute most to the total energy of the packing. Fig. 8 ▸ lists the symmetry operation, the specific close contacts and the individual energy components for each molecule pair. The identified molecule pairs, I to IX, are depicted in Figs. 4 ▸ to 7, together with appropriate views of the Hirshfeld surface. In the figures of the molecule pairs, the epimeric molecules are coloured green (MolA) and blue (MolB), the partner to the specific epimer in the molecular pair is coloured in standard element colours and any other relevant molecule is coloured grey.
Figure 8.
Energies, close contacts and symmetry codes of the molecule pairs. A⋯A stands for MolA⋯MolA complexes, B⋯B for MolB⋯MolB complexes and A⋯B for MolA⋯MolB.
Substructures I and II connect MolA with MolA (Table 3 ▸ and Fig. 4 ▸) and subtructures VIII and IX connect MolB with MolB (Table 3 ▸ and Fig. 7 ▸). There is a similarity between substructures I and VII, as well as between substructures II and IX. Pairs I and VII are made by Carom—H⋯Ooxo interactions that give two isoenergetic subsets for each pair (I a/I b and VII a/VII b). These pairs relate MolA⋯MolA and MolB⋯MolB in chains, as can be visualized in Figs. 4 ▸ and 7 ▸. The total energies for the substructures of pairs I and pairs VII differ by about 5 kJ mol−1 (higher value for substructure I) and this may be due to the presence of an additional C—H⋯π interaction in I that is not detected in VIII [VII?]. The similar substructures IIa/IIb and IXa/IXb, are built utilizing similar C—H⋯O interactions, involving the O atom of the nitro group of ring B. Nevertheless, the total energies for those pairs also differ by about 5 kJ mol−1, this time with a higher value for pairs IX due to a higher contribution of the dispersion term.
The molecules that constitute the asymmetric unit form the nonsymmetric dimeric substructure III. In this substructure, the nitro O atoms of ring A act as acceptors in both molecules, but they interact with different H atoms, e.g. (i) a methyl H atom to form the O138 ⋯H24D—C243 hydrogen bond in the MolA⋯MolB contact and (ii) an H atom of the imidazoline ring thereby generating an O239⋯H12—C12 hydrogen bond in the MolB⋯MolA contact (see Fig. 5 ▸).
In substructure IV, the N—H hydrogen of MolB makes a bifurcated hydrogen-bond interaction with both O atoms of the nitro group located in ring B of MolA, e.g. O129⋯H23—N23 and O128⋯H23—N23 (see pair IV in Fig. 5 ▸). This substructure, according to the model used for the calculation of interactions energies, contributes the highest amount of energy to the stabilization of the crystal packing. In the substructure made by pair V, atom O139 of MolA acts as an acceptor for atom H226 of MolB (see Fig. 7 ▸). This layout permits a supramolecular arrangement where aromatic rings appear to stack, but the Hirshfeld surface (HS) analysis did not reveal spots related to C⋯C close contacts that are typical of the π–π interactions.
Finally, two more substructures have been identified as energetically important in the stabilization of the supramolecular structure for 1. Molecular pairs involved in substructures VI and VII, relate the molecule at (x, y, z) with the molecules at (−x, y + 1, z + 1) (for VI) and (x, y + 1, z) (for VII). Although those molecules are not connected in a classical way, the pairs make a significant contribution to the lattice stabilization energy, i.e. −32.5 and −25.9 kJ mol−1, respectively, for VI and VII. These pairs are depicted in Fig. 6 ▸, with the grey molecule in pair VI shown in order to clarify a possible path explaining the electronic interactions, while in pair VII, the those interactions are made via molB of the asymmetric unit.
Fig. 9 ▸ shows the fingerprint (FP) plots for MolA and MolB. The FP plots show two pairs of spikes pointing south-west and ending at (1.2; 0.9/0.9; 1.2) that are due to O⋯H/H⋯O close contacts, the light blue in the middle is due to the H⋯H and C⋯C close contacts. The percentages for atom–atom contacts were taken from the FP plots and are given in Table 4 ▸. These percentages are similar for both molecules with an exception made for the O⋯H contacts that are smaller in MolB and the N⋯H and H⋯H contacts that are higher in MolA.
Figure 9.
FP plots for MolA and MolB. The spikes are due to O⋯H/H⋯O contacts and the outer ones due to the N⋯H⋯N contacts.
Table 4. Percentages for atom–atom close contacts.
| 1 | H⋯H | H⋯O/O⋯H | H⋯C/C⋯H | C⋯C | H⋯N/N⋯H | O⋯C/C⋯O | O⋯N /N⋯O | C⋯N/N⋯C | N⋯N | O⋯O |
|---|---|---|---|---|---|---|---|---|---|---|
| MolA | 36.9 | 35.5 | 11.3 | 4.7 | 2.2 | 3.1 | 1.7 | 1.9 | 1.0 | 1.6 |
| MolB | 36.5 | 36.2 | 11.5 | 4.7 | 1.6 | 3.3 | 1.7 | 1.9 | 1.0 | 1.6 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018 update; Groom et al., 2016 ▸) was carried out. The closest structure in the database to that of 1 is the 1:1 epimeric mixture of 5-isobutyl-2-(2-nitrophenyl)-3-(phenylamino)imidazolidin-4-one (CSD refcode VAQZUJ; Verardo et al., 2003 ▸); this compound was also formed from a chiral reagent on reaction with a carbonyl compound. Other structures with a more remote relationship to 1 are 4-[(2S,4S)-4-benzyl-1-methyl-5-oxoimidazolidin-2-yl]benzonitrile (ZAZKUI; Brase et al., 2012 ▸), (2S,5S)-5-benzyl-2-(4-fluorophenyl)-3-methylimidazolidin-4-one (ZAZKOC; Brase et al., 2012 ▸), 3-benzyl-5-methyl-4-oxo-2-phenylimidazolidin-1-ium chloride (QITMIP; Nieger, 2000 ▸), 2-tert-butyl-3-methyl-4-oxo-5-(pentafluorobenzyl)imidazolidin-1-ium chloride (LUGTAK; Holland et al., 2015 ▸), cyclo-[(1S,2S,3R,4R,5R,7S,10S,11S)-(N-{2-[(d-galactopentitol-1-yl)-4-(4-hydroxybenzyl)-5-oxoimidazolin-1-yl]acetyl}glycyl)-l-phenylalanyl-l-leucine 4′-O-ester (DACMAW; Kojic-Prodic et al., 2004 ▸) and 4-[(2S,4S)-4-isopropyl-5-oxo-3-(3-oxobutyl)-1-(pyridin-2-yl)imidazolidin-2-yl]benzonitrile (NURSOJ; Xu et al., 2010 ▸).
