Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Oct 29;75(Pt 11):1774–1782. doi: 10.1107/S2056989019013938

Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phenyl)-5(S)-(propan-2-yl)imidazolidin-4-one

Ligia R Gomes a,b, John Nicolson Low c,*, James L Wardell c,d, Marcus V N de Souza d, Cristiane F da Costa d
PMCID: PMC6829720  PMID: 31709107

A 1:1 epimeric mixture of 2(R,S)-(4-nitro­phen­yl)-3-[(4-nitro­benzyl­idene)amino]-5(S)-(propan-2-yl)imidazolidin-4-one was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine moiety to provide a 4-nitro­benzyl­idine derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring.

Keywords: crystal structure, Hirshfeld surface analysis, PIXEL calculations, epimeric mixture

Abstract

A 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine and 4-nitro­benz­alde­hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine group to provide a 4-nitro­benzyl­idene derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π inter­actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.

Chemical context  

Imidazolidin-4-ones have been widely studied (Blackmore & Thompson, 2011) due to their wide range of uses, for example, as chiral ligands in catalysis (Lin et al., 2013; Mondini et al., 2013; Seebach et al., 2008; Puglisi et al., 2013) and for their biological activities (Elrod & Worley, 1999; Gomes et al., 2004; Guerra et al., 2011; Barrow et al., 2007). As a consequence of their utility, there are a number of well-established synthetic routes, in particular those involving chiral synthesis (Blackmore & Thompson, 2011; Eyilcim et al., 2018; Li et al., 2004; Vale et al., 2008, 2009; Catalano et al., 2011; Xu et al., 2010). As part of our studies on nitro­gen-containing heterocyclic com­pounds, we report the crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(pro­pan-2-yl)imidazolidin-4-one, 1.

Structural commentary  

The title com­pound, 1, contains one mol­ecule each of the epimers in the asymmetric unit. The 3-[(4-nitro­benzyl­idene)amino]-2(S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolA and the 3-[(4-nitro­benzyl­idene)amino]-2(R)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolB (see Figs. 1 a and 1b). In MolA, the configurations at atoms C12 and C14 are S. In MolB, the configurations at atoms C12 and C14 are R and S, respectively (Fig. 1). The asymmetric unit is shown in Fig. 1(c).

Figure 1.

Figure 1

Compound 1, showing the mol­ecular structures and numbering schemes for (a) MolA and (b) MolB. Displacement ellipsoids are drawn at the 50% probability level. (c) The asymmetric unit containing MolA and MolB, with rings designated as A, B and C.

In both mol­ecules, the imidazoline rings are puckered, the puckers in each case being a twist at C12—N13 and C22—N23 in MolA and MolB, respectively. In the case of MolA, the Cremer & Pople puckering parameters (Cremer & Pople, 1975) are Q(2) of 0.287 (2)Å and φ(2) of 54.7 (5)° for reference bond N11—C12; for MolB, Q(2) is 0.103 (3)Å and φ(2) is 230.3 (15)° for reference bond N21—C22. In MolA, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C121) is 45.83 (18)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 28.04 (12)° and between the two benzene rings is 69.86 (11)°. In MolB, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C221) is 59.83 (13)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 6.86 (13)° and between the two benzene rings is 66.38 (11).

Supra­molecular features  

Inter­molecular inter­actions and contacts  

As seen, each of the mol­ecules of the asymmetric unit (Fig. 1 c) has two nitro groups, whose O atoms can act as acceptors for hydrogen bonding, and three rings that are able to participate in π–π stacking. Fig. 1(c) shows the two mol­ecules labelled for the nitro O atom and the oxo atoms (O15 and O25), as well as the identification of ring A (benzene rings with pivot atoms C131 and C231), B (benzene rings with pivot atoms C121 and C221) and C (imidazoline rings).

A PLATON analysis (Spek, 2009) indicates the possibility in 1 of N—H⋯O(nitro), C—H⋯O(nitro) and C—H⋯O(oxo) hydrogen bonds, and C—H⋯π, N—O⋯π and π–π inter­molecular inter­actions. All details of the hydrogen bonding (mol­ecular contacts) and π–π stacking are given in Tables 1 and 2, respectively. Noticeable among these is the three-centred hydrogen bond between N23 in MolB and the nitro-group atoms O128/O129 in MolA (symmetry code: x + 1, y − 1, z + 1), which generate chains running parallel to the [1Inline graphic1] direction. Within the chosen asymmetric unit (see Fig. 1 c), the benzene rings with pivot atoms C131 and C231 are π–π stacked, forming a dimer. This stacking is supplemented by the C22—H22⋯O139, C243—H24D⋯O138 and C12—H12⋯O239 weak hydrogen bonds. Details are given in Tables 1 and 2. Such π–π-linked dimers are linked by further π–π inter­actions, forming a π–π stacked column, which extends along the a axis by unit translation (see Table 2). The C122—H122⋯O129 and C224—H224⋯O229 weak hydrogen bonds graphic file with name e-75-01774-scheme1.jpgsupplement the inter­dimer π–π stacking (Fig. 2). These π–π-stacked dimers are also linked by the N23—H23⋯O128/O129 hydrogen bond described above; this inter­action creates chains, which propagate parallel to the [1Inline graphic1] direction (Fig. 3, see Table 1 for details). The C112—H112⋯ O15 and C212—H21⋯O25 are possible intra­molecular hydrogen bonds. The C133—H133⋯O15(x, y − 1, z) and C233—H233⋯O25(x, y − 1, z) hydrogen bonds, found by PLATON, separately create C(9) chains that propagate in the direction of the b axis. There is one inter­molecular C—H⋯π inter­action involving C143—H14ACg2(x, y + 1, z) [Cg2 is the centroid of the benzene ring with pivot atom C121(x, y + 1, z)], with an H⋯Cg2 distance of 2.95°, an angle at H of 128° and a C143⋯Cg2 distance of 3.638 (3)°.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23⋯O128i 0.89 (4) 2.55 (4) 3.338 (3) 147 (3)
N23—H23⋯O129i 0.89 (4) 2.36 (4) 3.202 (3) 159 (3)
C112—H112⋯O15 0.95 2.30 2.822 (3) 114
C212—H212⋯O25 0.95 2.16 2.832 (3) 127
C133—H133⋯O15ii 0.95 2.29 3.154 (3) 151
C233—H233⋯O25iii 0.95 2.36 3.141 (3) 139
C243—H24D⋯O138 0.98 2.52 3.480 (3) 165
C122—H122⋯O129iv 0.95 2.48 3.212 (3) 134
C222—H222⋯O229v 0.95 2.60 3.297 (3) 131
C226—H226⋯O139iv 0.95 2.57 3.197 (3) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 2. Analysis of short ring inter­actions with the CgCg distances.

Cg(I) Cg(J) CgCg Slippage
Cg3 Cg6(x − 1, y, z) 3.6278 (13) 1.394
Cg3 Cg6(x, y, z) 3.7548 (13) 1.772
Cg6 Cg3(x + 1, y, z) 3.6277 (13) 1.433
Cg6 Cg3(x, y, z) 3.7548 (13) 1.672

Notes: Cg(I) = plane number I, CgCg = distance between ring centroids (Å), slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Å). Cg3 and Cg6 are the centroids of the rings with pivot atoms C131 and C231, respectively.

