Abstract
Brown and beige adipocytes are mainly responsible for nonshivering thermogenesis or heat production, despite the fact that they have distinguished features in distribution, developmental origin, and functional activation. As a nutrient sensor and critical regulator of energy metabolism, mechanistic target of rapamycin (mTOR) also plays an important role in the development and functional maintenance of adipocytes. While the recent studies support the notion that mTOR (mTORC1 and mTORC2) related signaling pathways are of great significance for thermogenesis and the development of brown and beige adipocytes, the exact roles of mTOR in heat production are controversial. The similarities and disparities in terms of thermogenesis might be ascribed to the use of different animal models and experimental systems, distinct features of brown and beige adipocytes, and the complexity of regulatory networks of mTORC1 and mTORC2 in energy metabolism.
Keywords: mTOR, Adipocytes, Thermogenesis, Energy metabolism
Introduction
There has been an accelerated global increase in the prevalence of obesity and obesity-related diseases, including metabolic syndrome and diabetes [1]. Recent data show that there are more than 1.9 billion overweight and over 650 million obese adults around the world in 2016 [2, 3]. Controlling body weight greatly benefits obesity associated chronic diseases and cancers [4–6]. Obesity mainly arises from an imbalance of energy homeostasis between increased food intake and decreased energy expenditure. The multiple functions of adipose tissues in energy homeostasis have been attracting increasing attention in recent years. Apart from their endocrine function, adipose tissues also play important roles in energy metabolism. As classical white adipose tissues (WATs) are mainly responsible for fat storage, brown adipose tissues (BATs) control nonshivering thermogenesis or heat production. BAT expresses unique uncoupling protein 1 (Ucp1), which allows the uncoupling protons to move down their mitochondrial gradient from the synthesis of adenosine triphosphate (ATP), resulting in the dissipation of energy as heat [7]. Recent studies have uncovered that, when induced by a cold environment or β-adrenergic receptor (βAR) activators, a subset of “brown-like” or “beige” cells in WAT are produced.
Similar to brown adipocytes, beige adipocytes are also involved in nonshivering thermogenesis and the dissipation of heat energy. Recently, extensive studies that explore the molecular mechanisms underlying the functional and developmental regulation of brown and beige fat have been performed [8]. Multiple transcriptional factors and cofactors, such as PRD1-BF1-RIZ1 homologous domain-containing 16 (PRDM16), peroxisome proliferator-activated receptor γ (PPARγ), PPARγ-coactivators-1α (PGC-1α), and many others, play key roles in the differentiation and development of brown and beige adipocytes [9, 10].
mTOR, known as mammalian or mechanistic target of rapamycin, is a Ser/Thr protein kinase that integrates internal and external signaling to regulate protein/lipid syntheses, cellular proliferation and metabolism, and autophagy. Recently, mTOR-related signaling pathways have been reported to play vital roles in the regulation of adipose tissue browning and thermogenesis; however, the exact role of mTOR signaling in the beigeing process seems controversial and is yet to be fully elucidated. In this review, we summarize and highlight the recent understanding of adipose tissue browning. More importantly, we discuss the discoveries concerning mTOR-related signaling in brown and beige fat development and its function in different mouse models. We believe that clarifying the roles and underlying mechanisms of mTOR-related signaling in adipocytes will provide potential therapeutic targets for obesity and related metabolic disorders.
Brown and beige adipocytes
As the two major types of adipocytes that are responsible for nonshivering thermogenesis, brown and beige adipocytes share multiple similarities in morphological and biochemical characteristics, namely, they both possess multilocular lipid droplets, a large number of mitochondria, and high expression levels of several thermogenic genes and increased dissipation of energy under cold stimulation or via pathways that elevate intracellular cyclic AMP [8]. With respect to their noncanonical function, brown and beige fat influence systemic metabolism indirectly by acting as metabolic sinks for various substrates, such as glucose, lipids, and many other metabolites [11, 12]. Despite similarities, these two kinds of adipocytes still have several distinctive features.
First, there is a difference in the distribution of brown and beige adipocytes. In human infants, classical brown adipocytes mainly exist in interscapular BAT depots, similar to those of rodents [13]. In human adults, BAT is more widely distributed. Its locations include the cervical, supraclavicular, axillary, paravertebral, and periadrenal regions [13, 14]. Intriguingly, adult human BAT depots express several molecular markers similar to beige adipocytes in mice, such as the homeobox protein HoxC8 (Hoxc8), the homeobox protein HoxC9 (Hoxc9) and the Cebp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (CITED1); thus, Ucp1-positive adipocytes from the supraclavicular region in humans show a molecular signature consistent with those of beige adipocytes in mice [15]. Unlike the dedicated deposits of brown adipocytes, inducible beige adipocytes are highly dependent on adipose depots. In mice, the subcutaneous inguinal WAT depots, such as the inguinal and anterior subcutaneous WATs, undergo profound induction [13, 16], whereas the epididymal WATs are particularly resistant to beigeing when exposed to cold stimuli [17].
Second, the developmental origin of classical brown and beige adipocytes is different. During the embryogenesis of mice, BAT depots develop before other adipose depots, which is in parallel with the capacity for nonshivering thermogenesis in a cold environment in newborns [18]. Lineage-tracing studies indicate that brown adipose precursors arise from multipotent progenitor cells in the dermomyotome that express high levels of engrailed 1 (EN1), paired box 7 (PAX7), and myogenic factor 5 (MYF5) marker genes, and such multipotent progenitors can also differentiate into skeletal muscle, dorsal dermis, and a subset of white adipocytes [19–21]. The committed brown adipose precursors develop into brown preadipocytes that express early B-cell factor 2 (EBF2; also known as COE2) [22]. Under the regulation of PRDM16, which interacts with adipogenic transcription factors CCAAT/enhancer-binding protein-β (C/EBPβ), PPARγ, zinc finger protein 516 (ZFP516), and euchromatic histone-lysine N-methyltransferase 1 (EHMT1), the brown preadipocytes eventually transform into classical brown adipocytes characterized by high levels of Ucp1, PGC-1α, and PRDM16 [8, 19, 23–25].
However, the origin of beige adipocytes in subcutaneous WAT is still disputed and as the sources of beige cells, distinct WAT depots display multivariable developmental origins. Beige adipocytes in inguinal subcutaneous WAT are reported to be derived from smooth muscle cells expressing smooth muscle actin (SMA), myosin heavy chain 11 (MYH11), and mural cells expressing platelet-derived growth factor receptor-β (PDGFRβ) [25]. SMA+ cells commit to preadipocytes with platelet-derived growth factor receptor-α (PDGFRα) and EBF2, and when under the modulation of PRDM16, PDGFRα, PPARγ, or ZFP516, preadipocytes differentiate into beige adipocytes [26–30]. However, another possible origin of beige adipocytes in inguinal subcutaneous WAT is the interconversion of mature white adipocytes under cold or β-adrenergic signaling stimulation, in which beige adipocytes can turn back into white adipocytes after warm adaptation [31]. In epididymal WAT, bipotent PDGFRα+ precursors can be converted into white adipocytes under a high-fat diet, whereas cold exposure or β-adrenergic stimulation leads to the differentiation of these precursor cells into beige adipocytes [32].
Third, unlike brown fat cells that express relatively higher levels of Ucp1 even under non-stimulated conditions, beige adipocytes are dependent on external stimuli for Ucp1 induction, which is a distinctive feature of beige cells [33]. In the basal state, beige adipocytes express a very low level of the thermogenic gene program that resembles white adipocytes; however, if fully stimulated, beige adipocytes express high levels of Ucp1 similar to those of brown adipocytes and undergo Ucp1-mediated uncoupled respiration. Thus, the beige cell’s capacity to switch between energy storage and energy dissipation depends on the type of stimulation that it receives, a capacity that classic brown adipocytes lack [16, 25].