Synthesis and crystallization
l-Valine (2) was converted to 2(S)-amino-3-methyl-1-oxo-butanehydrazine (3) in two stages, as outlined in Scheme 1.
To a stirred solution of 3 (1 mmol) in ethanol (10 ml) was added 4-nitrobenzaldehyde (2.2 mmol). The reaction mixture was stirred for 20 h at 351 K and rotary evaporated. The residue was purified by column chromatography using a mixture of 9.7:0.3 (v/v) dichloromethane–methanol as eluent. Further purification was achieved by crystallization from ethanol. The crystal of 1 used in the structure determination was obtained by slow evaporation of an ethanol solution at room temperature.
M.p. 411–414 K. 1H NMR (400 MHz, DMSO-d 6): δ 0.96 (6H, m, Me), 0.97 (6H, m, Me), 1.42 (2H, m), 2.00 (1H, m), 2.09 (1H, m), 4.06 (2H, m), 7.66–7.71 (4H, m), 7.82–7.85 (4H, m), 8.422–8.48 (8H, m).
13C NMR (100 MHz, DMSO-d 6): δ 17.2,17.4,18.9, 29.9, 30.3, 61.8, 62.53, 124.0, 123.7, 128.1, 128.1, 128.3, 128.9, 140.2, 1140.1, 146.2, 146.3, 147.7, 148.2, 148.7, 171.1, 171.6. IR (KBr, cm−1): ν 3015 (br), 1670, 1518, 1337.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 5 ▸. H atoms attached to C atoms were refined as riding atoms at calculated positions. That attached to the N atom was refined.
Table 5. Experimental details.
| Crystal data | |
| Chemical formula | C19H19N5O5 |
| M r | 397.39 |
| Crystal system, space group | Triclinic, P1 |
| Temperature (K) | 100 |
| a, b, c (Å) | 6.9346 (1), 8.4380 (2), 16.6963 (5) |
| α, β, γ (°) | 79.826 (2), 89.848 (2), 80.488 (2) |
| V (Å3) | 948.03 (4) |
| Z | 2 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.87 |
| Crystal size (mm) | 0.15 × 0.10 × 0.08 |
| Data collection | |
| Diffractometer | Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2017 ▸) |
| T min, T max | 0.876, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 17290, 5885, 5634 |
| R int | 0.032 |
| (sin θ/λ)max (Å−1) | 0.602 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.031, 0.089, 1.06 |
| No. of reflections | 5885 |
| No. of parameters | 535 |
| No. of restraints | 3 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.18, −0.15 |
| Absolute structure | Flack x determined using 2216 quotients [(I +) − (I −)]/[(I +) + (I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.06 (12) |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013938/lh5929sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013938/lh5929Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019013938/lh5929Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012 ▸), for the data collection, help and advice.
supplementary crystallographic information
Crystal data
| C19H19N5O5 | Z = 2 |
| Mr = 397.39 | F(000) = 416 |
| Triclinic, P1 | Dx = 1.392 Mg m−3 |
| a = 6.9346 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
| b = 8.4380 (2) Å | Cell parameters from 10799 reflections |
| c = 16.6963 (5) Å | θ = 2.6–70.2° |
| α = 79.826 (2)° | µ = 0.87 mm−1 |
| β = 89.848 (2)° | T = 100 K |
| γ = 80.488 (2)° | Block, yellow |
| V = 948.03 (4) Å3 | 0.15 × 0.10 × 0.08 mm |
Data collection
| Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector diffractometer | 5885 independent reflections |
| Radiation source: Rotating anode, Rigaku 007 HF | 5634 reflections with I > 2σ(I) |
| Varimax focusing mirrors monochromator | Rint = 0.032 |
| Detector resolution: 10 pixels mm-1 | θmax = 68.2°, θmin = 2.7° |
| profile data from ω–scans | h = −8→8 |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) | k = −10→10 |
| Tmin = 0.876, Tmax = 1.000 | l = −20→20 |
| 17290 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0635P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.089 | (Δ/σ)max < 0.001 |
| S = 1.06 | Δρmax = 0.18 e Å−3 |
| 5885 reflections | Δρmin = −0.15 e Å−3 |
| 535 parameters | Absolute structure: Flack x determined using 2216 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 3 restraints | Absolute structure parameter: 0.06 (12) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O15 | 0.4298 (3) | 1.1382 (2) | 0.37596 (10) | 0.0355 (4) | |
| O25 | 0.7120 (3) | −0.1997 (2) | 0.63494 (11) | 0.0454 (5) | |
| O128 | 0.0134 (3) | 0.6977 (3) | −0.07548 (12) | 0.0515 (6) | |
| O129 | −0.2170 (3) | 0.7084 (3) | 0.01078 (11) | 0.0445 (5) | |
| O138 | 0.2174 (3) | 0.1363 (3) | 0.59026 (13) | 0.0478 (5) | |