Figure 2.

Figure 2

Dimers of π–π stacked MolA and MolB, which com­prise the asymmetric unit, further linked by π–π inter­actions extending the chain by unit translation along the a axis. The π–π inter­actions are augmented by C—H⋯O hydrogen bonds.

Figure 3.

Figure 3

Part of a chain of mol­ecules linked by N23⋯·O128/129 hydrogen bonds connect the asymmetric unit dimers into a chain. Only the atoms in the N23⋯O128/O129 three-centred hydrogen bond are labelled for clarity.

Hirshfeld surface and qu­anti­tative analyses of inter­molecular inter­actions  

Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002) provide com­plementary information concerning the inter­molecular inter­actions deduced from the PLATON analysis. The Hirshfeld analysis, generated using CrystalExplorer (Version 3.1; Wolff et al., 2012) and mapped over d norm (ranging from −0.329 to 1.708), indicated red areas related to specific inter­molecular short contacts (see Figs. 4–7 ).

Figure 4.

Figure 4

Inter­actions connecting mol­ecule pairs I and II, and a view of the Hirsfeld surface.

Figure 5.

Figure 5

Top: inter­actions connecting mol­ecule pair III and a view of the Hirshfeld surface. Middle: inter­actions connecting mol­ecule pair IV and a view of the Hirshfeld surface. Bottom: inter­actions connecting mol­ecule pair V and a view of the Hirshfeld surface.

Figure 6.

Figure 6

Mol­ecular pairs involved in substructures VI and VII, made by the green stick mol­ecule at (x, y, z) with the [colour missing?] colour atoms mol­ecules at (−x, y + 1, z + 1) (VI) and (x, y − 1, z) (VII). The grey mol­ecule in pair VI is considered to act as the conduit for electronic inter­actions, while in pair VII, the conduit is considered to be MolB (blue) of the asymmetric unit.

Figure 7.

Figure 7

The mol­ecular pairs involved in substructures VII and IX. The figure also depicts the Hirshfeld surface images.

Briefly, the Hirshfeld surface analysis revealed that in MolA all the O atoms participate in hydrogen bonding, but in MolB only three do, the exception being O238 in ring A. A summary of these inter­actions is made in Table 3. Carbonyl atoms O15 or O25 of heterocyclic ring C and nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two similar mol­ecules, i.e. MolAMolA or MolBMolB. Those pairs inter­act in a similar way. All the nitro-group O atoms of MolA (O128, O129, O138 and O139) act as acceptors for H atoms of MolB.

Table 3. Summary of the hydrogen bonding.

  p-NO2 (ring A) p-NO2 (ring B) (ring C)
  O138/O238 O139/O239 O128/O228 O129/O229 O15/O25 N—H13/N—H23
MolA A⋯B (III) A⋯B (V) A⋯B (IV) A⋯B (II) A⋯B (IV) A⋯A (I)  
MolB   B⋯A (III)   B⋯B (IX) B⋯B (VIII) B⋯A (IV)

PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003, 2008), were run in order to calculate the total stabilization energy of the crystal packing, E tot, distributed as Coulombic, E Coul, polarization, E pol, dispersion, E disp, and repulsion, E rep, terms. Partial analysis of the PIXEL calculations have been made and the results obtained were used to identify pairs of mol­ecules within the crystal network that most contribute to the total energy of the packing.

The com­pound crystallized with two mol­ecules (MolA and MolB) in the asymmetric unit and each has five O atoms that may be involved in the formation of hydrogen bonds, which are labelled in Fig. 1(c). In short, each mol­ecule has two 4-NO2-phenyl substituents, one substituent connected to the imine C atom, ring A (pivot atoms C131 and C231 in MolA and MolB, respectively), and the other to the imidazoline ring, ring C (pivot atoms C121 and C221 in MolA and MolB, respectively). In addition, there is a carbonyl O atom in heterocyclic ring C (pivot atoms N11 and N21 in MolA and MolB, respectively), together with a potential donor, i.e. the –NH group on the same ring.

The Hirshfeld surface mapped over d norm ranging from −0.329 to 1.708 for 1 show various red areas due to intra­molecular short contacts (refer to Figs. 4–7 ). Briefly, the analysis revealed that in MolA all the O atoms participate in hydrogen bonds, while only one of the nitro O atoms of ring A of MolB establishes inter­actions. A summary of these inter­actions is made in Table 3. The carbonyl O atom of heterocyclic ring C and the nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two mol­ecules with the same labels, that is A⋯A or B⋯B. These pairs inter­act in a similar way. In contrast, it seems that all the O atoms of MolA act as acceptors for H atoms of MolB. Some C⋯π inter­actions that define some substructures are identified in Table 3.

PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003, 2008), give a total stabilization energy of −170.4 kJ mol−1 for the crystal packing, distributed as follows: E Coul = −78.4, E pol = −30.6, E disp = −199.51 and E rep = 138.2 kJ mol−1 for Coulombic, polarization, dispersion and repulsion energies, respectively. The polarization term is clearly less important than the Coulombic one. Partial analysis of the PIXEL calculations was also carried out to identify pairs of mol­ecules within the crystal framework that contribute most to the total energy of the packing. Fig. 8 lists the symmetry operation, the specific close contacts and the individual energy com­ponents for each mol­ecule pair. The identified mol­ecule pairs, I to IX, are depicted in Figs. 4 to 7, together with appropriate views of the Hirshfeld surface. In the figures of the mol­ecule pairs, the epimeric mol­ecules are coloured green (MolA) and blue (MolB), the partner to the specific epimer in the mol­ecular pair is coloured in standard element colours and any other relevant mol­ecule is coloured grey.

Figure 8.

Figure 8

Energies, close contacts and symmetry codes of the mol­ecule pairs. A⋯A stands for MolAMolA com­plexes, B⋯B for MolBMolB com­plexes and A⋯B for MolAMolB.

Substructures I and II connect MolA with MolA (Table 3 and Fig. 4) and subtructures VIII and IX connect MolB with MolB (Table 3 and Fig. 7). There is a similarity between substructures I and VII, as well as between substructures II and IX. Pairs I and VII are made by Carom—H⋯Ooxo inter­actions that give two isoenergetic subsets for each pair (I a/I b and VII a/VII b). These pairs relate MolAMolA and MolBMolB in chains, as can be visualized in Figs. 4 and 7. The total energies for the substructures of pairs I and pairs VII differ by about 5 kJ mol−1 (higher value for substructure I) and this may be due to the presence of an additional C—H⋯π inter­action in I that is not detected in VIII [VII?]. The similar substructures IIa/IIb and IXa/IXb, are built utilizing similar C—H⋯O inter­actions, involving the O atom of the nitro group of ring B. Nevertheless, the total energies for those pairs also differ by about 5 kJ mol−1, this time with a higher value for pairs IX due to a higher contribution of the dispersion term.

The mol­ecules that constitute the asymmetric unit form the nonsymmetric dimeric substructure III. In this substructure, the nitro O atoms of ring A act as acceptors in both mol­ecules, but they inter­act with different H atoms, e.g. (i) a methyl H atom to form the O138 ⋯H24D—C243 hydrogen bond in the MolAMolB contact and (ii) an H atom of the imidazoline ring thereby generating an O239⋯H12—C12 hydrogen bond in the MolBMolA contact (see Fig. 5).