Given the above similarities between brown and beige adipocytes and the distinctive features that they possess, more investigations are necessary to identify the mechanisms and regulations of these two adipocytes in thermogenesis and energy homeostasis.
mTOR signaling
In order to modulate various biological processes, such as protein and lipid synthesis, cellular growth, proliferation, differentiation, and autophagy [34, 35], mTOR will respond to both intracellular and extracellular environmental changes. There are two biochemically and functionally distinct mTOR complexes, mTORC1 and mTORC2, both of which are composed of mTOR, which acts as the catalytic core of the complex. mTORC1 contains two core components, regulatory associated proteins of mTOR (Raptor) and mammalian lethal with SEC13 protein 8 (mLST8); two inhibitory subunits, Akt/PKB substrate 40 kDa (PRAS40) and DEP domain-containing mTOR-interacting protein (Deptor); and the stabilizing complex Tti1/Tel2 [36] (Fig. 1). mTORC2 shares mLST8, Deptor, and the Tti1/Tel2 complex with mTORC1 but has three unique elements: Raptor-independent companion of mTOR (Rictor), mammalian stress-activated protein kinase-interacting protein 1 (mSin1), and protein observed with Rictor-1 and -2 (PROTOR1/2) [36–38] (Fig. 2).
mTORC1
mTORC1 is known as a critical regulator in metabolism, ribosomal biogenesis, cap-dependent translation, nucleotide biosynthesis, lysosomal biogenesis, lipid synthesis, autophagy, and thermogenesis. mTORC1 can be activated by many internal and external factors, including growth factors, amino acids, cellular energy status, stress, oxygen, and certain signaling pathways, such as WNT, Hippo, and Notch [39] (Fig. 1). Growth factors such as insulin-like growth factors and insulin bind to their respective receptors, thus activating PI3K/Akt signaling, triggering phosphorylation-mediated inhibition of tuberous sclerosis complex 1/2 (TSC 1/2), and leading to an increase in GTP-bound activation of Rheb, which directly activates mTORC1 [40, 41]. Akt can also phosphorylate PRAS40 to dissociate the latter from Raptor, thus resulting in the activation of mTORC1 [42]. Branched-chain amino acids such as leucine and arginine collaborate with RAS-related GTP-binding protein (Rag) and Raptor and promote the relocalization and activation of mTORC1 [43]. Large tumor suppressor homologue kinase (LATS) can trigger the hippo pathway by inhibiting Yes-associated protein (YAP), which then activates mTORC1 signaling through the suppression of phosphatase and tensin homologue (PTEN) [44]. WNT signaling stimulates mTORC1 by suppressing the activation of glycogen synthase kinase 3β (GSK3β), which can phosphorylate TSC2 [45]. Notch signaling can increase the stability of mTORC1 by promoting Akt activity and therefore increasing hepatic lipid accumulation [46]. Moreover, AMP-activated protein kinase (AMPK) inhibits mTORC1 activity through phosphorylating TSC2 or Raptor when cellular energy shortage occurs [47].
Upon activation, mTORC1 functions to phosphorylate its substrates and triggers a cascade of signaling transduction. Many direct substrates of mTORC1 have been identified, including ribosomal S6 kinase (S6K), eIF4E-binding proteins (4E-BPs), transcription factor EB (TFEB1), Lipin1, UNC-51-like kinase 1 (Ulk1), growth factor receptor-bound protein-10 (Grb10), hypoxia inducible factor-1α (HIF1α) and activating transcription factor 4 (ATF4) [48–53] (Fig. 1). Alternatively, negative feedback mechanisms of mTOR substrates could, in turn, fine-tune the mTOR signaling network. For example, Grb10 negatively regulates the mTORC1 signaling pathway through a phosphorylation-dependent feedback mechanism, and S6K1 also negatively accommodates phosphorylation of insulin receptor substrate 1 (IRS1) to suppress IRS-1/PI3K/Akt/mTOR signaling [54–57].
mTORC2
Unlike mTORC1, mTORC2 is involved in cell survival, proliferation, apoptosis, metabolism, and cytoskeleton organization [58–60]. Although insensitive to acute rapamycin treatment, the activity of mTORC2 is inhibited by chronic treatment [58, 61]. Growth factor-stimulated PI3K signaling can promote mTORC2 activation and ribosome binding [62]. Similar to mTORC1, there is a negative feedback mechanism in mTORC2 signaling in coordination with its upstream molecules, such as IRS-1 [63]. In particular, Akt promotes the activation of mTORC2, which in turn positively feeds back to phosphorylate and activates Akt [64]. Strikingly, mTORC2 signaling is also regulated by mTORC1 through Grb10 in insulin/PI3K signaling [49, 55]. In addition, mTORC2 functions to phosphorylate several members of the AGC kinases, such as protein kinase C (PKC), serum- and glucocorticoid-induced protein kinase 1 (SGK1), IGF2 mRNA-binding protein 1 (IMP1), mammalian sterile 20-like kinase 1 (MST1), and Akt, to regulate cell survival, proliferation, and metabolism [58, 60, 65–70] (Fig. 2).
mTOR-related signaling in brown and beige adipocytes
Accumulated evidence over the years has shown that mTOR is a key energy sensor and that its associated signaling pathways control lipid metabolism and adipocyte formation and maintenance [38]. Not only does the impairment of adipose mTOR signaling suppresses the development and expansion of the BATs and WATs [71–73], but it also influences the functions and metabolism of fat tissues. Recent studies have demonstrated that mTOR is also involved in the controlling of nonshivering thermogenesis and the development of brown/beige adipocytes. However, conflicting observations concerning the role of mTOR-related signaling pathways in thermogenic gene expression in adipocytes still exist. Also, the molecular mechanisms underlying mTOR-regulated thermogenesis and the development of brown/beige adipocytes are still poorly understood. In the next section, we summarize recent discoveries of mTOR-related signaling in the regulation of brown and beige adipocyte activation, and discuss the possibilities that cause discrepancies in the role of mTOR in thermogenesis.
mTORC1 signaling in brown and beige adipocytes
mTORC1 is an important regulator of adipose tissue formation and lipogenesis. It has been suggested that mTORC1 plays an essential role in the regulation of adipocyte precursor commitment, adipogenesis (a process of preadipocyte differentiation into mature adipocytes), triacylglycerol (TAG) synthesis, and the mobilization in adipocytes [74]. Recently, an accumulating body of evidence has emerged which elucidates the effect of the mTORC1 signaling pathway on thermogenesis in brown and beige adipocytes.
Pharmacologic mTORC1 inhibition by rapamycin
Rapamycin is a well-recognized inhibitor of mTORC1. It acts by directly binding itself to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP rapamycin-binding (FRB) domain of the mTOR kinase which disturbs the function of mTOR [75]. The effects of rapamycin on metabolism depend on the length of treatment: 2–6 weeks of rapamycin treatment produce detrimental metabolic changes that are usually associated with insulin resistance, hyperlipidemia and glucose intolerance [76, 77], whereas prolonged (20 weeks) rapamycin treatment causes better metabolic profiles with increased oxygen consumption and ketogenesis and enhanced insulin sensitivity [78].