| O139 | 0.1723 (3) | 0.2713 (3) | 0.68946 (12) | 0.0496 (5) | |
| O228 | 0.9876 (3) | 0.2933 (3) | 1.07358 (13) | 0.0578 (6) | |
| O229 | 1.2157 (3) | 0.2968 (3) | 0.98725 (12) | 0.0476 (5) | |
| O238 | 0.7903 (3) | 0.8399 (3) | 0.38544 (13) | 0.0456 (5) | |
| O239 | 0.8329 (3) | 0.6925 (3) | 0.29111 (12) | 0.0487 (5) | |
| N11 | 0.3637 (3) | 0.9864 (2) | 0.27940 (11) | 0.0276 (4) | |
| N13 | 0.4764 (3) | 1.1352 (3) | 0.16385 (12) | 0.0306 (4) | |
| H13 | 0.362 (5) | 1.192 (4) | 0.1427 (18) | 0.034 (7)* | |
| N21 | 0.6624 (3) | −0.0012 (3) | 0.71543 (12) | 0.0302 (4) | |
| N23 | 0.5744 (3) | −0.1541 (3) | 0.83569 (13) | 0.0353 (5) | |
| H23 | 0.660 (6) | −0.187 (5) | 0.877 (2) | 0.058 (10)* | |
| N111 | 0.3401 (3) | 0.8408 (2) | 0.32899 (11) | 0.0270 (4) | |
| N211 | 0.6703 (3) | 0.1435 (2) | 0.66255 (11) | 0.0288 (4) | |
| C12 | 0.4363 (3) | 0.9729 (3) | 0.19724 (14) | 0.0277 (5) | |
| H12 | 0.562548 | 0.894474 | 0.203010 | 0.033* | |
| C14 | 0.5332 (3) | 1.2011 (3) | 0.23511 (13) | 0.0286 (5) | |
| H14 | 0.678098 | 1.168896 | 0.243608 | 0.034* | |
| C15 | 0.4376 (3) | 1.1108 (3) | 0.30696 (13) | 0.0287 (5) | |
| C22 | 0.5853 (4) | 0.0145 (3) | 0.79628 (14) | 0.0298 (5) | |
| H22 | 0.450305 | 0.079596 | 0.789649 | 0.036* | |
| C24 | 0.6057 (4) | −0.2618 (3) | 0.77444 (14) | 0.0335 (5) | |
| H24 | 0.715645 | −0.353217 | 0.793820 | 0.040* | |
| C25 | 0.6675 (4) | −0.1559 (3) | 0.69896 (15) | 0.0348 (5) | |
| C112 | 0.2670 (3) | 0.8488 (3) | 0.39906 (14) | 0.0279 (5) | |
| H112 | 0.225845 | 0.951561 | 0.414946 | 0.033* | |
| C121 | 0.2980 (3) | 0.9158 (3) | 0.14341 (14) | 0.0262 (5) | |
| C122 | 0.3699 (4) | 0.8750 (3) | 0.07013 (14) | 0.0308 (5) | |
| H122 | 0.499729 | 0.887882 | 0.055715 | 0.037* | |
| C123 | 0.2556 (4) | 0.8164 (3) | 0.01828 (14) | 0.0320 (5) | |
| H123 | 0.304016 | 0.790033 | −0.031853 | 0.038* | |
| C124 | 0.0687 (4) | 0.7973 (3) | 0.04175 (14) | 0.0293 (5) | |
| C125 | −0.0089 (3) | 0.8388 (3) | 0.11285 (14) | 0.0312 (5) | |
| H125 | −0.138837 | 0.825399 | 0.126857 | 0.037* | |
| C126 | 0.1067 (4) | 0.9007 (3) | 0.16358 (14) | 0.0313 (5) | |
| H126 | 0.054796 | 0.932735 | 0.212100 | 0.038* | |
| N127 | −0.0521 (3) | 0.7287 (3) | −0.01117 (12) | 0.0323 (5) | |
| C131 | 0.2478 (3) | 0.6970 (3) | 0.45425 (13) | 0.0261 (5) | |
| C132 | 0.2849 (3) | 0.5462 (3) | 0.42896 (14) | 0.0264 (5) | |
| H132 | 0.320914 | 0.541502 | 0.374383 | 0.032* | |
| C133 | 0.2700 (3) | 0.4040 (3) | 0.48178 (14) | 0.0287 (5) | |
| H133 | 0.295345 | 0.301262 | 0.464512 | 0.034* | |
| C134 | 0.2168 (3) | 0.4152 (3) | 0.56112 (14) | 0.0302 (5) | |
| C135 | 0.1772 (3) | 0.5612 (3) | 0.58830 (14) | 0.0318 (5) | |
| H135 | 0.140140 | 0.564508 | 0.642882 | 0.038* | |
| C136 | 0.1922 (3) | 0.7036 (3) | 0.53455 (14) | 0.0307 (5) | |
| H136 | 0.164724 | 0.805932 | 0.552131 | 0.037* | |
| N137 | 0.2007 (3) | 0.2631 (3) | 0.61757 (13) | 0.0378 (5) | |
| C141 | 0.4849 (4) | 1.3855 (3) | 0.22729 (14) | 0.0324 (5) | |
| H141 | 0.522467 | 1.411918 | 0.280582 | 0.039* | |
| C142 | 0.6066 (5) | 1.4719 (4) | 0.16285 (18) | 0.0451 (7) | |
| H14D | 0.580595 | 1.589617 | 0.163030 | 0.068* | |
| H14E | 0.571639 | 1.451708 | 0.109156 | 0.068* | |
| H14F | 0.745792 | 1.430079 | 0.174926 | 0.068* | |
| C143 | 0.2666 (4) | 1.4489 (3) | 0.21372 (16) | 0.0387 (6) | |
| H14A | 0.238790 | 1.563576 | 0.220178 | 0.058* | |
| H14B | 0.193577 | 1.384089 | 0.253620 | 0.058* | |
| H14C | 0.227059 | 1.439805 | 0.158629 | 0.058* | |
| C212 | 0.7367 (3) | 0.1361 (3) | 0.59108 (15) | 0.0301 (5) | |
| H212 | 0.777043 | 0.033090 | 0.575349 | 0.036* | |
| C221 | 0.7088 (3) | 0.0917 (3) | 0.84770 (14) | 0.0282 (5) | |
| C222 | 0.6347 (4) | 0.1260 (3) | 0.92174 (14) | 0.0299 (5) | |
| H222 | 0.506428 | 0.107886 | 0.936016 | 0.036* | |
| C223 | 0.7456 (4) | 0.1858 (3) | 0.97467 (14) | 0.0308 (5) | |
| H223 | 0.696374 | 0.206566 | 1.025638 | 0.037* | |
| C224 | 0.9301 (4) | 0.2146 (3) | 0.95128 (14) | 0.0286 (5) | |
| C225 | 1.0058 (4) | 0.1867 (3) | 0.87724 (15) | 0.0325 (5) | |
| H225 | 1.131517 | 0.210277 | 0.862046 | 0.039* | |
| C226 | 0.8942 (3) | 0.1235 (3) | 0.82574 (14) | 0.0301 (5) | |
| H226 | 0.944672 | 0.101824 | 0.775113 | 0.036* | |
| N227 | 1.0519 (3) | 0.2745 (3) | 1.00771 (12) | 0.0339 (5) | |