In substructure IV, the N—H hydrogen of MolB makes a bifurcated hydrogen-bond inter­action with both O atoms of the nitro group located in ring B of MolA, e.g. O129⋯H23—N23 and O128⋯H23—N23 (see pair IV in Fig. 5). This substructure, according to the model used for the calculation of inter­actions energies, contributes the highest amount of energy to the stabilization of the crystal packing. In the substructure made by pair V, atom O139 of MolA acts as an acceptor for atom H226 of MolB (see Fig. 7). This layout permits a supra­molecular arrangement where aromatic rings appear to stack, but the Hirshfeld surface (HS) analysis did not reveal spots related to C⋯C close contacts that are typical of the π–π inter­actions.

Finally, two more substructures have been identified as energetically important in the stabilization of the supra­molecular structure for 1. Mol­ecular pairs involved in substructures VI and VII, relate the mol­ecule at (x, y, z) with the mol­ecules at (−x, y + 1, z + 1) (for VI) and (x, y + 1, z) (for VII). Although those mol­ecules are not connected in a classical way, the pairs make a significant contribution to the lattice stabilization energy, i.e. −32.5 and −25.9 kJ mol−1, respectively, for VI and VII. These pairs are depicted in Fig. 6, with the grey mol­ecule in pair VI shown in order to clarify a possible path explaining the electronic inter­actions, while in pair VII, the those inter­actions are made via molB of the asymmetric unit.

Fig. 9 shows the fingerprint (FP) plots for MolA and MolB. The FP plots show two pairs of spikes pointing south-west and ending at (1.2; 0.9/0.9; 1.2) that are due to O⋯H/H⋯O close contacts, the light blue in the middle is due to the H⋯H and C⋯C close contacts. The percentages for atom–atom contacts were taken from the FP plots and are given in Table 4. These percentages are similar for both mol­ecules with an exception made for the O⋯H contacts that are smaller in MolB and the N⋯H and H⋯H contacts that are higher in MolA.

Figure 9.

Figure 9

FP plots for MolA and MolB. The spikes are due to O⋯H/H⋯O contacts and the outer ones due to the N⋯H⋯N contacts.

Table 4. Percentages for atom–atom close contacts.

1 H⋯H H⋯O/O⋯H H⋯C/C⋯H C⋯C H⋯N/N⋯H O⋯C/C⋯O O⋯N /N⋯O C⋯N/N⋯C N⋯N O⋯O
MolA 36.9 35.5 11.3 4.7 2.2 3.1 1.7 1.9 1.0 1.6
MolB 36.5 36.2 11.5 4.7 1.6 3.3 1.7 1.9 1.0 1.6

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018 update; Groom et al., 2016) was carried out. The closest structure in the database to that of 1 is the 1:1 epimeric mixture of 5-isobutyl-2-(2-nitro­phen­yl)-3-(phenyl­amino)­imidazolidin-4-one (CSD refcode VAQZUJ; Verardo et al., 2003); this com­pound was also formed from a chiral reagent on reaction with a carbonyl com­pound. Other structures with a more remote relationship to 1 are 4-[(2S,4S)-4-benzyl-1-methyl-5-oxoimidazolidin-2-yl]benzo­nitrile (ZAZ­KUI; Brase et al., 2012), (2S,5S)-5-benzyl-2-(4-fluoro­phen­yl)-3-methyl­imidazolidin-4-one (ZAZKOC; Brase et al., 2012), 3-benzyl-5-methyl-4-oxo-2-phenyl­imidazolidin-1-ium chloride (QITMIP; Nieger, 2000), 2-tert-butyl-3-methyl-4-oxo-5-(penta­fluoro­benz­yl)imidazolidin-1-ium chloride (LUGTAK; Holland et al., 2015), cyclo-[(1S,2S,3R,4R,5R,7S,10S,11S)-(N-{2-[(d-galactopentitol-1-yl)-4-(4-hy­droxy­benz­yl)-5-oxoimidazolin-1-yl]acet­yl}glyc­yl)-l-phenyl­alanyl-l-leucine 4′-O-ester (DAC­MAW; Kojic-Prodic et al., 2004) and 4-[(2S,4S)-4-isopropyl-5-oxo-3-(3-oxobut­yl)-1-(pyridin-2-yl)imidazolidin-2-yl]benzo­nitrile (NURSOJ; Xu et al., 2010).

Synthesis and crystallization  

l-Valine (2) was converted to 2(S)-amino-3-methyl-1-oxo-butane­hydrazine (3) in two stages, as outlined in Scheme 1.

To a stirred solution of 3 (1 mmol) in ethanol (10 ml) was added 4-nitro­benzaldehyde (2.2 mmol). The reaction mixture was stirred for 20 h at 351 K and rotary evaporated. The residue was purified by column chromatography using a mixture of 9.7:0.3 (v/v) di­chloro­methane–methanol as eluent. Further purification was achieved by crystallization from ethanol. The crystal of 1 used in the structure determination was obtained by slow evaporation of an ethanol solution at room temperature.

M.p. 411–414 K. 1H NMR (400 MHz, DMSO-d 6): δ 0.96 (6H, m, Me), 0.97 (6H, m, Me), 1.42 (2H, m), 2.00 (1H, m), 2.09 (1H, m), 4.06 (2H, m), 7.66–7.71 (4H, m), 7.82–7.85 (4H, m), 8.422–8.48 (8H, m).

13C NMR (100 MHz, DMSO-d 6): δ 17.2,17.4,18.9, 29.9, 30.3, 61.8, 62.53, 124.0, 123.7, 128.1, 128.1, 128.3, 128.9, 140.2, 1140.1, 146.2, 146.3, 147.7, 148.2, 148.7, 171.1, 171.6. IR (KBr, cm−1): ν 3015 (br), 1670, 1518, 1337.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. H atoms attached to C atoms were refined as riding atoms at calculated positions. That attached to the N atom was refined.

Table 5. Experimental details.

Crystal data
Chemical formula C19H19N5O5
M r 397.39
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 6.9346 (1), 8.4380 (2), 16.6963 (5)
α, β, γ (°) 79.826 (2), 89.848 (2), 80.488 (2)
V3) 948.03 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017)
T min, T max 0.876, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17290, 5885, 5634
R int 0.032
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.089, 1.06
No. of reflections 5885
No. of parameters 535
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Absolute structure Flack x determined using 2216 quotients [(I +) − (I )]/[(I +) + (I )] (Parsons et al., 2013)
Absolute structure parameter 0.06 (12)

Computer programs: CrysAlis PRO (Rigaku OD, 2017), OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a ), ShelXle (Hübschle et al., 2011), SHELXL2017 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008), SHELXL2017 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013938/lh5929sup1.cif

e-75-01774-sup1.cif (537.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013938/lh5929Isup2.hkl

e-75-01774-Isup2.hkl (467.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019013938/lh5929Isup3.cml

CCDC references: 1944779, 1944779

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012), for the data collection, help and advice.

supplementary crystallographic information

Crystal data

C19H19N5O5 Z = 2
Mr = 397.39 F(000) = 416
Triclinic, P1 Dx = 1.392 Mg m3
a = 6.9346 (1) Å Cu Kα radiation, λ = 1.54178 Å
b = 8.4380 (2) Å Cell parameters from 10799 reflections
c = 16.6963 (5) Å θ = 2.6–70.2°
α = 79.826 (2)° µ = 0.87 mm1
β = 89.848 (2)° T = 100 K
γ = 80.488 (2)° Block, yellow
V = 948.03 (4) Å3 0.15 × 0.10 × 0.08 mm

Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector diffractometer 5885 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 5634 reflections with I > 2σ(I)
Varimax focusing mirrors monochromator Rint = 0.032
Detector resolution: 10 pixels mm-1 θmax = 68.2°, θmin = 2.7°
profile data from ω–scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) k = −10→10
Tmin = 0.876, Tmax = 1.000 l = −20→20
17290 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.18 e Å3
5885 reflections Δρmin = −0.15 e Å3
535 parameters Absolute structure: Flack x determined using 2216 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: 0.06 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O15 0.4298 (3) 1.1382 (2) 0.37596 (10) 0.0355 (4)
O25 0.7120 (3) −0.1997 (2) 0.63494 (11) 0.0454 (5)
O128 0.0134 (3) 0.6977 (3) −0.07548 (12) 0.0515 (6)
O129 −0.2170 (3) 0.7084 (3) 0.01078 (11) 0.0445 (5)
O138 0.2174 (3) 0.1363 (3) 0.59026 (13) 0.0478 (5)
O139 0.1723 (3) 0.2713 (3) 0.68946 (12) 0.0496 (5)
O228 0.9876 (3) 0.2933 (3) 1.07358 (13) 0.0578 (6)
O229 1.2157 (3) 0.2968 (3) 0.98725 (12) 0.0476 (5)
O238 0.7903 (3) 0.8399 (3) 0.38544 (13) 0.0456 (5)
O239 0.8329 (3) 0.6925 (3) 0.29111 (12) 0.0487 (5)
N11 0.3637 (3) 0.9864 (2) 0.27940 (11) 0.0276 (4)
N13 0.4764 (3) 1.1352 (3) 0.16385 (12) 0.0306 (4)
H13 0.362 (5) 1.192 (4) 0.1427 (18) 0.034 (7)*
N21 0.6624 (3) −0.0012 (3) 0.71543 (12) 0.0302 (4)
N23 0.5744 (3) −0.1541 (3) 0.83569 (13) 0.0353 (5)
H23 0.660 (6) −0.187 (5) 0.877 (2) 0.058 (10)*
N111 0.3401 (3) 0.8408 (2) 0.32899 (11) 0.0270 (4)
N211 0.6703 (3) 0.1435 (2) 0.66255 (11) 0.0288 (4)
C12 0.4363 (3) 0.9729 (3) 0.19724 (14) 0.0277 (5)
H12 0.562548 0.894474 0.203010 0.033*
C14 0.5332 (3) 1.2011 (3) 0.23511 (13) 0.0286 (5)
H14 0.678098 1.168896 0.243608 0.034*
C15 0.4376 (3) 1.1108 (3) 0.30696 (13) 0.0287 (5)
C22 0.5853 (4) 0.0145 (3) 0.79628 (14) 0.0298 (5)
H22 0.450305 0.079596 0.789649 0.036*
C24 0.6057 (4) −0.2618 (3) 0.77444 (14) 0.0335 (5)
H24 0.715645 −0.353217 0.793820 0.040*
C25 0.6675 (4) −0.1559 (3) 0.69896 (15) 0.0348 (5)
C112 0.2670 (3) 0.8488 (3) 0.39906 (14) 0.0279 (5)
H112 0.225845 0.951561 0.414946 0.033*
C121 0.2980 (3) 0.9158 (3) 0.14341 (14) 0.0262 (5)
C122 0.3699 (4) 0.8750 (3) 0.07013 (14) 0.0308 (5)
H122 0.499729 0.887882 0.055715 0.037*
C123 0.2556 (4) 0.8164 (3) 0.01828 (14) 0.0320 (5)
H123 0.304016 0.790033 −0.031853 0.038*
C124 0.0687 (4) 0.7973 (3) 0.04175 (14) 0.0293 (5)
C125 −0.0089 (3) 0.8388 (3) 0.11285 (14) 0.0312 (5)
H125 −0.138837 0.825399 0.126857 0.037*
C126 0.1067 (4) 0.9007 (3) 0.16358 (14) 0.0313 (5)
H126 0.054796 0.932735 0.212100 0.038*
N127 −0.0521 (3) 0.7287 (3) −0.01117 (12) 0.0323 (5)
C131 0.2478 (3) 0.6970 (3) 0.45425 (13) 0.0261 (5)
C132 0.2849 (3) 0.5462 (3) 0.42896 (14) 0.0264 (5)
H132 0.320914 0.541502 0.374383 0.032*
C133 0.2700 (3) 0.4040 (3) 0.48178 (14) 0.0287 (5)
H133 0.295345 0.301262 0.464512 0.034*
C134 0.2168 (3) 0.4152 (3) 0.56112 (14) 0.0302 (5)
C135 0.1772 (3) 0.5612 (3) 0.58830 (14) 0.0318 (5)
H135 0.140140 0.564508 0.642882 0.038*
C136 0.1922 (3) 0.7036 (3) 0.53455 (14) 0.0307 (5)
H136 0.164724 0.805932 0.552131 0.037*
N137 0.2007 (3) 0.2631 (3) 0.61757 (13) 0.0378 (5)
C141 0.4849 (4) 1.3855 (3) 0.22729 (14) 0.0324 (5)
H141 0.522467 1.411918 0.280582 0.039*
C142 0.6066 (5) 1.4719 (4) 0.16285 (18) 0.0451 (7)
H14D 0.580595 1.589617 0.163030 0.068*
H14E 0.571639 1.451708 0.109156 0.068*
H14F 0.745792 1.430079 0.174926 0.068*
C143 0.2666 (4) 1.4489 (3) 0.21372 (16) 0.0387 (6)
H14A 0.238790 1.563576 0.220178 0.058*
H14B 0.193577 1.384089 0.253620 0.058*
H14C 0.227059 1.439805 0.158629 0.058*
C212 0.7367 (3) 0.1361 (3) 0.59108 (15) 0.0301 (5)
H212 0.777043 0.033090 0.575349 0.036*
C221 0.7088 (3) 0.0917 (3) 0.84770 (14) 0.0282 (5)
C222 0.6347 (4) 0.1260 (3) 0.92174 (14) 0.0299 (5)
H222 0.506428 0.107886 0.936016 0.036*
C223 0.7456 (4) 0.1858 (3) 0.97467 (14) 0.0308 (5)
H223 0.696374 0.206566 1.025638 0.037*
C224 0.9301 (4) 0.2146 (3) 0.95128 (14) 0.0286 (5)
C225 1.0058 (4) 0.1867 (3) 0.87724 (15) 0.0325 (5)
H225 1.131517 0.210277 0.862046 0.039*
C226 0.8942 (3) 0.1235 (3) 0.82574 (14) 0.0301 (5)
H226 0.944672 0.101824 0.775113 0.036*
N227 1.0519 (3) 0.2745 (3) 1.00771 (12) 0.0339 (5)
C231 0.7499 (3) 0.2873 (3) 0.53383 (13) 0.0277 (5)
C232 0.7186 (3) 0.4406 (3) 0.55683 (14) 0.0287 (5)
H232 0.685933 0.449496 0.611332 0.034*
C233 0.7347 (3) 0.5795 (3) 0.50108 (15) 0.0299 (5)
H233 0.712742 0.683984 0.516467 0.036*
C234 0.7840 (3) 0.5624 (3) 0.42183 (15) 0.0307 (5)
C235 0.8170 (3) 0.4122 (3) 0.39713 (14) 0.0314 (5)
H235 0.850887 0.403867 0.342684 0.038*
C236 0.7993 (3) 0.2746 (3) 0.45354 (14) 0.0303 (5)
H236 0.820955 0.170474 0.437723 0.036*
N237 0.8038 (3) 0.7084 (3) 0.36213 (13) 0.0366 (5)
C241 0.4241 (4) −0.3336 (3) 0.75728 (15) 0.0345 (5)
H241 0.445003 −0.378380 0.705741 0.041*
C242 0.3982 (5) −0.4738 (4) 0.82522 (19) 0.0455 (7)