As for the effects of the rapamycin treatment on thermogenesis and beige fat, the research of Liu et al. showed that, regardless of 2 days or 7 days of the rapamycin treatment, when responding to cold exposure, the expression of Ucp1 is diminished in both BAT and WAT [79] and in line with decreased core body temperature, although the rapamycin treatment alone has no such effects [79]. After observing mice that were treated with rapamycin for 2 weeks followed by a 24 h β3-adrenergic receptor (β3AR) agonist CL316,243 (CL) challenge [80], similar results were produced. However, for the unknown mechanism, CL treatment caused suppression of β3AR. The rapamycin treatment exacerbated this effect, which might have partially contributed to the suppressive effects of rapamycin on thermogenic gene expression [80]. These studies on mTORC1 inhibition by rapamycin seem to imply that mTORC1 plays a positive role in thermogenesis due to the fact that mTORC1 is capable of activating βAR signaling.
Interestingly, other observations show that diet-induced obese mice who underwent a chronic treatment (22 weeks) of rapamycin are not only leaner, but alsodisplay enhanced energy expenditure, oxygen consumption, and BAT activity, which might be associated with significant changes in the inflammatory profiles of adipose tissues — immune cells with regulatory functions, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells, are increased in the adipose tissues [81]. This study is in accordance with previous research showing that mTOR inhibition could promote the generation of Tregs both in vitro and in vivo [82, 83]. The induction of Tregs under cold exposure, physiological levels of β-adrenergic stimulation, or high-caloric challenge is suggested to modulate thermogenesis and lipolysis advantageously both in BAT and beigeing of WAT through the Stat6/Pten axis, which is also involved in suppressed mTORC1 activity [84]. Thus, these studies seem to imply that the negative role that mTORC1 plays in the regulation of thermogenesis might be linked to its impact on Tregs in adipose tissues.
One plausible explanation for the different responses to rapamycin could be the duration of the treatment, either short-term/acute (2–7 days [79], 2 weeks [80]) or long-term/chronic (22 weeks [81]) treatment. Beneficial metabolic effects of rapamycin are consistently observed in long-term treatment [78, 81]. Although rapamycin inhibition of mTOR signaling is primarily due to its impact on mTORC1, prolonged rapamycin treatment may also affect mTORC2, whose impacts require further investigation. In addition, the effect of rapamycin treatment on lipid metabolism in vivo is still unclear, and it is difficult to explain the effects of whole-body rapamycin administration on lipolysis/lipogenesis and thermogenesis. Therefore, in order to address the function of mTORC1, tissue specific manipulation might be a more preferable approach.
Raptor deletion in adipose tissues
Studies on adipose tissue-specific deletion of one of the components of mTORC1 are vital in addressing the role of mTORC1 in thermogenesis and brown/beige fat development. Raptor is a 150-kDa mTOR binding protein that serves as a complex scaffold. The binding of Raptor to the motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation [85]. An earlier study using aP2-Cre to drive adipocyte-specific deletion of Raptor showed that RaptoraP2-Cre mice have enhanced oxygen consumption and elevated basal levels of genes characteristic of brown fat, such as Ucp1, Dio2, and Cidea in WAT [86]. However, studies using adiponectin (Adipoq)-Cre showed that, when fed a normal diet, RaptorAdipoq-Cre mice develop lipodystrophy associated with hepatomegaly, hepatic steatosis, and insulin intolerance. In addition, although mice display increased Ucp1 mRNA expression in WAT and are resistant to high-fat diet (HFD)-induced obesity, they do not have an increased energy expenditure [72]. Similar observations were also reported in mTOR adipose-deleted mice (mTORAdipoq-Cre) [73]. In accordance with these discoveries, recently, the studies of Zhang et al. (2018) showed that the adipose-specific depletion of RaptorAdipoq-Cre promotes beige adipogenesis, and mice are resistant to diet-induced obesity, possibly through prostaglandins (PGs) synthesized by cyclooxygenase-2 [87]. These studies [72, 73, 87] found that, although it suppressed the development and expansion of BAT and WAT, Raptor or mTOR fat-tissue-specific knockout induces basal Ucp1 expression and browning in WAT, possibly due to compensational effects of adipose loss. However, the aP2-Cre-generated mice showed no such phenotypes, and the underlying mechanism is unclear [86].
However, using the Adipoq-Cre model, Tran et al. (2016) demonstrated that fat RaptorAdipoq-Cre mice show a decreased expression of Ucp1 under β3-adrenergic signaling stimulation but mild beigeing induction under unstimulated conditions [80]. Liu et al. reported that RaptorAdipoq-Cre mice show impaired expression of Ucp1 and mitochondrial-related genes when exposed to cold or βAR agonists, but no change in Ucp1 expression at room temperature [79].
Although impaired adipose tissue development during postnatal growth was consistently observed, adipose Raptor ablation on thermogenesis and beige adipogenesis in vivo had opposing results, which might have multiple causes. One of these potential causes is the Cre model used in those studies. Polak et al. (2008) used an aP2-Cre-dependent model [86], whereas the remaining studies used Adipoq-Cre mice [71–73, 79, 80, 87]. The aP2-Cre model creates nonspecific deletions, as it is effective in both fat tissues and nonfat tissues, such as the brain, endothelium and other metabolic-related peripheral tissues (e.g., liver, skeleton muscle, etc.), and embryonic tissues [88–90]. Therefore, the influence from other Raptor-deleted tissues could not be ruled out. Because aP2 is also expressed in activated macrophages [91], as an infiltration of macrophages into adipose tissue, it has raised great concern, especially under overnutrition conditions, which may cause significant effects on local and systemic metabolism [92]. However, unlike aP2-Cre mice, non-adipose tissue recombination was not observed with Adipoq-Cre lines; therefore, Adiponectin-Cre is more specific and efficient at targeting mature adipocytes [90].
However, as both aP2 and adiponectin genes turn on at the early stage of development, observed phenotypes using these two Cre models might represent both developmental and physiological consequences of gene loss. For these reasons, it might be more appropriate to use an inducible (e.g., tamoxifen-induced) Cre system to avoid developmental stage-related effects and chronic effects of selective gene ablation. However, thus far, no inducible Cre system has been used to study the mTORC1-associated gene deletion in adipose tissues. In the future, to address the function of mTOR signaling in WAT in vivo, it is important that we use temporal control of the adipose-specific recombination system and the most updated and precise genetic and metabolic tools.
Another factor that could cause different results in those studies is the experimental system. The activity of beige adipose tissues is sensitive to the environmental temperature, and animals used in the above studies were generally housed at standard mouse facility (room) temperatures (often 22–23 °C) or severely cold temperatures (typically 4–10 °C), which induces “browning” of WAT. However, mice living at 22 °C are already cold stressed because this temperature is below their thermoneutral zone (30 °C), which could profoundly impact their basal metabolic rate [93]. In the above-mentioned adipose Raptor ablation studies, RaptorAdipoq-Cre mice were either housed at room or thermoneutral temperatures or challenged by severe cold [79, 80, 87]. Increased Ucp1 expression in inguinal WAT (iWAT) was observed at room temperature and under thermoneutrality by Zhang et al. [87] and at room temperature by Lee et al. [72], but not by Liu et al. [79] and Tran et al. [80]. No differences in thermogenic gene expression in iWAT and O2 consumption were found between control and RaptorAdipoq-Cre mice under cold stress conditions [87], whereas significantly reduced inductions of Ucp1 and other thermogenic genes were found in response to cold exposure [79] or β3AR agonist CL injection [80]. The different responses of RaptorAdipoq-Cre mice to cold exposure might be caused by different experimental procedures with different durations of cold challenge. The mechanisms of short-term or long-term cold stress and β3-adrenergic signaling stimulation for thermogenesis are not completely identical, as cold might activate several redundant signaling pathways in addition to those linked to β3AR activation. For example, under cold stimulation, adipose-derived fibroblast growth factor 21 (FGF21) can act in an autocrine/paracrine manner to increase the expression of Ucp1 and other thermogenic genes in fat tissues, which is independent of the β3-adrenergic signaling pathway [94, 95].