| C231 | 0.7499 (3) | 0.2873 (3) | 0.53383 (13) | 0.0277 (5) | |
| C232 | 0.7186 (3) | 0.4406 (3) | 0.55683 (14) | 0.0287 (5) | |
| H232 | 0.685933 | 0.449496 | 0.611332 | 0.034* | |
| C233 | 0.7347 (3) | 0.5795 (3) | 0.50108 (15) | 0.0299 (5) | |
| H233 | 0.712742 | 0.683984 | 0.516467 | 0.036* | |
| C234 | 0.7840 (3) | 0.5624 (3) | 0.42183 (15) | 0.0307 (5) | |
| C235 | 0.8170 (3) | 0.4122 (3) | 0.39713 (14) | 0.0314 (5) | |
| H235 | 0.850887 | 0.403867 | 0.342684 | 0.038* | |
| C236 | 0.7993 (3) | 0.2746 (3) | 0.45354 (14) | 0.0303 (5) | |
| H236 | 0.820955 | 0.170474 | 0.437723 | 0.036* | |
| N237 | 0.8038 (3) | 0.7084 (3) | 0.36213 (13) | 0.0366 (5) | |
| C241 | 0.4241 (4) | −0.3336 (3) | 0.75728 (15) | 0.0345 (5) | |
| H241 | 0.445003 | −0.378380 | 0.705741 | 0.041* | |
| C242 | 0.3982 (5) | −0.4738 (4) | 0.82522 (19) | 0.0455 (7) | |
| H24A | 0.515569 | −0.557757 | 0.830591 | 0.068* | |
| H24B | 0.284532 | −0.520913 | 0.812321 | 0.068* | |
| H24C | 0.377662 | −0.432928 | 0.876535 | 0.068* | |
| C243 | 0.2417 (4) | −0.2027 (3) | 0.74492 (16) | 0.0369 (5) | |
| H24D | 0.259555 | −0.117069 | 0.698937 | 0.055* | |
| H24E | 0.219738 | −0.155144 | 0.794304 | 0.055* | |
| H24F | 0.128424 | −0.251832 | 0.733575 | 0.055* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O15 | 0.0480 (10) | 0.0339 (9) | 0.0271 (8) | −0.0136 (8) | −0.0009 (7) | −0.0057 (7) |
| O25 | 0.0636 (12) | 0.0408 (11) | 0.0385 (10) | −0.0199 (9) | 0.0130 (9) | −0.0150 (8) |
| O128 | 0.0459 (11) | 0.0821 (16) | 0.0359 (11) | −0.0172 (10) | 0.0023 (8) | −0.0293 (11) |
| O129 | 0.0418 (10) | 0.0597 (13) | 0.0372 (10) | −0.0232 (9) | 0.0006 (8) | −0.0087 (9) |
| O138 | 0.0493 (12) | 0.0346 (11) | 0.0559 (12) | −0.0119 (9) | −0.0051 (9) | 0.0066 (9) |
| O139 | 0.0474 (11) | 0.0619 (13) | 0.0327 (10) | −0.0116 (10) | 0.0032 (8) | 0.0120 (9) |
| O228 | 0.0529 (12) | 0.0899 (18) | 0.0419 (11) | −0.0211 (12) | 0.0018 (9) | −0.0340 (12) |
| O229 | 0.0443 (11) | 0.0625 (14) | 0.0433 (11) | −0.0252 (10) | −0.0014 (9) | −0.0134 (10) |
| O238 | 0.0378 (10) | 0.0405 (11) | 0.0533 (12) | −0.0083 (8) | −0.0046 (8) | 0.0074 (9) |
| O239 | 0.0458 (11) | 0.0592 (13) | 0.0333 (10) | −0.0063 (9) | 0.0048 (8) | 0.0101 (9) |
| N11 | 0.0356 (10) | 0.0262 (11) | 0.0222 (9) | −0.0108 (8) | 0.0005 (8) | −0.0023 (8) |
| N13 | 0.0390 (11) | 0.0278 (11) | 0.0261 (10) | −0.0118 (9) | −0.0003 (8) | −0.0016 (8) |
| N21 | 0.0349 (11) | 0.0332 (12) | 0.0243 (9) | −0.0125 (9) | 0.0008 (8) | −0.0039 (8) |
| N23 | 0.0469 (12) | 0.0353 (12) | 0.0261 (10) | −0.0177 (10) | −0.0048 (9) | −0.0021 (9) |
| N111 | 0.0300 (10) | 0.0274 (11) | 0.0238 (10) | −0.0099 (8) | −0.0039 (7) | −0.0002 (8) |
| N211 | 0.0295 (10) | 0.0339 (11) | 0.0237 (10) | −0.0116 (9) | −0.0026 (8) | −0.0013 (8) |
| C12 | 0.0321 (12) | 0.0283 (13) | 0.0228 (11) | −0.0074 (10) | 0.0006 (9) | −0.0025 (9) |
| C14 | 0.0310 (11) | 0.0278 (12) | 0.0274 (11) | −0.0077 (9) | −0.0021 (9) | −0.0032 (9) |
| C15 | 0.0329 (12) | 0.0258 (12) | 0.0267 (11) | −0.0052 (9) | −0.0034 (9) | −0.0025 (9) |
| C22 | 0.0325 (12) | 0.0348 (13) | 0.0226 (11) | −0.0112 (10) | 0.0019 (9) | −0.0012 (10) |
| C24 | 0.0371 (13) | 0.0312 (13) | 0.0314 (12) | −0.0073 (10) | −0.0026 (10) | −0.0018 (9) |
| C25 | 0.0360 (12) | 0.0358 (14) | 0.0342 (12) | −0.0109 (10) | 0.0010 (10) | −0.0060 (10) |
| C112 | 0.0275 (11) | 0.0307 (12) | 0.0265 (11) | −0.0080 (9) | −0.0012 (9) | −0.0047 (9) |
| C121 | 0.0338 (12) | 0.0202 (11) | 0.0231 (11) | −0.0057 (9) | −0.0006 (9) | 0.0010 (8) |
| C122 | 0.0350 (12) | 0.0326 (13) | 0.0253 (12) | −0.0106 (10) | 0.0034 (9) | −0.0022 (10) |
| C123 | 0.0394 (13) | 0.0325 (13) | 0.0247 (12) | −0.0093 (10) | 0.0031 (10) | −0.0036 (9) |
| C124 | 0.0362 (12) | 0.0261 (12) | 0.0244 (11) | −0.0064 (10) | −0.0044 (9) | −0.0003 (9) |
| C125 | 0.0295 (12) | 0.0357 (13) | 0.0273 (12) | −0.0064 (10) | 0.0001 (9) | −0.0022 (10) |
| C126 | 0.0352 (12) | 0.0343 (13) | 0.0238 (11) | −0.0045 (10) | −0.0002 (9) | −0.0045 (9) |
| N127 | 0.0360 (11) | 0.0325 (11) | 0.0286 (11) | −0.0083 (9) | −0.0026 (8) | −0.0030 (8) |
| C131 | 0.0226 (11) | 0.0341 (13) | 0.0226 (11) | −0.0088 (10) | −0.0028 (8) | −0.0037 (9) |
| C132 | 0.0254 (11) | 0.0341 (13) | 0.0209 (10) | −0.0095 (9) | −0.0005 (8) | −0.0043 (9) |