H24A 0.515569 −0.557757 0.830591 0.068*
H24B 0.284532 −0.520913 0.812321 0.068*
H24C 0.377662 −0.432928 0.876535 0.068*
C243 0.2417 (4) −0.2027 (3) 0.74492 (16) 0.0369 (5)
H24D 0.259555 −0.117069 0.698937 0.055*
H24E 0.219738 −0.155144 0.794304 0.055*
H24F 0.128424 −0.251832 0.733575 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O15 0.0480 (10) 0.0339 (9) 0.0271 (8) −0.0136 (8) −0.0009 (7) −0.0057 (7)
O25 0.0636 (12) 0.0408 (11) 0.0385 (10) −0.0199 (9) 0.0130 (9) −0.0150 (8)
O128 0.0459 (11) 0.0821 (16) 0.0359 (11) −0.0172 (10) 0.0023 (8) −0.0293 (11)
O129 0.0418 (10) 0.0597 (13) 0.0372 (10) −0.0232 (9) 0.0006 (8) −0.0087 (9)
O138 0.0493 (12) 0.0346 (11) 0.0559 (12) −0.0119 (9) −0.0051 (9) 0.0066 (9)
O139 0.0474 (11) 0.0619 (13) 0.0327 (10) −0.0116 (10) 0.0032 (8) 0.0120 (9)
O228 0.0529 (12) 0.0899 (18) 0.0419 (11) −0.0211 (12) 0.0018 (9) −0.0340 (12)
O229 0.0443 (11) 0.0625 (14) 0.0433 (11) −0.0252 (10) −0.0014 (9) −0.0134 (10)
O238 0.0378 (10) 0.0405 (11) 0.0533 (12) −0.0083 (8) −0.0046 (8) 0.0074 (9)
O239 0.0458 (11) 0.0592 (13) 0.0333 (10) −0.0063 (9) 0.0048 (8) 0.0101 (9)
N11 0.0356 (10) 0.0262 (11) 0.0222 (9) −0.0108 (8) 0.0005 (8) −0.0023 (8)
N13 0.0390 (11) 0.0278 (11) 0.0261 (10) −0.0118 (9) −0.0003 (8) −0.0016 (8)
N21 0.0349 (11) 0.0332 (12) 0.0243 (9) −0.0125 (9) 0.0008 (8) −0.0039 (8)
N23 0.0469 (12) 0.0353 (12) 0.0261 (10) −0.0177 (10) −0.0048 (9) −0.0021 (9)
N111 0.0300 (10) 0.0274 (11) 0.0238 (10) −0.0099 (8) −0.0039 (7) −0.0002 (8)
N211 0.0295 (10) 0.0339 (11) 0.0237 (10) −0.0116 (9) −0.0026 (8) −0.0013 (8)
C12 0.0321 (12) 0.0283 (13) 0.0228 (11) −0.0074 (10) 0.0006 (9) −0.0025 (9)
C14 0.0310 (11) 0.0278 (12) 0.0274 (11) −0.0077 (9) −0.0021 (9) −0.0032 (9)
C15 0.0329 (12) 0.0258 (12) 0.0267 (11) −0.0052 (9) −0.0034 (9) −0.0025 (9)
C22 0.0325 (12) 0.0348 (13) 0.0226 (11) −0.0112 (10) 0.0019 (9) −0.0012 (10)
C24 0.0371 (13) 0.0312 (13) 0.0314 (12) −0.0073 (10) −0.0026 (10) −0.0018 (9)
C25 0.0360 (12) 0.0358 (14) 0.0342 (12) −0.0109 (10) 0.0010 (10) −0.0060 (10)
C112 0.0275 (11) 0.0307 (12) 0.0265 (11) −0.0080 (9) −0.0012 (9) −0.0047 (9)
C121 0.0338 (12) 0.0202 (11) 0.0231 (11) −0.0057 (9) −0.0006 (9) 0.0010 (8)
C122 0.0350 (12) 0.0326 (13) 0.0253 (12) −0.0106 (10) 0.0034 (9) −0.0022 (10)
C123 0.0394 (13) 0.0325 (13) 0.0247 (12) −0.0093 (10) 0.0031 (10) −0.0036 (9)
C124 0.0362 (12) 0.0261 (12) 0.0244 (11) −0.0064 (10) −0.0044 (9) −0.0003 (9)
C125 0.0295 (12) 0.0357 (13) 0.0273 (12) −0.0064 (10) 0.0001 (9) −0.0022 (10)
C126 0.0352 (12) 0.0343 (13) 0.0238 (11) −0.0045 (10) −0.0002 (9) −0.0045 (9)
N127 0.0360 (11) 0.0325 (11) 0.0286 (11) −0.0083 (9) −0.0026 (8) −0.0030 (8)
C131 0.0226 (11) 0.0341 (13) 0.0226 (11) −0.0088 (10) −0.0028 (8) −0.0037 (9)
C132 0.0254 (11) 0.0341 (13) 0.0209 (10) −0.0095 (9) −0.0005 (8) −0.0043 (9)
C133 0.0229 (11) 0.0337 (13) 0.0306 (12) −0.0081 (10) −0.0035 (9) −0.0058 (10)
C134 0.0227 (11) 0.0378 (14) 0.0278 (11) −0.0097 (10) −0.0037 (9) 0.0047 (10)
C135 0.0277 (11) 0.0458 (16) 0.0228 (11) −0.0110 (11) −0.0006 (9) −0.0038 (10)
C136 0.0307 (12) 0.0378 (14) 0.0256 (11) −0.0095 (10) 0.0002 (9) −0.0078 (10)
N137 0.0258 (10) 0.0467 (15) 0.0366 (12) −0.0093 (10) −0.0032 (9) 0.0067 (10)
C141 0.0403 (13) 0.0290 (12) 0.0290 (11) −0.0094 (10) −0.0022 (9) −0.0046 (9)
C142 0.0623 (18) 0.0298 (14) 0.0442 (15) −0.0159 (13) 0.0078 (13) −0.0020 (12)
C143 0.0437 (14) 0.0309 (13) 0.0402 (13) −0.0031 (11) −0.0100 (11) −0.0058 (10)
C212 0.0301 (11) 0.0353 (13) 0.0274 (12) −0.0114 (10) −0.0006 (9) −0.0071 (10)
C221 0.0336 (12) 0.0271 (12) 0.0233 (11) −0.0074 (10) −0.0015 (9) −0.0008 (9)
C222 0.0325 (12) 0.0309 (13) 0.0260 (12) −0.0089 (10) 0.0016 (9) −0.0009 (9)
C223 0.0375 (13) 0.0326 (13) 0.0221 (11) −0.0064 (10) 0.0014 (9) −0.0034 (9)
C224 0.0374 (12) 0.0234 (11) 0.0245 (11) −0.0074 (10) −0.0044 (9) −0.0012 (9)
C225 0.0333 (12) 0.0359 (13) 0.0296 (12) −0.0111 (10) 0.0015 (10) −0.0045 (10)
C226 0.0323 (12) 0.0347 (13) 0.0242 (11) −0.0098 (10) 0.0025 (9) −0.0038 (9)
N227 0.0400 (12) 0.0325 (12) 0.0293 (11) −0.0056 (9) −0.0053 (9) −0.0058 (9)
C231 0.0224 (11) 0.0391 (14) 0.0230 (11) −0.0099 (10) −0.0018 (9) −0.0049 (10)
C232 0.0235 (11) 0.0407 (14) 0.0236 (11) −0.0088 (10) −0.0039 (9) −0.0067 (10)
C233 0.0234 (11) 0.0355 (14) 0.0314 (12) −0.0081 (10) −0.0036 (9) −0.0048 (10)
C234 0.0223 (11) 0.0414 (14) 0.0267 (11) −0.0086 (10) −0.0037 (9) 0.0015 (10)
C235 0.0254 (11) 0.0476 (15) 0.0216 (11) −0.0098 (10) −0.0011 (9) −0.0038 (10)
C236 0.0266 (11) 0.0406 (14) 0.0257 (11) −0.0110 (10) −0.0008 (9) −0.0068 (10)
N237 0.0253 (10) 0.0434 (14) 0.0364 (12) −0.0071 (9) −0.0013 (8) 0.0070 (10)
C241 0.0442 (14) 0.0300 (13) 0.0316 (12) −0.0130 (11) 0.0002 (10) −0.0051 (10)
C242 0.0566 (17) 0.0313 (15) 0.0480 (16) −0.0143 (13) 0.0027 (13) 0.0013 (12)
C243 0.0381 (13) 0.0378 (14) 0.0362 (12) −0.0109 (11) −0.0026 (10) −0.0061 (10)