Interestingly, unlike those discrepant observations in WAT, the adipose Raptor deletion causes consistent results in BAT that are different from those in WAT. The BAT mass and expression of Ucp1 were decreased in mice that were kept at room temperature [79, 87], and a similar blunted response of Ucp1 to severe cold was observed in BAT of RaptorAdipoq-Cre [71, 79, 87], which might be due to the requirement of mTORC1 for BAT formation and maintenance that is linked to reduced nucleotide synthesis, mitochondrial biogenesis, and impaired TCA cycle activity [71]. In addition, owing to the different origin and distinct regulation of thermogenesis in BAT and beigeing in WAT (as beigeing in WAT requires a change in cell fate either by interconversion or by de novo adipogenesis, whereas BAT does not), we can reasonably speculate that mTORC1 signaling may function differently in these two types of adipocytes. However, the underlying mechanism of mTORC1 action in WAT and BAT is still unclear and requires further investigation in the future.
Manipulation of up- or downstream regulatory molecules of mTORC1
As we have said, many up- and downstream regulatory molecules participate in the activation or inhibition of mTORC1 signaling cascades either through direct action, or a negative feedback regulation. Studies have shown that knockdown or overexpression of some of these molecules alter mTORC1 signaling activity, thus affecting thermogenesis.
S6K is a direct substrate and effector of mTORC1. When activated, it is involved in the regulation of protein synthesis, cell growth, and proliferation. S6K plays a negative role in IRS-1/PI3K/Akt/mTOR signaling through the phosphorylational suppression of IRS-1 [54–57]. Mice with whole body S6K deficiency show reduced fat mass but enhanced lipolysis, increased WAT mitochondria numbers, and upregulated oxidative phosphorylation and metabolic-related genes, such as Ucp1, Ucp3, CPT1, and PGC-1α in the overnutrition state, implying that mTORC1/S6K signaling plays a negative role in thermogenesis [96]. To date, no S6K adipose-specific ablation mouse model has been used to address its function, a matter which requires further investigation in the future.
4EBPs (a family of the 4EBP protein) are negative downstream effectors of mTORC1. Mice with whole-body double knockout of 4EBP-1 and 4EBP-2 show activated mTORC1 accompanied by accelerated adipogenesis and increased adiposity, reduced oxygen consumption, lipolysis, and energy expenditure under both normal diet and high-fat diet [97]. Similarly, no 4EBPs adipose-specific ablation mouse model has been reported.
Grb10 is the direct substrate of mTORC1, interacts with both insulin receptor and Raptor, and is capable of inhibiting the insulin and mTORC1 signaling pathway via a negative feedback mechanism [55, 56]. Impaired Grb10 expression in mouse adipose tissue (Grb10Adipoq-Cre) attenuates core body temperature and cold-induced thermogenic gene expression with increased S6K phosphorylation [57]. In line with this, we have recently discovered that, by using the adiponectin-Cre mouse model, adipose-specific knockdown of Rheb, a direct activator of mTORC1, increases lipolysis and promotes beigeing and energy expenditure by activating the cAMP-PKA-CREB pathway, which results in increased Ucp1 expression in the subcutaneous WAT [98]. These studies further imply that adipose mTORC1 may play a negative role in browning of WAT. However, we have also discovered that RhebAdipoq-Cre decreases PKA activity and thermogenic gene expression in BAT and Rheb promotes brown fat thermogenesis through the Notch-dependent activation of the PKA signaling pathway [99]. These studies further suggest that thermogenesis in brown and beige fat might be regulated by distinct signaling pathways.
Interestingly, the alteration of mTORC1 activity by another upstream regulator seems to cause opposite results. TSC1 is the negative upstream molecule of mTORC1. Deletion of TSC1 using adiponectin-Cre to constitutively activate mTORC1 enhances mitochondrial activity and fatty acid oxidation, but induces browning and reduces visceral adiposity in mice. However, it has no effect on BAT [100]. Nonetheless, another study found that the activation of mTORC1 signaling by deletion of TSC1 using aP2-Cre leads to significantly increased accumulation of lipid droplets in BAT, downregulated brown adipocyte markers, and upregulated white adipocyte markers [101]. Again, the different results of TSC1 ablation on adipose tissues might be caused by different Cre mice models. As we have mentioned before, aP2-Cre would cause nonspecific tissue deletion and influences from other TSC1-deleted tissues might exist.
Collectively, although the results of adipose TSC1Adipoq-Cre ablation show that overactivation of mTORC1 leads to the browning of WAT [100], the whole-body knockout of S6K [96] or 4EBPs [97] and adipose specific knockout of Grb10 [57] or Rheb [98] seem to imply that mTORC1-related signaling negatively regulates energy expenditure and thermogenesis. Although the use of different experimental systems might result in the discrepancy in thermogenesis caused by deletion of the upstream regulator or the downstream effector of mTORC1, the complexity of the mTORC1 signaling networks may also contribute to the discrepant results, as these molecules can regulate many other signaling pathways and be regulated by them, as well. As possible causes, mTORC1 signaling-dependent and independent mechanisms should not be ruled out and deserve further investigation.
mTORC2 signaling in brown and beige adipocytes
Unlike mTORC1, little is known about the mTORC2 signaling pathway in brown and beige adipocyte development and thermogenesis.
It seems rational that, in order to compensate for the loss of mitochondrial ATP production due to Ucp1 uncoupling, glucose uptake and glycolysis are stimulated as the energy source during heat production [102]. Current evidence suggests that the beneficial effect of mTORC2 on thermogenesis is in line with its ability to improve glucose uptake. In brown adipocytes, βAR stimulation and cold exposure activate mTORC2 signaling, which, in turn, stimulates cold-induced glucose uptake and glycolysis in vitro and in vivo [103].
To understand the role of mTORC2 in adipocytes, several animal models targeting Rictor, a key component of mTORC2, have been reported. Studies have shown that, using aP2-driven Cre mouse model, Rictor might facilitate glucose uptake that is advantageous to thermogenesis [104–106]. However, as we have discussed before, due to the nonspecific deletion of aP2-Cre, the effects of Rictor ablation on adipocytes and glucose uptake and glycolysis should be further confirmed by specific adipose mouse models.
Studies have shown that, using conditionally deleting Rictor in the Myf5 lineage, Rictor is dispensable for myogenesis and viability, but essential for normal BAT growth [107]. Suppression of the mTORC2 pathway in brown preadipocytes shifts BAT metabolism to a more oxidative and less lipogenic state. RictorMyf5-Cre ablation in BAT causes higher mitochondrial activity and protects mice from high-fat diet-induced obesity and hepatic steatosis at thermoneutrality, while in acute cold challenge, RictorMyf5-Cre mice show significantly induced Ucp1 expression in BAT [107]. This observation suggests that Rictor/mTORC2 might act as a signaling node that balances oxidative and lipogenic metabolic states.
Studies have shown that, using the adiponectin-Cre mouse model, RictorAdipoq-Cre deletion in mature adipocytes decreases ChREBPβ expression, reduces de novo lipogenesis (DNL), and impairs hepatic insulin sensitivity, in part by reduced control of glucose uptake through ChREBPβ, suggesting that mTORC2 may regulate ChREBP-driven DNL and hepatic glucose metabolism [108]. However, the effects of Rictor ablation on adipose thermogenesis were not evaluated in the study.
AKT is one of the key downstream effectors of mTORC2. By crossing Akt2 floxed mice with Ucp1-Cre mice to delete Akt2 specifically in BAT, Guertin and colleagues found that Akt2 drives DNL in adipocytes by stimulating ChREBPβ transcriptional activity, and cold induces the Akt2-ChREBP pathway to promote lipid synthesis and oxidation for optimized fuel storage and thermogenesis [109]. In addition, BAT ablation of Akt1 and Akt2 by Myf5- or Ucp1-Cre or Ucp1-CreER mice demonstrates that AKT signaling is required for BAT development and maintenance in vivo [110]. These studies imply that mTORC2-associated signaling plays a positive role via the Rictor-AKT-ChREBP axis in the control of lipid metabolism, thermogenesis and energy expenditure.