| C133 | 0.0229 (11) | 0.0337 (13) | 0.0306 (12) | −0.0081 (10) | −0.0035 (9) | −0.0058 (10) |
| C134 | 0.0227 (11) | 0.0378 (14) | 0.0278 (11) | −0.0097 (10) | −0.0037 (9) | 0.0047 (10) |
| C135 | 0.0277 (11) | 0.0458 (16) | 0.0228 (11) | −0.0110 (11) | −0.0006 (9) | −0.0038 (10) |
| C136 | 0.0307 (12) | 0.0378 (14) | 0.0256 (11) | −0.0095 (10) | 0.0002 (9) | −0.0078 (10) |
| N137 | 0.0258 (10) | 0.0467 (15) | 0.0366 (12) | −0.0093 (10) | −0.0032 (9) | 0.0067 (10) |
| C141 | 0.0403 (13) | 0.0290 (12) | 0.0290 (11) | −0.0094 (10) | −0.0022 (9) | −0.0046 (9) |
| C142 | 0.0623 (18) | 0.0298 (14) | 0.0442 (15) | −0.0159 (13) | 0.0078 (13) | −0.0020 (12) |
| C143 | 0.0437 (14) | 0.0309 (13) | 0.0402 (13) | −0.0031 (11) | −0.0100 (11) | −0.0058 (10) |
| C212 | 0.0301 (11) | 0.0353 (13) | 0.0274 (12) | −0.0114 (10) | −0.0006 (9) | −0.0071 (10) |
| C221 | 0.0336 (12) | 0.0271 (12) | 0.0233 (11) | −0.0074 (10) | −0.0015 (9) | −0.0008 (9) |
| C222 | 0.0325 (12) | 0.0309 (13) | 0.0260 (12) | −0.0089 (10) | 0.0016 (9) | −0.0009 (9) |
| C223 | 0.0375 (13) | 0.0326 (13) | 0.0221 (11) | −0.0064 (10) | 0.0014 (9) | −0.0034 (9) |
| C224 | 0.0374 (12) | 0.0234 (11) | 0.0245 (11) | −0.0074 (10) | −0.0044 (9) | −0.0012 (9) |
| C225 | 0.0333 (12) | 0.0359 (13) | 0.0296 (12) | −0.0111 (10) | 0.0015 (10) | −0.0045 (10) |
| C226 | 0.0323 (12) | 0.0347 (13) | 0.0242 (11) | −0.0098 (10) | 0.0025 (9) | −0.0038 (9) |
| N227 | 0.0400 (12) | 0.0325 (12) | 0.0293 (11) | −0.0056 (9) | −0.0053 (9) | −0.0058 (9) |
| C231 | 0.0224 (11) | 0.0391 (14) | 0.0230 (11) | −0.0099 (10) | −0.0018 (9) | −0.0049 (10) |
| C232 | 0.0235 (11) | 0.0407 (14) | 0.0236 (11) | −0.0088 (10) | −0.0039 (9) | −0.0067 (10) |
| C233 | 0.0234 (11) | 0.0355 (14) | 0.0314 (12) | −0.0081 (10) | −0.0036 (9) | −0.0048 (10) |
| C234 | 0.0223 (11) | 0.0414 (14) | 0.0267 (11) | −0.0086 (10) | −0.0037 (9) | 0.0015 (10) |
| C235 | 0.0254 (11) | 0.0476 (15) | 0.0216 (11) | −0.0098 (10) | −0.0011 (9) | −0.0038 (10) |
| C236 | 0.0266 (11) | 0.0406 (14) | 0.0257 (11) | −0.0110 (10) | −0.0008 (9) | −0.0068 (10) |
| N237 | 0.0253 (10) | 0.0434 (14) | 0.0364 (12) | −0.0071 (9) | −0.0013 (8) | 0.0070 (10) |
| C241 | 0.0442 (14) | 0.0300 (13) | 0.0316 (12) | −0.0130 (11) | 0.0002 (10) | −0.0051 (10) |
| C242 | 0.0566 (17) | 0.0313 (15) | 0.0480 (16) | −0.0143 (13) | 0.0027 (13) | 0.0013 (12) |
| C243 | 0.0381 (13) | 0.0378 (14) | 0.0362 (12) | −0.0109 (11) | −0.0026 (10) | −0.0061 (10) |
Geometric parameters (Å, º)
| O15—C15 | 1.213 (3) | C132—H132 | 0.9500 |
| O25—C25 | 1.214 (3) | C133—C134 | 1.389 (3) |
| O128—N127 | 1.219 (3) | C133—H133 | 0.9500 |
| O129—N127 | 1.229 (3) | C134—C135 | 1.373 (4) |
| O138—N137 | 1.224 (3) | C134—N137 | 1.472 (3) |
| O139—N137 | 1.228 (3) | C135—C136 | 1.386 (4) |
| O228—N227 | 1.212 (3) | C135—H135 | 0.9500 |
| O229—N227 | 1.220 (3) | C136—H136 | 0.9500 |
| O238—N237 | 1.229 (3) | C141—C143 | 1.523 (4) |
| O239—N237 | 1.229 (3) | C141—C142 | 1.524 (4) |
| N11—C15 | 1.388 (3) | C141—H141 | 1.0000 |
| N11—N111 | 1.388 (3) | C142—H14D | 0.9800 |
| N11—C12 | 1.477 (3) | C142—H14E | 0.9800 |
| N13—C12 | 1.456 (3) | C142—H14F | 0.9800 |
| N13—C14 | 1.479 (3) | C143—H14A | 0.9800 |
| N13—H13 | 0.89 (3) | C143—H14B | 0.9800 |
| N21—C25 | 1.375 (3) | C143—H14C | 0.9800 |
| N21—N211 | 1.384 (3) | C212—C231 | 1.469 (3) |
| N21—C22 | 1.470 (3) | C212—H212 | 0.9500 |
| N23—C22 | 1.471 (3) | C221—C226 | 1.391 (3) |
| N23—C24 | 1.477 (3) | C221—C222 | 1.396 (3) |
| N23—H23 | 0.89 (4) | C222—C223 | 1.385 (3) |
| N111—C112 | 1.282 (3) | C222—H222 | 0.9500 |
| N211—C212 | 1.286 (3) | C223—C224 | 1.384 (3) |
| C12—C121 | 1.507 (3) | C223—H223 | 0.9500 |
| C12—H12 | 1.0000 | C224—C225 | 1.385 (3) |
| C14—C15 | 1.516 (3) | C224—N227 | 1.473 (3) |
| C14—C141 | 1.518 (3) | C225—C226 | 1.387 (3) |
| C14—H14 | 1.0000 | C225—H225 | 0.9500 |
| C22—C221 | 1.510 (3) | C226—H226 | 0.9500 |
| C22—H22 | 1.0000 | C231—C232 | 1.396 (4) |
| C24—C25 | 1.515 (3) | C231—C236 | 1.401 (3) |
| C24—C241 | 1.533 (3) | C232—C233 | 1.382 (4) |
| C24—H24 | 1.0000 | C232—H232 | 0.9500 |
| C112—C131 | 1.465 (3) | C233—C234 | 1.392 (3) |
| C112—H112 | 0.9500 | C233—H233 | 0.9500 |
| C121—C126 | 1.389 (3) | C234—C235 | 1.385 (4) |
| C121—C122 | 1.397 (3) | C234—N237 | 1.467 (3) |
| C122—C123 | 1.381 (3) | C235—C236 | 1.382 (4) |