Geometric parameters (Å, º)

O15—C15 1.213 (3) C132—H132 0.9500
O25—C25 1.214 (3) C133—C134 1.389 (3)
O128—N127 1.219 (3) C133—H133 0.9500
O129—N127 1.229 (3) C134—C135 1.373 (4)
O138—N137 1.224 (3) C134—N137 1.472 (3)
O139—N137 1.228 (3) C135—C136 1.386 (4)
O228—N227 1.212 (3) C135—H135 0.9500
O229—N227 1.220 (3) C136—H136 0.9500
O238—N237 1.229 (3) C141—C143 1.523 (4)
O239—N237 1.229 (3) C141—C142 1.524 (4)
N11—C15 1.388 (3) C141—H141 1.0000
N11—N111 1.388 (3) C142—H14D 0.9800
N11—C12 1.477 (3) C142—H14E 0.9800
N13—C12 1.456 (3) C142—H14F 0.9800
N13—C14 1.479 (3) C143—H14A 0.9800
N13—H13 0.89 (3) C143—H14B 0.9800
N21—C25 1.375 (3) C143—H14C 0.9800
N21—N211 1.384 (3) C212—C231 1.469 (3)
N21—C22 1.470 (3) C212—H212 0.9500
N23—C22 1.471 (3) C221—C226 1.391 (3)
N23—C24 1.477 (3) C221—C222 1.396 (3)
N23—H23 0.89 (4) C222—C223 1.385 (3)
N111—C112 1.282 (3) C222—H222 0.9500
N211—C212 1.286 (3) C223—C224 1.384 (3)
C12—C121 1.507 (3) C223—H223 0.9500
C12—H12 1.0000 C224—C225 1.385 (3)
C14—C15 1.516 (3) C224—N227 1.473 (3)
C14—C141 1.518 (3) C225—C226 1.387 (3)
C14—H14 1.0000 C225—H225 0.9500
C22—C221 1.510 (3) C226—H226 0.9500
C22—H22 1.0000 C231—C232 1.396 (4)
C24—C25 1.515 (3) C231—C236 1.401 (3)
C24—C241 1.533 (3) C232—C233 1.382 (4)
C24—H24 1.0000 C232—H232 0.9500
C112—C131 1.465 (3) C233—C234 1.392 (3)
C112—H112 0.9500 C233—H233 0.9500
C121—C126 1.389 (3) C234—C235 1.385 (4)
C121—C122 1.397 (3) C234—N237 1.467 (3)
C122—C123 1.381 (3) C235—C236 1.382 (4)
C122—H122 0.9500 C235—H235 0.9500
C123—C124 1.379 (4) C236—H236 0.9500
C123—H123 0.9500 C241—C242 1.521 (4)
C124—C125 1.379 (3) C241—C243 1.524 (4)
C124—N127 1.471 (3) C241—H241 1.0000
C125—C126 1.389 (3) C242—H24A 0.9800
C125—H125 0.9500 C242—H24B 0.9800
C126—H126 0.9500 C242—H24C 0.9800
C131—C132 1.395 (3) C243—H24D 0.9800
C131—C136 1.402 (3) C243—H24E 0.9800
C132—C133 1.377 (3) C243—H24F 0.9800
C15—N11—N111 123.74 (18) C131—C136—H136 119.9
C15—N11—C12 109.37 (18) O138—N137—O139 123.9 (2)
N111—N11—C12 115.87 (18) O138—N137—C134 118.2 (2)
C12—N13—C14 104.96 (18) O139—N137—C134 117.8 (2)
C12—N13—H13 105.6 (19) C14—C141—C143 112.28 (19)
C14—N13—H13 109.4 (19) C14—C141—C142 111.7 (2)
C25—N21—N211 129.5 (2) C143—C141—C142 112.2 (2)
C25—N21—C22 112.2 (2) C14—C141—H141 106.7
N211—N21—C22 116.06 (19) C143—C141—H141 106.7
C22—N23—C24 109.21 (19) C142—C141—H141 106.7
C22—N23—H23 111 (2) C141—C142—H14D 109.5
C24—N23—H23 112 (2) C141—C142—H14E 109.5
C112—N111—N11 117.58 (19) H14D—C142—H14E 109.5
C212—N211—N21 118.4 (2) C141—C142—H14F 109.5
N13—C12—N11 104.41 (18) H14D—C142—H14F 109.5
N13—C12—C121 112.35 (19) H14E—C142—H14F 109.5
N11—C12—C121 114.42 (19) C141—C143—H14A 109.5
N13—C12—H12 108.5 C141—C143—H14B 109.5
N11—C12—H12 108.5 H14A—C143—H14B 109.5
C121—C12—H12 108.5 C141—C143—H14C 109.5
N13—C14—C15 105.22 (17) H14A—C143—H14C 109.5
N13—C14—C141 115.33 (19) H14B—C143—H14C 109.5
C15—C14—C141 113.03 (19) N211—C212—C231 119.8 (2)
N13—C14—H14 107.6 N211—C212—H212 120.1
C15—C14—H14 107.6 C231—C212—H212 120.1
C141—C14—H14 107.6 C226—C221—C222 119.4 (2)
O15—C15—N11 125.9 (2) C226—C221—C22 122.8 (2)
O15—C15—C14 127.3 (2) C222—C221—C22 117.8 (2)
N11—C15—C14 106.73 (18) C223—C222—C221 121.0 (2)
N21—C22—N23 104.4 (2) C223—C222—H222 119.5
N21—C22—C221 114.65 (19) C221—C222—H222 119.5
N23—C22—C221 110.4 (2) C224—C223—C222 118.1 (2)
N21—C22—H22 109.1 C224—C223—H223 120.9
N23—C22—H22 109.1 C222—C223—H223 120.9
C221—C22—H22 109.1 C223—C224—C225 122.4 (2)
N23—C24—C25 104.9 (2) C223—C224—N227 118.9 (2)
N23—C24—C241 113.3 (2) C225—C224—N227 118.7 (2)
C25—C24—C241 111.6 (2) C224—C225—C226 118.6 (2)
N23—C24—H24 108.9 C224—C225—H225 120.7
C25—C24—H24 108.9 C226—C225—H225 120.7
C241—C24—H24 108.9 C225—C226—C221 120.5 (2)
O25—C25—N21 126.1 (2) C225—C226—H226 119.8
O25—C25—C24 125.9 (2) C221—C226—H226 119.8
N21—C25—C24 108.0 (2) O228—N227—O229 123.0 (2)
N111—C112—C131 119.0 (2) O228—N227—C224 118.5 (2)
N111—C112—H112 120.5 O229—N227—C224 118.5 (2)
C131—C112—H112 120.5 C232—C231—C236 119.5 (2)
C126—C121—C122 119.4 (2) C232—C231—C212 122.6 (2)
C126—C121—C12 123.4 (2) C236—C231—C212 117.9 (2)
C122—C121—C12 117.2 (2) C233—C232—C231 120.6 (2)
C123—C122—C121 121.2 (2) C233—C232—H232 119.7
C123—C122—H122 119.4 C231—C232—H232 119.7
C121—C122—H122 119.4 C232—C233—C234 118.4 (2)
C124—C123—C122 117.7 (2) C232—C233—H233 120.8
C124—C123—H123 121.1 C234—C233—H233 120.8
C122—C123—H123 121.1 C235—C234—C233 122.5 (2)
C125—C124—C123 122.8 (2) C235—C234—N237 118.5 (2)
C125—C124—N127 118.7 (2) C233—C234—N237 119.0 (2)
C123—C124—N127 118.4 (2) C236—C235—C234 118.4 (2)
C124—C125—C126 118.7 (2) C236—C235—H235 120.8
C124—C125—H125 120.7 C234—C235—H235 120.8
C126—C125—H125 120.7 C235—C236—C231 120.6 (2)
C121—C126—C125 120.1 (2) C235—C236—H236 119.7