Current evidence suggests that the role of mTORC2 signaling in thermogenesis in adipose tissue seems to be correlated with glucose metabolism and lipid oxidation. Apart from the distinct Cre models used in those research studies, the detailed signaling pathways involved in mTORC2 directly or indirectly may also impact thermogenesis. However, as mTORC2 functions with various molecules, it is difficult to determine which aspects have the predominant effect on the comprehensive outcomes, making it arduous to conclude the overall role of mTORC2 in heat production. In order to identify whether mTORC2 is a positive or negative regulator in the thermogenic process, more direct models or methods need to be explored.
Concluding remarks and future direction
mTORC1 and mTORC2 function in diverse signaling pathways to affect heat production separately, and they play complex but crucial roles in the regulation of adipogenesis, lipid metabolism and thermogenesis in adipose tissues [38, 111] (Fig. 3). Given recent studies, paradoxical views of the signaling in adipocytes mostly arise from different mouse models and distinct stimulation conditions. A summary of the manipulation of mTOR-related genes in rodent adipose tissues is provided in Table 1.
Table 1.
Refs | mTOR related molecules | Mouse model/ exp. condition | Activity of mTOR signaling | Tissue affected | Phenotypes |
---|---|---|---|---|---|
Liu et al.2016 [79] |
Rapamycin-treated mice (7days) under cold exposure Rapamycin-treated mice (2 days) under cold exposure |
mTORC1 inhibited |
WAT BAT |
Thermogenic gene expression ↓ Thermogenic gene expression ↓ Core body temperature ↓ |
|
Tran et al.2016 [80] | Rapamycin-treated mice (2 weeks) under CL Stimulation (24 hours) | mTORC1 inhibited | WAT |
Cold tolerance ↓ Thermogenic gene expression ↓ Beige fat gene expression ↓ |
|
Makki et al.2014 [81] | Diet-induced obese mice with chronic treatment of rapamycin (22 weeks) | mTORC1 inhibited | BAT |
Energy expenditure ↑ Oxygen consumption ↑ BAT activity ↑ |
|
Labbe et al.2016 [71] | Raptor | raptor-/- mice (Adipoq-Cre) under cold exposure (2 weeks) | mTORC1 inhibited | BAT |
Systemic oxygen consumption ↓ BAT mass ↓ Nucleotide synthesis ↓ Mitochondrial biogenesis ↓ TCA cycle activity ↓ Thermogenic gene ↓ |
Lee et al. 201 6[72] | Raptor | raptor-/- mice (Adipoq-Cre) with HFD | mTORC1 inhibited |
WAT BAT |
Expression of Ucp1 in WAT ↑ Expansion of WAT and BAT ↓ No changes on energy expenditure |
Liu et al.2016 [79] | Raptor | raptor-/- mice (Adiponq-Cre) under cold exposure (7 days) | mTORC1 inhibited |
WAT BAT |
Expression of Ucp1 ↓ Mitochondrial related genes ↓ |
Tran et al.2016 [80] | Raptor | raptor-/- mice (Adiponq-Cre) with CL stimulation (24h hours) | mTORC1 inhibited | WAT |
Thermogenic gene ↓ Lipolysis ↓ Adipocyte size ↑ |
Polak et al.2008 [86] | Raptor | raptor-/- mice (aP2-Cre) at thermoneutrality | mTORC1 inhibited | WAT |
Oxygen consumption ↑ Ucp1 expression ↑ |
Zhang et al.2018 [87] | Raptor | raptor-/- mice (Adiponectin-Cre) under cold exposure (2 days) | mTORC1 inhibited |
WAT BAT |
Beige adipogenesis ↑ Thermogenic gene ↑ Thermogenic gene ↓ |
Shan et al.2016 [73] | mTOR | mTOR-/- mice (Adipoq-Cre) with ND | mTORC1 inhibited |
WAT BAT |
Mass of BAT and WAT ↓ Thermogenic genes in WAT ↑ No changes on energy expenditure |
Um et al.2004 [96] | S6K | S6K1-/- mice (whole body) under ND or HFD | mTORC1 inhibited | Whole body |
Lipolysis in WAT ↑ Mitochondria numbers in WAT ↑ Oxidative phosphorylation in WAT ↑ Metabolic related genes in WAT ↑ |
Le Bacquer et al. 2007 [97] | 4EBPs | 4E-BP1/ 2-/- mice (whole body) under ND or HFD | mTORC1hyper-activated | Whole body |
Oxygen consumption ↓ Lipolysis in WAT ↓ |
Liu et al.2014 [57] | Grb10 | Grb10-/-mice (Adipoq-Cre) under cold exposure | mTORC1hyper-activated | BAT |
Core body temperature ↓ Cold-induced thermogenic genes ↓ |
Meng et al.2017 [98] [99] | Rheb | Rheb-/-mice (Adipoq-Cre) under ND or HFD, with or without cold exposure | mTORC1 inhibited |
WAT BAT |
Lipolysis ↑ Beige adipocytes in WAT ↑ Energy expenditure ↑ Thermogenic gene expression in BAT ↓ |
Magdalon et al.2016 [100] | TSC1 | TSC1-/- mice (Adipoq-Cre) under ND | mTORC1hyper-activated | WAT |
Lipolysis ↑ Ucp1 expression ↑ Mitochondrial oxidative activity ↑ Fatty acid oxidation ↑ PGC-1α and PPARα |
Xiang et al.2015 [101] | TSC1 | TSC1-/- mice (aP2-Cre) under ND | mTORC1hyper-activated | BAT |
Brown adipocyte genes ↓ White adipocyte genes ↑ |
Albert et al.2016 [103] | Rictor | rictor-/- mice (aP2-Cre) under cold exposure |
mTORC2 inhibited |
BAT |
Cold tolerance ↓ Glucose uptake ↓ Glycolysis ↓ |
Kumar et al.2010 [104] | Rictor |
rictor-/- mice (Ap2-Cre) |
mTORC2 inhibited |
BAT WAT |
Glucose uptake ↓ Glycolysis ↓ |
Hung et al.2014 [107] | Rictor | rictor-/- mice (Myf5-Cre) under cold exposure | mTORC2 inhibited | BAT |
Mitochondrial activity ↑ Ucp1 expression ↑ |
Tang et al.2016 [108] | Rictor | rictor -/- mice (Adipoq-Cre) | mTORC2 inhibited | WAT |
Lipogenesis ↓ Glucose uptake ↓ |
Sanchez et al.2018 [109] | Akt2 | Akt2-/- mice (Ucp1-Cre) under cold exposure | mTORC2 inhibited | BAT |
Lipid synthesis and oxidation ↓ Ucp1 expression ↓ |
Sanchez et al.2019 [110] |
Akt1 Akt2 |
Akt1and Akt2-/- mice (Ucp1-Cre/Ucp1-CreER/Myf5-Cre) | mTORC2 inhibited | BAT |
Lipid droplets in BAT ↓ Ucp1 expression ↓ |
Abbreviations: BAT Brown adipose tissue, CL CL-316243, Grb10 Growth factor receptor-bound protein 10, HFD High fat diet, ND Normal diet, Raptor Regulatory associated protein of mTOR, Rheb Ras homolog enriched in brain, Rictor Raptor-independent companion of mTOR, S6K Ribosomal S6 kinase, TSC1 Tuberous sclerosis complex 1, WAT White adipose tissue, 4E-BPs Eif4e-binding proteins
Note: ↑ increased; ↓ decreased
The proportion of classic and nonclassical pathways of mTOR-related signaling involved in thermogenesis force us to focus on the primary section or molecules, providing a more valid and valuable treatment. Because the activation of mTOR in adipose tissues under distinct stimulations may be involved in diverse molecules, it is reasonable to expect that the role of mTOR in thermogenesis depends on distinct circumstances and the energy status of cells. Further investigation is needed, which requires us to use more appropriate and valuable animal models and/or identical experimental conditions, including environmental temperature and nutrient utilization, to clarify the effects of the mTOR signaling pathways on thermogenesis. In addition, the cross-talks between mTORC1 and mTORC2 in adipocyte metabolism and thermogenesis would also be interesting to explore.