| C122—H122 | 0.9500 | C235—H235 | 0.9500 |
| C123—C124 | 1.379 (4) | C236—H236 | 0.9500 |
| C123—H123 | 0.9500 | C241—C242 | 1.521 (4) |
| C124—C125 | 1.379 (3) | C241—C243 | 1.524 (4) |
| C124—N127 | 1.471 (3) | C241—H241 | 1.0000 |
| C125—C126 | 1.389 (3) | C242—H24A | 0.9800 |
| C125—H125 | 0.9500 | C242—H24B | 0.9800 |
| C126—H126 | 0.9500 | C242—H24C | 0.9800 |
| C131—C132 | 1.395 (3) | C243—H24D | 0.9800 |
| C131—C136 | 1.402 (3) | C243—H24E | 0.9800 |
| C132—C133 | 1.377 (3) | C243—H24F | 0.9800 |
| C15—N11—N111 | 123.74 (18) | C131—C136—H136 | 119.9 |
| C15—N11—C12 | 109.37 (18) | O138—N137—O139 | 123.9 (2) |
| N111—N11—C12 | 115.87 (18) | O138—N137—C134 | 118.2 (2) |
| C12—N13—C14 | 104.96 (18) | O139—N137—C134 | 117.8 (2) |
| C12—N13—H13 | 105.6 (19) | C14—C141—C143 | 112.28 (19) |
| C14—N13—H13 | 109.4 (19) | C14—C141—C142 | 111.7 (2) |
| C25—N21—N211 | 129.5 (2) | C143—C141—C142 | 112.2 (2) |
| C25—N21—C22 | 112.2 (2) | C14—C141—H141 | 106.7 |
| N211—N21—C22 | 116.06 (19) | C143—C141—H141 | 106.7 |
| C22—N23—C24 | 109.21 (19) | C142—C141—H141 | 106.7 |
| C22—N23—H23 | 111 (2) | C141—C142—H14D | 109.5 |
| C24—N23—H23 | 112 (2) | C141—C142—H14E | 109.5 |
| C112—N111—N11 | 117.58 (19) | H14D—C142—H14E | 109.5 |
| C212—N211—N21 | 118.4 (2) | C141—C142—H14F | 109.5 |
| N13—C12—N11 | 104.41 (18) | H14D—C142—H14F | 109.5 |
| N13—C12—C121 | 112.35 (19) | H14E—C142—H14F | 109.5 |
| N11—C12—C121 | 114.42 (19) | C141—C143—H14A | 109.5 |
| N13—C12—H12 | 108.5 | C141—C143—H14B | 109.5 |
| N11—C12—H12 | 108.5 | H14A—C143—H14B | 109.5 |
| C121—C12—H12 | 108.5 | C141—C143—H14C | 109.5 |
| N13—C14—C15 | 105.22 (17) | H14A—C143—H14C | 109.5 |
| N13—C14—C141 | 115.33 (19) | H14B—C143—H14C | 109.5 |
| C15—C14—C141 | 113.03 (19) | N211—C212—C231 | 119.8 (2) |
| N13—C14—H14 | 107.6 | N211—C212—H212 | 120.1 |
| C15—C14—H14 | 107.6 | C231—C212—H212 | 120.1 |
| C141—C14—H14 | 107.6 | C226—C221—C222 | 119.4 (2) |
| O15—C15—N11 | 125.9 (2) | C226—C221—C22 | 122.8 (2) |
| O15—C15—C14 | 127.3 (2) | C222—C221—C22 | 117.8 (2) |
| N11—C15—C14 | 106.73 (18) | C223—C222—C221 | 121.0 (2) |
| N21—C22—N23 | 104.4 (2) | C223—C222—H222 | 119.5 |
| N21—C22—C221 | 114.65 (19) | C221—C222—H222 | 119.5 |
| N23—C22—C221 | 110.4 (2) | C224—C223—C222 | 118.1 (2) |
| N21—C22—H22 | 109.1 | C224—C223—H223 | 120.9 |
| N23—C22—H22 | 109.1 | C222—C223—H223 | 120.9 |
| C221—C22—H22 | 109.1 | C223—C224—C225 | 122.4 (2) |
| N23—C24—C25 | 104.9 (2) | C223—C224—N227 | 118.9 (2) |
| N23—C24—C241 | 113.3 (2) | C225—C224—N227 | 118.7 (2) |
| C25—C24—C241 | 111.6 (2) | C224—C225—C226 | 118.6 (2) |
| N23—C24—H24 | 108.9 | C224—C225—H225 | 120.7 |
| C25—C24—H24 | 108.9 | C226—C225—H225 | 120.7 |
| C241—C24—H24 | 108.9 | C225—C226—C221 | 120.5 (2) |
| O25—C25—N21 | 126.1 (2) | C225—C226—H226 | 119.8 |
| O25—C25—C24 | 125.9 (2) | C221—C226—H226 | 119.8 |
| N21—C25—C24 | 108.0 (2) | O228—N227—O229 | 123.0 (2) |
| N111—C112—C131 | 119.0 (2) | O228—N227—C224 | 118.5 (2) |
| N111—C112—H112 | 120.5 | O229—N227—C224 | 118.5 (2) |
| C131—C112—H112 | 120.5 | C232—C231—C236 | 119.5 (2) |
| C126—C121—C122 | 119.4 (2) | C232—C231—C212 | 122.6 (2) |
| C126—C121—C12 | 123.4 (2) | C236—C231—C212 | 117.9 (2) |
| C122—C121—C12 | 117.2 (2) | C233—C232—C231 | 120.6 (2) |
| C123—C122—C121 | 121.2 (2) | C233—C232—H232 | 119.7 |
| C123—C122—H122 | 119.4 | C231—C232—H232 | 119.7 |
| C121—C122—H122 | 119.4 | C232—C233—C234 | 118.4 (2) |
| C124—C123—C122 | 117.7 (2) | C232—C233—H233 | 120.8 |
| C124—C123—H123 | 121.1 | C234—C233—H233 | 120.8 |
| C122—C123—H123 | 121.1 | C235—C234—C233 | 122.5 (2) |
| C125—C124—C123 | 122.8 (2) | C235—C234—N237 | 118.5 (2) |
| C125—C124—N127 | 118.7 (2) | C233—C234—N237 | 119.0 (2) |
| C123—C124—N127 | 118.4 (2) | C236—C235—C234 | 118.4 (2) |
| C124—C125—C126 | 118.7 (2) | C236—C235—H235 | 120.8 |
| C124—C125—H125 | 120.7 | C234—C235—H235 | 120.8 |
| C126—C125—H125 | 120.7 | C235—C236—C231 | 120.6 (2) |
| C121—C126—C125 | 120.1 (2) | C235—C236—H236 | 119.7 |
| C121—C126—H126 | 120.0 | C231—C236—H236 | 119.7 |
| C125—C126—H126 | 120.0 | O239—N237—O238 | 123.4 (2) |
| O128—N127—O129 | 122.8 (2) | O239—N237—C234 | 118.0 (2) |
| O128—N127—C124 | 118.8 (2) | O238—N237—C234 | 118.6 (2) |
| O129—N127—C124 | 118.3 (2) | C242—C241—C243 | 111.2 (2) |
| C132—C131—C136 | 119.3 (2) | C242—C241—C24 | 110.5 (2) |
| C132—C131—C112 | 121.6 (2) | C243—C241—C24 | 111.3 (2) |
| C136—C131—C112 | 119.1 (2) | C242—C241—H241 | 107.9 |
| C133—C132—C131 | 121.1 (2) | C243—C241—H241 | 107.9 |
| C133—C132—H132 | 119.5 | C24—C241—H241 | 107.9 |
| C131—C132—H132 | 119.5 | C241—C242—H24A | 109.5 |
| C132—C133—C134 | 118.0 (2) | C241—C242—H24B | 109.5 |
| C132—C133—H133 | 121.0 | H24A—C242—H24B | 109.5 |
| C134—C133—H133 | 121.0 | C241—C242—H24C | 109.5 |
| C135—C134—C133 | 122.9 (2) | H24A—C242—H24C | 109.5 |
| C135—C134—N137 | 119.2 (2) | H24B—C242—H24C | 109.5 |
| C133—C134—N137 | 118.0 (2) | C241—C243—H24D | 109.5 |
| C134—C135—C136 | 118.7 (2) | C241—C243—H24E | 109.5 |
| C134—C135—H135 | 120.7 | H24D—C243—H24E | 109.5 |
| C136—C135—H135 | 120.7 | C241—C243—H24F | 109.5 |
| C135—C136—C131 | 120.1 (2) | H24D—C243—H24F | 109.5 |
| C135—C136—H136 | 119.9 | H24E—C243—H24F | 109.5 |
| C15—N11—N111—C112 | 43.7 (3) | C136—C131—C132—C133 | −0.8 (3) |
| C12—N11—N111—C112 | −176.19 (19) | C112—C131—C132—C133 | 178.75 (19) |
| C25—N21—N211—C212 | −18.6 (3) | C131—C132—C133—C134 | 0.0 (3) |
| C22—N21—N211—C212 | 179.98 (19) | C132—C133—C134—C135 | 0.6 (3) |
| C14—N13—C12—N11 | 30.7 (2) | C132—C133—C134—N137 | 179.92 (18) |
| C14—N13—C12—C121 | 155.3 (2) | C133—C134—C135—C136 | −0.5 (3) |
| C15—N11—C12—N13 | −25.8 (2) | N137—C134—C135—C136 | −179.8 (2) |
| N111—N11—C12—N13 | −171.33 (18) | C134—C135—C136—C131 | −0.3 (3) |
| C15—N11—C12—C121 | −149.0 (2) | C132—C131—C136—C135 | 0.9 (3) |
| N111—N11—C12—C121 | 65.4 (3) | C112—C131—C136—C135 | −178.6 (2) |
| C12—N13—C14—C15 | −25.1 (2) | C135—C134—N137—O138 | 172.8 (2) |
| C12—N13—C14—C141 | −150.3 (2) | C133—C134—N137—O138 | −6.5 (3) |
| N111—N11—C15—O15 | −26.3 (4) | C135—C134—N137—O139 | −7.6 (3) |
| C12—N11—C15—O15 | −168.6 (2) | C133—C134—N137—O139 | 173.1 (2) |
| N111—N11—C15—C14 | 152.1 (2) | N13—C14—C141—C143 | 59.6 (3) |
| C12—N11—C15—C14 | 9.9 (3) | C15—C14—C141—C143 | −61.5 (3) |
| N13—C14—C15—O15 | −172.1 (2) | N13—C14—C141—C142 | −67.5 (3) |
| C141—C14—C15—O15 | −45.4 (3) | C15—C14—C141—C142 | 171.4 (2) |
| N13—C14—C15—N11 | 9.5 (2) | N21—N211—C212—C231 | −179.07 (18) |
| C141—C14—C15—N11 | 136.1 (2) | N21—C22—C221—C226 | −9.1 (3) |
| C25—N21—C22—N23 | 9.8 (3) | N23—C22—C221—C226 | 108.5 (3) |
| N211—N21—C22—N23 | 174.33 (17) | N21—C22—C221—C222 | 173.6 (2) |
| C25—N21—C22—C221 | 130.7 (2) | N23—C22—C221—C222 | −68.8 (3) |
| N211—N21—C22—C221 | −64.7 (3) | C226—C221—C222—C223 | −2.2 (4) |
| C24—N23—C22—N21 | −11.1 (3) | C22—C221—C222—C223 | 175.3 (2) |
| C24—N23—C22—C221 | −134.8 (2) | C221—C222—C223—C224 | 1.5 (4) |
| C22—N23—C24—C25 | 8.6 (3) | C222—C223—C224—C225 | 0.4 (4) |
| C22—N23—C24—C241 | −113.4 (2) | C222—C223—C224—N227 | −178.5 (2) |
| N211—N21—C25—O25 | 12.8 (4) | C223—C224—C225—C226 | −1.7 (4) |
| C22—N21—C25—O25 | 174.8 (2) | N227—C224—C225—C226 | 177.2 (2) |
| N211—N21—C25—C24 | −166.5 (2) | C224—C225—C226—C221 | 1.1 (4) |
| C22—N21—C25—C24 | −4.6 (3) | C222—C221—C226—C225 | 0.8 (4) |
| N23—C24—C25—O25 | 178.1 (2) | C22—C221—C226—C225 | −176.5 (2) |
| C241—C24—C25—O25 | −58.8 (3) | C223—C224—N227—O228 | 1.5 (3) |
| N23—C24—C25—N21 | −2.5 (3) | C225—C224—N227—O228 | −177.5 (2) |
| C241—C24—C25—N21 | 120.6 (2) | C223—C224—N227—O229 | 178.7 (2) |
| N11—N111—C112—C131 | −177.45 (18) | C225—C224—N227—O229 | −0.3 (3) |
| N13—C12—C121—C126 | −109.4 (3) | N211—C212—C231—C232 | 9.0 (3) |
| N11—C12—C121—C126 | 9.5 (3) | N211—C212—C231—C236 | −172.1 (2) |
| N13—C12—C121—C122 | 71.3 (3) | C236—C231—C232—C233 | 0.4 (3) |
| N11—C12—C121—C122 | −169.9 (2) | C212—C231—C232—C233 | 179.3 (2) |
| C126—C121—C122—C123 | −1.5 (4) | C231—C232—C233—C234 | −0.4 (3) |
| C12—C121—C122—C123 | 177.8 (2) | C232—C233—C234—C235 | 0.1 (3) |
| C121—C122—C123—C124 | −0.8 (4) | C232—C233—C234—N237 | −179.35 (19) |
| C122—C123—C124—C125 | 2.0 (4) | C233—C234—C235—C236 | 0.2 (3) |
| C122—C123—C124—N127 | −177.5 (2) | N237—C234—C235—C236 | 179.65 (19) |
| C123—C124—C125—C126 | −0.8 (4) | C234—C235—C236—C231 | −0.2 (3) |
| N127—C124—C125—C126 | 178.8 (2) | C232—C231—C236—C235 | −0.1 (3) |
| C122—C121—C126—C125 | 2.8 (4) | C212—C231—C236—C235 | −179.0 (2) |
| C12—C121—C126—C125 | −176.5 (2) | C235—C234—N237—O239 | 5.9 (3) |
| C124—C125—C126—C121 | −1.7 (4) | C233—C234—N237—O239 | −174.7 (2) |
| C125—C124—N127—O128 | 177.3 (2) | C235—C234—N237—O238 | −174.1 (2) |
| C123—C124—N127—O128 | −3.1 (4) | C233—C234—N237—O238 | 5.3 (3) |
| C125—C124—N127—O129 | −1.2 (4) | N23—C24—C241—C242 | −77.5 (3) |
| C123—C124—N127—O129 | 178.4 (2) | C25—C24—C241—C242 | 164.3 (2) |
| N111—C112—C131—C132 | −7.8 (3) | N23—C24—C241—C243 | 46.6 (3) |
| N111—C112—C131—C136 | 171.7 (2) | C25—C24—C241—C243 | −71.7 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N23—H23···O128i | 0.89 (4) | 2.55 (4) | 3.338 (3) | 147 (3) |
| N23—H23···O129i | 0.89 (4) | 2.36 (4) | 3.202 (3) | 159 (3) |
| C112—H112···O15 | 0.95 | 2.30 | 2.822 (3) | 114 |
| C212—H212···O25 | 0.95 | 2.16 | 2.832 (3) | 127 |
| C133—H133···O15ii | 0.95 | 2.29 | 3.154 (3) | 151 |
| C233—H233···O25iii | 0.95 | 2.36 | 3.141 (3) | 139 |
| C243—H24D···O138 | 0.98 | 2.52 | 3.480 (3) | 165 |
| C122—H122···O129iv | 0.95 | 2.48 | 3.212 (3) | 134 |
| C222—H222···O229v | 0.95 | 2.60 | 3.297 (3) | 131 |
| C226—H226···O139iv | 0.95 | 2.57 | 3.197 (3) | 124 |
Symmetry codes: (i) x+1, y−1, z+1; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x−1, y, z.
References
- Barrow, J. C., Rittle, K. E., Ngo, P. L., Selnick, H. G., Graham, S. L., Pitzenberger, S. M., McGaughey, G. B., Colussi, D., Lai, M. T., Huang, Q., Tugusheva, K., Espesth, A. S., Simon, A. J. K., Munishi, S. K. & Vacca, J. P. (2007). ChemMedChem, 2, 995–999. [DOI] [PubMed]
- Blackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953–1975.
- Brase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385–1392. [DOI] [PMC free article] [PubMed]
- Catalano, A., Carocci, A., Lentini, G., Di Mola, A., Bruno, C. & Francini, C. (2011). Heterocycl. Chem. 48, 261–266.
- Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Elrod, D. B. & Worley, S. D. (1999). J. Bioact. Compat. Pol. 14, 258–269.
- Eyilcim, O., Issever, S., Ocal, N., Gronert, S. & Erden, I. (2018). Tetrahedron Lett. 59, 3674–3677. [DOI] [PMC free article] [PubMed]
- Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.
- Gavezzotti, A. (2008). Mol. Phys 106, 1473–1485.
- Gomes, P., Araujo, M. J., Rodfrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guerra, A. S. H. D., Malta, D. J. D., Laranjeira, L. P. M., Maia, M. B. S., Colaco, N. C., de Lima, M. D. A., Galdino, S. L., Pitta, I. D. & Goncalves-Silva, T. (2011). Int. J. Immunopharmacol. 11, 1816–1822. [DOI] [PubMed]
- Holland, M. C., Metternich, J. B., Daniliuc, C., Schweizer, W. C. & Gilmour, R. (2015). Chem. Eur. J. 21, 10031–10038. [DOI] [PubMed]
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
- Kojic-Prodic, B., Peric, B., Roscic, M., Novak, P. & Horvat, S. (2004). J. Pept. Sci. 10, 47–55. [DOI] [PubMed]
- Li, J. Z., Zhang, Z. F. & Fan, E. K. (2004). Tetrahedron Lett. 45, 1267–1284.
- Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun 35, 105.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 300–309.
- Mondini, S., Puglisi, A., Benaglia, M., Ramella, D., Drago, C., Ferretti, A. M. & Ponti, A. (2013). J. Nanopart. Res. 15, article no. UNSP 2025.
- Nieger, M. (2000). CSD Communication (Private Communication). CCDC, Cambridge, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Puglisi, A., Benaglia, M., Annunziata, R., Chiroli, V., Porta, R. & Gervasini, A. (2013). J. Org. Chem 78, 11326–11334. [DOI] [PubMed]
- Rigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Seebach, D., Groselj, U., Baldine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Vale, N., Matos, J., Moreira, R. & Gomes, T. (2008). Tetrahedron, 64, 11144–11149.
- Vale, N., Nogueira, F., do Rosario, V. E., Gomes, P. & Moreira, R. (2009). Eur. J. Med. Chem 44, 2506–2516. [DOI] [PubMed]
- Verardo, G., Geatti, P., Martinuzzi, P., Merli, M. & Toniutti, N. (2003). Eur. J. Org. Chem 2003, 3840–2849.
- Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. Version 3.1. The University of Western Australia.
- Xu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J 16, 2972–2976. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013938/lh5929sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013938/lh5929Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019013938/lh5929Isup3.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report