C121—C126—H126 120.0 C231—C236—H236 119.7
C125—C126—H126 120.0 O239—N237—O238 123.4 (2)
O128—N127—O129 122.8 (2) O239—N237—C234 118.0 (2)
O128—N127—C124 118.8 (2) O238—N237—C234 118.6 (2)
O129—N127—C124 118.3 (2) C242—C241—C243 111.2 (2)
C132—C131—C136 119.3 (2) C242—C241—C24 110.5 (2)
C132—C131—C112 121.6 (2) C243—C241—C24 111.3 (2)
C136—C131—C112 119.1 (2) C242—C241—H241 107.9
C133—C132—C131 121.1 (2) C243—C241—H241 107.9
C133—C132—H132 119.5 C24—C241—H241 107.9
C131—C132—H132 119.5 C241—C242—H24A 109.5
C132—C133—C134 118.0 (2) C241—C242—H24B 109.5
C132—C133—H133 121.0 H24A—C242—H24B 109.5
C134—C133—H133 121.0 C241—C242—H24C 109.5
C135—C134—C133 122.9 (2) H24A—C242—H24C 109.5
C135—C134—N137 119.2 (2) H24B—C242—H24C 109.5
C133—C134—N137 118.0 (2) C241—C243—H24D 109.5
C134—C135—C136 118.7 (2) C241—C243—H24E 109.5
C134—C135—H135 120.7 H24D—C243—H24E 109.5
C136—C135—H135 120.7 C241—C243—H24F 109.5
C135—C136—C131 120.1 (2) H24D—C243—H24F 109.5
C135—C136—H136 119.9 H24E—C243—H24F 109.5
C15—N11—N111—C112 43.7 (3) C136—C131—C132—C133 −0.8 (3)
C12—N11—N111—C112 −176.19 (19) C112—C131—C132—C133 178.75 (19)
C25—N21—N211—C212 −18.6 (3) C131—C132—C133—C134 0.0 (3)
C22—N21—N211—C212 179.98 (19) C132—C133—C134—C135 0.6 (3)
C14—N13—C12—N11 30.7 (2) C132—C133—C134—N137 179.92 (18)
C14—N13—C12—C121 155.3 (2) C133—C134—C135—C136 −0.5 (3)
C15—N11—C12—N13 −25.8 (2) N137—C134—C135—C136 −179.8 (2)
N111—N11—C12—N13 −171.33 (18) C134—C135—C136—C131 −0.3 (3)
C15—N11—C12—C121 −149.0 (2) C132—C131—C136—C135 0.9 (3)
N111—N11—C12—C121 65.4 (3) C112—C131—C136—C135 −178.6 (2)
C12—N13—C14—C15 −25.1 (2) C135—C134—N137—O138 172.8 (2)
C12—N13—C14—C141 −150.3 (2) C133—C134—N137—O138 −6.5 (3)
N111—N11—C15—O15 −26.3 (4) C135—C134—N137—O139 −7.6 (3)
C12—N11—C15—O15 −168.6 (2) C133—C134—N137—O139 173.1 (2)
N111—N11—C15—C14 152.1 (2) N13—C14—C141—C143 59.6 (3)
C12—N11—C15—C14 9.9 (3) C15—C14—C141—C143 −61.5 (3)
N13—C14—C15—O15 −172.1 (2) N13—C14—C141—C142 −67.5 (3)
C141—C14—C15—O15 −45.4 (3) C15—C14—C141—C142 171.4 (2)
N13—C14—C15—N11 9.5 (2) N21—N211—C212—C231 −179.07 (18)
C141—C14—C15—N11 136.1 (2) N21—C22—C221—C226 −9.1 (3)
C25—N21—C22—N23 9.8 (3) N23—C22—C221—C226 108.5 (3)
N211—N21—C22—N23 174.33 (17) N21—C22—C221—C222 173.6 (2)
C25—N21—C22—C221 130.7 (2) N23—C22—C221—C222 −68.8 (3)
N211—N21—C22—C221 −64.7 (3) C226—C221—C222—C223 −2.2 (4)
C24—N23—C22—N21 −11.1 (3) C22—C221—C222—C223 175.3 (2)
C24—N23—C22—C221 −134.8 (2) C221—C222—C223—C224 1.5 (4)
C22—N23—C24—C25 8.6 (3) C222—C223—C224—C225 0.4 (4)
C22—N23—C24—C241 −113.4 (2) C222—C223—C224—N227 −178.5 (2)
N211—N21—C25—O25 12.8 (4) C223—C224—C225—C226 −1.7 (4)
C22—N21—C25—O25 174.8 (2) N227—C224—C225—C226 177.2 (2)
N211—N21—C25—C24 −166.5 (2) C224—C225—C226—C221 1.1 (4)
C22—N21—C25—C24 −4.6 (3) C222—C221—C226—C225 0.8 (4)
N23—C24—C25—O25 178.1 (2) C22—C221—C226—C225 −176.5 (2)
C241—C24—C25—O25 −58.8 (3) C223—C224—N227—O228 1.5 (3)
N23—C24—C25—N21 −2.5 (3) C225—C224—N227—O228 −177.5 (2)
C241—C24—C25—N21 120.6 (2) C223—C224—N227—O229 178.7 (2)
N11—N111—C112—C131 −177.45 (18) C225—C224—N227—O229 −0.3 (3)
N13—C12—C121—C126 −109.4 (3) N211—C212—C231—C232 9.0 (3)
N11—C12—C121—C126 9.5 (3) N211—C212—C231—C236 −172.1 (2)
N13—C12—C121—C122 71.3 (3) C236—C231—C232—C233 0.4 (3)
N11—C12—C121—C122 −169.9 (2) C212—C231—C232—C233 179.3 (2)
C126—C121—C122—C123 −1.5 (4) C231—C232—C233—C234 −0.4 (3)
C12—C121—C122—C123 177.8 (2) C232—C233—C234—C235 0.1 (3)
C121—C122—C123—C124 −0.8 (4) C232—C233—C234—N237 −179.35 (19)
C122—C123—C124—C125 2.0 (4) C233—C234—C235—C236 0.2 (3)
C122—C123—C124—N127 −177.5 (2) N237—C234—C235—C236 179.65 (19)
C123—C124—C125—C126 −0.8 (4) C234—C235—C236—C231 −0.2 (3)
N127—C124—C125—C126 178.8 (2) C232—C231—C236—C235 −0.1 (3)
C122—C121—C126—C125 2.8 (4) C212—C231—C236—C235 −179.0 (2)
C12—C121—C126—C125 −176.5 (2) C235—C234—N237—O239 5.9 (3)
C124—C125—C126—C121 −1.7 (4) C233—C234—N237—O239 −174.7 (2)
C125—C124—N127—O128 177.3 (2) C235—C234—N237—O238 −174.1 (2)
C123—C124—N127—O128 −3.1 (4) C233—C234—N237—O238 5.3 (3)
C125—C124—N127—O129 −1.2 (4) N23—C24—C241—C242 −77.5 (3)
C123—C124—N127—O129 178.4 (2) C25—C24—C241—C242 164.3 (2)
N111—C112—C131—C132 −7.8 (3) N23—C24—C241—C243 46.6 (3)
N111—C112—C131—C136 171.7 (2) C25—C24—C241—C243 −71.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N23—H23···O128i 0.89 (4) 2.55 (4) 3.338 (3) 147 (3)
N23—H23···O129i 0.89 (4) 2.36 (4) 3.202 (3) 159 (3)
C112—H112···O15 0.95 2.30 2.822 (3) 114
C212—H212···O25 0.95 2.16 2.832 (3) 127
C133—H133···O15ii 0.95 2.29 3.154 (3) 151
C233—H233···O25iii 0.95 2.36 3.141 (3) 139
C243—H24D···O138 0.98 2.52 3.480 (3) 165
C122—H122···O129iv 0.95 2.48 3.212 (3) 134
C222—H222···O229v 0.95 2.60 3.297 (3) 131
C226—H226···O139iv 0.95 2.57 3.197 (3) 124