Because of the distinct origin and features of brown and beige adipocytes, more investigation is needed to compare the consequences and underlying mechanisms of the two types of adipocytes in response to mTOR manipulation. As mTOR signaling regulates development and its embryonic ablation might have an impact on the development of animals, temporal control of adipose-specific recombination is important. Using a more specific Cre mouse model, such as the tamoxifen-inducible CreERT2 line, is required for future studies. In addition, with the development of BAT (e.g., Ucp1-Cre lines [112]) or beige-specific Cre lines, or with a newly developed Ucp1-CreER line [31], one should allow for specific and temporal control of recombination in either brown or beige fat, respectively.
Altogether, despite a few contrary viewpoints on mTOR signaling in thermogenesis in adipose tissues, and although it is hard to determine the role of mTOR, considerable progress has revealed novel insights into the mechanisms and functions of mTOR in heat production. Further comprehensive understanding of the role and underlying mechanisms of mTOR signaling in thermogenesis in adipose tissues under certain energy status and environmental conditions will be of great significance for future therapeutic and medical interventions for obesity and related metabolic disorders.
Acknowledgements
We thank Ms. Shirley Pan for language editing.
Abbreviations
- 4E-BP
eIF4E-binding protein
- AGRP
Agouti-related neuropeptide
- AKT
Protein kinase B
- AMPK
AMP-activated protein kinase
- ATF4
Activating transcription factor 4
- ATP
Adenosine triphosphate
- BAT
Brown adipose tissues
- C/EBPβ
CCAAT/enhancer-binding protein-β
- cAMP
Cyclic adenosine monophosphate
- CIDEA
Cell death inducing DFFA like effector A
- CITED1
cbp/p300-interacting transactivator with Glu/Asp rich carboxy-terminal domain 1
- CPT1
Carnitine palmitoyltransferase 1
- DEPTOR
DEP domain-containing mTOR-interacting protein
- DIO2
iodothyronine deiodinase 2
- EBF2
Early B-cell factor 2
- EHMT1
Euchromatic histone-lysine N-methyltransferase 1
- EN1
Engrailed 1
- EPAC1
Exchange protein directly activated by cAMP 1
- FKBP12
12-kDa FK506- and rapamycin-binding protein
- FLCN
Folliculin
- FRB
FKBP-rapamycin binding
- GLUT1
Glucose transporter 1
- GLUT4
Glucose transporter 4
- GRB10
Growth factor receptor–bound protein-10
- GSK3β
Glycogen synthase kinase 3β
- HIF1α
Hypoxia inducible factor-1α
- HOXC8
Homeobox C8
- HOXC9
Homeobox C9
- HSL
Hormone-sensitive lipase
- IGFBP2
Insulin-like growth factor–binding protein 2
- IMP1
IGF2 mRNA-binding protein 1
- LATS
Large tumor suppressor homologue kinase
- mLST8
mammalian lethal with SEC13 protein 8
- mSIN1
mammalian stress-activated protein kinase-interacting protein 1
- MST1
mammalian sterile 20-like kinase 1
- mTOR
mechanistic target of rapamycin
- MYF5
Myogenic factor 5
- MYH11
Myosin heavy chain 11
- NP
Natriuretic peptide
- NPY
Neuropeptide Y
- PAX7
Paired box 7
- PDE3B
Phosphodiesterase 3B
- PDGFRα
Platelet-derived growth factor receptor-α
- PDGFRβ
Platelet-derived growth factor receptor-β
- PGC-1α
PPARγ- coactivators-1α
- PGC-1β
PPAR-γ coactivator 1-β
- PGs
Prostaglandins
- PI3K
Phosphoinositide 3-kinase
- PKA
Protein kinase A
- PKC
Protein kinase C
- PPARα
Peroxisome proliferators-activated receptors α
- PPARγ
Peroxisome proliferator-activated receptor γ
- PRAS40
Akt/PKB substrate 40 kDa
- PRDM16
PRD1-BF1-RIZ1 homologous domain-containing 16
- PROTOR1/2
Protein observed with rictor-1 and -2
- PTEN
Phosphatase and tensin homolog
- RAG
RAS-related GTP-binding protein
- RAPTOR
Regulatory associated protein of mTOR
- RHEB
Ras homolog enriched in brain
- RICTOR
Raptor-independent companion of mTOR
- RYR2
Ryanodine receptor 2
- S6K
S6 kinase
- SERCA2b
Sarco endoplasmic reticulum calcium ATPase 2b
- SGK1
Serum- and glucocorticoid-induced protein kinase 1
- SMA
Smooth muscle actin
- STAT6
Signal transducers and activators of transcription 6
- TAG
Triacylglycerol
- TCA
Tricarboxylic acid cycle
- TFE3
Transcription factor binding to IGHM enhancer 3
- TFEB1
Transcription factor EB1
- Tregs
Regulatory T-cells
- TSC 1/2
Tuberous sclerosis complex 1/2
- UCP1
Uncoupling protein 1
- UCP3
Uncoupling protein 3
- ULK1
UNC-51-like kinase 1
- WAT
White adipose tissues
- YAP
Yes-associated protein
- ZFP516
Zinc finger protein 516
- βAR
β-adrenergic receptor
Authors’ contributions
YY, HL and FZ wrote the manuscript. FH revised and edited manuscript. All authors read and approved the final manuscript.
Funding
This work was supported by grants from the National Nature Science Foundation of China (31871180, 31471131), the International Science & Technology Cooperation Program of China (2014DFG32490), and Nature Science Foundation of Hunan Province (2019JJ 40410) to F.H.
Availability of data and materials
Not applicable
Competing interests
The authors declare that they have no competing interests.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. New Engl J Med. 2017;377(1):13–27. doi: 10.1056/NEJMoa1614362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Ezzati M, Bentham J, Di Cesare M, Bilano V, Bixby H, Zhou B, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. doi: 10.1016/S0140-6736(17)32129-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.WHO . Obesity and overweight 2018. 2018. [Google Scholar]
- 4.Malvi P, Chaube B, Pandey V, Vijayakumar MV, Boreddy PR, Mohammad N, et al. Obesity induced rapid melanoma progression is reversed by orlistat treatment and dietary intervention: role of adipokines. Mol Oncol. 2015;9(3):689–703. doi: 10.1016/j.molonc.2014.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Malvi P, Chaube B, Singh SV, Mohammad N, Pandey V, Vijayakumar MV, et al. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance. Cancer Metab. 2016;4:21. doi: 10.1186/s40170-016-0162-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Malvi P, Chaube B, Singh SV, Mohammad N, Vijayakumar MV, Singh S, et al. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018;6:2. doi: 10.1186/s40170-018-0176-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003. [DOI] [PubMed] [Google Scholar]
- 8.Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–1263. doi: 10.1038/nm.3361. [DOI] [PubMed] [Google Scholar]
- 9.Lin JD, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–370. doi: 10.1016/j.cmet.2005.05.004. [DOI] [PubMed] [Google Scholar]
- 10.Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6(1):38–54. doi: 10.1016/j.cmet.2007.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–U93. doi: 10.1038/nm.2297. [DOI] [PubMed] [Google Scholar]
- 12.Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The secreted enzyme PM20D1 regulates Lipidated amino acid Uncouplers of mitochondria. Cell. 2016;166(2):424–435. doi: 10.1016/j.cell.2016.05.071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19(5):631–634. doi: 10.1038/nm.3017. [DOI] [PubMed] [Google Scholar]
- 14.Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A. 2017;114(32):8649–8654. doi: 10.1073/pnas.1705287114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/Brite cells. PLoS One. 2012;7(11):e49452. doi: 10.1371/journal.pone.0049452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPAR gamma agonists induce a white-to-Brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404. doi: 10.1016/j.cmet.2012.01.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125(2):478–486. doi: 10.1172/JCI78362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Seale P, Bjork B, Yang WL, Kajimura S, Chin S, Kuang SH, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–U27. doi: 10.1038/nature07182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Lepper C, Fan CM. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis. 2010;48(7):424–436. doi: 10.1002/dvg.20630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang YF, Li HW, Guertin DA. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that Arise from Myf5 precursors. Cell Metab. 2012;16(3):348–362. doi: 10.1016/j.cmet.2012.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, et al. EBF2 determines and maintains Brown adipocyte identity. Cell Metab. 2013;17(4):562–574. doi: 10.1016/j.cmet.2013.01.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature. 2009;460(7259):1154–U125. doi: 10.1038/nature08262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, et al. Peroxisome proliferator-activated receptor alpha (PPAR alpha) induces PPAR gamma coactivator 1 alpha (PGC-1 alpha) gene expression and contributes to thermogenic activation of Brown fat INVOLVEMENT OF PRDM16. J Biol Chem. 2011;286(50):43112–43122. doi: 10.1074/jbc.M111.252775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Ikeda K, Maretich P, Kajimura S. The common and distinct features of Brown and Beige adipocytes. Trends Endocrinol Metab. 2018;29(3):191–200. doi: 10.1016/j.tem.2018.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong XX, et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 2014;19(5):810–820. doi: 10.1016/j.cmet.2014.03.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Dempersmier J, Sambeat A, Gulyaeva O, Paul SM, Hudak CSS, Raposo HF, et al. Cold-inducible Zfp516 activates UCP1 transcription to promote Browning of white fat and development of Brown fat. Mol Cell. 2015;57(2):235–246. doi: 10.1016/j.molcel.2014.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Berry DC, Jiang YW, Graff JM. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun. 2016;7:10184. doi: 10.1038/ncomms10184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, et al. Pdgfr beta (+) mural Preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 2016;23(2):350–359. doi: 10.1016/j.cmet.2015.10.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Wang WS, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Bio. 2016;17(11):691–702. doi: 10.1038/nrm.2016.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–667. doi: 10.1038/ncb2740. [DOI] [PubMed] [Google Scholar]
- 32.Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of Bipotential adipocyte progenitors recruited by beta 3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15(4):480–491. doi: 10.1016/j.cmet.2012.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Kajimura S, Spiegelman BM, Seale P. Brown and Beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22(4):546–559. doi: 10.1016/j.cmet.2015.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Lamming DW, Sabatini DM. A central role for mTOR in lipid homeostasis. Cell Metab. 2013;18(4):465–469. doi: 10.1016/j.cmet.2013.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2015;33:55–66. doi: 10.1016/j.ceb.2014.12.001. [DOI] [PubMed] [Google Scholar]
- 36.Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–293. doi: 10.1016/j.cell.2012.03.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109–20116. doi: 10.1074/jbc.M110.121699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Cai H, Dong LLQ, Liu F. Recent advances in adipose mTOR signaling and function: therapeutic prospects. Trends Pharmacol Sci. 2016;37(4):303–317. doi: 10.1016/j.tips.2015.11.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303. doi: 10.1016/j.cell.2010.02.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Inoki K, Li Y, Zhu TQ, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–657. doi: 10.1038/ncb839. [DOI] [PubMed] [Google Scholar]
- 41.Garami A, Zwartkruis FJT, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11(6):1457–1466. doi: 10.1016/S1097-2765(03)00220-X. [DOI] [PubMed] [Google Scholar]
- 42.Wang LF, Harris TE, Roth RA, Lawrence JC. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036–20044. doi: 10.1074/jbc.M702376200. [DOI] [PubMed] [Google Scholar]
- 43.Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–1501. doi: 10.1126/science.1157535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, et al. YAP mediates crosstalk between the hippo and PI (3) K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol. 2012;14(12):1322. doi: 10.1038/ncb2615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Inoki K, Ouyang H, Zhu TQ, Lindvall C, Wang Y, Zhang XJ, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955–968. doi: 10.1016/j.cell.2006.06.055. [DOI] [PubMed] [Google Scholar]
- 46.Pajvani UB, Qiang L, Kangsamaksin T, Kitajewski J, Ginsberg HN, Accili D. Inhibition of notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat Med. 2013;19(8):1055. doi: 10.1038/nm.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–226. doi: 10.1016/j.molcel.2008.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–183. doi: 10.1016/j.molcel.2010.06.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–1322. doi: 10.1126/science.1199498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2012;441(1):1–21. doi: 10.1042/BJ20110892. [DOI] [PubMed] [Google Scholar]
- 51.Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol. 2014;36:79–90. doi: 10.1016/j.semcdb.2014.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351(6274):728–733. doi: 10.1126/science.aad0489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–976. doi: 10.1016/j.cell.2017.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–1508. doi: 10.1158/0008-5472.CAN-05-2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–1326. doi: 10.1126/science.1199484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Liu B, Liu F. Feedback regulation of mTORC1 by Grb10 in metabolism and beyond. Cell Cycle. 2014;13(17):2643–2644. doi: 10.4161/15384101.2014.954221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 2014;19(6):967–980. doi: 10.1016/j.cmet.2014.03.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–1302. doi: 10.1016/j.cub.2004.06.054. [DOI] [PubMed] [Google Scholar]
- 59.Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–1101. doi: 10.1126/science.1106148. [DOI] [PubMed] [Google Scholar]
- 60.Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) Biochem J. 2008;416(3):375–385. doi: 10.1042/BJ20081668. [DOI] [PubMed] [Google Scholar]
- 61.Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–1U30. doi: 10.1038/ncb1183. [DOI] [PubMed] [Google Scholar]
- 62.Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–768. doi: 10.1016/j.cell.2011.02.014. [DOI] [PubMed] [Google Scholar]
- 63.DeStefano MA, Jacinto E. Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2) Biochem Soc T. 2013;41:896–901. doi: 10.1042/BST20130018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Yang G, Murashige DS, Humphrey SJ, James DE. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep. 2015;12(6):937–943. doi: 10.1016/j.celrep.2015.07.016. [DOI] [PubMed] [Google Scholar]
- 65.Su B, Jacinto E. Mammalian TOR signaling to the AGC kinases. Crit Rev Biochem Mol. 2011;46(6):527–547. doi: 10.3109/10409238.2011.618113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Gan XQ, Wang JY, Wang C, Sommer E, Kozasa T, Srinivasula S, et al. PRR5L degradation promotes mTORC2-mediated PKC-delta phosphorylation and cell migration downstream of G alpha (12) Nat Cell Biol. 2012;14(7):686–696. doi: 10.1038/ncb2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Dai N, Christiansen J, Nielsen FC, Avruch J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 2013;27(3):301–312. doi: 10.1101/gad.209130.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Thomanetz V, Angliker N, Cloetta D, Lustenberger RM, Schweighauser M, Oliveri F, et al. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol. 2013;201(2):293–308. doi: 10.1083/jcb.201205030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Li X, Gao TY. mTORC2 phosphorylates protein kinase C zeta to regulate its stability and activity. EMBO Rep. 2014;15(2):191–198. doi: 10.1002/embr.201338119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Sciarretta S, Zhai PY, Maejima Y, Del Re DP, Nagarajan N, Yee D, et al. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 2015;11(1):125–136. doi: 10.1016/j.celrep.2015.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Labbe SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, et al. mTORC1 is required for Brown adipose tissue recruitment and metabolic adaptation to cold. Sci Rep-Uk. 2016;6:10184. doi: 10.1038/srep37223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Lee PL, Tang YF, Li HW, Guertin DA. Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease. Mol Metab. 2016;5(6):422–432. doi: 10.1016/j.molmet.2016.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Shan TZ, Zhang PP, Jiang QY, Xiong Y, Wang YZ, Kuang SH. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia. 2016;59(9):1995–2004. doi: 10.1007/s00125-016-4006-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Ricoult SJH, Manning BD. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14(3):242–251. doi: 10.1038/embor.2013.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Edwards SR, Wandless TJ. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem. 2007;282(18):13395–13401. doi: 10.1074/jbc.M700498200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes. 2008;57(4):945–957. doi: 10.2337/db07-0922. [DOI] [PubMed] [Google Scholar]
- 77.Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes. 2010;59(6):1338–1348. doi: 10.2337/db09-1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Fang YM, Westbrook R, Hill C, Boparai RK, Arum O, Spong A, et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 2013;17(3):456–462. doi: 10.1016/j.cmet.2013.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Liu DX, Bordicchia M, Zhang CY, Fang HF, Wei W, Li JL, et al. Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126(5):1704–1716. doi: 10.1172/JCI83532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Tran CM, Mukherjee S, Ye L, Frederick DW, Kissig M, Davis JG, et al. Rapamycin blocks induction of the thermogenic program in white adipose tissue. Diabetes. 2016;65(4):927–941. doi: 10.2337/db15-0502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Makki K, Taront S, Molendi-Coste O, Bouchaert E, Neve B, Eury E, et al. Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice. PLoS One. 2014;9(4):e92684. doi: 10.1371/journal.pone.0092684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30(6):832–844. doi: 10.1016/j.immuni.2009.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–U117. doi: 10.1038/ni.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Kalin S, Becker M, Ott VB, Serr I, Hosp F, Mollah MMH, et al. A Stat6/Pten Axis links regulatory T cells with adipose tissue function. Cell Metab. 2017;26(3):475–492. doi: 10.1016/j.cmet.2017.08.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Yonezawa K, Tokunaga C, Oshiro N, Yoshino K. Raptor, a binding partner of target of rapamycin. Biochem Biophys Res Commun. 2004;313(2):437–441. doi: 10.1016/j.bbrc.2003.07.018. [DOI] [PubMed] [Google Scholar]
- 86.Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 2008;8(5):399–410. doi: 10.1016/j.cmet.2008.09.003. [DOI] [PubMed] [Google Scholar]
- 87.Zhang X, Luo Y, Wang C, Ding X, Yang X, Wu D, et al. Adipose mTORC1 suppresses prostaglandin signaling and beige Adipogenesis via the CRTC2-COX-2 pathway. Cell Rep. 2018;24(12):3180–3193. doi: 10.1016/j.celrep.2018.08.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Urs S, Harrington A, Liaw L, Small D. Selective expression of an aP2/fatty acid binding Protein4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res. 2006;15(5):647–653. doi: 10.1007/s11248-006-9000-z. [DOI] [PubMed] [Google Scholar]
- 89.Martens K, Bottelbergs A, Baes M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 2010;584(5):1054–1058. doi: 10.1016/j.febslet.2010.01.061. [DOI] [PubMed] [Google Scholar]
- 90.Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes. 2013;62(3):864–874. doi: 10.2337/db12-1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med. 2001;7(6):699–705. doi: 10.1038/89076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11(11):738–749. doi: 10.1038/nri3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(2):242–253. doi: 10.1242/jeb.050989. [DOI] [PubMed] [Google Scholar]
- 94.Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1 alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–281. doi: 10.1101/gad.177857.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of Brown fat function in humans. Cell Metab. 2014;19(2):302–309. doi: 10.1016/j.cmet.2013.12.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity (vol 431, pg 200, 2004) Nature. 2004;431(7007):485. doi: 10.1038/nature02979. [DOI] [PubMed] [Google Scholar]
- 97.Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest. 2007;117(2):387–396. doi: 10.1172/JCI29528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Meng W, Liang XC, Chen HZ, Luo HR, Bai JL, Li GD, et al. Rheb inhibits Beiging of white adipose tissue via PDE4D5-dependent downregulation of the cAMP-PKA signaling pathway. Diabetes. 2017;66(5):1198–1213. doi: 10.2337/db16-0886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Meng W, Liang X, Xiao T, Wang J, Wen J, Luo H, et al. Rheb promotes brown fat thermogenesis by notch-dependent activation of the PKA signaling pathway. J Mol Cell Biol. 2019;11(9):781–90. [DOI] [PMC free article] [PubMed]
- 100.Magdalon J, Chimin P, Belchior T, Neves RX, Vieira-Lara MA, Andrade ML, et al. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Bba-Mol Cell Biol L. 2016;1861(5):430–438. doi: 10.1016/j.bbalip.2016.02.023. [DOI] [PubMed] [Google Scholar]
- 101.Xiang XX, Lan H, Tang H, Yuan F, Xu YH, Zhao J, et al. Tuberous sclerosis complex 1-mechanistic target of rapamycin complex 1 signaling determines Brown-to-white adipocyte phenotypic switch. Diabetes. 2015;64(2):519–528. doi: 10.2337/db14-0427. [DOI] [PubMed] [Google Scholar]
- 102.Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, et al. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol-Endoc M. 2015;308(5):E380–EE92. doi: 10.1152/ajpendo.00277.2014. [DOI] [PubMed] [Google Scholar]
- 103.Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. Embo Mol Med. 2016;8(3):232–246. doi: 10.15252/emmm.201505610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Kumar A, Lawrence JC, Jr, Jung DY, Ko HJ, Keller SR, Kim JK, et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes. 2010;59(6):1397–1406. doi: 10.2337/db09-1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human Brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14(2):272–279. doi: 10.1016/j.cmet.2011.06.012. [DOI] [PubMed] [Google Scholar]
- 106.Olsen JM, Sato M, Dallner OS, Sandstrom AL, Pisani DF, Chambard JC, et al. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol. 2014;207(3):365–374. doi: 10.1083/jcb.201403080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, Hettmer S, et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014;8(1):256–271. doi: 10.1016/j.celrep.2014.06.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Tang YF, Wallace M, Sanchez-Gurmaches J, Hsiao WY, Li HW, Lee PL, et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat Commun. 2016;7:11365. doi: 10.1038/ncomms11365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Sanchez-Gurmaches J, Tang YF, Jespersen NZ, Wallace M, Calejman CM, Gujja S, et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated De novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metabol. 2018;27(1):195. doi: 10.1016/j.cmet.2017.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Sanchez-Gurmaches J, Calejman CM, Jung SM, Li HW, Guertin DA. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol Metab. 2019;23:60–74. doi: 10.1016/j.molmet.2019.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Lee PL, Jung SM, Guertin DA. The complex roles of mechanistic target of rapamycin in adipocytes and beyond. Trends Endocrinol Metab. 2017;28(5):319–339. doi: 10.1016/j.tem.2017.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest. 2001;108(8):1205–1213. doi: 10.1172/JCI13103. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Not applicable