Symmetry codes: (i) x+1, y−1, z+1; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x−1, y, z.

References

  1. Barrow, J. C., Rittle, K. E., Ngo, P. L., Selnick, H. G., Graham, S. L., Pitzenberger, S. M., McGaughey, G. B., Colussi, D., Lai, M. T., Huang, Q., Tugusheva, K., Espesth, A. S., Simon, A. J. K., Munishi, S. K. & Vacca, J. P. (2007). ChemMedChem, 2, 995–999. [DOI] [PubMed]
  2. Blackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953–1975.
  3. Brase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385–1392. [DOI] [PMC free article] [PubMed]
  4. Catalano, A., Carocci, A., Lentini, G., Di Mola, A., Bruno, C. & Francini, C. (2011). Heterocycl. Chem. 48, 261–266.
  5. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Elrod, D. B. & Worley, S. D. (1999). J. Bioact. Compat. Pol. 14, 258–269.
  8. Eyilcim, O., Issever, S., Ocal, N., Gronert, S. & Erden, I. (2018). Tetrahedron Lett. 59, 3674–3677. [DOI] [PMC free article] [PubMed]
  9. Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.
  10. Gavezzotti, A. (2008). Mol. Phys 106, 1473–1485.
  11. Gomes, P., Araujo, M. J., Rodfrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Guerra, A. S. H. D., Malta, D. J. D., Laranjeira, L. P. M., Maia, M. B. S., Colaco, N. C., de Lima, M. D. A., Galdino, S. L., Pitta, I. D. & Goncalves-Silva, T. (2011). Int. J. Immunopharmacol. 11, 1816–1822. [DOI] [PubMed]
  14. Holland, M. C., Metternich, J. B., Daniliuc, C., Schweizer, W. C. & Gilmour, R. (2015). Chem. Eur. J. 21, 10031–10038. [DOI] [PubMed]
  15. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  16. Kojic-Prodic, B., Peric, B., Roscic, M., Novak, P. & Horvat, S. (2004). J. Pept. Sci. 10, 47–55. [DOI] [PubMed]
  17. Li, J. Z., Zhang, Z. F. & Fan, E. K. (2004). Tetrahedron Lett. 45, 1267–1284.
  18. Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun 35, 105.
  19. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  20. McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 300–309.
  21. Mondini, S., Puglisi, A., Benaglia, M., Ramella, D., Drago, C., Ferretti, A. M. & Ponti, A. (2013). J. Nanopart. Res. 15, article no. UNSP 2025.
  22. Nieger, M. (2000). CSD Communication (Private Communication). CCDC, Cambridge, England.
  23. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  24. Puglisi, A., Benaglia, M., Annunziata, R., Chiroli, V., Porta, R. & Gervasini, A. (2013). J. Org. Chem 78, 11326–11334. [DOI] [PubMed]
  25. Rigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  26. Seebach, D., Groselj, U., Baldine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034.
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  31. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  32. Vale, N., Matos, J., Moreira, R. & Gomes, T. (2008). Tetrahedron, 64, 11144–11149.
  33. Vale, N., Nogueira, F., do Rosario, V. E., Gomes, P. & Moreira, R. (2009). Eur. J. Med. Chem 44, 2506–2516. [DOI] [PubMed]
  34. Verardo, G., Geatti, P., Martinuzzi, P., Merli, M. & Toniutti, N. (2003). Eur. J. Org. Chem 2003, 3840–2849.
  35. Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. Version 3.1. The University of Western Australia.
  36. Xu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J 16, 2972–2976. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019013938/lh5929sup1.cif

e-75-01774-sup1.cif (537.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019013938/lh5929Isup2.hkl

e-75-01774-Isup2.hkl (467.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019013938/lh5929Isup3.cml

CCDC references: 1944779, 1944779

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES