Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2019 Nov 11;176(Suppl 1):S297–S396. doi: 10.1111/bph.14752

THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes

Stephen PH Alexander 1, Doriano Fabbro 2, Eamonn Kelly 3, Alistair Mathie 4, John A Peters 5, Emma L Veale 4, Jane F Armstrong 6, Elena Faccenda 6, Simon D Harding 6, Adam J Pawson 6, Joanna L Sharman 6, Christopher Southan 6, Jamie A Davies 6; CGTP Collaborators, Annie Beuve 7, Detlev Boison 8, Peter Brouckaert 9, John C Burnett 10, Kathryn Burns 11, Carmen Dessauer 12, Andreas Friebe 13, John Garthwaite 14, Jürg Gertsch 15, Nuala Helsby 11, Angelo A Izzo 16, Doris Koesling 17, Michaela Kuhn 13, Rennolds Ostrom 18, Andreas Papapetropoulos 19, Lincoln R Potter 20, Nigel J Pyne 21, Susan Pyne 21, Michael Russwurm 17, Harald HHW Schmidt 22, Roland Seifert 23, Johannes‐Peter Stasch 24, Csaba Szabo 25, Mario van der Stelt 26, Albert van der Vliet 27, Val Watts 28
PMCID: PMC6844577  PMID: 31710714

Abstract

The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14752. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

1.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Overview

Enzymes are protein catalysts facilitating the conversion of substrates into products. The Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC‐IUBMB) classifies enzymes into families, using a four number code, on the basis of the reactions they catalyse. There are six main families:

EC 1.‐.‐.‐ Oxidoreductases;

EC 2.‐.‐.‐ Transferases;

EC 3.‐.‐.‐ Hydrolases;

EC 4.‐.‐.‐ Lyases;

EC 5.‐.‐.‐ Isomerases;

EC 6.‐.‐.‐ Ligases.

Although there are many more enzymes than receptors in biology, and many drugs that target prokaryotic enzymes are effective medicines, overall the number of enzyme drug targets is relatively small [http://www.ncbi.nlm.nih.gov/pubmed/17139284?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24016212?dopt=AbstractPlus], which is not to say that they are of modest importance.

The majority of drugs which act on enzymes act as inhibitors; one exception is metformin, which appears to stimulate activity of AMP‐activated protein kinase, albeit through an imprecisely‐defined mechanism. Kinetic assays allow discrimination of competitive, non‐competitive, and un‐competitive inhibitors. The majority of inhibitors are competitive (acting at the enzyme's ligand recognition site), non‐competitive (acting at a distinct site; potentially interfering with co‐factor or co‐enzyme binding) or of mixed type. One rare example of an uncompetitive inhibitor is lithium ions, which are effective inhibitors at inositol monophosphatase only in the presence of high substrate concentrations. Some inhibitors are irreversible, including a group known as suicide substrates, which bind to the ligand recognition site and then couple covalently to the enzyme. It is beyond the scope of the Guide to give mechanistic information about the inhibitors described, although generally this information is available from the indicated literature.

Many enzymes require additional entities for functional activity. Some of these are used in the catalytic steps, while others promote a particular conformational change. Co‐factors are tightly bound to the enzyme and include metal ions and heme groups. Co‐enzymes are typically small molecules which accept or donate functional groups to assist in the enzymatic reaction. Examples include ATP, NAD, NADP and S‐adenosylmethionine, as well as a number of vitamins, such as riboflavin (vitamin B1) and thiamine (vitamin B2). Where co‐factors/co‐enzymes have been identified, the Guide indicates their involvement.

Family structure

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=933

S301 Acetylcholine turnover

S302 Adenosine turnover

S303 Amino acid hydroxylases

S304 L‐Arginine turnover

S304 2.1.1.‐ Protein arginine N‐methyltransferases

S305 Arginase

S305 Arginine:glycine amidinotransferase

S305 Dimethylarginine dimethylaminohydrolases

S306 Nitric oxide synthases

S307 Carbonic anhydrases

S308 Carboxylases and decarboxylases

S308 Carboxylases

S309 Decarboxylases

S311 Catecholamine turnover

S313 Ceramide turnover

S313 Serine palmitoyltransferase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=791

S314 Ceramide synthase

S314 Sphingolipid ∆4‐desaturase

S315 Sphingomyelin synthase

S315 Sphingomyelin phosphodiesterase

S316 Neutral sphingomyelinase coupling factors

S316 Ceramide glucosyltransferase

S316 Acid ceramidase

S317 Neutral ceramidases

S317 Alkaline ceramidases

S318 Ceramide kinase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=981

S319 Chromatin modifying enzymes

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=869

S319 2.1.1.‐ Protein arginine N‐methyltransferases

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=871

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=872

S320 3.5.1.‐ Histone deacetylases (HDACs)

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=873

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=884

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=558

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=626

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=631

S321 Cyclic nucleotide turnover/signalling

S321 Adenylyl cyclases (ACs)

S323 Exchange protein activated by cyclic AMP (EPACs)

S323 Phosphodiesterases, 3’,5’‐cyclic nucleotide (PDEs)

S327 Cytochrome P450

S327 CYP1 family

S328 CYP2 family

S329 CYP3 family

S330 CYP4 family

S331 CYP5, CYP7 and CYP8 families

S332 CYP11, CYP17, CYP19, CYP20 and CYP21 families

S333 CYP24, CYP26 and CYP27 families

S333 CYP39, CYP46 and CYP51 families

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1020

S334 DNA topoisomerases

S335 Endocannabinoid turnover

S336 N‐Acylethanolamine turnover

S337 2‐Acylglycerol ester turnover

S338 Eicosanoid turnover

S338 Cyclooxygenase

S339 Prostaglandin synthases

S341 Lipoxygenases

S342 Leukotriene and lipoxin metabolism

S343 GABA turnover

S344 Glycerophospholipid turnover

S344 Phosphoinositide‐specific phospholipase C

S346 Phospholipase A2

S348 Phosphatidylcholine‐specific phospholipase D

S349 Lipid phosphate phosphatases

S349 Phosphatidylinositol kinases

S350 1‐phosphatidylinositol 4‐kinase family

S351 Phosphatidylinositol‐4‐phosphate 3‐kinase family

S351 Phosphatidylinositol 3‐kinase family

S351 Phosphatidylinositol‐4,5‐bisphosphate 3‐kinase family

S352 1‐phosphatidylinositol‐3‐phosphate 5‐kinase family

S353 Type I PIP kinases (1‐phosphatidylinositol‐4‐phosphate 5‐kinase family)

S353 Type II PIP kinases (1‐phosphatidylinositol‐5‐phosphate 4‐kinase family)

S354 Sphingosine kinase

S356 Phosphatidylinositol phosphate kinases

S356 Haem oxygenase

S358 Hydrogen sulphide synthesis

S358 Hydrolases

S360 Inositol phosphate turnover

S360 Inositol 1,4,5‐trisphosphate 3‐kinases

S360 Inositol polyphosphate phosphatases

S361 Inositol monophosphatase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1004

S361 Kinases (EC 2.7.x.x)

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=677

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=454

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=500

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=573

S362 Rho kinase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=283

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=507

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=508

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=937

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=583

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=587

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=604

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=284

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=285

S362 Protein kinase C (PKC) family

S363 Alpha subfamily

S363 Delta subfamily

S364 Eta subfamily

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=535

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=287

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=601

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=466

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=539

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=540

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=541

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=705

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=614

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=616

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=644

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=678

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=448

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=468

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=469

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=450

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=471

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=472

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=556

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=874

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=558

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=576

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=463

S264 FRAP subfamily

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=528

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=530

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=531

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=598

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=465

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=536

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=537

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=538

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=596

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=608

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=626

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=631

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=679

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=561

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=562

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=452

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=474

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=475

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=476

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=477

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=478

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=479

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=480

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=700

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=481

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=482

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=483

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=484

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=563

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=566

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=571

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=572

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=459

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=512

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=513

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=585

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=599

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=600

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=605

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=607

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=609

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=630

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=635

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=636

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=680

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=564

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=627

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=640

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=681

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=568

S365 Cyclin‐dependent kinase (CDK) family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=485

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=492

S365 CDK4 subfamily

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=495

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=496

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=497

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=489

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=494

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=490

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=498

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=491

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=570

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=455

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=503

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=504

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=505

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=506

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=457

S366 GSK subfamily

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=288

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=514

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=515

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=518

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=519

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=520

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=612

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=620

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=682

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=683

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=451

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=473

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=557

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=559

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=560

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=565

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=567

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=577

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=578

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=580

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=584

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=586

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=588

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=589

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=590

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=591

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=592

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=593

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=594

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=595

S367 Polo‐like kinase (PLK) family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=462

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=526

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=527

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=597

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=617

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=618

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=628

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=633

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=634

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=637

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=639

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=641

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=642

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=643

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=684

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=449

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=470

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=615

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=890

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=685

S367 STE7 family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=621

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=467

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=542

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=543

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=544

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=544

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=546

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=547

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=548

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=549

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=622

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=550

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=551

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=552

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=624

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=686

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=936

S368 Abl family

S368 Ack family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=569

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=574

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=575

S369 Janus kinase (JakA) family

S369 Src family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=625

S370 Tec family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=687

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=579

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=582

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=458

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=510

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=511

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=461

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=521

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=522

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=523

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=524

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=525

S371 RAF family

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=613

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=632

S372 Lanosterol biosynthesis pathway

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=928

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=993

S374 Nucleoside synthesis and metabolism

S376 Paraoxonase (PON) family

S377 Peptidases and proteinases

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=707

S377 A1: Pepsin

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=708

S377 A22: Presenilin

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=709

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=728

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=731

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=729

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=730

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=732

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=931

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=711

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=733

S378 C14: Caspase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=711

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=735

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=712

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=736

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=713

S378 M1: Aminopeptidase N

S379 M2: Angiotensin‐converting (ACE and ACE2)

S379 M10: Matrix metallopeptidase

S380 M12: Astacin/Adamalysin

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=740

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=742

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=714

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=743

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=715

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=744

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=716

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=745

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=717

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=746

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=718

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=747

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=860

S380 M28: Aminopeptidase Y

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=719

S381 M19: Membrane dipeptidase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=720

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=750

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=721

S381 S1: Chymotrypsin

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=722

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=878

S382 T1: Proteasome

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=753

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=723

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=754

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=724

S382 S8: Subtilisin

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=725

S383 S9: Prolyl oligopeptidase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=756

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=757

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=917

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=947

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=980

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=948

S383 Poly ADP‐ribose polymerases

S384 Prolyl hydroxylases

S384 Sphingosine 1‐phosphate turnover

S385 Sphingosine kinase

S386 Sphingosine 1‐phosphate phosphatase

S387 Sphingosine 1‐phosphate lyase

S387 Thyroid hormone turnover

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=988

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=840

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=922

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=912

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=899

S388 1.14.13.9 Kynurenine 3‐monooxygenase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=877

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=843

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=846

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=844

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=978

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1003

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=979

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=908

S389 2.5.1.58 Protein farnesyltransferase

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=926

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=994

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=880

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=850

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=841

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=909

S390 3.5.1.‐ Histone deacetylases (HDACs)

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=925

S391 3.5.3.15 Peptidyl arginine deiminases (PADI)

S391 3.6.5.2 Small monomeric GTPases

S391 RAS subfamily

S392 RAB subfamily

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=849

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=845

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=847

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=765

Overview

Acetylcholine is familiar as a neurotransmitter in the central nervous system and in the periphery. In the somatic nervous system, it activates http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=76 at the skeletal neuromuscular junction. It is also employed in the autonomic nervous system, in both parasympathetic and sympathetic branches; in the former, at the smooth muscle neuromuscular junction, activating http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=2. In the latter, acetylcholine is involved as a neurotransmitter at the ganglion, activating nicotinic acetylcholine receptors. Acetylcholine is synthesised in neurones through the action of choline O‐acetyltransferase and metabolised after release through the extracellular action of acetylcholinesterase and cholinesterase. Choline is accumulated from the extracellular medium by selective transporters (see http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=143#show_object_914 and the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=233 family). Acetylcholine is accumulated in synaptic vesicles through the action of the vesicular acetylcholine transporter http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=193.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2480 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2465 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2471
Common abbreviation ChAT AChE BChE
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1912, http://www.uniprot.org/uniprot/P28329 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:108, http://www.uniprot.org/uniprot/P22303 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:983, http://www.uniprot.org/uniprot/P06276
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.6: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.7: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 + H+ http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.7: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 + H+
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8807 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/3351860?dopt=AbstractPlus] – Mouse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6687 (pK i 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/18479118?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6693 (pIC50 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/12182861?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6602 (pIC50 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/16570913?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6602 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/16570913?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6687 (pK i 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/18479118?dopt=AbstractPlus]
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6598 (pIC50 7.6–7.8) [http://www.ncbi.nlm.nih.gov/pubmed/16570913?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6598 (pIC50 7.6–7.8) [http://www.ncbi.nlm.nih.gov/pubmed/16570913?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6599 (pIC50 7.7–8.3) [http://www.ncbi.nlm.nih.gov/pubmed/1738151?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8039548?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16570913?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6600 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/12675140?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6601 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/12675140?dopt=AbstractPlus]
Comments Splice variants of choline O‐acetyltransferase are suggested to be differentially distributed in the periphery and CNS (see [http://www.ncbi.nlm.nih.gov/pubmed/21382474?dopt=AbstractPlus]).

Comments

A number of organophosphorus compounds inhibit acetylcholinesterase and cholinesterase irreversibly, including pesticides such as chlorpyrifos‐oxon, and nerve agents such as tabun, soman and sarin. AChE is unusual in its exceptionally high turnover rate which has been calculated at 740 000/min/molecule [http://www.ncbi.nlm.nih.gov/pubmed/13785664?dopt=AbstractPlus].

Further reading on Acetylcholine turnover

Li Q et al. (2017) Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur J Med Chem 132: 294–309 https://www.ncbi.nlm.nih.gov/pubmed/28371641?dopt=AbstractPlus

Lockridge O. (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148: 34–46 https://www.ncbi.nlm.nih.gov/pubmed/25448037?dopt=AbstractPlus

Masson P et al. (2016) Slow‐binding inhibition of cholinesterases, pharmacological and toxicological relevance. Arch Biochem Biophys 593: 60–8 https://www.ncbi.nlm.nih.gov/pubmed/26874196?dopt=AbstractPlus

Rotundo RL. (2017) Biogenesis, assembly and trafficking of acetylcholinesterase. J Neurochem 142 Suppl 2: 52–58 https://www.ncbi.nlm.nih.gov/pubmed/28326552?dopt=AbstractPlus

Silman I et al. (2017) Recent developments in structural studies on acetylcholinesterase. J Neurochem 142 Suppl 2: 19–25 https://www.ncbi.nlm.nih.gov/pubmed/28503857?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=248

Overview

A multifunctional, ubiquitous molecule, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 acts at cell‐surface G protein‐coupled receptors, as well as numerous enzymes, including protein kinases and adenylyl cyclase. Ex‐tracellular adenosine is thought to be produced either by export or by metabolism, predominantly through ecto‐5’‐nucleotidase activity (also producing inorganic phosphate). It is inactivated either by extracellular metabolism via adenosine deaminase (also producing ammonia) or, following uptake by nucleoside transporters, via adenosine deaminase or adenosine kinase (requiring http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 as co‐substrate). Intracellular adenosine may be produced by cytosolic 5’‐nucleotidases or through S‐adenosylhomocysteine hydrolase (also producing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5198).

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1230 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1231 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1232 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1233
Systematic nomenclature CD73
Common abbreviation ADA ADK NT5E SAHH
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:186, http://www.uniprot.org/uniprot/P00813 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:257, http://www.uniprot.org/uniprot/P55263 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8021, http://www.uniprot.org/uniprot/P21589 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:343, http://www.uniprot.org/uniprot/P23526
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.5.4.4: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554 + NH3 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.20 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.5 http://www.genome.jp/dbget‐bin/www_bget?ec:3.3.1.1
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5109 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2455, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5123, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5124, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5125 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5120, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5122
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5265
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5110, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2455 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4556, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8392 (pK i 12.3) [http://www.ncbi.nlm.nih.gov/pubmed/3457563?dopt=AbstractPlus] – Hamster
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4805 (pIC50 10.8) [http://www.ncbi.nlm.nih.gov/pubmed/849330?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5179 (pK i 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/849330?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5130 (pIC50 10.2) [http://www.ncbi.nlm.nih.gov/pubmed/11160637?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5131 (pIC50 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/11082453?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5092 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/1169962?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5115 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/7470463?dopt=AbstractPlus]
Comments The enzyme exists in two isoforms derived from alternative splicing of a single gene product: a short isoform, ADK‐S, located in the cytoplasm is responsible for the regulation of intra‐ and extracellular levels of adenosine and hence adenosine receptor activation; a long isoform, ADK‐L, located in the nucleus contributes to the regulation of DNA methylation [http://www.ncbi.nlm.nih.gov/pubmed/23592612?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23863710?dopt=AbstractPlus]. Pharmacological inhibition of CD73 is being investigated as a novel cancer immunotherapy strategy [http://www.ncbi.nlm.nih.gov/pubmed/21537079?dopt=AbstractPlus].

Comments

An extracellular adenosine deaminase activity, termed ADA2 or adenosine deaminase growth factor (ADGF, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1839, http://www.uniprot.org/uniprot/Q9NZK5) has been identified [http://www.ncbi.nlm.nih.gov/pubmed/24933472?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16245011?dopt=AbstractPlus], which is insensitive to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5179 [http://www.ncbi.nlm.nih.gov/pubmed/20147294?dopt=AbstractPlus]. Other forms of adenosine deaminase act on ribonucleic acids and may be divided into two families: https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:228 (http://www.uniprot.org/uniprot/Q9BUB4) deaminates transfer RNA; https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:225 (http://www.genome.jp/dbget‐bin/www_bget?ec:3.5.4.37, also known as 136 kDa double‐stranded RNA‐binding protein, P136, K88DSRBP, Interferon‐inducible protein 4); https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:226 (EC 3.5.‐.‐, , also known as dsRNA adenosine deaminase) andhttps://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:227 (EC 3.5.‐.‐, also known as dsRNA adenosine deaminase B2, RNA‐dependent adenosine deaminase 3) act on double‐stranded RNA. Particular polymorphisms of the ADA gene result in loss‐of‐function and severe combined immunodeficiency syndrome. Adenosine deaminase is able to complex with dipeptidyl peptidase IV (http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.14.5, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3009, also known as T‐cell activation antigen CD26, TP103, adenosine deaminase complexing protein 2) to form a cell‐surface activity [http://www.ncbi.nlm.nih.gov/pubmed/8101391?dopt=AbstractPlus].

Further reading on Adenosine turnover

Boison D. (2016) Adenosinergic signaling in epilepsy. Neuropharmacology 104: 131–9 https://www.ncbi.nlm.nih.gov/pubmed/26341819?dopt=AbstractPlus

Cortés A et al. (2015) Moonlighting adenosine deaminase: a target protein for drug development. Med Res Rev 35: 85–125 https://www.ncbi.nlm.nih.gov/pubmed/24933472?dopt=AbstractPlus

Nishikura K. (2016) A‐to‐I editing of coding and non‐coding RNAs by ADARs. Nat Rev Mol Cell Biol 17: 83–96 https://www.ncbi.nlm.nih.gov/pubmed/26648264?dopt=AbstractPlus

Sawynok J. (2016) Adenosine receptor targets for pain. Neuroscience 338: 1–18 https://www.ncbi.nlm.nih.gov/pubmed/26500181?dopt=AbstractPlus

Xiao Y et al. (2015) Role of S‐adenosylhomocysteine in cardiovascular disease and its potential epi‐genetic mechanism. Int. J. Biochem. Cell Biol. 67: 158–66 https://www.ncbi.nlm.nih.gov/pubmed/26117455?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=249

Overview

The amino acid hydroxylases (monooxygenases), EC.1.14.16.‐, are iron‐containing enzymes which utilise molecular oxygen and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276 as co‐substrate and co‐factor, respectively. In humans, as well as in other mammals, there are two distinct L‐Tryptophan hydroxylase 2 genes. In humans, these genes are located on chromosomes 11 and 12 and encode two different homologous enzymes, TPH1 and TPH2.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1240 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1243 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1241 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1242
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8582, http://www.uniprot.org/uniprot/P00439 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11782, http://www.uniprot.org/uniprot/P07101 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12008, http://www.uniprot.org/uniprot/P17752 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20692, http://www.uniprot.org/uniprot/Q8IWU9
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 + O2 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 + O2 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.4 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.4
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276, Fe2+
Endogenous activators Protein kinase A‐mediated phosphorylation (Rat) [http://www.ncbi.nlm.nih.gov/pubmed/182695?dopt=AbstractPlus] Protein kinase A‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/33381?dopt=AbstractPlus] Protein kinase A‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/8592157?dopt=AbstractPlus] Protein kinase A‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/8592157?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9490 [http://www.ncbi.nlm.nih.gov/pubmed/26206858?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5093 [http://www.ncbi.nlm.nih.gov/pubmed/944951?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5240 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5095, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5114, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5117, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6956 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5095, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5126 [http://www.ncbi.nlm.nih.gov/pubmed/6457252?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5240, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4613 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5095, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5126 [http://www.ncbi.nlm.nih.gov/pubmed/6457252?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5240, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4613
Comments PAH is an iron bound homodimer or ‐tetramer from the same structural family as tyrosine 3‐monooxygenase and the tryptophan hydroxylases. Deficiency or loss‐of‐function of PAH is associated with http://omim.org/entry/612349 TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway [http://www.ncbi.nlm.nih.gov/pubmed/21176768?dopt=AbstractPlus].

Further reading on Amino acid hydroxylases

Bauer IE et al. (2015) Serotonergic gene variation in substance use pharmacotherapy: a systematic review. Pharmacogenomics 16: 1307–14 https://www.ncbi.nlm.nih.gov/pubmed/26265436?dopt=AbstractPlus

Daubner SC et al. (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508: 1–12 https://www.ncbi.nlm.nih.gov/pubmed/21176768?dopt=AbstractPlus

Flydal MI et al. (2013) Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life 65: 341–9 https://www.ncbi.nlm.nih.gov/pubmed/23457044?dopt=AbstractPlus

Roberts KM et al. (2013) Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life 65: 350–7 https://www.ncbi.nlm.nih.gov/pubmed/23441081?dopt=AbstractPlus

Tekin I et al. (2014) Complex molecular regulation of tyrosine hydroxylase. J Neural Transm 121: 1451–81 https://www.ncbi.nlm.nih.gov/pubmed/24866693?dopt=AbstractPlus

Walen K et al. (2017) Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 21: 167–180 https://www.ncbi.nlm.nih.gov/pubmed/27973928?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=239

Overview

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 is a basic amino acid with a guanidino sidechain. As an amino acid, metabolism of L‐arginine to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725, catalysed by arginase, forms the last step of the urea production cycle. L‐Ornithine may be utilised as a precursor of polyamines (see http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=240) or recycled via http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5324 to L‐arginine. L‐Arginine http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=240#Decarboxylases to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4127, although the prominence of this pathway in human tissues is uncertain. L‐Arginine may be used as a precursor for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5325 formation in the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 synthesis pathway under the influence of arginine:glycine amidinotransferase with L‐ornithine as a byproduct. Nitric oxide synthase uses L‐arginine to generate nitric oxide, with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 also as a byproduct. L‐Arginine in proteins may be subject to post‐translational modification through methylation, catalysed by protein arginine methyltransferases. Subsequent proteolysis can liberate asymmetric http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229 (ADMA), which is an endogenous inhibitor of nitric oxide synthase activities. ADMA is hydrolysed by dimethylarginine dimethylhydrolase activities to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5177.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=254

Overview

Protein arginine N‐methyltransferases (PRMT, EC 2.1.1.‐) encompass histone arginine N‐methyltransferases (PRMT4, PRMT7, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.1.1.125) and myelin basic protein N‐methyltransferases (PRMT7, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.1.1.126). They are dimeric or tetrameric enzymes which use http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786 as a methyl donor, generating http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5265 as a by‐product. They generate both mono‐methylated and di‐methylated products; these may be symmetric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5271) or asymmetric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229) versions, where both guanidine nitrogens are monomethylated or one of the two is dimethylated, respectively.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=254.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=250

Overview

Arginase (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.5.3.1) are manganese‐containing isoforms, which appear to show differential distribution, where the ARG1 isoform predominates in the liver and erythrocytes, while ARG2 is associated more with the kidney.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=250.

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5227, an intermediate in NOS metabolism of L‐arginine acts as a weak inhibitor and may function as a physiological regulator of arginase activity. Although isoform‐selective inhibitors of arginase are not available, examples of inhibitors selective for arginase compared to NOS are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5091 [http://www.ncbi.nlm.nih.gov/pubmed/10637120?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5264 [http://www.ncbi.nlm.nih.gov/pubmed/11478904?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11258879?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5107 [http://www.ncbi.nlm.nih.gov/pubmed/10454520?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11478904?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=251

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=252

Overview

Dimethylarginine dimethylaminohydrolases (DDAH, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.5.3.18) are cytoplasmic enzymes which hydrolyse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229 to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5177 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=253

Overview

Nitric oxide synthases (NOS, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=1.14.13.39) are a family of oxidoreductases that synthesize nitric oxide (NO.) via the NADPH and oxygen‐dependent consumption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 with the resultant by‐product, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722. There are 3 NOS isoforms and they are related by their capacity to produce NO, highly conserved organization of functional domains and significant homology at the amino acid level. NOS isoforms are functionally distinguished by the cell type where they are expressed, intracellular targeting and transcriptional and post‐translation mechanisms regulating enzyme activity. The nomenclature suggested by NC‐IUPHAR of NOS I, II and III [http://www.ncbi.nlm.nih.gov/pubmed/9228663?dopt=AbstractPlus] has not gained wide acceptance, and the 3 isoforms are more commonly referred to as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) which reflect the location of expression (nNOS and eNOS) and inducible expression (iNOS). All are dimeric enzymes that shuttle electrons from NADPH, which binds to a C‐terminal reductase domain, through the flavins FAD and FMN to the oxygenase domain of the other monomer to enable the BH4‐dependent reduction of heme bound oxygen for insertion into the substrate, L‐arginine. Electron flow from reductase to oxygenase domain is controlled by calmodulin binding to canonical calmodulin binding motif located between these domains. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca2+/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442, http://www.uniprot.org/uniprot/P62158) with great avidity and is essentially calcium‐independent and constitutively active. Efficient stimulus‐dependent coupling of nNOS and eNOS is achieved via subcellular targeting through respective N‐terminal PDZ and fatty acid acylation domains whereas iNOS is largely cytosolic and function is independent of intracellular location. nNOS is primarily expressed in the brain and neuronal tissue, iNOS in immune cells such as macrophages and eNOS in the endothelial layer of the vasculature although exceptions in other cells have been documented. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5213 and related modified arginine analogues are inhibitors of all three isoforms, with IC50 values in the micromolar range.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1249 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1250 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1251
Common abbreviation eNOS iNOS nNOS
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7876, http://www.uniprot.org/uniprot/P29474 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7873, http://www.uniprot.org/uniprot/P35228 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7872, http://www.uniprot.org/uniprot/P29475
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.39 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.39 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.39
Endogenous Substrate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509
Cofactors oxygen, BH4, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5185, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5185, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184, oxygen, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566, BH4 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349, oxygen, BH4, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5185, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5102 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/9030556?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5111 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/8937711?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5246 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/7523409?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5231 (pIC50 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/7525961?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5135 [http://www.ncbi.nlm.nih.gov/pubmed/1378415?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5113 (pIC50 6.1–6.5) [http://www.ncbi.nlm.nih.gov/pubmed/7544863?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5127 (pIC50 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/7693279?dopt=AbstractPlus]

Comments

The reductase domain of NOS catalyses the reduction of cytochrome c and other redox‐active dyes [http://www.ncbi.nlm.nih.gov/pubmed/9433128?dopt=AbstractPlus]. NADPH:O2 oxidoreductase catalyses the formation of superoxide anion/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2448 in the absence of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276.

Further reading on Nitric oxide synthases

Garcia‐Ortiz A and Serrador JM (2018) Nitric Oxide Signaling in T Cell‐Mediated Immunity Trends Mol Med 24: 412–427 https://www.ncbi.nlm.nih.gov/pubmed/29519621

Lundberg JO et al. (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14: 623–41 https://www.ncbi.nlm.nih.gov/pubmed/26265312?dopt=AbstractPlus

Oliveira‐Paula GH et al. (2016) Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 575: 584–99 https://www.ncbi.nlm.nih.gov/pubmed/26428312?dopt=AbstractPlus

Stuehr DJ and Haque MM (2019) Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. BrJPharmacol 176: 177–188 https://www.ncbi.nlm.nih.gov/pubmed/30402946

Wallace JL (2019) Nitric oxide in the gastrointestinal tract: opportunities for drug development. Br J Pharmacol 176: 147–154 https://www.ncbi.nlm.nih.gov/pubmed/30357812

Further reading on L‐Arginine turnover

Lai L et al. (2016) Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers. J Diabetes Res 2016: 1982096 https://www.ncbi.nlm.nih.gov/pubmed/26770984?dopt=AbstractPlus

Moncada S et al. (1997) International Union of Pharmacology Nomenclature in Nitric Oxide Re‐search. Pharmacol. Rev. 49: 137–42 https://www.ncbi.nlm.nih.gov/pubmed/9228663?dopt=AbstractPlus

Pekarova M et al. (2015) The crucial role of l‐arginine in macrophage activation: What you need to know about it. Life Sci. 137: 44–8 https://www.ncbi.nlm.nih.gov/pubmed/26188591?dopt=AbstractPlus

Pudlo M et al. (2017) Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev 37: 475–513 https://www.ncbi.nlm.nih.gov/pubmed/27862081?dopt=AbstractPlus

Sudar‐Milovanovic E et al. (2016) Benefits of L‐Arginine on Cardiovascular System. Mini Rev Med Chem 16: 94–103 https://www.ncbi.nlm.nih.gov/pubmed/26471966?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=842

Overview

Carbonic anhydrases facilitate the interconversion of water and carbon dioxide with bicarbonate ions and protons (EC 4.2.1.1), with over a dozen gene products identified in man. The enzymes function in acid‐base balance and the movement of carbon dioxide and water. They are targetted for therapeutic gain by particular antiglaucoma agents and diuretics.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2597 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2749 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2747 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2748 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2598
Common abbreviation CA I CA VII CA XII CA XIII CA XIV
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1368, http://www.uniprot.org/uniprot/P00915 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1381, http://www.uniprot.org/uniprot/P43166 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1371, http://www.uniprot.org/uniprot/O43570 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14914, http://www.uniprot.org/uniprot/Q8N1Q1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1372, http://www.uniprot.org/uniprot/Q9ULX7
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.1
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7147 (pK i 6.5) http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6828 (pK i 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/23965175?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6792 (pK i 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/20605094?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6797 (pK i 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/23965175?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7147 (pK i 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/19119014?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10149 (pK i 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/26233435?dopt=AbstractPlus]

Further reading on Carbonic anhydrases

Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F and Sly WS. (2013) Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 21: 1570–70 https://www.ncbi.nlm.nih.gov/pubmed/22607884

Supuran CT (2017) Advances in structure‐based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 12: 61–88 https://www.ncbi.nlm.nih.gov/pubmed/27783541

Supuran CT (2018) Carbonic anhydrase activators. Future Med Chem 10: 561–573 https://www.ncbi.nlm.nih.gov/pubmed/29478330

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=240

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=255

Overview

The carboxylases allow the production of new carbon‐carbon bonds by introducing HCO3 or CO2 into target molecules. Two groups of carboxylase activities, some of which are bidirectional, can be defined on the basis of the cofactor requirement, making use of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 (EC 6.4.1.‐) or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5286 (EC 4.1.1.‐).

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1262 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1263 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1264 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1265 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1268
Common abbreviation PC ACC1 ACC2 PCCA,PCCB GGCX
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8636, http://www.uniprot.org/uniprot/P11498 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:84, http://www.uniprot.org/uniprot/Q13085 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:85, http://www.uniprot.org/uniprot/O00763 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4247, http://www.uniprot.org/uniprot/P38435
Subunits http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1267, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1266
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:6.4.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:6.4.1.2 http://www.genome.jp/dbget‐bin/www_bget?ec:6.4.1.2 http://www.genome.jp/dbget‐bin/www_bget?ec:6.4.1.3 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.90
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5248, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 glutamyl peptides
Products Pi, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5236 Pi, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5219 Pi, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5219 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5223, Pi carboxyglutamyl peptides
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5286, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6960
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8884 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/23981033?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5280 (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/14612531?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8884 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/23981033?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5280 (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/14612531?dopt=AbstractPlus]
Comments Citrate and other dicarboxylic acids are allosteric activators of acetyl‐CoA carboxylase. Citrate and other dicarboxylic acids are allosteric activators of acetyl‐CoA carboxylase. Propionyl‐CoA carboxylase is able to function in both forward and reverse activity modes, as a ligase (carboxylase) or lyase (decarboxylase), respectively. Loss‐of‐function mutations in γ‐glutamyl carboxylase are associated with http://omim.org/entry/277450.

Comments

Dicarboxylic acids including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478 are able to activate ACC1/ACC2 activity allosterically. PCC is able to function in forward and reverse modes as a ligase (carboxylase) or lyase (decarboxylase) activity, respectively. Loss‐of‐function mutations in GGCX are associated with clotting disorders.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=256

Overview

The decarboxylases generate CO2 and the indicated products from acidic substrates, requiring http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 as a co‐factor.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1272 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1273 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1274
Common abbreviation GAD1 GAD2 HDC
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4092, http://www.uniprot.org/uniprot/Q99259 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4093, http://www.uniprot.org/uniprot/Q05329 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4855, http://www.uniprot.org/uniprot/P19113
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.15: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 + H+ ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.15: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 + H+ ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.22
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5267 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5267 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5134, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5189 [http://www.ncbi.nlm.nih.gov/pubmed/7452304?dopt=AbstractPlus]
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating β‐alanine [http://www.ncbi.nlm.nih.gov/pubmed/4700449?dopt=AbstractPlus]. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading).
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1270 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1271 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1275 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1276 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1277 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1269
Common abbreviation ADC AADC MLYCD ODC PSDC SAMDC
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:29957, http://www.uniprot.org/uniprot/Q96A70 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2719, http://www.uniprot.org/uniprot/P20711 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7150, http://www.uniprot.org/uniprot/O95822 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8109, http://www.uniprot.org/uniprot/P11926 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8999, http://www.uniprot.org/uniprot/Q9UG56 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:457, http://www.uniprot.org/uniprot/P17707
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.19 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.28: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 + CO2 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 + CO2 This enzyme also catalyses the following reaction:: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=125 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.9 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.17 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.65 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.50
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5219 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3638 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4127 [http://www.ncbi.nlm.nih.gov/pubmed/14738999?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2388 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2796 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5121
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5116, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5217, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5150 [http://www.ncbi.nlm.nih.gov/pubmed/22384042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5159 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5139 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/1573631?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5176 (pK d 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/12859253?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5268 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/8340919?dopt=AbstractPlus]
Comments The presence of a functional ADC activity in human tissues has been questioned [http://www.ncbi.nlm.nih.gov/pubmed/14763899?dopt=AbstractPlus]. AADC is a homodimer. Inhibited by AMP‐activated protein kinase‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/10854420?dopt=AbstractPlus] The activity of ODC is regulated by the presence of an antizyme (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000104904;r=19:2269520‐2273487;t=ENST00000322297) and an ODC antizyme inhibitor (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000155096;r=8:103838585‐103906092). S‐allylglycine is also an inhibitor of SAMDC [http://www.ncbi.nlm.nih.gov/pubmed/438812?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5267 is also an inhibitor of SAMDC [http://www.ncbi.nlm.nih.gov/pubmed/438812?dopt=AbstractPlus].

Further reading on Carboxylases and decarboxylases

Bale S et al. (2010) Structural biology of S‐adenosylmethionine decarboxylase. Amino Acids 38: 451–60 [https://www.ncbi.nlm.nih.gov/pubmed/19997761?dopt=AbstractPlus

Di Bartolomeo F et al. (2017) Cell biology, physiology and enzymology of phosphatidylserine decarboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 1862: 25–38 https://www.ncbi.nlm.nih.gov/pubmed/27650064

Jitrapakdee S et al. (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J. 413: 369–87 https://www.ncbi.nlm.nih.gov/pubmed/18613815?dopt=AbstractPlus

Lietzan AD et al. (2014) Functionally diverse biotin‐dependent enzymes with oxaloacetate decarboxylase activity. Arch. Biochem. Biophys. 544: 75–86 https://www.ncbi.nlm.nih.gov/pubmed/24184447?dopt=AbstractPlus

Sanchez‐Jimenez F et al. (2016) Structural and functional analogies and differences between histi‐dine decarboxylase and aromatic l‐amino acid decarboxylase molecular networks: Biomedical implications Pharmacol Res 114: 90–102 https://www.ncbi.nlm.nih.gov/pubmed/27769832

Salie MJ and Thelen JJ (2016) Regulation and structure of the heteromeric acetyl‐CoA carboxylase. Biochim Biophys Acta 1861: 1207–1213 https://www.ncbi.nlm.nih.gov/pubmed/27091637

Tong L. (2013) Structure and function of biotin‐dependent carboxylases. Cell. Mol. Life Sci. 70: 863–91 https://www.ncbi.nlm.nih.gov/pubmed/22869039?dopt=AbstractPlus

Vance JE et al. (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 1831: 543–54 https://www.ncbi.nlm.nih.gov/pubmed/22960354?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=766

Overview

Catecholamines are defined by the presence of two adjacent hydroxyls on a benzene ring with a sidechain containing an amine. The predominant catacholamines in mammalian biology are the neurotransmitter/hormones http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 (norepinephrine) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 (epinephrine). These hormone/transmitters are synthesized by sequential metabolism from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 via http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791. Hydroxylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639, which is decarboxylated to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940. Hydroxylation of the ethylamine sidechain generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 (norepinephrine), which can be methylated to form http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 (epinephrine). In particular neuronal and adrenal chromaffin cells, the catecholamines http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 are accumulated into vesicles under the influence of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=193 (VMAT1/SLC18A1 and VMAT2/SLC18A2). After release into the synapse or the blood‐stream, catecholamines are accumulated through the action cell‐surface transporters, primarily the dopamine (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=144#Monoamine_transporter_subfamily) and norepinephrine transporter (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=144#Monoamine transporter subfamily). The primary routes of metabolism of these catecholamines are oxidation via monoamine oxidase activities of methylation via catechol O‐methyltransferase.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1240 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2527 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1243 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2486
Common abbreviation TAT DBH
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8582, http://www.uniprot.org/uniprot/P00439 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11573, http://www.uniprot.org/uniprot/P17735 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11782, http://www.uniprot.org/uniprot/P07101 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2689, http://www.uniprot.org/uniprot/P09172
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 + O2 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 http://www.genome.jp/dbget‐bin/www_bget?ec:2.6.1.5: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3636 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6629 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.16.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 + O2 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.17.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 + O2 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 + H2O
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276, Fe2+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4164, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4781
Endogenous activators Protein kinase A‐mediated phosphorylation (Rat) [http://www.ncbi.nlm.nih.gov/pubmed/182695?dopt=AbstractPlus] Protein kinase A‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/33381?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5093 [http://www.ncbi.nlm.nih.gov/pubmed/944951?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5240 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5095, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5114, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5117, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6956 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6630 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/9283721?dopt=AbstractPlus]
Comments PAH is an iron bound homodimer or ‐tetramer from the same structural family as tyrosine 3‐monooxygenase and the tryptophan hydroxylases. Deficiency or loss‐of‐function of PAH is associated with http://omim.org/entry/612349 Tyrosine may also be metabolized in the liver by tyrosine transaminase to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6629, which can be further metabolized to homogentisic acid. TAT is a homodimer, where loss‐of‐function mutations are associated with http://omim.org/entry/276600. TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway [http://www.ncbi.nlm.nih.gov/pubmed/21176768?dopt=AbstractPlus]. DBH is a homotetramer. A protein structurally‐related to DBH (http://www.genenames.org/data/hgnc_data.php?hgnc_id=21063, http://www.uniprot.org/uniprot/Q6UVY6) has been described and for which a function has yet to be identified [http://www.ncbi.nlm.nih.gov/pubmed/9751809?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1271 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2496 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2472
Common abbreviation AADC PNMT COMT
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2719, http://www.uniprot.org/uniprot/P20711 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9160, http://www.uniprot.org/uniprot/P11086 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2228, http://www.uniprot.org/uniprot/P21964
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.28: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 + CO2 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 + CO2 This enzyme also catalyses the following reaction:: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=125 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.1.1.28: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 http://www.genome.jp/dbget‐bin/www_bget?ec:2.1.1.6: S‐adenosyl‐L‐methionine + a catechol = S‐adenosyl‐L‐homocysteine + a guaiacol http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6643 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6642 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6633 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6645 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6644
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6646 (soluble enzyme) (pK i 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/7703232?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6646 (membrane‐bound enzyme) (pK i 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/7703232?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6647 (soluble enzyme) (pK i 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/7703232?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6647 (membrane‐bound enzyme) (pK i 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/7703232?dopt=AbstractPlus]
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6631 (pK i 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/6268095?dopt=AbstractPlus] COMT appears to exist in both membrane‐bound and soluble forms. COMT has also been described to methylate steroids, particularly hydroxyestradiols
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5116, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5217, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5150 [http://www.ncbi.nlm.nih.gov/pubmed/22384042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5159
Comments AADC is a homodimer.
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2489 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2490
Common abbreviation MAO‐A MAO‐B
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6833, http://www.uniprot.org/uniprot/P21397 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6834, http://www.uniprot.org/uniprot/P27338
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.4.3.4 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6633 + NH3 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6633 + NH3 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6635 + NH3 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6632 + NH3 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6634 + NH3 http://www.genome.jp/dbget‐bin/www_bget?ec:1.4.3.4
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184 +
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6641 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/11159700?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7266 (Irreversible inhibition) (pK i 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/18426226?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6640 (pK i 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/2122653?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16137882?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6639 (pK i 5.7–6) [http://www.ncbi.nlm.nih.gov/pubmed/15974574?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21377879?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5281 (pIC50 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/15110846?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8291 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/15027868?dopt=AbstractPlus]
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7428 (pK i 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/21680183?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7266 (Irreversible inhibition) (pK i 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/18426226?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5281 (pIC50 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/15110846?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6639 (pK i 4.2) [http://www.ncbi.nlm.nih.gov/pubmed/21377879?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6637 [http://www.ncbi.nlm.nih.gov/pubmed/10333983?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6636, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6638 [http://www.ncbi.nlm.nih.gov/pubmed/9564636?dopt=AbstractPlus]

Further reading on Catecholamine turnover

Bastos P et al. (2017) Catechol‐O‐Methyltransferase (COMT): An Update on Its Role in Cancer, Neuro‐and Cardiovascular Diseases. Rev Biochem Pharmacol 173: 1–39 https://www.ncbi.nlm.nih.gov/pubmed/28456872

Deshwal S etal. (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33: 64–69 https://www.ncbi.nlm.nih.gov/pubmed/28528298?dopt=AbstractPlus

Fisar Z. (2016) Drugs related to monoamine oxidase activity. Prog. Neuropsychopharmacol. Biol. Psychiatry 69: 112–24 https://www.ncbi.nlm.nih.gov/pubmed/26944656?dopt=AbstractPlus

Ramsay RR. (2016) Molecular aspects of monoamine oxidase B. Prog. Neuropsychopharmacol. Biol. Psychiatry 69: 81–9 https://www.ncbi.nlm.nih.gov/pubmed/26891670?dopt=AbstractPlus

Walen K et al. (2017) Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin. Ther. Targets 21: 167–180 https://www.ncbi.nlm.nih.gov/pubmed/27973928?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=767

Overview

Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6654, which is reduced to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453 (dihydrosphingosine). N‐Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2205, http://www.uniprot.org/uniprot/Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl‐ or galactosylceramides.

Ceramidase re‐forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=788

Overview

The functional enzyme is a heterodimer of SPT1 (LCB1) with either SPT2 (LCB2) or SPT3 (LCB2B); the small subunits of SPT (ssSPTa or ssSPTb) bind to the heterodimer to enhance enzymatic activity. The complexes of SPT1/SPT2/ssSPTa and SPT1/SPT2/ssSPTb were most active with palmitoylCoA as substrate, with the latter complex also showing some activity with stearoylCoA [http://www.ncbi.nlm.nih.gov/pubmed/19416851?dopt=AbstractPlus]. Complexes involving SPT3 appeared more broad in substrate selectivity, with incorporation of myristoylCoA prominent for SPT1/SPT3/ssSPTa complexes, while SP1/SPT3/ssSPTb complexes had similar activity with C16, C18 and C20 acylCoAs [http://www.ncbi.nlm.nih.gov/pubmed/19416851?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2509 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2510 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2511 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2512 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2513
Common abbreviation SPT1 SPT2 SPT3 SPTSSA SPTSSB
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11277, http://www.uniprot.org/uniprot/O15269 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11278, http://www.uniprot.org/uniprot/O15270 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16253, http://www.uniprot.org/uniprot/Q9NUV7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20361, http://www.uniprot.org/uniprot/Q969W0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24045, http://www.uniprot.org/uniprot/Q8NFR3
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.50: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6765> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6654+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.50: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6765> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6654 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.50: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6765> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6654+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 + CO2
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6664 (pK i 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/7794249?dopt=AbstractPlus] – Mouse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6664 [http://www.ncbi.nlm.nih.gov/pubmed/7794249?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6664 [http://www.ncbi.nlm.nih.gov/pubmed/7794249?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=789

Overview

This family of enzymes, also known as sphingosine N‐acyltransferase, is located in the ER facing the cytosol with an as‐yet undefined topology and stoichiometry. Ceramide synthase in vitro is sensitive to inhibition by the fungal derived toxin, fumonisin B1.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2474 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2475 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2476 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2477 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2478 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2479
Common abbreviation CERS1 CERS2 CERS3 CERS4 CERS5 CERS6
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14253, http://www.uniprot.org/uniprot/P27544 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14076, http://www.uniprot.org/uniprot/Q96G23 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23752, http://www.uniprot.org/uniprot/Q8IU89 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23747, http://www.uniprot.org/uniprot/Q9HA82 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23749, http://www.uniprot.org/uniprot/Q8N5B7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23826, http://www.uniprot.org/uniprot/Q6ZMG9
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.24: acylCoA + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2453> dihydroceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + acylCoA ‐> ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044
Substrates C18‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/12105227?dopt=AbstractPlus] C24‐ and C26‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/18165233?dopt=AbstractPlus] C26‐CoA and longer [http://www.ncbi.nlm.nih.gov/pubmed/14511335?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18308723?dopt=AbstractPlus] C18‐, C20‐ and C22‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/12912983?dopt=AbstractPlus] C16‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/16100120?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12912983?dopt=AbstractPlus] C14‐ and C16‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/15823095?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=790

Overview

DEGS1 and DEGS2 are 4TM proteins.

Comments

DEGS1 activity is inhibited by a number of natural products, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7000 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2424 [http://www.ncbi.nlm.nih.gov/pubmed/22200621?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=774

Overview

Following translocation from the ER to the Golgi under the influence of the ceramide transfer protein, sphingomyelin synthases allow the formation of sphingomyelin by the transfer of phosphocholine from the phospholipid phosphatidylcholine. Sphingomyelin synthase‐related protein 1 is structurally related but lacks sphingomyelin synthase activity.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2520 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2521 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2525
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:29799, http://www.uniprot.org/uniprot/Q86VZ5 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:28395, http://www.uniprot.org/uniprot/Q8NHU3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26320, http://www.uniprot.org/uniprot/Q96LT4
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.8.27: ceramide + phosphatidylcholine ‐> sphingomyelin + diacylglycerol http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.8.27: ceramide + phosphatidylcholine ‐> sphingomyelin + diacylglycerol http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.8.‐: ceramide + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2796> ceramide phosphoethanolamine
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8835 (pIC50 5.7) [http://www.ncbi.nlm.nih.gov/pubmed/26314925?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8834 (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/24374347?dopt=AbstractPlus]
Comments Palmitoylation of sphingomyelin synthase 2 may allow targeting to the plasma membrane [http://www.ncbi.nlm.nih.gov/pubmed/19233134?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=773

Overview

Also known as sphingomyelinase.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2514 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2515 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2516 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2517 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2518 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2519
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11120, http://www.uniprot.org/uniprot/P17405 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11121, http://www.uniprot.org/uniprot/O60906 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14240, http://www.uniprot.org/uniprot/Q9NY59 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:32949, http://www.uniprot.org/uniprot/Q9NXE4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17389, http://www.uniprot.org/uniprot/Q92484 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21416, http://www.uniprot.org/uniprot/Q92485
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.12: sphingomyelin ‐> ceramide + phosphocholine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.12: sphingomyelin ‐> ceramide + phosphocholine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.12: sphingomyelin ‐> ceramide + phosphocholine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.12: sphingomyelin ‐> ceramide + phosphocholine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.‐: sphingomyelin ‐> ceramide + phosphocholine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.‐: sphingomyelin ‐> ceramide + phosphocholine
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8847 (pK i 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/12482429?dopt=AbstractPlus] – Bovine

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=772

Overview

Protein FAN [http://www.ncbi.nlm.nih.gov/pubmed/8808629?dopt=AbstractPlus] and polycomb protein EED [http://www.ncbi.nlm.nih.gov/pubmed/20080539?dopt=AbstractPlus] allow coupling between TNF receptors and neutral sphingomyelinase phosphodiesterases.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=775

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=769

Overview

The six human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=770

Overview

The six human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

Comments

ASAH2B appears to be an enzymatically inactive protein, which may result from gene duplication and truncation.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=768

Overview

The six human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=771

Comments

A ceramide kinase‐like protein has been identified in the human genome (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21699, http://www.uniprot.org/uniprot/Q49MI3).

Further reading on Ceramide turnover

Brachtendorf S et al. (2019) Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 74: 160‐185 https://www.ncbi.nlm.nih.gov/pubmed/30953657

Chen Y and Cao Y. (2017) The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol Chem 398: 1319‐1325 https://www.ncbi.nlm.nih.gov/pubmed/28742512

Fang Z et al. (2019) Ceramide and sphingosine 1‐phosphate in adipose dysfunction. Prog Lipid Res 74: 145‐159 https://www.ncbi.nlm.nih.gov/pubmed/30951736

Hernández‐Corbacho MJ et al. (2017) Sphingolipids in mitochondria. Biochim Biophys Acta 1862: 56‐68 https://www.ncbi.nlm.nih.gov/pubmed/27697478?dopt=AbstractPlus

Ilan Y. (2016) Compounds of the sphingomyelin‐ceramide‐glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 310: G1102‐17 https://www.ncbi.nlm.nih.gov/pubmed/27173510?dopt=AbstractPlus

Iqbal J et al. (2017) Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 28: 506‐518 https://www.ncbi.nlm.nih.gov/pubmed/28462811?dopt=AbstractPlus

Kihara A. (2016) Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 63: 50‐69 https://www.ncbi.nlm.nih.gov/pubmed/27107674?dopt=AbstractPlus

Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18: 33‐50 https://www.ncbi.nlm.nih.gov/pubmed/29147025

Parashuraman S and D’Angelo. (2019) Visualizing sphingolipid biosynthesis in cells. Chem Phys Lipids 218: 103‐111 https://www.ncbi.nlm.nih.gov/pubmed/30476485

Rodriguez‐Cuenca S et al. (2017) Sphingolipids and glycerophospholipids ‐ The “ying and yang” of lipotoxicity in metabolic diseases. Prog. Lipid Res. 66: 14‐29 https://www.ncbi.nlm.nih.gov/pubmed/28104532?dopt=AbstractPlus

Snider et al. (2019) Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 575: 70‐86 https://www.ncbi.nlm.nih.gov/pubmed/30917945

Vogt D et al. (2017) Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 37: 3‐51 https://www.ncbi.nlm.nih.gov/pubmed/27480072?dopt=AbstractPlus

Wegner MS et al. (2016) The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 63: 93‐119 https://www.ncbi.nlm.nih.gov/pubmed/27180613?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=865

Overview

Chromatin modifying enzymes, and other chromatin‐modifying proteins, fall into three broad categories: writers, readers and erasers. The function of these proteins is to dynamically maintain cell identity and regulate processes such as differentiation, development, proliferation and genome integrity via recognition of specific ’marks’ (covalent post‐translational modifications) on histone proteins and DNA [http://www.ncbi.nlm.nih.gov/pubmed/17320507?dopt=AbstractPlus]. In normal cells, tissues and organs, precise co‐ordination of these proteins ensures expression of only those genes required to specify phenotype or which are required at specific times, for specific functions. Chromatin modifications allow DNA modifications not coded by the DNA sequence to be passed on through the genome and underlies heritable phenomena such as X chromosome inactivation, aging, heterochromatin formation, reprogramming, and gene silencing (epigenetic control).

To date at least eight distinct types of modifications are found on histones. These include small covalent modifications such as acetylation, methylation, and phosphorylation, the attachment of larger modifiers such as ubiquitination or sumoylation, and ADP ribosylation, proline isomerization and deimination. Chromatin modifications and the functions they regulate in cells are reviewed by Kouzarides (2007) [http://www.ncbi.nlm.nih.gov/pubmed/17320507?dopt=AbstractPlus].

Writer proteins include the histone methyltransferases, histone acetyltransferases, some kinases and ubiquitin ligases.

Readers include proteins which contain methyl‐lysinerecognition motifs such as bromodomains, chromodomains, tudor domains, PHD zinc fingers, PWWP domains and MBT domains.

Erasers include the histone demethylases and histone deacetylases (HDACs and sirtuins).

Dysregulated epigenetic control can be associated with human diseases such as cancer [http://www.ncbi.nlm.nih.gov/pubmed/18337604?dopt=AbstractPlus], where awide variety of cellular and protein abberations are known to perturb chromatin structure, gene transcription and ultimately cellular pathways [http://www.ncbi.nlm.nih.gov/pubmed/21941284?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24104525?dopt=AbstractPlus]. Due to the reversible nature of epigenetic modifications, chromatin regulators are very tractable targets for drug discovery and the development of novel therapeutics. Indeed, small molecule inhibitors of writers (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6796 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6805 target the DNA methyltransferases DNMT1 and DNMT3 for the treatment of myelodysplastic syndromes [http://www.ncbi.nlm.nih.gov/pubmed/21220589?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24523604?dopt=AbstractPlus]) and erasers (e.g. the HDAC inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6852, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7006 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496 for the treatment of T‐cell lymphomas [http://www.ncbi.nlm.nih.gov/pubmed/21493798?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22124371?dopt=AbstractPlus]) are already being used in the clinic. The search for the next generation of compounds with improved specificity against chromatin‐associated proteins is an area of intense basic and clinical research [http://www.ncbi.nlm.nih.gov/pubmed/25974248?dopt=AbstractPlus]. Current progress in this field is reviewed by Simó‐Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=254

Overview

Protein arginine N‐methyltransferases (PRMT, EC 2.1.1.‐) encompass histone arginine N‐methyltransferases (PRMT4, PRMT7, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.1.1.125) and myelin basic protein N‐methyltransferases (PRMT7, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.1.1.126). They are dimeric or tetrameric enzymes which use http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4786 as a methyl donor, generating http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5265 as a by‐product. They generate both mono‐methylated and dimethylated products; these may be symmetric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5271) or asym metric (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5229) versions, where both guanidine nitrogens are monomethylated or one of the two is dimethylated, respectively.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=254.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=848

Overview

Histone deacetylases act as erasers of epigenetic acetylation marks on lysine residues in histones. Removal of the acetyl groups facilitates tighter packing of chromatin (heterochromatin formation) leading to transcriptional repression.

The histone deacetylase family has been classified in to five subfamilies based on phylogenetic comparison with yeast homologues:

Class I contains HDACs 1, 2, 3 and 8

Class IIa contains HDACs 4, 5, 7 and 9

Class IIb contains HDACs 6 and 10

Class III contains the sirtuins (SIRT1‐7)

Class IV contains only HDAC11.

Classes I, II and IV use Zn+ as a co‐factor, whereas catalysis by Class III enzymes requires NAD+ as a co‐factor, and members of this subfamily have ADP‐ribosylase activity in addition to protein deacetylase function [http://www.ncbi.nlm.nih.gov/pubmed/20132909?dopt=AbstractPlus].

HDACs have more general protein deacetylase activity, being able to deacetylate lysine residues in non‐histone proteins [http://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=AbstractPlus] such as microtubules [http://www.ncbi.nlm.nih.gov/pubmed/12024216?dopt=AbstractPlus], the hsp90 chaperone [http://www.ncbi.nlm.nih.gov/pubmed/15916966?dopt=AbstractPlus] and the tumour suppressor p53 [http://www.ncbi.nlm.nih.gov/pubmed/11099047?dopt=AbstractPlus].

Dysregulated HDACactivity has been identified in cancer cells and tumour tissues [http://www.ncbi.nlm.nih.gov/pubmed/11704848?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19383284?dopt=AbstractPlus], making HDACs attractive molecular targets in the search for novel mechanisms to treat cancer [http://www.ncbi.nlm.nih.gov/pubmed/24382387?dopt=AbstractPlus]. Several small molecule HDAC inhibitors are already approved for clinical use: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7006, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6852, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7489, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7009 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8305. HDACs and HDAC inhibitors currently in development as potential anti‐cancer therapeutics are reviewed by Simó‐Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].

Further reading on 3.5.1.‐ Histone deacetylases (HDACs)

Ellmeier W et al. (2018) Histone deacetylase function in CD4+ T cells. Nat. Rev. Immunol. 18: 617‐634 https://www.ncbi.nlm.nih.gov/pubmed/30022149?dopt=AbstractPlus

Maolanon AR et al. (2017) Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 18: 5‐49 https://www.ncbi.nlm.nih.gov/pubmed/27748555?dopt=AbstractPlus

Micelli C et al. (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 20: 718‐35 https://www.ncbi.nlm.nih.gov/pubmed/25687212?dopt=AbstractPlus

Millard CJ et al. (2017) Targeting Class I Histone Deacetylases in a "Complex" Environment. Trends Pharmacol Sci 38: 363‐377 https://www.ncbi.nlm.nih.gov/pubmed/28139258?dopt=AbstractPlus

Roche J et al. (2016) Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 121: 451‐483 https://www.ncbi.nlm.nih.gov/pubmed/27318122?dopt=AbstractPlus

Zagni C et al. (2017) The Search for Potent, Small‐Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 37: 1373‐1428 https://www.ncbi.nlm.nih.gov/pubmed/28181261?dopt=AbstractPlus

Further reading on Chromatin modifying enzymes

Angus SP et al. (2018) Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer. Annu Rev Pharmacol Toxicol 58: 209‐229 https://www.ncbi.nlm.nih.gov/pubmed/28934561?dopt=AbstractPlus

Bennett RL et al. (2018) Targeting Epigenetics in Cancer. Annu Rev Pharmacol Toxicol 58: 187‐207 https://www.ncbi.nlm.nih.gov/pubmed/28992434?dopt=AbstractPlus

Lauschke VM et al. (2018) Pharmacoepigenetics and Toxicoepigenetics: Novel Mechanistic Insights and Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 58: 161‐185 https://www.ncbi.nlm.nih.gov/pubmed/29029592?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=241

Overview

Cyclic nucleotides are second messengers generated by cyclase enzymes from precursor triphosphates and hydrolysed by phosphodiesterases. The cellular actions of these cyclic nucleotides are mediated through activation of protein kinases (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=284‐ and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=287‐dependent protein kinases), ion channels (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=71, and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=71) and guanine nucleotide exchange factors (GEFs, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=259).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=257

Overview

Adenylyl cyclase, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=4.6.1.1, converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 and pyrophosphate. Mammalian membranedelimited adenylyl cyclases (nomenclature as approved by the NC‐IUPHAR Subcommittee on Adenylyl cyclases [http://www.ncbi.nlm.nih.gov/pubmed/28255005?dopt=AbstractPlus]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5190 (except AC9, [http://www.ncbi.nlm.nih.gov/pubmed/8662814?dopt=AbstractPlus]). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 and its derivatives (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5108), acting through the P‐site,are inhibitors of adenylyl cyclase activity [http://www.ncbi.nlm.nih.gov/pubmed/11087399?dopt=AbstractPlus]. Four families of membranous adenylyl cyclase are distinguishable: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1449, http://www.uniprot.org/uniprot/P62158)‐stimulated (AC1, AC3 and AC8), Ca2+‐ and Gβγ‐inhibitable (AC5, AC6 and AC9), Gβγ‐stimulated and Ca2+‐insensitive (AC2, AC4 and AC7), and forskolin‐insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH‐insensitive) sensor [http://www.ncbi.nlm.nih.gov/pubmed/10915626?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1278 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1279 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1280 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1281 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1282
Common abbreviation AC1 AC2 AC3 AC4 AC5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:232, http://www.uniprot.org/uniprot/Q08828 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:233, http://www.uniprot.org/uniprot/Q08462 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:234, http://www.uniprot.org/uniprot/O60266 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:235, http://www.uniprot.org/uniprot/Q8NFM4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:236, http://www.uniprot.org/uniprot/O95622
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445, http://www.uniprot.org/uniprot/P62158), PKC‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/8440678?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/2022671?dopt=AbstractPlus] Gβγ, PKC‐evoked phosphorylation, Raf‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/8389756?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15385642?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8390980?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8416978?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445, http://www.uniprot.org/uniprot/P62158), PKC‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/1633161?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8440678?dopt=AbstractPlus] Gβγ [http://www.ncbi.nlm.nih.gov/pubmed/1946437?dopt=AbstractPlus] PKC‐evoked phophorylation, Gβγ, Raf‐evoked phophorylation [http://www.ncbi.nlm.nih.gov/pubmed/15385642?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17110384?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8206971?dopt=AbstractPlus]
Activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8809 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/8709105?dopt=AbstractPlus] – Bovine http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10214 [http://www.ncbi.nlm.nih.gov/pubmed/11602596?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10215 [http://www.ncbi.nlm.nih.gov/pubmed/11602596?dopt=AbstractPlus]
Endogenous inhibitors i, Gαo, Gbg [http://www.ncbi.nlm.nih.gov/pubmed/8416978?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8119955?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2808, Gβγ, CaM kinase II‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/16275644?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11234015?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7665559?dopt=AbstractPlus] PKC‐evoked phophorylation [http://www.ncbi.nlm.nih.gov/pubmed/8900209?dopt=AbstractPlus] i, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=707, PKA‐evoked phosphorylation, Gβγ, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509 [http://www.ncbi.nlm.nih.gov/pubmed/17110384?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10781930?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1618857?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7759492?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8119955?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=944 [http://www.ncbi.nlm.nih.gov/pubmed/24008337?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5233 (pIC50 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/24006339?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11602596?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10092 (pIC50 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/28223412?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1283 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1284 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1285 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1286 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3068
Common abbreviation AC6 AC7 AC8 AC9 AC10
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:237, http://www.uniprot.org/uniprot/O43306 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:238, http://www.uniprot.org/uniprot/P51828 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:239, http://www.uniprot.org/uniprot/P40145 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:240, http://www.uniprot.org/uniprot/O60503 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21285, http://www.uniprot.org/uniprot/Q96PN6
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.6.1.1
Endogenous activators Gβγ, Raf‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/15385642?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17110384?dopt=AbstractPlus] Gβγ, PKC‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/15581358?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7961850?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445, http://www.uniprot.org/uniprot/P62158) [http://www.ncbi.nlm.nih.gov/pubmed/8163524?dopt=AbstractPlus] Bicarbonate, Ca2+ [http://www.ncbi.nlm.nih.gov/pubmed/10915626?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12609998?dopt=AbstractPlus]
Endogenous inhibitors i, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=707, PKA‐evoked phosphorylation, PKC‐evoked phosphorylation, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509 [http://www.ncbi.nlm.nih.gov/pubmed/9391159?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10781930?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10462552?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8119955?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1379717?dopt=AbstractPlus] PKA‐evoked phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/22976297?dopt=AbstractPlus] Ca2+/calcineurin [http://www.ncbi.nlm.nih.gov/pubmed/10987815?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5233 (pIC50 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/24006339?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10216 (pIC50 5–5.5) [http://www.ncbi.nlm.nih.gov/pubmed/16054031?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10023 (pIC50 5) [http://www.ncbi.nlm.nih.gov/pubmed/27547922?dopt=AbstractPlus]

Comments

Many of the activators and inhibitors listed are only somewhat selective or have not been tested against all AC isoforms [http://www.ncbi.nlm.nih.gov/pubmed/24006339?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24008337?dopt=AbstractPlus]. AC3 shows only modest in vitro activation by Ca2+/CaM.

Further reading on Adenylyl cyclases (ACs)

Dessauer CW et al. (2017) International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol. Rev. 69: 93‐139 https://www.ncbi.nlm.nih.gov/pubmed/28255005?dopt=AbstractPlus

Halls ML et al. (2017) Adenylyl cyclase signalling complexes ‐ Pharmacological challenges and opportunities. Pharmacol. Ther. 172: 171‐180 https://www.ncbi.nlm.nih.gov/pubmed/28132906?dopt=AbstractPlus

Wiggins SV et al. (2018) Pharmacological modulation of the CO2/HCO 3/pH‐, calcium‐, and ATP‐sensing soluble adenylyl cyclase. Pharmacol Ther 190: 173‐186 https://www.ncbi.nlm.nih.gov/pubmed/29807057

Wu L et al. (2016) Adenylate cyclase 3: a new target for anti‐obesity drug development. Obes Rev 17: 907‐14 https://www.ncbi.nlm.nih.gov/pubmed/27256589?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=259

Overview

Epacs are members of a family of guanine nucleotide exchange factors (http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000000899), which also includes https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16862 (GFR, KIAA0277, MR‐GEF, http://www.uniprot.org/uniprot/Q92565) and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17428 (Link‐GEFII, http://www.uniprot.org/uniprot/Q9UHV5). They are activated endogenously by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 and with some pharmacological selectivity by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5172 [http://www.ncbi.nlm.nih.gov/pubmed/12402047?dopt=AbstractPlus]. Once activated, Epacs induce an enhanced activity of the monomeric G proteins, Rap1 and Rap2 by facilitating binding of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1742 in place of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2410, leading to activation of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244 [http://www.ncbi.nlm.nih.gov/pubmed/11715024?dopt=AbstractPlus].

Further reading on Exchange protein activated by cyclic AMP (EPACs)

Fujita T et al. (2017) The role of Epac in the heart. Cell. Mol. Life Sci. 74: 591‐606 https://www.ncbi.nlm.nih.gov/pubmed/27549789?dopt=AbstractPlus

Robichaux WG and Cheng X. (2018) Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 98: 919‐1053 https://www.ncbi.nlm.nih.gov/pubmed/29537337

Wang P et al. (2017) Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg. Med. Chem. Lett. 27: 1633‐1639 https://www.ncbi.nlm.nih.gov/pubmed/28283242?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=260

Overview

3’,5’‐Cyclic nucleotide phosphodiesterases (PDEs, 3’,5’‐cyclic‐nucleotide 5’‐nucleotidohydrolase), http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.1.4.17, catalyse the hydrolysis of a 3’,5’‐cyclic nucleotide (usually http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=388 is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2’,3’‐cyclic nucleotide 3’‐phosphodiesterase (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1294 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1295 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1296
Common abbreviation PDE1A PDE1B PDE1C
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8774, http://www.uniprot.org/uniprot/P54750 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8775, http://www.uniprot.org/uniprot/Q01064 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8776, http://www.uniprot.org/uniprot/Q14123
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1449, http://www.uniprot.org/uniprot/P62158) http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1449, http://www.uniprot.org/uniprot/P62158) http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1449, http://www.uniprot.org/uniprot/P62158)
Endogenous inhibitors
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9151 (pIC50 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/19303290?dopt=AbstractPlus]
Sub/family‐selective inhibitors
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/8961086?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5285 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/8557689?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/8961086?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/8961086?dopt=AbstractPlus], vinpocetine (pIC50 4.3) [http://www.ncbi.nlm.nih.gov/pubmed/8557689?dopt=AbstractPlus]
Comments
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1297 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1298 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1299
Common abbreviation PDE2A PDE3A PDE3B
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8777, http://www.uniprot.org/uniprot/O00408 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8778, http://www.uniprot.org/uniprot/Q14432 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8779, http://www.uniprot.org/uniprot/Q13370
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347
Endogenous inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5225 (pIC50 <6.5) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7148 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7202 (pIC50 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/2536438?dopt=AbstractPlus]
Sub/family‐selective inhibitors
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5147 (pIC50 8.3–8.8) [http://www.ncbi.nlm.nih.gov/pubmed/15555642?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5179 (pIC50 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/8730511?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5167 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7114 (pIC50 7.1–7.3) [http://www.ncbi.nlm.nih.gov/pubmed/3027338?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1311763?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1321910?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5225 (pIC50 6.3–6.4) [http://www.ncbi.nlm.nih.gov/pubmed/14592490?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5167 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7148 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5225 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7202 (pIC50 4.5) [http://www.ncbi.nlm.nih.gov/pubmed/10644042?dopt=AbstractPlus]
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5179 is also an inhibitor of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=248#show_object_1230 (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.5.4.4).
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1300 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1301 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1302 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1303 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1304
Common abbreviation PDE4A PDE4B PDE4C PDE4D PDE5A
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8780, http://www.uniprot.org/uniprot/P27815 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8781, http://www.uniprot.org/uniprot/Q07343 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8782, http://www.uniprot.org/uniprot/Q08493 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8783, http://www.uniprot.org/uniprot/Q08499 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8784, http://www.uniprot.org/uniprot/O76074
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352
Activators PKA‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/12444918?dopt=AbstractPlus] Protein kinase A, protein kinase G [http://www.ncbi.nlm.nih.gov/pubmed/10785399?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7399 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/18686943?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6557 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/9720765?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6962 (pIC50 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/19195882?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7399 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/18686943?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6557 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/9720765?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6557 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/9720765?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7399 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/18686943?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6557 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/9720765?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9776 (pIC50 >7.3) [446], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9610 (pIC50 6.1) [http://www.ncbi.nlm.nih.gov/pubmed/28613871?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6558 (pIC50 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/22100260?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5225 (pIC50 7.3)
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5260 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9330 (pK i 8) [http://www.ncbi.nlm.nih.gov/pubmed/9631241?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5258 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5260 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5258 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9330 (pK i 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/9631241?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5260 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5258 (pIC50 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9330 (pK i 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/9631241?dopt=AbstractPlus], rolipram (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5258 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/9177268?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5292 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/10991987?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7372 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/24882690?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7372 (pIC50 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/24882690?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7372 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/24882690?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7320 (pIC50 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/15837326?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5275 (pIC50 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/12450574?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743 (pIC50 8.4–9) [http://www.ncbi.nlm.nih.gov/pubmed/10385692?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23137303?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7299 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/21189023?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/8961086?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2919 (pIC50 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/10385692?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1312 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1313 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1314 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1315 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1316 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1317
Common abbreviation PDE6A PDE6B PDE6C PDE6D PDE6G PDE6H
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8785, http://www.uniprot.org/uniprot/P16499 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8786, http://www.uniprot.org/uniprot/P35913 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8787, http://www.uniprot.org/uniprot/P51160 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8788, http://www.uniprot.org/uniprot/O43924 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8789, http://www.uniprot.org/uniprot/P18545 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8790, http://www.uniprot.org/uniprot/Q13956
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8811 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/19631533?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/23137303?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1305 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1306 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1307 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1308
Common abbreviation PDE7A PDE7B PDE8A PDE8B
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8791, http://www.uniprot.org/uniprot/Q13946 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8792, http://www.uniprot.org/uniprot/Q9NP56 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8793, http://www.uniprot.org/uniprot/O60658 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8794, http://www.uniprot.org/uniprot/O95263
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/8389765?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/10872825?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/9618252?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/9784418?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9151 (pIC50 6.1) [http://www.ncbi.nlm.nih.gov/pubmed/19303290?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5154 (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/20228279?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5154 (pIC50 6.7–6.8) [http://www.ncbi.nlm.nih.gov/pubmed/20228279?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15371556?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 (pIC50 5.7–6) [http://www.ncbi.nlm.nih.gov/pubmed/10872825?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10814504?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/10814504?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9659 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/24687066?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/9618252?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 (pIC50 4.3) [http://www.ncbi.nlm.nih.gov/pubmed/9784418?dopt=AbstractPlus]
Comments PDE7A appears to be membrane‐bound or soluble for PDE7A1 and 7A2 splice variants, respectively
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1309 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1310 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1311
Common abbreviation PDE9A PDE10A PDE11A
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8795, http://www.uniprot.org/uniprot/O76083 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8772, http://www.uniprot.org/uniprot/Q9Y233 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8773, http://www.uniprot.org/uniprot/Q9HCR9
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.17
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 [http://www.ncbi.nlm.nih.gov/pubmed/9624146?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/10373451?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 [http://www.ncbi.nlm.nih.gov/pubmed/10725373?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5270 (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/9624146?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2919 (pIC50 4.5) [http://www.ncbi.nlm.nih.gov/pubmed/9624146?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7299 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/21189023?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6559 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/22284362?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9617 (pIC50 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/19630403?dopt=AbstractPlus]

Comments

PDE1A, 1B and 1C appear to act as soluble homodimers, while PDE2A is a membrane‐bound homodimer. PDE3A and PDE3B are membrane‐bound.

PDE4 isoforms are essentially http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352 specific. The potency of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5292 at other members of the PDE4 family has not been reported. PDE4B‐D long forms are inhibited by extracellular signal‐regulated kinase (ERK)‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/10022832?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9639573?dopt=AbstractPlus]. PDE4A‐D splice variants can be membrane‐bound or cytosolic [http://www.ncbi.nlm.nih.gov/pubmed/12444918?dopt=AbstractPlus]. PDE4 isoforms may be labelled with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5313.

PDE6 is a membrane‐bound tetramer composed of two catalytic chains (PDE6A or PDE6C and PDE6B), an inhibitory chain (PDE6G or PDE6H) and the PDE6D chain. The enzyme is essentially http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2347 specific and is activated by the a‐subunit of transducin (Gat) and inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2919 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 with potencies lower than those observed for PDE5A. Defects in PDE6B are a cause of retinitis pigmentosa and congenital stationary night blindness.

Further reading on Phosphodiesterases, 3’,5’‐cyclic nucleotide (PDEs)

Klussmann E. (2016) Protein‐protein interactions of PDE4 family members ‐ Functions, interactions and therapeutic value. Cell. Signal. 28: 713‐8 https://www.ncbi.nlm.nih.gov/pubmed/26498857?dopt=AbstractPlus

Korkmaz‐Icöz S et al. (2018) Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. Br. J. Pharmacol. 175: 223‐231 https://www.ncbi.nlm.nih.gov/pubmed/28213937?dopt=AbstractPlus

Li H et al. (2018) Phosphodiesterase‐4 Inhibitors for the Treatment of Inflammatory Diseases. Front Pharmacol 9: 1048 https://www.ncbi.nlm.nih.gov/pubmed/30386231

Mehta A and Patel BM. (2019) Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. Life Sci 230: 150‐161 https://www.ncbi.nlm.nih.gov/pubmed/31125564

Ntontsi P et al. (2019) Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expert Opin Investig Drugs 28: 261‐266 https://www.ncbi.nlm.nih.gov/pubmed/30678501

Pauls MM. (2018) The effect of phosphodiesterase‐5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 38: 189‐203 https://www.ncbi.nlm.nih.gov/pubmed/29256324

Peng T et al. (2018) Inhibitors of phosphodiesterase as cancer therapeutics. Eur J Med Chem 150: 742‐756 https://www.ncbi.nlm.nih.gov/pubmed/29574203

Svensson F et al. (2018) Fragment‐Based Drug Discovery of Phosphodiesterase Inhibitors. J Med Chem 61: 1415–1424 https://www.ncbi.nlm.nih.gov/pubmed/28800229

Wahlang B et al. (2018) Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 49: 105‐115 https://www.ncbi.nlm.nih.gov/pubmed/29902522

Zagorska A et al. (2018) Phosphodiesterase 10 Inhibitors ‐ Novel Perspectives for Psychiatric and Neurodegenerative Drug Discovery. Curr Med Chem 25: 3455‐3481 https://www.ncbi.nlm.nih.gov/pubmed/29521210

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242

Overview

The cytochrome P450 enzyme family (CYP450), E.C. 1.14.‐.‐, were originally defined by their strong absorbance at 450 nm due to the reduced carbon monoxide‐complexed haem component of the cytochromes. They are an extensive family of haemcontaining monooxygenases with a huge range of both endogenous and exogenous substrates. These include sterols, fat‐soluble vitamins, pesticides and carcinogens as well as drugs. The substrates of some orphan CYP are not known. Listed below are the human enzymes; their relationship with rodent CYP450 enzyme activities is obscure in that the species orthologuemay not catalyse the metabolism of the same substrates. Although the majority of CYP450 enzyme activities are concentrated in the liver, the extrahepatic enzyme activities also contribute to patho/physiological processes. Genetic variation of CYP450 isoforms is widespread and likely underlies a significant proportion of the individual variation to drug administration.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=261

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1318 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1319 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1320
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2595, http://www.uniprot.org/uniprot/P04798 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2596, http://www.uniprot.org/uniprot/P05177 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2597, http://www.uniprot.org/uniprot/Q16678
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.1.1
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8748 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/23600958?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8748 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/23600958?dopt=AbstractPlus] stilbenes [http://www.ncbi.nlm.nih.gov/pubmed/28458135?dopt=AbstractPlus]
Comments CYP1A1 is an extra‐hepatic enzyme. It shows a preference for linear planar aromatic molecules [http://www.ncbi.nlm.nih.gov/pubmed/28698457?dopt=AbstractPlus]. CYP1A2 is constitutively expressed in liver. It shows a preference for triangular planar aromatic molecules [http://www.ncbi.nlm.nih.gov/pubmed/28698457?dopt=AbstractPlus]. Mainly expressed in extra‐hepatic tissues. Can metabolise 17β‐estradiol [http://www.ncbi.nlm.nih.gov/pubmed/28458135?dopt=AbstractPlus], leukotrienes and eicosanoids [http://www.ncbi.nlm.nih.gov/pubmed/23956430?dopt=AbstractPlus]. Mutations have been associated with primary congenitial glaucoma [http://www.ncbi.nlm.nih.gov/pubmed/9097971?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=262

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1321 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1322 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1323 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1324 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1325
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2610, http://www.uniprot.org/uniprot/P11509 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2611, http://www.uniprot.org/uniprot/P20853 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2608, http://www.uniprot.org/uniprot/Q16696 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2615, http://www.uniprot.org/uniprot/P20813 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2622, http://www.uniprot.org/uniprot/P10632
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2585
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7307 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/16248836?dopt=AbstractPlus], sibutramine (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/23777987?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7622 (pK i 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/17682072?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7266 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/16248836?dopt=AbstractPlus]
Comments Metabolises coumarin [http://www.ncbi.nlm.nih.gov/pubmed/2322567?dopt=AbstractPlus]. CYP2A7 does not incorporate haem and is functionally inactive [http://www.ncbi.nlm.nih.gov/pubmed/16636685?dopt=AbstractPlus] Metabolises tobacco carcinogen, 4‐methylnitrosoamino)‐1‐(3‐pyridyl)‐1‐butanone [http://www.ncbi.nlm.nih.gov/pubmed/11016631?dopt=AbstractPlus]. Substrates include: efavirenz, bupropion, cyclophosphamide, ketamine, propofol [http://www.ncbi.nlm.nih.gov/pubmed/23152403?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 to 11(R)‐12(S)‐epoxyeicosatrienoic acid or 14(R)‐15(S)‐epoxyeicosatrienoic acid [http://www.ncbi.nlm.nih.gov/pubmed/7574697?dopt=AbstractPlus]. Drug substrates include http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10018 [http://www.ncbi.nlm.nih.gov/pubmed/26721703?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1328 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1329 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1330 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1331 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1332 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1333
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2621, http://www.uniprot.org/uniprot/P33261 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2625, http://www.uniprot.org/uniprot/P10635 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2631, http://www.uniprot.org/uniprot/P05181 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2632, http://www.uniprot.org/uniprot/P24903 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2634, http://www.uniprot.org/uniprot/P51589 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20580, http://www.uniprot.org/uniprot/Q6VVX0
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.51 (S)‐limonene + [reduced NADPH–hemoprotein reductase] + O(2) <=> (‐)‐trans‐carveol + [oxidized NADPH–hemoprotein reductase] + H(2)O http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.15
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8777 (pIC50 7.3) [120] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8756 (pK i 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/17125252?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8832 (pIC50 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/16495056?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2608 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/16495056?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8749 (pK i 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/22239545?dopt=AbstractPlus]
Comments Substrates include: omeprazole, proguanil, mephenytoin, diazepam [http://www.ncbi.nlm.nih.gov/pubmed/2495208?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12222994?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/2291871?dopt=AbstractPlus]. Substrates include: debrisoquine, metoprolol, codeine [http://www.ncbi.nlm.nih.gov/pubmed/19102711?dopt=AbstractPlus]. Substrates: Ethanol, p‐nitrophenol [http://www.ncbi.nlm.nih.gov/pubmed/30380359?dopt=AbstractPlus]. Substrate: naphthalene [http://www.ncbi.nlm.nih.gov/pubmed/20408502?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 to 14(R)‐15(S)‐epoxyeicosatrienoic acid [http://www.ncbi.nlm.nih.gov/pubmed/8631948?dopt=AbstractPlus]. Hydroxylates albendazole[http://www.ncbi.nlm.nih.gov/pubmed/23959307?dopt=AbstractPlus]. Expressed in cardiomyocytes [http://www.ncbi.nlm.nih.gov/pubmed/29695613?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2747 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6921 [http://www.ncbi.nlm.nih.gov/pubmed/12867411?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=263

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1337 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1338 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1339 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1340
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2637, http://www.uniprot.org/uniprot/P08684 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2638, http://www.uniprot.org/uniprot/P20815 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2640, http://www.uniprot.org/uniprot/P24462 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17450, http://www.uniprot.org/uniprot/Q9HB55
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.56: 1,8‐cineole + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + O2 = 2‐exo‐hydroxy‐1,8‐cineole + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 + H2O http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.97: Taurochenodeoxycholate + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + O2 = taurohyocholate + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 + H2O Lithocholate + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + O2 = hyodeoxycholate + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 + H2O http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.55: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2510 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + O2 = 3‐hydroxyquinine + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2448 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2514 [http://www.ncbi.nlm.nih.gov/pubmed/3514607?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3342 [http://www.ncbi.nlm.nih.gov/pubmed/12124305?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10209 (pK i 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/26002732?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2568 (pK i 7) [http://www.ncbi.nlm.nih.gov/pubmed/25923589?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8804 (pK i >7) [http://www.ncbi.nlm.nih.gov/pubmed/18285471?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8804 (pK i 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/16248836?dopt=AbstractPlus]
Comments Metabolises a vast range of xenobiotics, including antidepressants, benzodiazepines, calcium channel blockers, and chemotherapeutic agents [http://www.ncbi.nlm.nih.gov/pubmed/18473749?dopt=AbstractPlus]. The active site is plastic, with both homotropic and heterotropic cooperativity observed with some substrates [http://www.ncbi.nlm.nih.gov/pubmed/26002732?dopt=AbstractPlus]. CYP3A4 catalyses the 25‐hydroxylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2767 in liver microsomes [http://www.ncbi.nlm.nih.gov/pubmed/9931427?dopt=AbstractPlus]. CYP3A5 is expressed extrahepatically, including in the small intestine. It has overlapping substrate specificity with CYP3A4 [http://www.ncbi.nlm.nih.gov/pubmed/16430309?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12124305?dopt=AbstractPlus]. Fetal form, rarely expressed in adults. Has overlapping substrate specificity with CYP3A4 [http://www.ncbi.nlm.nih.gov/pubmed/16430309?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12124305?dopt=AbstractPlus]. Fetal expression only and considered an orphan fCYP [http://www.ncbi.nlm.nih.gov/pubmed/21737533?dopt=AbstractPlus]. Testosterone may be a substrate [http://www.ncbi.nlm.nih.gov/pubmed/11160875?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=264

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1341 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1342 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1343 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1344 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1345
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2642, http://www.uniprot.org/uniprot/Q02928 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20575, http://www.uniprot.org/uniprot/Q5TCH4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2644, http://www.uniprot.org/uniprot/P13584 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2645, http://www.uniprot.org/uniprot/P78329 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2646, http://www.uniprot.org/uniprot/Q08477
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.80 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.80 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.78 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.79 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.94 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.78 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.79 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.94
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8851 (pK i 5.9) [http://www.ncbi.nlm.nih.gov/pubmed/2997155?dopt=AbstractPlus]
Comments Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5534 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6922. Reported to be enzymatically inactive [http://www.ncbi.nlm.nih.gov/pubmed/15611369?dopt=AbstractPlus]. Responsible for ω‐hydroxylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2487, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216 [http://www.ncbi.nlm.nih.gov/pubmed/8389204?dopt=AbstractPlus], and tocopherols, including vitamin E [http://www.ncbi.nlm.nih.gov/pubmed/11997390?dopt=AbstractPlus] Responsible for ω‐hydroxylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2487, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216 [http://www.ncbi.nlm.nih.gov/pubmed/8389204?dopt=AbstractPlus], and polyunsaturated fatty acids [http://www.ncbi.nlm.nih.gov/pubmed/18577768?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16820285?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1346 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1347 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1348 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1349 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1350 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1351 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1352
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2648, http://www.uniprot.org/uniprot/P98187 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13265, http://www.uniprot.org/uniprot/Q9HBI6 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18857, http://www.uniprot.org/uniprot/Q9HCS2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26820, http://www.uniprot.org/uniprot/Q6NT55 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23198, http://www.uniprot.org/uniprot/Q6ZWL3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20244, http://www.uniprot.org/uniprot/Q8N118 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20583, http://www.uniprot.org/uniprot/Q86W10
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.78 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.79 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.1
Comments Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 to 19‐hydroxyPGH2 [http://www.ncbi.nlm.nih.gov/pubmed/10791960?dopt=AbstractPlus] and 8,9‐EET or 11,12‐EET to 18‐hydroxy‐8,9‐EET or 18‐hydroxy‐11,12‐EET [http://www.ncbi.nlm.nih.gov/pubmed/19919823?dopt=AbstractPlus]. AC004597.1 (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000225607;r=19:15880826‐15890774;t=ENST00000412610) is described as being highly similar to CYP4F12 Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6923 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6924 [http://www.ncbi.nlm.nih.gov/pubmed/19919823?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2806 to 14‐hydroxymyristic acid [http://www.ncbi.nlm.nih.gov/pubmed/19661213?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 to 14,15‐poxyeicosatrienoic ethanolamide [http://www.ncbi.nlm.nih.gov/pubmed/18549450?dopt=AbstractPlus]. Converts lauric acid to 12‐hydroxylauric acid.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=265

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1353 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1354 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1355 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1356 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1357
Common abbreviation Thromboxane synthase Prostacyclin synthase
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11609, http://www.uniprot.org/uniprot/P24557 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2651, http://www.uniprot.org/uniprot/P22680 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2652, http://www.uniprot.org/uniprot/O75881 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9603, http://www.uniprot.org/uniprot/Q16647 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2653, http://www.uniprot.org/uniprot/Q9UNU6
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.5: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.23 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.29 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.4 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.139 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.18.8
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9866 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/3093741?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8795 (pIC50 >6) [http://www.ncbi.nlm.nih.gov/pubmed/7861416?dopt=AbstractPlus]
Comments Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5175 [http://www.ncbi.nlm.nih.gov/pubmed/6795753?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5157 [http://www.ncbi.nlm.nih.gov/pubmed/7778318?dopt=AbstractPlus] and furegrelate sodium (U‐63557A: PubChem https://pubchem.ncbi.nlm.nih.gov/compound/23663954) [http://www.ncbi.nlm.nih.gov/pubmed/6316421?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4351 [http://www.ncbi.nlm.nih.gov/pubmed/2384150?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2370 to 7α‐DHEA [http://www.ncbi.nlm.nih.gov/pubmed/9144166?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915 [http://www.ncbi.nlm.nih.gov/pubmed/8766713?dopt=AbstractPlus]. Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5281 [http://www.ncbi.nlm.nih.gov/pubmed/824685?dopt=AbstractPlus] Converts 7α‐hydroxycholest‐4‐en‐3‐one to 7‐alpha, 12α‐dihydroxycholest‐4‐en‐3‐one (in rabbit) [http://www.ncbi.nlm.nih.gov/pubmed/1400444?dopt=AbstractPlus] in the biosynthesis of bile acids.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=266

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1358 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1359 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1360 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1361 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1362 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1363 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1364
Common abbreviation Aldosterone synthase Aromatase
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2590, http://www.uniprot.org/uniprot/P05108 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2591, http://www.uniprot.org/uniprot/P15538 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2592, http://www.uniprot.org/uniprot/P19099 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2593, http://www.uniprot.org/uniprot/P05093 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2594, http://www.uniprot.org/uniprot/P11511 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20576, http://www.uniprot.org/uniprot/Q6UW02 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2600, http://www.uniprot.org/uniprot/P08686
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.6 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.4 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.4 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.5 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.19 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.32 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.14 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.‐.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.14.16
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6957 [http://www.ncbi.nlm.nih.gov/pubmed/23254310?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17395972?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5224 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/21129965?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6957 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8310 (pIC50 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/24899257?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6745 (pIC50 7.1–8.4) [http://www.ncbi.nlm.nih.gov/pubmed/18672868?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7608911?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5137 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/20413308?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7054 [http://www.ncbi.nlm.nih.gov/pubmed/19470632?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8871 (pIC50 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/1495014?dopt=AbstractPlus] – Rat
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8638 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/15828836?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5209 (pK i 10.7) [http://www.ncbi.nlm.nih.gov/pubmed/22386564?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7073 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/2951074?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7303 (pK i 4.5) [http://www.ncbi.nlm.nih.gov/pubmed/7083195?dopt=AbstractPlus]
Comments Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2376 plus 4‐methylpentanal. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3450 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5100 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5171 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2868, respectively. Loss‐of‐function mutations are associated with familial adrenal hyperplasia and hypertension. Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5224 [http://www.ncbi.nlm.nih.gov/pubmed/412519?dopt=AbstractPlus] Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2869 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2872 Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2376 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2377 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5104 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5103, respectively. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5103 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5103 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2370 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2860, respectively. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2869 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2868. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2860 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2858 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2818 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1013, respectively. Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5137 [http://www.ncbi.nlm.nih.gov/pubmed/7949201?dopt=AbstractPlus], and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5209 [http://www.ncbi.nlm.nih.gov/pubmed/2149502?dopt=AbstractPlus] Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2377 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5103 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3450 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5100, respectively

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=267

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1365 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1366 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1367 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1368 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1369 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1370 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1371
Common abbreviation Sterol 27‐hydroxylase
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2602, http://www.uniprot.org/uniprot/Q07973 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2603, http://www.uniprot.org/uniprot/O43174 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20581, http://www.uniprot.org/uniprot/Q9NR63 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20577, http://www.uniprot.org/uniprot/Q6V0L0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2605, http://www.uniprot.org/uniprot/Q02318 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2606, http://www.uniprot.org/uniprot/O15528 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:33480, http://www.uniprot.org/uniprot/Q4G0S4
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.16 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.‐.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.‐.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.‐.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.15 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.15.18 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.19.53
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8858 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/15615534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8819 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/15615534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8852 (pIC50 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/20655626?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8852 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/20655626?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8858 (pIC50 <6) [http://www.ncbi.nlm.nih.gov/pubmed/15615534?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8858 (pIC50 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/15615534?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8790 (pIC50 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/21838328?dopt=AbstractPlus]
Comments Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2779 (calcitriol) to 1α,24R,25‐trihydroxyvitamin D3. Converts retinoic acid to 4‐hydroxyretinoic acid. Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5210 Converts retinoic acid to 4‐hydroxyretinoic acid. Converts retinoic acid to 4‐hydroxyretinoic acid [http://www.ncbi.nlm.nih.gov/pubmed/14532297?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2752. Converts 25‐hydroxyvitamin D3 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2779 (calcitriol) Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4053 (vitamin A1) to 3,4‐didehydroretinol (vitamin A2) [http://www.ncbi.nlm.nih.gov/pubmed/27059013?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=268

Further reading on Cytochrome P450

Backman JT et al. (2016) Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 68: 168‐241 https://www.ncbi.nlm.nih.gov/pubmed/26721703?dopt=AbstractPlus

Davis CM et al. (2017) Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther 179: 31‐46 https://www.ncbi.nlm.nih.gov/pubmed/28527918?dopt=AbstractPlus

Ghosh D et al. (2016) Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure‐Function Perspective. J Med Chem. 59: 5131‐48 https://www.ncbi.nlm.nih.gov/pubmed/26689671?dopt=AbstractPlus

Go RE et al. (2015) Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 147: 24‐30 https://www.ncbi.nlm.nih.gov/pubmed/25448748?dopt=AbstractPlus

Guengerich FP et al. (2016) Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 37: 625‐640 https://www.ncbi.nlm.nih.gov/pubmed/27267697?dopt=AbstractPlus

Imig JD. (2018) Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther 192: 1‐19 https://www.ncbi.nlm.nih.gov/pubmed/29964123?dopt=AbstractPlus

Isvoran A et al. (2017) Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today 22: 366‐376 https://www.ncbi.nlm.nih.gov/pubmed/27693711?dopt=AbstractPlus

Jamieson KL et al. (2017) Cytochrome P450‐derived eicosanoids and heart function. Pharmacol Ther 179: 47–83 https://www.ncbi.nlm.nih.gov/pubmed/28551025?dopt=AbstractPlus

Mak PJ et al. (2018) Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim Biophys Acta 1866: 178‐204 https://www.ncbi.nlm.nih.gov/pubmed/28668640?dopt=AbstractPlus

Moutinho M et al. (2016) Cholesterol 24‐hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta 1861: 1911‐1920 https://www.ncbi.nlm.nih.gov/pubmed/27663182?dopt=AbstractPlus

Shalan H et al. (2018) Keeping the spotlight on cytochrome P450. Biochim Biophys Acta 1866: 80‐87 https://www.ncbi.nlm.nih.gov/pubmed/28599858?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=851

Overview

DNA topoisomerases regulate the supercoiling of nuclear DNA to influence the capacity for replication or transcription. The enzymatic function of this series of enzymes involves cutting the DNA to allow unwinding, followed by re‐attachment to reseal the backbone. Members of the family are targetted in anti‐cancer chemotherapy.

Further reading on DNA topoisomerases

Bansal S et al. (2017) Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 37: 404‐438 https://www.ncbi.nlm.nih.gov/pubmed/27687257?dopt=AbstractPlus

Capranico G et al. (2017) Type I DNA Topoisomerases. J. Med. Chem. 60: 2169‐2192 https://www.ncbi.nlm.nih.gov/pubmed/28072526?dopt=AbstractPlus

Nagaraja V et al. (2017) DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov. Today 22: 510‐518 https://www.ncbi.nlm.nih.gov/pubmed/27856347?dopt=AbstractPlus

Pommier Y et al. (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17: 703‐721 https://www.ncbi.nlm.nih.gov/pubmed/27649880?dopt=AbstractPlus

Seol Y et al. (2016) The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 8: 101‐111 https://www.ncbi.nlm.nih.gov/pubmed/28510219?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=943

Overview

The principle endocannabinoids are 2‐acylglycerol esters, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729 (2‐AG), and N‐acylethanolamines, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 (N‐arachidonoylethanolamine, AEA). The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re‐uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [http://www.ncbi.nlm.nih.gov/pubmed/29531087?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2535 (https://www.uniprot.org/uniprot/Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [http://www.ncbi.nlm.nih.gov/pubmed/28584105?dopt=AbstractPlus]. For the generation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 synthesis have been described, the best characterized of which involves N‐acylphosphatidylethanolamine‐phospholipase D (NAPE‐PLD, [http://www.ncbi.nlm.nih.gov/pubmed/20393650?dopt=AbstractPlus]). A transacylation enzyme which forms N‐acylphosphatidylethanolamines has been identified as a cytosolic enzyme, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24791 (http://www.uniprot.org/uniprot/Q3MJ16) [http://www.ncbi.nlm.nih.gov/pubmed/27399000?dopt=AbstractPlus]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [http://www.ncbi.nlm.nih.gov/pubmed/17876303?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17618306?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20133390?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=273

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1398 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1400 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1401 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1402
Common abbreviation NAPE‐PLD FAAH FAAH2 NAAA
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21683, http://www.uniprot.org/uniprot/Q6IQ20 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3553, http://www.uniprot.org/uniprot/O00519 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26440, http://www.uniprot.org/uniprot/Q6GMR7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:736, http://www.uniprot.org/uniprot/Q02083
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.5.1.99: anandamide + H2O <=> arachidonic acid + ethanolamine oleamide + H2O <=> oleic acid + NH3 http://www.genome.jp/dbget‐bin/www_bget?ec:3.5.1.99: anandamide + H2O <=> arachidonic acid + ethanolamine oleamide + H2O <=> oleic acid + NH3 http://www.genome.jp/dbget‐bin/www_bget?ec:3.5.1.‐
Rank order of affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=284 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2661 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3622 [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=284 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2661 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3622 [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3622 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5221 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3621http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2661 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 [http://www.ncbi.nlm.nih.gov/pubmed/11463796?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10248 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/29017758?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5206 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/18693015?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5244 (pIC50 6.3–7.8) [http://www.ncbi.nlm.nih.gov/pubmed/17949010?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5235 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9944 (pIC50 7), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4339 (pIC50 6.3–7) [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5243 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/19389627?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5235 (pIC50 7.9–8.4) [http://www.ncbi.nlm.nih.gov/pubmed/19095868?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4339 (pIC50 7.5–8.3) [http://www.ncbi.nlm.nih.gov/pubmed/19095868?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10248 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/29017758?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10121 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/28802121?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29572189?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9178 (Irreversible inhibition) (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/25874594?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6493 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/19926854?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5161 (pIC50 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/14686878?dopt=AbstractPlus]
Comments NAPE‐PLD activity appears to be enhanced by polyamines in the physiological range [http://www.ncbi.nlm.nih.gov/pubmed/12047899?dopt=AbstractPlus], but fails to transphosphatidylate with alcohols [http://www.ncbi.nlm.nih.gov/pubmed/10428468?dopt=AbstractPlus] unlike phosphatidylcholine‐specific phospholipase D. The FAAH2 gene is found in many primate genomes, marsupials, and other distantly related vertebrates, but not a variety of lower placental mammals, including mouse and rat [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus].

Comments

Routes for N‐acylethanolamine biosynthesis other than through NAPE‐PLD activity have been identified [http://www.ncbi.nlm.nih.gov/pubmed/23394527?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=944

Overview

ABHD12 is a 398‐aa protein, with serine hydrolase activity. It has a molecular weight of 45 kDa. A single TM is predicted at 75‐95, with an extracellular catalytic domain. ABHD12 is a monoacylglycerol hydrolase [http://www.ncbi.nlm.nih.gov/pubmed/22969151?dopt=AbstractPlus], but may also regulate lysophosphatidylserine levels [http://www.ncbi.nlm.nih.gov/pubmed/25580854?dopt=AbstractPlus]. Loss‐of‐function mutations in ABHD12 are associated with a disorder known as PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) [http://www.ncbi.nlm.nih.gov/pubmed/20797687?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1396 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1397 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1399 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2919 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3070
Common abbreviation DAGLα DAGLß MAGL ABHD6
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1165, http://www.uniprot.org/uniprot/Q9Y4D2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:28923, http://www.uniprot.org/uniprot/Q8NCG7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17038, http://www.uniprot.org/uniprot/Q99685 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21398, http://www.uniprot.org/uniprot/Q9BV23 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15868, http://www.uniprot.org/uniprot/Q8N2K0
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.‐ http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.23 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.23 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.23
Endogenous substrates diacylglycerol diacylglycerol http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5112 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 [http://www.ncbi.nlm.nih.gov/pubmed/15492019?dopt=AbstractPlus] 1‐arachidonoylglycerol > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729 > 1‐oleoylglycerol > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5112 [http://www.ncbi.nlm.nih.gov/pubmed/22969151?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10246 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/26083464?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10244 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/26668358?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10243 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/26668358?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10245 (pIC50 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/23103940?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10244 (pIC50 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/26668358?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10243 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/26668358?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10246 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/26083464?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10245 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/23103940?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10028 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/23731016?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9481 (pIC50 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/23521796?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9482 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/22542104?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5207 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/19029917?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5289 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/17629278?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9480 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/21084632?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10250 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/30720278?dopt=AbstractPlus]
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5289 has also been suggested to have activity at oxidative metabolic pathways independent of ABHD6 [http://www.ncbi.nlm.nih.gov/pubmed/28086912?dopt=AbstractPlus].

Comments on Endocannabinoid turnover

Many of the compounds described as inhibitors are irreversible and so potency estimates will vary with incubation time. FAAH2 is not found in rodents [http://www.ncbi.nlm.nih.gov/pubmed/17015445?dopt=AbstractPlus] and a limited range of inhibitors have been assessed at this enzyme activity. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=729 has been reported to be hydrolysed by multiple enzyme activities from neural preparations [http://www.ncbi.nlm.nih.gov/pubmed/29751000?dopt=AbstractPlus], including https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21398 (http://www.uniprot.org/uniprot/Q9BV23) [http://www.ncbi.nlm.nih.gov/pubmed/26989199?dopt=AbstractPlus] and carboxylesterase 1 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1863, http://www.uniprot.org/uniprot/P23141 [http://www.ncbi.nlm.nih.gov/pubmed/21049984?dopt=AbstractPlus]). https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21398 (http://www.uniprot.org/uniprot/Q9BV23) has also been described as a triacylglycerol lipase and ester hydrolase [http://www.ncbi.nlm.nih.gov/pubmed/27247428?dopt=AbstractPlus], while https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15868 (http://www.uniprot.org/uniprot/Q8N2K0) is also able to hydrolyse lysophosphatidylserine [http://www.ncbi.nlm.nih.gov/pubmed/2397193?dopt=AbstractPlus]. https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15868 (http://www.uniprot.org/uniprot/Q8N2K0) has been described to be inhibited selectively by pentacyclic triterpenoids, such as oleanolic acid [http://www.ncbi.nlm.nih.gov/pubmed/24879289?dopt=AbstractPlus].

Further reading on Endocannabinoid turnover

Blankman JL et al. (2013) Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 65: 849–71 https://www.ncbi.nlm.nih.gov/pubmed/23512546?dopt=AbstractPlus

Cao JK et al. (2019) ABHD6: Its Place in Endocannabinoid Signaling and Beyond. Trends Pharmacol Sci 40: 267–277 https://www.ncbi.nlm.nih.gov/pubmed/30853109

Di Marzo V. (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17: 623–639 https://www.ncbi.nlm.nih.gov/pubmed/30116049

Fowler CJ. (2017) Endocannabinoid Turnover. Adv Pharmacol 80: 31–66 https://www.ncbi.nlm.nih.gov/pubmed/28826539

Janssen FJ et al. (2016) Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg Med Chem Lett 26: 3831–7 https://www.ncbi.nlm.nih.gov/pubmed/27394666?dopt=AbstractPlus

Maccarrone M. (2017) Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci 10: 166 https://www.ncbi.nlm.nih.gov/pubmed/28611591?dopt=AbstractPlus

Nicolussi S et al. (2015) Endocannabinoid transport revisited. Vitam Horm 98: 441–85 https://www.ncbi.nlm.nih.gov/pubmed/25817877?dopt=AbstractPlus

Tsuboi K et al. (2018) Endocannabinoids and related N‐acylethanolamines: biological activities and metabolism. Inflamm Regen 38: 28 https://www.ncbi.nlm.nih.gov/pubmed/30288203

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=243

Overview

Eicosanoids are 20‐carbon fatty acids, where the usual focus is the polyunsaturated analogue http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 and its metabolites. Arachidonic acid is thought primarily to derive from http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244#Phospholipase A2 action on membrane phosphatidylcholine, andmay be re‐cycled to form phospholipid through conjugation with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 and subsequently glycerol derivatives. Oxidative metabolism of arachidonic acid is conducted through three major enzymatic routes: cyclooxygenases; lipoxygenases and cytochrome P450‐like epoxygenases, particularly http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242#show_object_1332. Isoprostanes are structural analogues of the prostanoids (hence the nomenclature D‐, E‐, F‐isoprostanes and isothromboxanes), which are produced in the presence of elevated free radicals in a nonenzymaticmanner, leading to suggestions for their use as biomarkers of oxidative stress. Molecular targets for their action have yet to be defined.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=269

Overview

Prostaglandin (PG) G/H synthase, most commonly referred to as cyclooxygenase (COX, (5Z,8Z,11Z,14Z)‐icosa‐5,8,11,14‐tetraenoate,hydrogen‐donor : oxygen oxidoreductase) activity, catalyses the formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5245 from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391. Hydroperoxidase activity inherent in the enzyme catalyses the formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5245. COX‐1 and ‐2 can be nonselectively inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4795, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5230, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1909 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5239 (acetaminophen). PGH2 may then be metabolised to prostaglandins and thromboxanes by various prostaglandin synthases in an apparently tissue‐dependent manner.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1375 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1376
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9604, http://www.uniprot.org/uniprot/P23219 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9605, http://www.uniprot.org/uniprot/P35354
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.99.1: Hydrogen donor + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + 2O2 = hydrogen acceptor + H2O + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5245 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 This enzyme is also associated with the following reaction:: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1051 => PGH3 http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.99.1: Hydrogen donor + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + 2O2 = hydrogen acceptor + H2O + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5245 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 This enzyme is also associated with the following reaction:: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1051 => PGH3
Selective activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10242 (Inhibition) (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/9135032?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7131 (pIC50 8.1) [22], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2714 (pIC50 7.9) [http://www.ncbi.nlm.nih.gov/pubmed/16252917?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7219 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/11844663?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4194 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/10377455?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4820 (pIC50 6.8) [22], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4795 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/18667313?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7298 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/18667313?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7124 (pIC50 8.3) [22], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4194 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/10091674?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7219 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/11844663?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7141 (pIC50 7) [http://www.ncbi.nlm.nih.gov/pubmed/21873070?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6661 (pIC50 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/22091869?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7401 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/15993594?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4795 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/18667313?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6661 (pIC50 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/10377455?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10241 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/21745460?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10240 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/9789085?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5191 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/10720634?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2892 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/12643942?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2894 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/10715145?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2714 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/17341061?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2893 (pIC50 6.1–6.5) [http://www.ncbi.nlm.nih.gov/pubmed/10377455?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2897 (pK i 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/17434872?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7220 (pIC50 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/9083488?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2896 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/11160644?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=270

Overview

Subsequent to the formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483, the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242 thromboxane synthase (CYP5A1, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11609, http://www.uniprot.org/uniprot/P24557, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=5.3.99.5) and prostacyclin synthase (CYP8A1, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9603, http://www.uniprot.org/uniprot/Q16647, http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=5.3.99.4) generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482 and prostacyclin (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915), respectively. Additionally, multiple enzyme activities are able to generate prostaglandin E2 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883), prostaglandin D2 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1881) and prostaglandin F (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1884). PGD2 can bemetabolised to 9α,11ß‐prostacyclin F through the multifunctional enzyme activity of AKR1C3. PGE2 can be metabolised to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5129 through the 9‐ketoreductase activity of CBR1. Conversion of the 15‐hydroxyecosanoids, including prostaglandins, lipoxins and leukotrienes to their keto derivatives by the NAD‐dependent enzyme HPGD leads to a reduction in their biological activity.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1353 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1356 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1377 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1378 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1379 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1380
Common abbreviation Thromboxane synthase Prostacyclin synthase
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11609, http://www.uniprot.org/uniprot/P24557 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9603, http://www.uniprot.org/uniprot/Q16647 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9599, http://www.uniprot.org/uniprot/O14684 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17822, http://www.uniprot.org/uniprot/Q9H7Z7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16049, http://www.uniprot.org/uniprot/Q15185 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9592, http://www.uniprot.org/uniprot/P41222
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.5: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.4 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.3: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.3: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.3: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1881
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6737 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6738
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9866 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/3093741?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8795 (pIC50 > 6) [http://www.ncbi.nlm.nih.gov/pubmed/7861416?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8761 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/19748780?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8812 (pIC50 <6) [http://www.ncbi.nlm.nih.gov/pubmed/15953724?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8875 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/23623673?dopt=AbstractPlus] AT‐56 (pKi 4.1) [http://www.ncbi.nlm.nih.gov/pubmed/19131342?dopt=AbstractPlus]
Comments Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5175 [http://www.ncbi.nlm.nih.gov/pubmed/6795753?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5157 [http://www.ncbi.nlm.nih.gov/pubmed/7778318?dopt=AbstractPlus] and furegrelate sodium (U‐63557A: PubChem https://pubchem.ncbi.nlm.nih.gov/compound/23663954) [http://www.ncbi.nlm.nih.gov/pubmed/6316421?dopt=AbstractPlus]. Converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1915 [http://www.ncbi.nlm.nih.gov/pubmed/8766713?dopt=AbstractPlus]. Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5281 [http://www.ncbi.nlm.nih.gov/pubmed/824685?dopt=AbstractPlus] Phosphorylated and activated by casein kinase 2 (http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?familyId=565&objectId=1548&familyType=ENZYME) [http://www.ncbi.nlm.nih.gov/pubmed/15040786?dopt=AbstractPlus]. Appears to regulate steroid hormone function by interaction with dimeric hsp90 [http://www.ncbi.nlm.nih.gov/pubmed/11050175?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8603045?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1381 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1382 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1383 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1384
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17890, http://www.uniprot.org/uniprot/O60760 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1382, http://www.uniprot.org/uniprot/P42330 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1383, http://www.uniprot.org/uniprot/P16152 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1384, http://www.uniprot.org/uniprot/P15428
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.99.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4483 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1881 http://www.genome.jp/dbget‐bin/www_bget?ec:1.3.1.20 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.188: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1881 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1884 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + H+ http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.64 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.239 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.213 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.184 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.189: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1884 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + H+ http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.197 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.141 15‐hydroxyprostaglandins => 15‐ketoprostaglandins http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1034 => 15‐keto‐lipoxin A4
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6662 (pIC50 5.3–5.5) [http://www.ncbi.nlm.nih.gov/pubmed/16547010?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8769 (pK i 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/17166832?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2447, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1909, flavonoids such as 2′‐Hydroxyflavanone (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/9792917?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19007764?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5551 (pIC50 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/19097799?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8745 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/21650226?dopt=AbstractPlus]
Comments AKR1C3 also exhibits an hydroxysteroid dehydrogenase activity.

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5293 has been reported to inhibit mPGES1 and 5‐LOX with a pIC50 value of 5.5 [http://www.ncbi.nlm.nih.gov/pubmed/19053751?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=271

Overview

The lipoxygenases (LOXs) are a structurally related family of non‐heme iron dioxygenases that function in the production, and in some cases metabolism, of fatty acid hydroperoxides. For http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 as substrate, these products are hydroperoxyeicosatetraenoic acids (HPETEs). In humans there are five lipoxygenases, the 5S‐(arachidonate : oxygen 5‐oxidoreductase), 12R‐(arachidonate 12‐lipoxygenase, 12R‐type), 12S‐(arachidonate : oxygen 12‐oxidoreductase), and two distinct 15S‐(arachidonate : oxygen 15‐oxidoreductase) LOXs that oxygenate arachidonic acid in different positions along the carbon chain and form the corresponding 5S‐, 12S‐, 12R‐, or 15S‐hydroperoxides, respectively.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1385 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1386 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1387 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1388 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1389 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1390
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:435, http://www.uniprot.org/uniprot/P09917 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:430, http://www.uniprot.org/uniprot/O75342 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:429, http://www.uniprot.org/uniprot/P18054 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:433, http://www.uniprot.org/uniprot/P16050 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:434, http://www.uniprot.org/uniprot/O15296 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13743, http://www.uniprot.org/uniprot/Q9BYJ1
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.34: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + O2 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 + H2O http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.31 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + O2 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5101 http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.31 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + O2 => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2481 http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.33: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + O2 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2482 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1052 + O2 => 13S‐HPODE http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.33: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 + O2 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2482 http://www.genome.jp/dbget‐bin/www_bget?ec:1.13.11.‐
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5222
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5101
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5183 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:436, http://www.uniprot.org/uniprot/P20292)
Endogenous inhibitors Protein kinase A‐mediated phosphorylation [http://www.ncbi.nlm.nih.gov/pubmed/15280375?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10263 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/24672829?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8750 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/17656086?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5169 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/15197110?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9054 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/20378715?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5297 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/1848634?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8752 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/24393039?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8751 (pK i >8) [http://www.ncbi.nlm.nih.gov/pubmed/20866075?dopt=AbstractPlus]
Comments FLAP activity can be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2655 [http://www.ncbi.nlm.nih.gov/pubmed/2300173?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5148 [http://www.ncbi.nlm.nih.gov/pubmed/8381000?dopt=AbstractPlus] leading to a selective inhibition of 5‐LOX activity Inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10264 (pKi 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/25111178?dopt=AbstractPlus]. E‐LOX metabolises the product from the 12R‐lipoxygenase (12R‐HPETE) to a specific epoxyalcohol compound [http://www.ncbi.nlm.nih.gov/pubmed/12881489?dopt=AbstractPlus].

Comments

An 8‐LOX(http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=1.13.11.40, arachidonate:oxygen 8‐oxidoreductase) may be the mouse orthologue of 15‐LOX‐2 [http://www.ncbi.nlm.nih.gov/pubmed/12432921?dopt=AbstractPlus]. Some general LOX inhibitors are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4265 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5180. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5297 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5155 are used as 5‐lipoxygenase inhibitors, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5144 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5162 are 12‐lipoxygenase inhibitors. The specificity of these inhibitors has not been rigorously assessed with all LOX forms: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5144, along with other flavonoids, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5182 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5215, also inhibits 15‐LOX‐1 [http://www.ncbi.nlm.nih.gov/pubmed/12628491?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=272

Overview

Leukotriene A4 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214), produced by 5‐LOX activity, and lipoxins may be subject to further oxidative metabolism; ω‐hydroxylation is mediated by http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242#show_object_1344 and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242#show_object_1345, while ß‐oxidation in mitochondria and peroxisomes proceeds in a manner dependent on coenzyme A conjugation. Conjugation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 at the 6 position with reduced glutathione to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 occurs under the influence of leukotriene C4 synthase, with the subsequent formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352, all three of which are agonists at http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 formation is catalysed by γ‐glutamyltransferase, and subsequently dipeptidase 2 removes the terminal http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352. Leukotriene A4 hydrolase converts the 5,6‐epoxide LTA4 to the 5‐hydroxylated LTB4, an agonist for http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 is also acted upon by 12S‐LOX to produce the trihydroxyeicosatetraenoic acids lipoxins http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1034 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216. Treatment with a LTA4 hydrolase inhibitor in a murine model of allergic airway inflammation increased LXA4 levels, in addition to reducing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2487, in lung lavage fluid [http://www.ncbi.nlm.nih.gov/pubmed/20110560?dopt=AbstractPlus]. LTA4 hydrolase is also involved in biosynthesis of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=134. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4139 has been reported to increase endogenous formation of 18S‐hydroxyeicosapentaenoate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5105) compared with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3400, a resolvin precursor. Both enantiomers may be metabolised by human recombinant 5‐LOX; recombinant LTA4 hydrolase converted chiral 5S(6)‐epoxide‐containing intermediates to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3333 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5106 [http://www.ncbi.nlm.nih.gov/pubmed/21206090?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1391 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1392 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1393 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1394 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1395
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6719, http://www.uniprot.org/uniprot/Q16873 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21705, http://www.uniprot.org/uniprot/O75223 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3002, http://www.uniprot.org/uniprot/P16444 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23028, http://www.uniprot.org/uniprot/Q9H4A9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6710, http://www.uniprot.org/uniprot/P09960
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.4.1.20: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6737 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5214 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.2.2: (5‐L‐glutamyl)‐peptide + an amino acid = a peptide + a 5‐L‐glutamyl amino acid http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 + H2O => http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 + L‐glutamate http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.13.19: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.13.19: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3352 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 http://www.genome.jp/dbget‐bin/www_bget?ec:3.3.2.6
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9555 (pIC50 8.1) [508], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8875 (pIC50 <5.5) [551] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10265 (pK i 3.8) [http://www.ncbi.nlm.nih.gov/pubmed/17260973?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5166 (pK i 6) [http://www.ncbi.nlm.nih.gov/pubmed/3495664?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5151 (pK i 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/1846352?dopt=AbstractPlus]

Comments

LTA4H is a member of a family of arginyl aminopeptidases (http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000001675), which also includes aminopeptidase B (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10078, http://www.uniprot.org/uniprot/9H4A4) and aminopeptidase B‐like 1 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10079, http://www.uniprot.org/uniprot/Q9HAU8). Dipeptidase 1 and 2 are members of a family of membrane dipeptidases, which also includes (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23029, http://www.uniprot.org/uniprot/Q9H4B8) for which http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3353 appears not to be a substrate.

Further reading on Eicosanoid turnover

Ackermann JA et al. (2017) The double‐edged role of 12/15‐lipoxygenase during inflammation and immunity. Biochim. Biophys. Acta 1862: 371–381 https://www.ncbi.nlm.nih.gov/pubmed/27480217?dopt=AbstractPlus

Grosser T et al. (2017) The Cardiovascular Pharmacology of Nonsteroidal Anti‐Inflammatory Drugs. Trends Pharmacol. Sci. 38: 733–748 https://www.ncbi.nlm.nih.gov/pubmed/28651847?dopt=AbstractPlus

Haeggstrom JZ. (2018) Leukotriene biosynthetic enzymes as therapeutic targets. J Clin Invest 128: 2680–2690 https://www.ncbi.nlm.nih.gov/pubmed/30108195

Hafner AK et al. (2019) Beyond leukotriene formation‐The noncanonical functions of 5‐lipoxygenase. Prostaglandins Other Lipid Mediat 142: 24–32 https://www.ncbi.nlm.nih.gov/pubmed/30930090

Mitchell JA and Kirkby NS. (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 176: 1038–1050 https://www.ncbi.nlm.nih.gov/pubmed/29468666

Koeberle A et al. (2015) Perspective of microsomal prostaglandin E2 synthase‐1 as drug target in inflammation‐related disorders. Biochem. Pharmacol. 98: 1–15 https://www.ncbi.nlm.nih.gov/pubmed/26123522?dopt=AbstractPlus

Kuhn H et al. (2015) Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851: 308–30 https://www.ncbi.nlm.nih.gov/pubmed/25316652?dopt=AbstractPlus

Patrignani P et al. (2015) Cyclooxygenase inhibitors: From pharmacology to clinical read‐outs. Biochim. Biophys. Acta 1851: 422–32 https://www.ncbi.nlm.nih.gov/pubmed/25263946?dopt=AbstractPlus

Rådmark O et al. (2015) 5‐Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta 1851: 331–9 https://www.ncbi.nlm.nih.gov/pubmed/25152163?dopt=AbstractPlus

Sasaki Y et al. (2017) Role of prostacyclin synthase in carcinogenesis. Prostaglandins Other Lipid Mediat. 133: 49–52 https://www.ncbi.nlm.nih.gov/pubmed/28506876?dopt=AbstractPlus

Seo MJ et al. (2017) Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog. Lipid Res. 66: 50–68 https://www.ncbi.nlm.nih.gov/pubmed/28392405?dopt=AbstractPlus

Vitale P et al. (2016) COX‐1 Inhibitors: Beyond Structure Toward Therapy. Med Res Rev 36: 641–71 https://www.ncbi.nlm.nih.gov/pubmed/27111555?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=764

Overview

The inhibitory neurotransmitter γ‐aminobutyrate (GABA, 4‐aminobutyrate) is generated in neurones by glutamic acid decarboxylase. GAD1 and GAD2 are differentially expressed during development, whereGAD2 is thought to subserve a trophic role in early life and is distributed throughout the cytoplasm. GAD1 is expressed in later life and is more associated with nerve terminals [http://www.ncbi.nlm.nih.gov/pubmed/8126575?dopt=AbstractPlus] where GABA is principally accumulated in vesicles through the action of the vesicular inhibitory amino acid transporter http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=219. The role of γ‐aminobutyraldehyde dehydrogenase (ALDH9A1) in neurotransmitter GABA synthesis is less clear. Following release from neurons, GABA may interact with either GABAA or GABAB receptors and may be accumulated in neurones and glia through the action of members of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=144. Successive metabolism through GABA transaminase and succinate semialdehyde dehydrogenase generates succinic acid, which may be further metabolized in the mitochondria in the tricarboxylic acid cycle.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1272 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1273
Common abbreviation GAD1 GAD2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4092, http://www.uniprot.org/uniprot/Q99259 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4093, http://www.uniprot.org/uniprot/Q05329
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.15: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 + H+ ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + CO2 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.15: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 + H+ ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + CO2
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5267 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5267
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating ß‐alanine [http://www.ncbi.nlm.nih.gov/pubmed/4700449?dopt=AbstractPlus]. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading).
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2467 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2464 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2466
Common abbreviation GABA‐T SSADH
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:412, http://www.uniprot.org/uniprot/P49189 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23, http://www.uniprot.org/uniprot/P80404 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:408, http://www.uniprot.org/uniprot/P51649
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.2.1.19: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6606 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4487 + H+ http://www.genome.jp/dbget‐bin/www_bget?ec:1.2.1.47: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6604 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6605 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + 2H+ http://www.genome.jp/dbget‐bin/www_bget?ec:1.2.1.3: an aldehyde + H2O + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 = a carboxylate + 2H+ + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4487 http://www.genome.jp/dbget‐bin/www_bget?ec:2.6.1.19: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3636 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6608 http://www.genome.jp/dbget‐bin/www_bget?ec:2.6.1.22: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6610 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3636 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6611 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.genome.jp/dbget‐bin/www_bget?ec:1.2.1.24: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6608 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 + H2O = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3637 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4487 + 2H+ 4‐hydroxy‐trans‐2‐nonenal + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 + H2O = 4‐hydroxy‐trans‐2‐nonenoate + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4487 + 2H+
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2451 [http://www.ncbi.nlm.nih.gov/pubmed/22677141?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4821 (Irreversible inhibition) (pK i 3.1) [http://www.ncbi.nlm.nih.gov/pubmed/856582?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22168767?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8841 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/16290145?dopt=AbstractPlus]

Further reading on GABA turnover

Koenig MK et al. (2017) Phenotype of GABA‐transaminase deficiency. Neurology 88: 1919–1924 https://www.ncbi.nlm.nih.gov/pubmed/28411234?dopt=AbstractPlus

Lee H et al. (2015) Ornithine aminotransferase versus GABA aminotransferase: implications for the design of new anticancer drugs. Med Res Rev 35: 286–305 https://www.ncbi.nlm.nih.gov/pubmed/25145640?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244

Overview

Phospholipids are the basic barrier components of membranes in eukaryotic cells divided into glycerophospholipids (phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol and its phosphorylated derivatives) and sphingolipids (ceramide phosphorylcholine and ceramide phosphorylethanolamine).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=274

Overview

Phosphoinositide‐specific phospholipase C (PLC, EC 3.1.4.11), catalyses the hydrolysis of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387 to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 and 1,2‐diacylglycerol, each of which have major second messenger functions. Two domains, X and Y, essential for catalytic activity, are conserved in the different forms of PLC. Isoforms of PLC‐ß are activated primarily by G protein‐coupled receptors through members of the Gq/11 family of G proteins. The receptor‐mediated activation of PLC‐γ involves their phosphorylation by http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304 in response to activation of a variety of growth factor receptors and immune system receptors. PLC‐ ∈1 may represent a point of convergence of signalling via both G protein‐coupled and catalytic receptors. Ca2+ ions are required for catalytic activity of PLC isoforms and have been suggested to be the major physiological form of regulation of PLC‐δ activity. PLC has been suggested to be activated non‐selectively by the small molecule http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5097 [http://www.ncbi.nlm.nih.gov/pubmed/12695532?dopt=AbstractPlus], although this mechanism of action has been questioned [http://www.ncbi.nlm.nih.gov/pubmed/15302681?dopt=AbstractPlus]. The aminosteroid http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5283 has been described as an inhibitor of phosphoinositide‐specific PLC [http://www.ncbi.nlm.nih.gov/pubmed/2338654?dopt=AbstractPlus], although its selectivity among the isoforms is untested and it has been reported to occupy the H1 histamine receptor [http://www.ncbi.nlm.nih.gov/pubmed/11138848?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1403 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1404 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1405 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1406
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15917, http://www.uniprot.org/uniprot/Q9NQ66 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9055, http://www.uniprot.org/uniprot/Q00722 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9056, http://www.uniprot.org/uniprot/Q01970 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9059, http://www.uniprot.org/uniprot/Q15147
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.11: 1‐phosphatidyl‐1D‐myo‐inositol 4,5‐bisphosphate + H2O = 1D‐myo‐inositol 1,4,5‐trisphosphate + diacylglycerol
Endogenous activators Gαq, Gα11, Gßγ [http://www.ncbi.nlm.nih.gov/pubmed/8314796?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8383116?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1846707?dopt=AbstractPlus] Gα16, Gßγ, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5251 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5251, http://www.uniprot.org/uniprot/P15153) [http://www.ncbi.nlm.nih.gov/pubmed/1465133?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12441352?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12509427?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1322889?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8383116?dopt=AbstractPlus] Gαq, Gßγ [http://www.ncbi.nlm.nih.gov/pubmed/8380773?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/1322889?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8383116?dopt=AbstractPlus] Gαq [http://www.ncbi.nlm.nih.gov/pubmed/8454637?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1407 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1408 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1409 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1410 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1411
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9065, http://www.uniprot.org/uniprot/P19174 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9066, http://www.uniprot.org/uniprot/P16885 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9060, http://www.uniprot.org/uniprot/P51178 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9061, http://www.uniprot.org/uniprot/Q8N3E9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9062, http://www.uniprot.org/uniprot/Q9BRC7
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.11: 1‐phosphatidyl‐1D‐myo‐inositol 4,5‐bisphosphate + H2O = 1D‐myo‐inositol 1,4,5‐trisphosphate + diacylglycerol
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353 [http://www.ncbi.nlm.nih.gov/pubmed/9468499?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5250 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5250, http://www.uniprot.org/uniprot/P63000), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5251 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5251, http://www.uniprot.org/uniprot/P15153), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5252 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9803, http://www.uniprot.org/uniprot/P60763) [http://www.ncbi.nlm.nih.gov/pubmed/9468499?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16172125?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18728011?dopt=AbstractPlus] Transglutaminase II, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5237 {Rat}, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=710, Gßγ [http://www.ncbi.nlm.nih.gov/pubmed/1654825?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7835339?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10518533?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8383116?dopt=AbstractPlus]
Endogenous inhibitors Sphingomyelin [http://www.ncbi.nlm.nih.gov/pubmed/1497353?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8820 (pIC50 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/19303309?dopt=AbstractPlus]

Comments

A series of PLC‐like proteins (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9063, http://www.uniprot.org/uniprot/Q15111; https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9064, http://www.uniprot.org/uniprot/Q9UPR0 and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:29185, http://www.uniprot.org/uniprot/Q4KWH8) form a family with PLCδ and PLCζ1 isoforms, but appear to lack catalytic activity. PLC‐δ2 has been cloned from bovine sources [http://www.ncbi.nlm.nih.gov/pubmed/1848183?dopt=AbstractPlus].

Further reading on Phosphoinositide‐specific phospholipase C

Cocco L et al. (2015) Phosphoinositide‐specific phospholipase C in health and disease. J. Lipid Res.56: 1853–60 https://www.ncbi.nlm.nih.gov/pubmed/25821234?dopt=AbstractPlus

Cockcroft S et al. (2016) Topological organisation of the phosphatidylinositol 4,5‐bisphosphatephospholipase C resynthesis cycle: PITPs bridge the ER‐PM gap. Biochem. J. 473: 4289–4310 https://www.ncbi.nlm.nih.gov/pubmed/27888240?dopt=AbstractPlus

Litosch I. (2015) Regulating G protein activity by lipase‐independent functions of phospholipase C. Life Sci. 137: 116–24 https://www.ncbi.nlm.nih.gov/pubmed/26239437?dopt=AbstractPlus

Nakamura Y et al. (2017) Regulation and physiological functions of mammalian phospholipase C. J. Biochem. 161: 315–321 https://www.ncbi.nlm.nih.gov/pubmed/28130414?dopt=AbstractPlus

Swann K et al. (2016) The sperm phospholipase C‐ζ and Ca2+ signalling at fertilization in mammals. Biochem. Soc. Trans. 44: 267–72 https://www.ncbi.nlm.nih.gov/pubmed/26862214?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244#Phospholipase A2

Overview

Phospholipase A2 (PLA2, EC 3.1.1.4) cleaves the sn‐2 fatty acid of phospholipids, primarily phosphatidylcholine, to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2508 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391. Most commonly‐used inhibitors (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5149, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5142 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5218) are either non‐selective within the family of phospholipase A2 enzymes or have activity against other eicosanoid‐metabolising enzymes.

Secreted or extracellular forms

sPLA2‐1B, sPLA2‐2A, sPLA2‐2D, sPLA2‐2E, sPLA2‐2F, sPLA2‐3, sPLA2‐10 and sPLA2‐12A

Cytosolic, calcium‐dependent forms

cPLA2‐4A, cPLA2‐4B, cPLA2‐4C, cPLA2‐4D, cPLA2‐4E and cPLA2‐4F

Other forms

PLA2‐G5, iPLA2‐G6, PLA2‐G7 and PAFAH2 (platelet‐activating factor acetylhydrolase 2)

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1416 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1417 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1418 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1419 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1420 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1421
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9030, http://www.uniprot.org/uniprot/P04054 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9031, http://www.uniprot.org/uniprot/P14555 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9033, http://www.uniprot.org/uniprot/Q9UNK4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13414, http://www.uniprot.org/uniprot/Q9NZK7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30040, http://www.uniprot.org/uniprot/Q9BZM2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17934, http://www.uniprot.org/uniprot/Q9NZ20
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8764 (pIC50 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/8809154?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8787 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/18605714?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8787 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/18605714?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8787 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/18605714?dopt=AbstractPlus]
Comments
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1424 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1425 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1426 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1427 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1428 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1429
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9035, http://www.uniprot.org/uniprot/P47712 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9036, http://www.uniprot.org/uniprot/P0C869 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9037, http://www.uniprot.org/uniprot/Q9UP65 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30038, http://www.uniprot.org/uniprot/Q86XP0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24791, http://www.uniprot.org/uniprot/Q3MJ16 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:27396, http://www.uniprot.org/uniprot/Q68DD2
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8771 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/16610804?dopt=AbstractPlus]
Comments cPLA2‐4A also expresses lysophospholipase (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.1.1.5) activity [http://www.ncbi.nlm.nih.gov/pubmed/8083230?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1430 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1431 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1432 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1422 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1423 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2508
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9038, http://www.uniprot.org/uniprot/P39877 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9039, http://www.uniprot.org/uniprot/O60733 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9040, http://www.uniprot.org/uniprot/Q13093 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9029, http://www.uniprot.org/uniprot/O15496 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18554, http://www.uniprot.org/uniprot/Q9BZM1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8579, http://www.uniprot.org/uniprot/Q99487
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.47
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8787 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/18605714?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6696 (pIC50 10) [http://www.ncbi.nlm.nih.gov/pubmed/12643913?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8787 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/18605714?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7376 (Competitive) (pIC50 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/19667981?dopt=AbstractPlus]
Comments PAFAH2 also expresses PAF hydrolase activity (EC 3.1.1.47)

Comments

The sequence of PLA2‐2C suggests a lack of catalytic activity, while PLA2‐12B (GXIIB, GXIII sPLA2‐like) appears to be catalytically inactive [http://www.ncbi.nlm.nih.gov/pubmed/14516201?dopt=AbstractPlus]. A further fragment has been identified with sequence similarities to Group II PLA2 members. Otoconin 90 (OC90) shows sequence homology to PLA2‐G10.

A binding protein for secretory phospholipase A2 has been identified which shows modest selectivity for sPLA2‐1B over sPLA2‐2A, and also binds snake toxin phospholipase A2 [http://www.ncbi.nlm.nih.gov/pubmed/7548076?dopt=AbstractPlus]. The binding protein appears to have clearance function for circulating secretory phospholipase A2, as well as signalling functions, and is a candidate antigen for idiopathic membraneous nephropathy [http://www.ncbi.nlm.nih.gov/pubmed/19571279?dopt=AbstractPlus].

PLA2‐G7 and PAFAH2 also express platelet‐activating factor acetylhydrolase activity (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.1.1.47).

Further reading on Phospholipase A2

Astudillo AM. (2019) Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 772–783 https://www.ncbi.nlm.nih.gov/pubmed/30010011

Kita Y etal. (2019) Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 838–845 https://www.ncbi.nlm.nih.gov/pubmed/30905348

Mouchlis VD and Dennis EA. (2019) Phospholipase A2 catalysis and lipid. mediator lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 766–771 https://www.ncbi.nlm.nih.gov/pubmed/30905345

Murakami M et al. (2019) Group IID, IIE, IIF and III secreted phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids. 1864: 803–818 https://www.ncbi.nlm.nih.gov/pubmed/30905347

Samuchiwal SK and Balestrieri B. (2019) Harmful and protective roles of group V phospholipase A2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids 1864: 819–826 https://www.ncbi.nlm.nih.gov/pubmed/30308324

Shayman JA and Tesmer JJG. (2019) Lysosomal phospholipase A2. Biochim Biophys Acta Mol Cell Biol Lipids. 1864: 932–940 https://www.ncbi.nlm.nih.gov/pubmed/30077006

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=276

Overview

Phosphatidylcholine‐specific phospholipase D (PLD, EC 3.1.4.4) catalyses the formation of phosphatidic acid from phosphatidylcholine. In addition, the enzyme can make use of alcohols, such as butanol in a transphosphatidylation reaction [http://www.ncbi.nlm.nih.gov/pubmed/2186929?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1433 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1434
HGNC, UniProt http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1433, http://www.uniprot.org/uniprot/Q13393 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1434, http://www.uniprot.org/uniprot/O14939
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.4.4 A phosphatidylcholine + H2O <=> choline + a phosphatidate
Endogenous activators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5305 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:652, http://www.uniprot.org/uniprot/P84077), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387, RhoA, PKC evoked phosphorylation, RalA [http://www.ncbi.nlm.nih.gov/pubmed/9013646?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9207251?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5305 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:652, http://www.uniprot.org/uniprot/P84077), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387 [http://www.ncbi.nlm.nih.gov/pubmed/9582313?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 [http://www.ncbi.nlm.nih.gov/pubmed/12374567?dopt=AbstractPlus]
Endogenous inhibitors Gßγ [http://www.ncbi.nlm.nih.gov/pubmed/16638972?dopt=AbstractPlus] Gßγ [http://www.ncbi.nlm.nih.gov/pubmed/16638972?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8781 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/19136975?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8782 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/19136975?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5287 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/20735042?dopt=AbstractPlus]

Comments

A lysophospholipase D activity (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3357, http://www.uniprot.org/uniprot/Q13822, also known as ectonucleotide pyrophosphatase/ phosphodiesterase 2, phosphodiesterase I, nucleotide pyrophosphatase 2, autotaxin) has been described, which not only catalyses the production of lysophosphatidic acid (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2906) from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2508, but also cleaves http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 (see Goding et al., 2003 [http://www.ncbi.nlm.nih.gov/pubmed/12757929?dopt=AbstractPlus]). Additionally, an N‐acylethanolaminespecific phospholipase D (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21683, http://www.uniprot.org/uniprot/Q6IQ20) has been characterized, which appears to have a role in the generation of http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=273/endovanilloids, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 [http://www.ncbi.nlm.nih.gov/pubmed/14634025?dopt=AbstractPlus]. This enzyme activity appears to be enhanced by polyamines in the physiological range [http://www.ncbi.nlm.nih.gov/pubmed/12047899?dopt=AbstractPlus] and fails to transphosphatidylate with alcohols [http://www.ncbi.nlm.nih.gov/pubmed/10428468?dopt=AbstractPlus].

Three further, less well‐characterised isoforms are PLD3 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17158, http://www.uniprot.org/uniprot/Q8IV08, other names Choline phosphatase 3, HindIII K4L homolog, Hu‐K4), PLD4 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23792, http://www.uniprot.org/uniprot/Q96BZ4, other names Choline phosphatase 4, Phosphatidylcholine‐hydrolyzing phospholipase, D4C14orf175 UNQ2488/PRO5775) and PLD5 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26879, http://www.uniprot.org/uniprot/Q8N7P1). PLD3 has been reported to be involved in myogenesis [http://www.ncbi.nlm.nih.gov/pubmed/22428023?dopt=AbstractPlus]. PLD4 is described not to have phospholipase D catalytic activity [http://www.ncbi.nlm.nih.gov/pubmed/21085684?dopt=AbstractPlus], but has been associated with inflammatory disorders [http://www.ncbi.nlm.nih.gov/pubmed/22446963?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23577190?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23124809?dopt=AbstractPlus]. Sequence analysis suggests that PLD5 is catalytically inactive.

Further reading on Phosphatidylcholine‐specific phospholipase D

Brown HA et al. (2017) Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov 16: 351‐367 https://www.ncbi.nlm.nih.gov/pubmed/28209987?dopt=AbstractPlus

Frohman MA. (2015) The phospholipase D superfamily as therapeutic targets. Trends Pharmacol. Sci. 36: 137‐44 https://www.ncbi.nlm.nih.gov/pubmed/25661257?dopt=AbstractPlus

Nelson RK et al. (2015) Physiological and pathophysiological roles for phospholipase D. J. Lipid Res. 56: 2229‐37 https://www.ncbi.nlm.nih.gov/pubmed/25926691?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=277

Overview

Lipid phosphate phosphatases, divided into phosphatidic acid phosphatases or lipins catalyse the dephosphorylation of phosphatidic acid (and other phosphorylated lipid derivatives) to generate inorganic phosphate and diacylglycerol. PTEN, a phosphatase and tensin homolog (BZS, MHAM, MMAC1, PTEN1, TEP1) is a phosphatidylinositol 3,4,5‐trisphosphate 3‐phosphatase which acts as a tumour suppressor by reducing cellular levels of PI 3,4,5‐P, thereby toning down activity of PDK1 and PKB. Loss‐of‐function mutations are frequently identified as somatic mutations in cancers.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1435 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1436 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1437 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1438 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1439 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1440 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2497
Common abbreviation PTEN
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13345, http://www.uniprot.org/uniprot/Q14693 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14450, http://www.uniprot.org/uniprot/Q92539 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14451, http://www.uniprot.org/uniprot/Q9BQK8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9228, http://www.uniprot.org/uniprot/O14494 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9229, http://www.uniprot.org/uniprot/O14495 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9230, http://www.uniprot.org/uniprot/O43688 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9588, http://www.uniprot.org/uniprot/P60484
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.67 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.48 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.16
Substrates phosphatidic acid phosphatidic acid phosphatidylinositol (3,4,5)‐trisphosphate

Further reading on Lipid phosphate phosphatases

Knafo S and Esteban JA. (2017) PTEN: Local and Global Modulation of Neuronal Function in Health and Disease. Trends Neurosci 40: 83‐91 https://www.ncbi.nlm.nih.gov/pubmed/28081942

Lee YR et al. (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19: 547‐562 https://www.ncbi.nlm.nih.gov/pubmed/29858604

Yehia L et al. (2019) PTEN‐opathies: from biological insights to evidence‐based precision medicine. J Clin Invest 129: 452‐464 https://www.ncbi.nlm.nih.gov/pubmed/30614812

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=781

Overview

Phosphatidylinositol may be phosphorylated at either 3‐ or 4‐ positions on the inositol ring by PI 3‐kinases or PI 4‐kinases, respectively.

Phosphatidylinositol 3‐kinases

Phosphatidylinositol 3‐kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3‐position of phosphatidylinositol (PI), phosphatidylinositol 4‐phosphate (PIP) or phosphatidylinositol 4,5‐bisphosphate (PIP2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:795 (http://www.uniprot.org/uniprot/Q13315) and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3942 (http://www.uniprot.org/uniprot/P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3Krelated kinases. Structurally, PI3Ks have common motifs of at least one C2, calcium‐binding domain and helical domains, alongside structurally‐conserved catalytic domains. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6004 are widely‐used inhibitors of PI3K activities. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.

Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5‐bisphosphate to generate phosphatidylinositol 3,4,5‐trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110ß and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linkedmore with GPCR signalling.

Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3‐phosphate (and possibly phosphatidylinositol 4‐phosphate to generate phosphatidylinositol 3,4‐bisphosphate). Three monomeric members exist, PI3KC2α, ß and ß, and include Ras‐binding, Phox homology and two C2domains.

The only class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).

Phosphatidylinositol 4‐kinases

Phosphatidylinositol 4‐kinases (EC 2.7.1.67) generate phosphatidylinositol 4‐phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=638

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=671

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=672

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=673

Overview

PI3K activation is one of the most important signal transduction pathways used to transmit signals from cell‐surface receptors to regulate intracellular processes (cell growth, survival, proliferation and movement). PI3K catalytic (and regulatory) subunits play vital roles in normal cell function and in disease. Progress made in developing PI3K‐targeted agents as potential therapeutics for treating cancer and other diseases is reviewed by Fruman et al. (2017) [http://www.ncbi.nlm.nih.gov/pubmed/28802037?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2153 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2154
Common abbreviation PI3Kα PI3Kß
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8975, http://www.uniprot.org/uniprot/P42336 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8976, http://www.uniprot.org/uniprot/P42338
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8012 (pIC50 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/17601739?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7940 (pIC50 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/20166697?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7936 (pK i 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/24900269?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7951 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/22357447?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8012 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/16647110?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8059 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/22906130?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7965 (pIC50 7.4–7.8) [665, http://www.ncbi.nlm.nih.gov/pubmed/16622124?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7951 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/22357447?dopt=AbstractPlus]
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9826 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/24900173?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2156 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2155
Common abbreviation PI3Kγ PI3Kδ
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8978, http://www.uniprot.org/uniprot/P48736 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8977, http://www.uniprot.org/uniprot/O00329
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7951 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/22357447?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7965 (pIC50 7.3–7.3) [665, http://www.ncbi.nlm.nih.gov/pubmed/16622124?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5715 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/17685602?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7955 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/23726034?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 > 10) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6741 (in vitro activity against recombinant enzyme) (pIC50 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/20959606?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7965 (pIC50 8.2–8.3) [665, http://www.ncbi.nlm.nih.gov/pubmed/16622124?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7955 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/23726034?dopt=AbstractPlus]
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6653 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/22544264?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=913

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2857
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23785, http://www.uniprot.org/uniprot/Q9Y2I7
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.150: ATP + 1‐phosphatidyl‐1D‐myo‐inositol 3‐phosphate = ADP + 1‐phosphatidyl‐1D‐myo‐inositol 3,5‐bisphosphate

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=675

Overview

Type I PIP kinases are required for the production of the second messenger phosphatidylinositol 4,5‐bisphosphate (PtdIns(4,5)P2) by phosphorylating PtdIns(4)P [http://www.ncbi.nlm.nih.gov/pubmed/9367159?dopt=AbstractPlus]. This enzyme family is also known as type I PIP(5)Ks.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=674

Overview

Type II PIP kinases are essential for the production of the second messenger phosphatidylinositol 4,5‐bisphosphate (PtdIns(4,5)P2) by phosphorylating PtdIns(5)P [http://www.ncbi.nlm.nih.gov/pubmed/9367159?dopt=AbstractPlus]. This enzyme family is also known as type II PIP(5)Ks.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=787

Overview

SPHK1 and SPHK2 are encoded by different genes with some redundancy of function; genetic deletion of both Sphk1 and Sphk2, but not either alone, is embryonic lethal in mice. There are splice variants of each isoform (SphK1a‐c and SphK2a, b), distinguished by their N‐terminal sequences. SPHK1 and SPHK2 differ in tissue distribution, sub‐cellular localisation, biochemical properties and regulation. They regulate discrete pools of S1P. Receptor stimulation induces SPHK1 translocation from the cytoplasm to the plasma membrane. SPHK1 translocation is regulated by phosphorylation/dephosphorylation, specific protein:protein interactions and interaction with specific lipids at the plasma membrane. SPHK1 is a dimeric protein, as confirmed by its crystal structure which forms a positive cluster, between protomers, essential for interaction with anionic phospholipids in the plasma membrane. SPHK2 is localised to the ER or associated with mitochondria or shuttles in/out of the nucleus, regulated by phosphorylation. Intracellular targets of nuclear S1P include the catalytic subunit of telomerase (TERT) and regulators of gene expression including histone deacetylases (HDAC 1/2) and peroxisome proliferator‐activated receptor gamma (PPARγ). SPHK2 phosphorylates the pro‐drug FTY720 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2407, which is used to treat some forms of multiple sclerosis) to a mimic of S1P and that acts as a functional antagonist of S1P1 receptors. Inhibitors of SPHK1 and SPHK2 have therapeutic potential in many diseases.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2204 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2205
Common abbreviation SPHK1 SPHK2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11240, http://www.uniprot.org/uniprot/Q9NYA1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18859, http://www.uniprot.org/uniprot/Q9NRA0
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.91: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 dihydrosphingosine + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.91: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 dihydrosphingosine + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708 [http://www.ncbi.nlm.nih.gov/pubmed/22677141?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6041 (pK i 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/20061445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 (pIC50 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/25788259?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 (pK i 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/25788259?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6041 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/22970244?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6623 (pK i 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/22397330?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10217 (pK i 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/28406646?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10218 (pIC50 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/28231433?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6624 (pK i 5) [http://www.ncbi.nlm.nih.gov/pubmed/20061445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6625 (pK i 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/21620961?dopt=AbstractPlus]
Comments SK1 inhibitors induce its proteasomal degradation [http://www.ncbi.nlm.nih.gov/pubmed/20926375?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. SK1 crystal structures confirm that it is dimeric [http://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlus]; there is no crystal structure available for SK2. There is no crystal structure available for SK2.

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 is competitive with ATP; other SPHK inhibitors are competitive with sphingosine. ABC294640 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6624) has known off‐target effects on dihydroceramide desaturase (DEGS1) [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/26494858?dopt=AbstractPlus]) and induces proteasomal degradation of SK1 [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. ABC294640 is in clinical trials for advanced cholangiocarcinoma, advanced hepatocellular carcinoma and refractory/relapsed multiple myeloma (to view ClinicalTrials.gov list click https://clinicaltrials.gov/ct2/results?cond=&term=ABC294640).

Further reading on Sphingosine kinase

Adams DR et al. (2016) Sphingosine Kinases: Emerging Structure‐Function Insights. Trends Biochem. Sci. 41: 395‐409 https://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlus

Lynch KR et al. (2016) Sphingosine kinase inhibitors: a review of patent literature (2006‐2015). Expert Opin Ther Pat 26: 1409‐1416 https://www.ncbi.nlm.nih.gov/pubmed/27539678?dopt=AbstractPlus

Pitman MR et al. (2016) Recent advances in the development of sphingosine kinase inhibitors. Cell. Signal. 28: 1349‐63 https://www.ncbi.nlm.nih.gov/pubmed/27297359?dopt=AbstractPlus

Pulkoski‐Gross MJ et al. (2018) An intrinsic lipid‐binding interface controls sphingosine kinase 1 function. J. Lipid Res. 59: 462‐474 https://www.ncbi.nlm.nih.gov/pubmed/29326159?dopt=AbstractPlus

Pyne NJ et al. (2017) Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends Pharmacol. Sci. 38: 581‐591 https://www.ncbi.nlm.nih.gov/pubmed/28606480?dopt=AbstractPlus

Pyne S et al. (2018) Sphingosine Kinases as Druggable Targets. Handb Exp Pharmacol https://www.ncbi.nlm.nih.gov/pubmed/29460151?dopt=AbstractPlus

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2156 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2499 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2155 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2150 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2151 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2288 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2152
Common abbreviation PI3Kγ PI4KIIß/PI4K2B PI3Kδ C2α/PIK3C2A C2ß/PIK3C2B C2γ/PIK3C2G VPS34
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8978, http://www.uniprot.org/uniprot/P48736 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18215, http://www.uniprot.org/uniprot/Q8TCG2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8977, http://www.uniprot.org/uniprot/O00329 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8971, http://www.uniprot.org/uniprot/O00443 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8972, http://www.uniprot.org/uniprot/O00750 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8973, http://www.uniprot.org/uniprot/O75747 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8974, http://www.uniprot.org/uniprot/Q8NEB9
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.67 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.153 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.154 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.154 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.154 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.137
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7951 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/22357447?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7965 (pIC50 7.3–7.3) [651, http://www.ncbi.nlm.nih.gov/pubmed/16622124?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5715 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/17685602?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7955 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/23726034?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8011 (pIC50 > 10) [http://www.ncbi.nlm.nih.gov/pubmed/23855836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6741 (in vitro activity against recombinant enzyme) (pIC50 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/20959606?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/19584227?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7965 (pIC50 8.2–8.3) [651, http://www.ncbi.nlm.nih.gov/pubmed/16622124?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7955 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/23726034?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8839 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/21322566?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5701 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/17601739?dopt=AbstractPlus]
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 (pIC50 4.5–5) [http://www.ncbi.nlm.nih.gov/pubmed/21704602?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5682 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/18754654?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6653 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/22544264?dopt=AbstractPlus]

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6060 also inhibits type III phosphatidylinositol 4‐kinases and polo‐like kinase [http://www.ncbi.nlm.nih.gov/pubmed/15664519?dopt=AbstractPlus]. PIK93 also inhibits PI 3‐kinases [http://www.ncbi.nlm.nih.gov/pubmed/16647110?dopt=AbstractPlus]. Adenosine activates http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=3.

Further reading on Phosphatidylinositol kinases

Raphael J et al. (2018) Phosphoinositide 3‐kinase inhibitors in advanced breast cancer: A systematic review and meta‐analysis. Eur J Cancer 91: 38‐46 https://www.ncbi.nlm.nih.gov/pubmed/29331750

Wang D et al. (2019) Upstream regulators of phosphoinositide 3‐kinase and their role in diseases. J Cell Physiol. https://www.ncbi.nlm.nih.gov/pubmed/30710358

Goncalves MD et al. (2018) Phosphatidylinositol 3‐Kinase, Growth Disorders, and Cancer. N Engl J Med 379: 2052‐2062 https://www.ncbi.nlm.nih.gov/pubmed/30462943

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=782

Overview

PIP2 is generated by phosphorylation of PI 4‐phosphate or PI 5‐phosphate by type I PI 4‐phosphate 5‐kinases or type II PI 5‐phosphate 4‐kinases.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2164 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2500 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2165 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2858 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2162 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2163
Common abbreviation PIP5K1A PIP5K1B PIP5K1C PIP4K2A PIP4K2B PIP4K2C
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8994, http://www.uniprot.org/uniprot/Q99755 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8995, http://www.uniprot.org/uniprot/O14986 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8996, http://www.uniprot.org/uniprot/O60331 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8997, http://www.uniprot.org/uniprot/P48426 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8998, http://www.uniprot.org/uniprot/P78356 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23786, http://www.uniprot.org/uniprot/Q8TBX8
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.68 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.68 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.68 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.149 ATP + 1‐phosphatidyl‐1D‐myo‐inositol 5‐phosphate <=> ADP + 1‐phosphatidyl‐1D‐myo‐inositol 4,5‐bisphosphate http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.149 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.149
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8444 [http://www.ncbi.nlm.nih.gov/pubmed/25071204?dopt=AbstractPlus]

Further reading on Glycerophospholipid turnover

Cauvin C et al. (2015) Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim. Biophys. Acta 1851: 832‐43 https://www.ncbi.nlm.nih.gov/pubmed/25449648?dopt=AbstractPlus

Irvine RF. (2016) A short history of inositol lipids. J. Lipid Res. 57: 1987‐1994 https://www.ncbi.nlm.nih.gov/pubmed/27623846?dopt=AbstractPlus

Poli A et al. (2016) Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. J. Cell. Physiol. 231: 1645‐55 https://www.ncbi.nlm.nih.gov/pubmed/26626942?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=278

Overview

Haem oxygenase (heme,hydrogen‐donor:oxygen oxidoreductase (α‐methene‐oxidizing, hydroxylating)), http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=1.14.99.3, converts http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349 into http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5153 and carbonmonoxide, utilizing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 as cofactor.

Comments

The existence of a third non‐catalytic version of haem oxygenase, HO3, has been proposed, although this has been suggested to be a pseudogene [http://www.ncbi.nlm.nih.gov/pubmed/15246535?dopt=AbstractPlus]. The chemical http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5279 acts as a haem oxygenase inhibitor in rat liver with an IC50 value of 11 nM [http://www.ncbi.nlm.nih.gov/pubmed/6947237?dopt=AbstractPlus].

Further reading on Haem oxygenase

Magierowska K et al. (2018) Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res 129: 56‐64 https://www.ncbi.nlm.nih.gov/pubmed/29360501

Rochette L et al. (2018) Redox Functions of Heme Oxygenase‐1 and Biliverdin Reductase in Diabetes Trends. Endocrinol Metab. 29: 74‐85 https://www.ncbi.nlm.nih.gov/pubmed/29249571

Salerno L et al. (2017) Heme oxygenase‐1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem. 142: 163‐178 https://www.ncbi.nlm.nih.gov/pubmed/28756878

Sebastian VP et al. (2018) Heme Oxygenase‐1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol. 9: 1956 https://www.ncbi.nlm.nih.gov/pubmed/30258436

Tomczyk M et al. (2019) Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase‐1. Vascul Pharmacol. 112: 79‐90 https://www.ncbi.nlm.nih.gov/pubmed/30213580

Vijayan V et al. (2018) The macrophage heme‐heme oxygenase‐1 system and its role in inflammation. Biochem Pharmacol. 153: 159‐167 https://www.ncbi.nlm.nih.gov/pubmed/29452096

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=279

Overview

Hydrogen sulfide is a gasotransmitter, with similarities to nitric oxide and carbon monoxide. Although the enzymes indicated below have multiple enzymatic activities, the focus here is the generation of hydrogen sulphide (H2S) and the enzymatic characteristics are described accordingly. Cystathionine β‐synthase (CBS) and cystathionine γ‐lyase (CSE) are pyridoxal phosphate (PLP)‐dependent enzymes. 3‐mercaptopyruvate sulfurtransferase (3‐MPST) functions to generate H2S; only CAT is PLP‐dependent, while 3‐MPST is not. Thus, this third pathway is sometimes referred to as PLP‐independent. CBS and CSE are predominantly cytosolic enzymes, while 3‐MPST is found both in the cytosol and the mitochondria. For an authoritative review on the pharmacological modulation of H2S levels, see Szabo and Papapetropoulos, 2017 [http://www.ncbi.nlm.nih.gov/pubmed/28978633?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1443 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1444 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1445 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1446
Common abbreviation CBS CSE CAT MPST
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1550, http://www.uniprot.org/uniprot/P35520 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2501, http://www.uniprot.org/uniprot/P32929 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1564, http://www.uniprot.org/uniprot/Q16773 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7223, http://www.uniprot.org/uniprot/P25325
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:4.2.1.22 http://www.genome.jp/dbget‐bin/www_bget?ec:4.4.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:4.4.1.13 http://www.genome.jp/dbget‐bin/www_bget?ec:2.8.1.2
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 (K m 6×10‐3M) [http://www.ncbi.nlm.nih.gov/pubmed/15520012?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5198 [http://www.ncbi.nlm.nih.gov/pubmed/15520012?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5118 (K m 1.2×10‐3M) [http://www.ncbi.nlm.nih.gov/pubmed/7608189?dopt=AbstractPlus]
Products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5173 NH3, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 NH3, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5249 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5136 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8860 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5136 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8859 (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5247 (pIC50 4.4) [http://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10210 (pIC50 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/28079151?dopt=AbstractPlus]

Further reading on Hydrogen sulphide synthesis

Asimakopoulou A et al. (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol. 169: 922‐32 https://www.ncbi.nlm.nih.gov/pubmed/23488457?dopt=AbstractPlus

Szabo C et al. (2017) International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol. Rev. 69: 497‐564 https://www.ncbi.nlm.nih.gov/pubmed/28978633?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=799

Overview

Listed in this section are hydrolases not accumulated in other parts of the Concise Guide, such as monoacylglycerol lipase and acetylcholinesterase. Pancreatic lipase is the predominant mechanism of fat digestion in the alimentary system; its inhibition is associated with decreased fat absorption. CES1 is present at lower levels in the gut than CES2 (http://www.uniprot.org/uniprot/P23141), but predominates in the liver, where it is responsible for the hydrolysis of many aliphatic, aromatic and steroid esters. Hormone‐sensitive lipase is also a relatively non‐selective esterase associated with steroid ester hydrolysis and triglyceride metabolism, particularly in adipose tissue. Endothelial lipase is secreted from endothelial cells and regulates circulating cholesterol in high density lipoproteins.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2590 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2593 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2591 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2592 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2888 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2889
Systematic nomenclature CD39 CD39L1
Common abbreviation PNLIP LIPE LIPG CES1 NTPDase‐1 NTPDase‐2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9155, http://www.uniprot.org/uniprot/P16233 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6621, http://www.uniprot.org/uniprot/Q05469 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6623, http://www.uniprot.org/uniprot/Q9Y5X9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1863, http://www.uniprot.org/uniprot/P23141 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3363, http://www.uniprot.org/uniprot/P49961 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3364, http://www.uniprot.org/uniprot/Q9Y5L3
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.3 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.79 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.3 http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.1 http://www.genome.jp/dbget‐bin/www_bget?ec:3.6.1.5 Hydrolyzes NTPs to nucleotide monophosphates (NMPs): A nucleoside 5′‐triphosphate + 2 H2O <=> a nucleoside 5′‐phosphate + 2 phosphate http://www.genome.jp/dbget‐bin/www_bget?ec:3.6.1.‐ Hydrolyzes extracellular nucleotide 5′‐triphosphates: NTP>NMP + 2 phosphate
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5277 (pIC50 8.9) [66]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9033 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/18630897?dopt=AbstractPlus]
Comments ENTPD1 sequentially converts extracellular purine nucleotides (ATP and ADP) to the monophosphate form. Adenosine is then generated by the action of http://www.guidetopharmacology.org/GRAC/guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1232 (CD73). ENTPD1 is the rate‐limiting step. Extracellular ATP acts as a damage‐associated molecular pattern (DAMP) that activates innate immune cells through adenosine‐induced activation of P2X and P2Y purinogenic receptors.

Further reading on Hydrolases

Allard B et al.. (2017) The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 276: 121‐144 https://www.ncbi.nlm.nih.gov/pubmed/28258700

Kishore BK et al. (2018) CD39‐adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 14: 109‐120 https://www.ncbi.nlm.nih.gov/pubmed/29332180

Rasmussen HB et al. (2018) Carboxylesterase 1 genes: systematic review and evaluation of existing genotyping procedures. Drug Metab Pers Ther 33: 3‐14 https://www.ncbi.nlm.nih.gov/pubmed/29427553

Zou LW et al. (2018) Carboxylesterase Inhibitors: An Update. Curr Med Chem. 25: 1627‐1649 https://www.ncbi.nlm.nih.gov/pubmed/29210644

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=245

Overview

The sugar alcohol D‐myo‐inositol is a component of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=244, where the principal second messenger is inositol 1,4,5‐trisphosphate, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222, which acts at intracellular ligand‐gated ion channels, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=123 to elevate intracellular calcium. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 is recycled to inositol by phosphatases or phosphorylated to form other active inositol polyphosphates. Inositol produced from dephosphorylation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 is recycled into membrane phospholipid under the influence of phosphatidyinositol synthase activity (CDP‐diacylglycerol‐inositol 3‐phosphatidyltransferase [http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.7.8.11]).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=280

Overview

Inositol 1,4,5‐trisphosphate 3‐kinases (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.7.1.127, http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000001260) catalyse the generation of inositol 1,3,4,5‐tetrakisphosphate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5202) from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222. IP3 kinase activity is enhanced in the presence of calcium/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2351 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1442 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1445 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1449, http://www.uniprot.org/uniprot/P62158) [http://www.ncbi.nlm.nih.gov/pubmed/2559811?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=280.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=281

Overview

Members of this family exhibit phosphatase activity towards IP3, as well as towards other inositol derivatives, including the phospholipids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353. With http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 as substrate, 1‐phosphatase (http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.57) generates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5119, 4‐phosphatases (http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.66, http://www.ensembl.org/Homo_sapiens/Gene/Family/Genes?family=ENSFM00250000001432) generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5099 and 5‐phosphatases (http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.36 or http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.3.56) generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5098.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=281.

Comments

In vitro analysis suggested http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4222 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5202 were poor substrates for SKIP, synaptojanin 1 and synaptojanin 2, but suggested that http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353 were more efficiently hydrolysed [http://www.ncbi.nlm.nih.gov/pubmed/15474001?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=282

Overview

Inositol monophosphatase (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.1.3.25, IMPase, myo‐inositol‐1(or 4)‐phosphate phosphohydrolase) is a magnesium‐dependent homodimer which hydrolyses myoinositol monophosphate to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 and phosphate. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5195 may be a physiological phosphate acceptor. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5212 is a nonselective un‐competitive inhibitor more potent at IMPase 1 (pKi ca. 3.5, [http://www.ncbi.nlm.nih.gov/pubmed/1377913?dopt=AbstractPlus]; pIC50 3.2, [http://www.ncbi.nlm.nih.gov/pubmed/17068342?dopt=AbstractPlus]) than IMPase 2 (pIC50 1.8‐2.1, [http://www.ncbi.nlm.nih.gov/pubmed/17068342?dopt=AbstractPlus]). IMPase activity may be inhibited competitively by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5208 (pKi 5.5, [http://www.ncbi.nlm.nih.gov/pubmed/1377913?dopt=AbstractPlus]), although the enzyme selectivity is not yet established.

Comments

Polymorphisms in either of the genes encoding these enzymes have been linked with bipolar disorder [http://www.ncbi.nlm.nih.gov/pubmed/10822345?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9339367?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9322233?dopt=AbstractPlus]. Disruption of the gene encoding IMPase 1, but not IMPase 2, appears to mimic the effects of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5212 in mice [http://www.ncbi.nlm.nih.gov/pubmed/16841073?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17460611?dopt=AbstractPlus].

Further reading on Inositol phosphate turnover

Irvine R. (2016) A tale of two inositol trisphosphates. Biochem. Soc. Trans. 44: 202‐11 https://www.ncbi.nlm.nih.gov/pubmed/26862207?dopt=AbstractPlus

Livermore TM et al. (2016) Phosphate, inositol and polyphosphates. Biochem. Soc. Trans. 44: 253‐9 https://www.ncbi.nlm.nih.gov/pubmed/26862212?dopt=AbstractPlus

Miyamoto A et al. (2017) Probes for manipulating and monitoring IP_3. Cell Calcium 64: 57‐64 https://www.ncbi.nlm.nih.gov/pubmed/27887748?dopt=AbstractPlus

Windhorst S et al. (2017) Inositol‐1,4,5‐trisphosphate 3‐kinase‐A (ITPKA) is frequently over‐expressed and functions as an oncogene in several tumor types. Biochem. Pharmacol. 137: 1‐9 https://www.ncbi.nlm.nih.gov/pubmed/28377279?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=698

Overview

Protein kinases (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=2.7.11.1) use the co‐substrate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 to phosphorylate serine and/or threonine residues on target proteins. Analysis of the human genome suggests the presence of 518 protein kinases in man (divided into 15 subfamilies), with over 100 protein kinase‐like pseudogenes [http://www.ncbi.nlm.nih.gov/pubmed/12471243?dopt=AbstractPlus]. It is beyond the scope of the Concise Guide to list all these protein kinase activities, but full listings are available on the ’Detailed page’ provided for each enzyme.

Most inhibitors of these enzymes have been assessed in cell‐free investigations and so may appear to ’lose’ potency and selectivity in intact cell assays. In particular, ambient http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 concentrations may be influential in responses to inhibitors, since the majority are directed at the ATP binding site [http://www.ncbi.nlm.nih.gov/pubmed/10998351?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=289

Overview

Rho kinase (also known as P160ROCK, Rho‐activated kinase) is activated by members of the Rho small G protein family, which are activated by GTP exchange factors, such as https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:681 (http://www.uniprot.org/uniprot/Q92888, p115‐RhoGEF), which in turn may be activated by Gα12/13 subunits [http://www.ncbi.nlm.nih.gov/pubmed/9641915?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1503 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1504
Systematic nomenclature ROCK1 ROCK2
Common abbreviation Rho kinase 1 Rho kinase 2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10251, http://www.uniprot.org/uniprot/Q13464 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10252, http://www.uniprot.org/uniprot/O75116
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8152 (pIC50 >9) [http://www.ncbi.nlm.nih.gov/pubmed/23275831?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5290 (pIC50 5.9–7.3) [http://www.ncbi.nlm.nih.gov/pubmed/19597037?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20462760?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5181 (pK i 7) [http://www.ncbi.nlm.nih.gov/pubmed/21145740?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5290 (pK i 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/9353125?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5181 (pIC50 5.5–5.6) [http://www.ncbi.nlm.nih.gov/pubmed/19597037?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21145740?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8152 (pIC50 >9) [http://www.ncbi.nlm.nih.gov/pubmed/23275831?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8197 (pIC50 >9) [95], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8037 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/17018693?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8184 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/20471253?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8205 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/20462760?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5290 (pIC50 6.3–7.2) [http://www.ncbi.nlm.nih.gov/pubmed/19597037?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20462760?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5290 (pK i 6.8–6.9) [http://www.ncbi.nlm.nih.gov/pubmed/19597037?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9353125?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5181 (pIC50 5.9–5.9) [http://www.ncbi.nlm.nih.gov/pubmed/19597037?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21145740?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8037 (pIC50 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/17018693?dopt=AbstractPlus]

Further reading on Rho kinase

Feng Y et al. (2016) Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 59: 2269‐300 https://www.ncbi.nlm.nih.gov/pubmed/26486225?dopt=AbstractPlus

Nishioka T et al. (2015) Developing novel methods to search for substrates of protein kinases such as Rho‐kinase. Biochim. Biophys. Acta 1854: 1663‐6 https://www.ncbi.nlm.nih.gov/pubmed/25770685?dopt=AbstractPlus

Shimokawa H et al. (2016) RhoA/Rho‐Kinase in the Cardiovascular System. Circ. Res. 118: 352‐66 https://www.ncbi.nlm.nih.gov/pubmed/26838319?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=286

Overview

Protein kinase C is the target for the tumour‐promoting phorbol esters, such as tetradecanoyl‐β‐phorbol acetate (TPA, also known as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2341).

Classical protein kinase C isoforms: PKCα, PKCβ, and PKCγ are activated by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=707 and diacylglycerol, and may be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5193, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5156, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5192, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5953 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5259.

Novel protein kinase C isoforms: PKC δ, PKC , PKC η, PKC ϑ and PKC μ are activated by diacylglycerol and may be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5156, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5192 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5953.

Atypical protein kinase C isoforms: PKC ι, PKC ζ.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=532

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1483 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1484
Common abbreviation PKCβ PKCγ
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9395, http://www.uniprot.org/uniprot/P05771 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9402, http://www.uniprot.org/uniprot/P05129
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.13 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.13
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7946 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/19827831?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5192 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/8772178?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5193 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/1874734?dopt=AbstractPlus] – Bovine, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7907 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/8022414?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5192 (pIC50 8.2) [zhttp://www.ncbi.nlm.nih.gov/pubmed/8772178?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7907 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/8022414?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5263 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/8709095?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5693 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/12749884?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5163 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/9121494?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=533

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=534

Further reading on Protein kinase C (PKC) family

Igumenova TI. (2015) Dynamics and Membrane Interactions of Protein Kinase C. Biochemistry 54: 4953‐68 https://www.ncbi.nlm.nih.gov/pubmed/26214365?dopt=AbstractPlus

Newton AC et al. (2017) Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharmacol. Sci. 38: 438‐447 https://www.ncbi.nlm.nih.gov/pubmed/28283201?dopt=AbstractPlus

Salzer E et al. (2016) Protein Kinase C δ: a Gatekeeper of Immune Homeostasis. J. Clin. Immunol. 36: 631‐40 https://www.ncbi.nlm.nih.gov/pubmed/27541826?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=529

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2109
Common abbreviation mTOR
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3942, http://www.uniprot.org/uniprot/P42345
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7884 (pIC50 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/21482695?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8004 (pIC50 9.5) [http://www.ncbi.nlm.nih.gov/pubmed/20860370?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7933 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/22367541?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7933 (pK i 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/22367541?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7940 (pIC50 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/20166697?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7950 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/18606717?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8013 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/18849971?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7973 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/23394126?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7936 (pK i 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/24900269?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7888 (pK i 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/21981714?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5889 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/9723437?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5704 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/18849971?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5892 (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/21438579?dopt=AbstractPlus]

Further reading on FRAP subfamily

Hukelmann JL et al. (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17: 104‐12 https://www.ncbi.nlm.nih.gov/pubmed/26551880?dopt=AbstractPlus

Saxton RA et al. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 169: 361‐371 https://www.ncbi.nlm.nih.gov/pubmed/28388417?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=453

Overview

Five of the cyclin‐dependent kinases (CDKs: 7, 8, 9, 12, and 13) are involved in the phosphorylation of serine residues in the C‐terminal domain of RNA polymerase II, the enzyme that is responsible for the transcription of protein‐coding genes into mRNA in eukaryotes. Phosphorylation of RNA polymerase II at Ser5 is essential for transcriptional initiation, and phosphorylation of Ser 2 contributes to transcriptional elongation and termination. All five of the C‐terminal domain kinases can phosphorylate Ser5, but only CDK9, CDK12, and CDK13 can phosphorylate at Ser2 [http://www.ncbi.nlm.nih.gov/pubmed/24879308?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22512864?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/25561469?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=488

Comments on Cyclin‐dependent kinase (CDK) family

The development of CDK inhibitors as anticancer drugs is reviewed in [http://www.ncbi.nlm.nih.gov/pubmed/26115571?dopt=AbstractPlus], with detailed content covering CDK4 and CDK6 inhibitors that are under clinical evaluation. Data produced by Jorda et al. (2018) highlights the caution that must be used when deploying commercially available CDK inhibitors as pharmacological probes [http://www.ncbi.nlm.nih.gov/pubmed/30234987?dopt=AbstractPlus], as most of them are more promiscuous in their selectivity than indicated. To make their findings easily accessible the Jorda data is hosted on the http://rustreg.upol.cz/CDKiDB/.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=509

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2030
Common abbreviation GSK3B
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4617, http://www.uniprot.org/uniprot/P49841
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.26
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8016 (pIC50 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/12606497?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7958 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/15267232?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8014 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/12606497?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8015 (pIC50 ~8.1) [http://www.ncbi.nlm.nih.gov/pubmed/11033082?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8018 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/14698171?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8019 (pIC50 ~7.4) [http://www.ncbi.nlm.nih.gov/pubmed/11033082?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8017 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/20708937?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8478 (pK i 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/22489897?dopt=AbstractPlus]
Comments Due to its Tau phosphorylating activity, small molecule inhibitors of GSK‐3β are being investigated as potential treatments for Alzheimer's disease (AD) [http://www.ncbi.nlm.nih.gov/pubmed/22489897?dopt=AbstractPlus]. GSK‐3β also plays a role in canonical Wnt pathway signalling, the normal activity of which is crucial for the maintenance of normal bone mass. It is hypothesised that small molecule inhibitors of GSK‐3β may provide effective therapeutics for the treatment of diseases characterised by low bone mass [http://www.ncbi.nlm.nih.gov/pubmed/22142634?dopt=AbstractPlus].

Further reading on GSK subfamily

Beurel E et al. (2015) Glycogen synthase kinase‐3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148: 114‐31 https://www.ncbi.nlm.nih.gov/pubmed/25435019?dopt=AbstractPlus

Domoto T et al. (2016) Glycogen synthase kinase‐3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 107: 1363‐1372 https://www.ncbi.nlm.nih.gov/pubmed/27486911?dopt=AbstractPlus

Khan I et al. (2017) Natural and synthetic bioactive inhibitors of glycogen synthase kinase. Eur J Med Chem 125: 464‐477 https://www.ncbi.nlm.nih.gov/pubmed/27689729?dopt=AbstractPlus

Maqbool M et al. (2016) Pivotal role of glycogen synthase kinase‐3: A therapeutic target for Alzheimer's disease. Eur J Med Chem 107: 63‐81 https://www.ncbi.nlm.nih.gov/pubmed/26562543?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=602

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=623

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2062 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2063
Common abbreviation MEK1 MEK2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6840, http://www.uniprot.org/uniprot/Q02750 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6842, http://www.uniprot.org/uniprot/P36507
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.12.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.12.2
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6495 (pIC50 9–9.1) [http://www.ncbi.nlm.nih.gov/pubmed/21245089?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21523318?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7935 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/23474388?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6495 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/21523318?dopt=AbstractPlus]
Allosteric modulators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7921 (Negative) (pIC50 7.9) [468], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7942 (Negative) (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/19706763?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5676 (Negative) (pK d 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/22037378?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7921 (Negative) (pIC50 7.9) [468], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7942 (Negative) (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/19706763?dopt=AbstractPlus]
Selective allosteric modulators http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7626 (Negative) (pIC50 9.1) [500]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=553

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1923
Common abbreviation Abl
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:76, http://www.uniprot.org/uniprot/P00519
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8170 (pIC50 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/21561767?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5678 (pIC50 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/23279183?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8147 (pIC50 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/23441572?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5699 (pK d 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/22037378?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5710 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/12543790?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5699 (pIC50 ~8.3) [http://www.ncbi.nlm.nih.gov/pubmed/12154025?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7906 (pIC50 7.6–8.2) [http://www.ncbi.nlm.nih.gov/pubmed/17376680?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16105974?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5890 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/20513156?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5697 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/15930265?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8013 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/18849971?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5687 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/17376680?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8065 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/20072125?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=554

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=581

Overview

Janus kinases (JAKs) are a fam.ily of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2). They are essential for cytokine signalling and are strongly linked to both cancer and inflammatory diseases.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2047 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2048 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2049 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2269
Common abbreviation JAK1 JAK2 JAK3 Tyk2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6190, http://www.uniprot.org/uniprot/P23458 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6192, http://www.uniprot.org/uniprot/O60674 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6193, http://www.uniprot.org/uniprot/P52333 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12440, http://www.uniprot.org/uniprot/P29597
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5688 (pIC50 8.5–10.1) [http://www.ncbi.nlm.nih.gov/pubmed/23061660?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20130243?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7913 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/24006460?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7839 (pIC50 9.1) [http://www.ncbi.nlm.nih.gov/pubmed/22829185?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7954 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/22015772?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7949 (pIC50 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/19143567?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7971 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/23127890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5716 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/21106455?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18394554?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7909 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/23584399?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7949 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/19143567?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8123 (pIC50 >9) [http://www.ncbi.nlm.nih.gov/pubmed/21493067?dopt=AbstractPlus]
Comments The JAK2V617F mutation, which causes constitutive activation, plays an oncogenic role in the pathogenesis of the myeloproliferative disorders, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis [http://www.ncbi.nlm.nih.gov/pubmed/17151367?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17131059?dopt=AbstractPlus]. Small molecule compounds which inhibit aberrant JAK2 activity are being developed as novel anti‐cancer pharmaceuticals.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=619

Overview

Activation of Src‐family kinases leads to both stimulatory and inhibitory signaling responses, with cell‐specific and signaling pathway‐specific outcomes and redundancy of kinase function.

Immune system

In immune cells Src kinases are involved in many signalling pathways, including ITAM‐ and ITIM‐domain‐containing receptor signaling, integrin signaling, and responses to chemokines/chemoattractants, cytokines, innate immune stimuli and a large variety of non‐immune cell specific stimuli (UV irradiation, heat, osmotic shock etc.). In many cases Src kinases signal to MAP kinase or NF‐κB pathways, but they can also modulate other pathways through less well characterized mechanisms.

The primary T cell Src kinases are Lck and Fyn; the main B cell Srcs are Lyn, Fyn and Blk. Mast cells express Fyn and Lyn, with low expression of Src.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1940 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2025 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2026 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2060 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2206
Common abbreviation Blk FRK Fyn Lyn Src
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1057, http://www.uniprot.org/uniprot/P51451 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3955, http://www.uniprot.org/uniprot/P42685 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4037, http://www.uniprot.org/uniprot/P06241 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6735, http://www.uniprot.org/uniprot/P07948 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11283, http://www.uniprot.org/uniprot/P12931
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8836 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/8557675?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7906 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/17376680?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8068 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/16884310?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8183 (pK i 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/9400019?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8013 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/18849971?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7885 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/19320489?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=629

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1942 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1948 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2268
Common abbreviation Etk Btk TXK
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1079, http://www.uniprot.org/uniprot/P51813 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1133, http://www.uniprot.org/uniprot/Q06187 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12434, http://www.uniprot.org/uniprot/P42681
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.10.2
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8145 (pIC50 9.1) [http://www.ncbi.nlm.nih.gov/pubmed/24915291?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6912 (pIC50 9.1) [http://www.ncbi.nlm.nih.gov/pubmed/22394077?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8148 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/24915291?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6912 (pIC50 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/17154430?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8148 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/24915291?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8145 (pIC50 >8.4) [http://www.ncbi.nlm.nih.gov/pubmed/24915291?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9269 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/23594111?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8066 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/21113169?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9516 (Irreversible inhibition) (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/28352114?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=610

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1943 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2184
Common abbreviation B‐Raf c‐Raf
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1097, http://www.uniprot.org/uniprot/P15056 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9829, http://www.uniprot.org/uniprot/P04049
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.11.1
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5681 (pIC50 9.7–9.9) [http://www.ncbi.nlm.nih.gov/pubmed/22037378?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18676143?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6494 (pIC50 8.5) [337], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5891 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/22222036?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5893 (pIC50 7) [http://www.ncbi.nlm.nih.gov/pubmed/22808911?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5703 (pK d 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/22037378?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8548 (pK d 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/26061392?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5674 (pK d 5.9) [http://www.ncbi.nlm.nih.gov/pubmed/22037378?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8072 (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/15255937?dopt=AbstractPlus]

Further reading on Kinases (EC 2.7.x.x)

Eglen R et al. (2011) Drug discovery and the human kinome: recent trends. Pharmacol. Ther. 130: 144‐56 https://www.ncbi.nlm.nih.gov/pubmed/21256157?dopt=AbstractPlus

Graves LM et al. (2013) The dynamic nature of the kinome. Biochem. J. 450: 1‐8 https://www.ncbi.nlm.nih.gov/pubmed/23343193?dopt=AbstractPlus

Liu Q et al. (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20: 146‐59 https://www.ncbi.nlm.nih.gov/pubmed/23438744?dopt=AbstractPlus

Martin KJ et al. (2012) Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 63: 1227–37 https://www.ncbi.nlm.nih.gov/pubmed/22846224?dopt=AbstractPlus

Tarrant MK et al. (2009) The chemical biology of protein phosphorylation. Annu. Rev. Biochem. 78: 797‐825 https://www.ncbi.nlm.nih.gov/pubmed/19489734?dopt=AbstractPlus

Wu‐Zhang AX et al. (2013) Protein kinase C pharmacology: refining the toolbox. Biochem. J. 452: 195‐209 https://www.ncbi.nlm.nih.gov/pubmed/23662807?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=104

Overview

Lanosterol is a precursor for cholesterol, which is synthesized primarily in the liver in a pathway often described as the mevalonate or HMG‐CoA reductase pathway. The first two steps (formation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039 and the mitochondrial generation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3040) are also associated with oxidation of fatty acids.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2435 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2436 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=638 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2432
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:93, http://www.uniprot.org/uniprot/P24752 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:94, http://www.uniprot.org/uniprot/Q9BWD1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:5007, http://www.uniprot.org/uniprot/Q01581 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:5008, http://www.uniprot.org/uniprot/P54868
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.9: 2http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.1.9 2http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.3.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 + H2O+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3040 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 http://www.genome.jp/dbget‐bin/www_bget?ec:2.3.3.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 + H2O+ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3040 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044
Comments HMGCoA synthase is found in cytosolic (HMGCoA synthase 1) and mitochondrial (HMGCoA synthase 2) versions; the former associated with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3042 synthesis and the latter with ketogenesis.
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:5006, http://www.uniprot.org/uniprot/P04035
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.34: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3040 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 ‐>http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3042 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 Reaction mechanism:: First step: (S)‐3‐hydroxy‐3‐methylglutaryl‐CoA + NADPH ‐> mevaldyl‐CoA + NADP+ Second step: mevaldyl‐CoA + H2O ‐>(R)‐mevalonate + NADP+
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2739 (Competitive) (pK i 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/6933445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2954 (Competitive) (pIC50 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/11349148?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2950 (Competitive) (pK i 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/16128575?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2949 (Competitive) (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/11349148?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2950 (Competitive) (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/15686906?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2955 (Competitive) (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/11349148?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2951 (Competitive) (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/11349148?dopt=AbstractPlus]
Comments HMGCoA reductase is associated with intracellular membranes; enzymatic activity is inhibited by phosphorylation by AMP‐activated kinase. The enzymatic reaction is a three‐step reaction involving the intermediate generation of mevaldehyde‐CoA and mevaldehyde.
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=640 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=641 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=642
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7530, http://www.uniprot.org/uniprot/Q03426 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9141, http://www.uniprot.org/uniprot/Q15126 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7529, http://www.uniprot.org/uniprot/P53602
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.36: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3042 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3046 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.4.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3046 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3047 http://www.genome.jp/dbget‐bin/www_bget?ec:4.1.1.33: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3047 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 + CO2 + PO3 4‐
Comments Mevalonate kinase activity is regulated by the downstream products http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2910 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3051 as an example of feedback inhibition.
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=646 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=647 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=643
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:5387, http://www.uniprot.org/uniprot/Q13907 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23487, http://www.uniprot.org/uniprot/Q9BXS1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4249, http://www.uniprot.org/uniprot/O95749
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.3.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3049 http://www.genome.jp/dbget‐bin/www_bget?ec:5.3.3.2: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3049 http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.29: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3050 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 ‐>http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3052 + diphosphate http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3051 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3050 + diphosphate http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3049 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3051 +diphosphate
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=644 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=645 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2433 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2434
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3631, http://www.uniprot.org/uniprot/P14324 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3629, http://www.uniprot.org/uniprot/P37268 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11279, http://www.uniprot.org/uniprot/Q14534 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6708, http://www.uniprot.org/uniprot/P48449
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3051 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3050 + diphosphate http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3049 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3048 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3051 + diphosphate http://www.genome.jp/dbget‐bin/www_bget?ec:2.5.1.21: 2http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3050 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3053 + diphosphate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3053 + NAD(P)H + H+ ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3054 + diphosphate + NAD(P)+ http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.132: H+ + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041 + O2 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3054 = H2O + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3045 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6551 http://www.genome.jp/dbget‐bin/www_bget?ec:5.4.99.7: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6551 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2746
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3176 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/10620343?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3177 (pK i 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/18327899?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3141 (pIC50 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/10620343?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3057 (pK i 10.1) [http://www.ncbi.nlm.nih.gov/pubmed/8419946?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3057 (pIC50 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/9473303?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3059 (pK i 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/18327899?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7259 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/18327899?dopt=AbstractPlus]

Further reading on Lanosterol biosynthesis pathway

Moutinho M et al. (2017) The mevalonate pathway in neurons: It's not just about cholesterol. Exp. Cell Res. 360: 55–60 https://www.ncbi.nlm.nih.gov/pubmed/28232115?dopt=AbstractPlus

Mullen PJ et al. (2016) The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16: 718–731 https://www.ncbi.nlm.nih.gov/pubmed/27562463?dopt=AbstractPlus

Ness GC. (2015) Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG‐CoA reductase and possible involvement of oxylanosterols. Biochim. Biophys. Acta 1851: 667–73 https://www.ncbi.nlm.nih.gov/pubmed/25701719?dopt=AbstractPlus

Porter TD. (2015) Electron Transfer Pathways in Cholesterol Synthesis. Lipids 50: 927–36 https://www.ncbi.nlm.nih.gov/pubmed/26344922?dopt=AbstractPlus

Samaras K et al. (2016) Does statin use cause memory decline in the elderly? Trends Cardiovasc. Med. 26: 550–65 https://www.ncbi.nlm.nih.gov/pubmed/27177529?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=920

Overview

The de novo synthesis and salvage of nucleosides have been targetted for therapeutic advantage in the treatment of particular cancers and gout. Dihydrofolate reductase produces tetrahydrofolate, a cofactor required for synthesis of purines, pyrimidines and amino acids. GART allows formylation of phosphoribosylglycinamide, an early step in purine biosynthesis. Dihydroorotate dehydrogenase produces orotate, a key intermediate in pyrimidine synthesis. IMP dehydrogenase generates xanthosine monophosphate, an intermediate in GTP synthesis.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2603 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2612 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2604 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2624 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2625 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2642
Common abbreviation DHFR GART DHODH IMPDH1 IMPDH2 TYMS
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2861, http://www.uniprot.org/uniprot/P00374 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4163, http://www.uniprot.org/uniprot/P22102 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2867, http://www.uniprot.org/uniprot/Q02127 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6052, http://www.uniprot.org/uniprot/P20839 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6053, http://www.uniprot.org/uniprot/P12268 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12441, http://www.uniprot.org/uniprot/P04818
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.5.1.3 http://www.genome.jp/dbget‐bin/www_bget?ec:2.1.2.2 http://www.genome.jp/dbget‐bin/www_bget?ec:6.3.3.1 http://www.genome.jp/dbget‐bin/www_bget?ec:6.3.4.13 http://www.genome.jp/dbget‐bin/www_bget?ec:1.3.5.2 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.205 http://www.genome.jp/dbget‐bin/www_bget?ec:1.1.1.205 http://www.genome.jp/dbget‐bin/www_bget?ec:2.1.1.45
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6837 (pK i 5) [http://www.ncbi.nlm.nih.gov/pubmed/9762351?dopt=AbstractPlus] – Mouse http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6844 (pK i 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/17228860?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6832 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/1967654?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6832 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/1967654?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4815 (pK i 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/7877140?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7403 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/22739090?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2841 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2646 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2630 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2631 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2754
Common abbreviation PNP XDH ribonucleotide reductase M1 ribonucleotide reductase M2 ribonucleotide reductase M2B (TP53 inducible)
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7892, http://www.uniprot.org/uniprot/P00491 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12805, http://www.uniprot.org/uniprot/P47989 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10451, http://www.uniprot.org/uniprot/P23921 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10452, http://www.uniprot.org/uniprot/P31350 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17296, http://www.uniprot.org/uniprot/Q7LG56
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.4.2.1 Purine‐nucleoside phosphorylase: Purine nucleoside + phosphate <=> purine + alpha‐D‐ribose 1‐phosphate Purine deoxynucleoside + phosphate <=> purine + 2′‐deoxy‐alpha‐D‐ribose 1‐phosphate http://www.genome.jp/dbget‐bin/www_bget?ec:1.17.1.4 http://www.genome.jp/dbget‐bin/www_bget?ec:1.17.14.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.17.4.1 http://www.genome.jp/dbget‐bin/www_bget?ec:1.17.1.4
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6817 (pIC50 8.9) [http://www.ncbi.nlm.nih.gov/pubmed/24508129?dopt=AbstractPlus]

Comments

TYMS allows the interconversion of dUMP and dTMP, thereby acting as a crucial step in DNA synthesis. PNP allows separation of a nucleoside into the nucleobase and ribose phosphate for nucleotide salvage. XDH generates urate in the purine degradation pathway. Post‐translational modifications of XDH convert the enzymatic reaction to a xanthine oxidase, allowing the interconversion of hypoxanthine and xanthine, with the production (or consumption) of reactive oxygen species.

Further reading on Nucleoside synthesis and metabolism

Day RO et al. (2016) Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci (Lond). 130: 2167–2180 https://www.ncbi.nlm.nih.gov/pubmed/27798228

Okafor ON et al. (2017) Allopurinol as a therapeutic option in cardiovascular disease. Pharmacol Ther. 172: 139–150 https://www.ncbi.nlm.nih.gov/pubmed/27916655

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1018

Overview

Paraoxonases (PON) are calcium‐dependent esterases, whichmay be involved in lipoprotein turnover and the conversion of lactone statin prodrugs, as well as being targets of organophosphates, such as the insecticide paraoxon.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3052 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3053 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3054
Common abbreviation PON1 PON2 PON3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9204, http://www.uniprot.org/uniprot/P27169 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9205, http://www.uniprot.org/uniprot/Q15165 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9206, http://www.uniprot.org/uniprot/Q15166
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.8.1 An aryl dialkyl phosphate + H(2)O <=> dialkyl phosphate + an aryl alcohol http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.2 A phenyl acetate + H(2)O <=> a phenol + acetate http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.81 An N‐acyl‐L‐homoserine lactone + H(2)O <=> an N‐acyl‐L‐homoserine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.2 A phenyl acetate + H(2)O <=> a phenol + acetate http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.81 A N‐acyl‐L‐homoserine lactone + H(2)O <=> a N‐acyl‐L‐homoserine http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.8.1 An aryl dialkyl phosphate + H(2)O <=> dialkyl phosphate + an aryl alcohol http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.2 A phenyl acetate + H(2)O <=> a phenol + acetate http://www.genome.jp/dbget‐bin/www_bget?ec:3.1.1.81 A N‐acyl‐L‐homoserine lactone + H(2)O <=> a N‐acyl‐L‐homoserine
Comments PON1 forms homodimers. Loss‐of‐function mutations in PON1 are associated with microvascular complications of diabetes [http://www.ncbi.nlm.nih.gov/pubmed/11918623?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9661650?dopt=AbstractPlus]. PON2 forms heterotrimers [http://www.ncbi.nlm.nih.gov/pubmed/15772423?dopt=AbstractPlus]. PON3 likely forms heterodimers in vivo [http://www.ncbi.nlm.nih.gov/pubmed/15772423?dopt=AbstractPlus].

Further reading on Paraoxonase

Dardiotis E et al. (2019) Paraoxonase‐1 genetic polymorphisms in organophosphate metabolism. Toxicology. 411: 24–31 https://www.ncbi.nlm.nih.gov/pubmed/30359673

Lioudaki S et al. (2019) Paraoxonase‐1: Characteristics and Role in Atherosclerosis and Carotid Artery Disease. Curr Vasc Pharmacol. 17: 141–146 https://www.ncbi.nlm.nih.gov/pubmed/29189170

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=759

Overview

Peptidases and proteinases hydrolyse peptide bonds, and can be simply divided on the basis of whether terminal peptide bonds are cleaved (exopeptidases and exoproteinases) at the amino terminus (aminopeptidases) or carboxy terminus (carboxypeptidases). Non‐terminal peptide bonds are cleaved by endopeptidases and endoproteinases, which are divided into serine endopeptidases (EC 3.4.21.‐), cysteine endopeptidases (EC 3.4.22.‐), aspartate endopeptidases (EC 3.4.23.‐), metalloendopeptidases (EC 3.4.24.‐) and threonine endopeptidases (EC 3.4.25.‐).

Since it is beyond the scope of the Guide to list all peptidase and proteinase activities, this summary focuses on selected enzymes of significant pharmacological interest that have ligands (mostly small‐molecules) directed against them. For those interested in detailed background we recommend the MEROPS database [493] (with whom we collaborate) as an information resource [http://www.ncbi.nlm.nih.gov/pubmed/26527717?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=726

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=727

Overview

Presenilin (PS)‐1 or ‐2 act as the catalytic component/ essential co‐factor of the γ‐secretase complex responsible for the final carboxy‐terminal cleavage of amyloid precursor protein (APP) [http://www.ncbi.nlm.nih.gov/pubmed/2881207?dopt=AbstractPlus] in the generation of amyloid beta (Aβ) [http://www.ncbi.nlm.nih.gov/pubmed/21115843?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12660785?dopt=AbstractPlus]. Given that the accumulation and aggregation of Aβ in the brain is pivotal in the development of Alzheimer's disease (AD), inhibition of PS activity is one mechanism being investigated as a therapeutic option for AD [http://www.ncbi.nlm.nih.gov/pubmed/11378516?dopt=AbstractPlus]. Several small molecule inhibitors of PS‐1 have been investigated, with some reaching early clinical trials, but none have been formally approved. Dewji et al. (2015) have reported that small peptide fragments of human PS‐1 can significantly inhibit Aβ production (total Aβ, Aβ40 and Aβ42) both in vitro and when infused in to the brains of APP transgenic mice [http://www.ncbi.nlm.nih.gov/pubmed/25923432?dopt=AbstractPlus]. The most active small peptides in this report were http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8344 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8345, from the amino‐terminal domain of PS‐1.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=727.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=734

Overview

Caspases, (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.4.22.‐) which derive their name from Cysteine ASPartate‐specific proteASES, include at least two families; initiator caspases (caspases 2, 8, 9 and 10), which are able to hydrolyse and activate a second family of effector caspases (caspases 3, 6 and 7), which themselves are able to hydrolyse further cellular proteins to bring about programmed cell death. Caspases are heterotetrameric, being made up of two pairs of subunits, generated by a single gene product, which is proteolysed to form the mature protein. Members of the mammalian inhibitors of apoptosis proteins (IAP) are able to bind the procaspases, thereby preventing maturation to active proteinases.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=734.

Comments

CARD16 (Caspase recruitment domain‐containing protein 16, caspase‐1 inhibitor COP, CARD only domain‐containing protein 1, pseudo interleukin‐1β converting enzyme, pseudo‐ICE, http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000204397;r=11:104912053‐104972158) shares sequence similarity with some of the caspases.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=737

Overview

Aminopeptidases catalyze the cleavage of amino acids from the amino (N) terminus of protein or peptide substrates, and are involved in many essential cellular functions. Members of this enzyme family may be monomeric or multi‐subunit complexes, and many are zinc metalloenzymes [http://www.ncbi.nlm.nih.gov/pubmed/8440407?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=741

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1613
Common abbreviation ACE
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2707, http://www.uniprot.org/uniprot/P12821
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.15.1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10060
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=583 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:333, http://www.uniprot.org/uniprot/P01019) > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:333, http://www.uniprot.org/uniprot/P01019)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6463 (pK i 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/2836590?dopt=AbstractPlus] – Rabbit, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5158 (pKi 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/9187274?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6462
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6373 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/17716647?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6461 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/2527528?dopt=AbstractPlus] – Rabbit, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6378 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/17547476?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7893 (C‐domain assay) (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/20233165?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7894 (N‐domain selective inhibition) (pIC50 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/22628311?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6457 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/2481187?dopt=AbstractPlus] – Rabbit, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6332 (pIC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/7527095?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6375 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/17506720?dopt=AbstractPlus]
Comments Reports of ACE GPI hydrolase activity [http://www.ncbi.nlm.nih.gov/pubmed/15665832?dopt=AbstractPlus] have been refuted [http://www.ncbi.nlm.nih.gov/pubmed/16270062?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=738

Overview

Matrix metalloproteinases (MMP) are calcium‐ and zinc‐dependent proteinases regulating the extracellular matrix and are often divided (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/17275314?dopt=AbstractPlus]) on functional and structural bases into gelatinases, collagenases, stromyelinases and matrilysins, as well as membrane type‐MMP (MT‐MMP).

Comments

A number of small molecule ‘broad spectrum’ inhibitors of MMP have been described, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5220 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5145.

Tissue inhibitors of metalloproteinase (TIMP) proteins are endogenous inhibitors acting to chelate MMP proteins: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5309 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11820, http://www.uniprot.org/uniprot/P01033), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5310 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11821, http://www.uniprot.org/uniprot/P16035), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5311 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11822, http://www.uniprot.org/uniprot/P35625), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5312 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11823, http://www.uniprot.org/uniprot/Q99727)

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=739

Overview

ADAM (A Disintegrin And Metalloproteinase domain containing proteins) metalloproteinases cleave cell‐surface or transmembrane proteins to generate soluble and membrane‐limited products.

ADAMTS (with thrombospondin motifs) metalloproteinases cleave cell‐surface or transmembrane proteins to generate soluble and membrane‐limited products.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=739.

Comments

Additional ADAM family members include AC123767.2 (cDNA FLJ58962, moderately similar tomouse ADAM3, ENSG00000231168), AL160191.3 (ADAM21‐like protein, http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000235812;r=14:70712470‐70714518), AC136428.3‐2 (ENSG00000185520) and ADAMDEC1 (decysin 1, http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000134028;r=8:24241798‐24263526).

Other ADAMTS family members include AC104758.12‐5 (FLJ00317 protein Fragment ENSG00000231463), AC139425.3‐1 (ENSG00000225577), and AC126339.6‐1 (ENSG00000225734).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=748

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1606
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3788, http://www.uniprot.org/uniprot/Q04609
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.17.21
Antibodies http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6878 (Binding)
Comments Folate hydrolase is also known as NAALADase as it is responsible for the hydrolysis of N‐acetaspartylglutamate to form N‐acetylaspartate and L‐glutamate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369). In the gut, the enzyme assists in the assimilation of folate by hydrolysing dietary poly‐gamma‐glutamylfolate. The enzyme is highly expressed in the prostate, and its expression is up‐regulated in cancerous tissue. A tagged version of the antibody http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6878 has been used for imaging purposes.

Comments

Folate hydrolase is also known as NAALADase as it is responsible for the hydrolysis of N‐acetaspartylglutamate to form N‐acetylaspartate and L‐glutamate. In the gut, the enzyme assists in the assimilation of folate by hydrolysing dietary poly‐gamma‐glutamylfolate. The enzyme is highly expressed in the prostate, and its expression is up‐regulated in cancerous tissue. A tagged version of the antibody http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6878 has been used for imaging purposes.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=749

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=751

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2334 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2362 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2359
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1246, http://www.uniprot.org/uniprot/P00736 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3535, http://www.uniprot.org/uniprot/P00734 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3528, http://www.uniprot.org/uniprot/P00742
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.41 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.5 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.6
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4262 (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/9544206?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6469 (pK i 13) [http://www.ncbi.nlm.nih.gov/pubmed/16363236?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6458 (pK i 12.7) [http://www.ncbi.nlm.nih.gov/pubmed/1894196?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7727 (pK i 9.5) [21], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6382 (pK i 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/9459334?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6470 (pK i 8.6) [http://www.ncbi.nlm.nih.gov/pubmed/1290488?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6380 (pK i 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/11960487?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6385 (pK i 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/9361377?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6390 (pK i 10.1) [http://www.ncbi.nlm.nih.gov/pubmed/18315548?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6388 (pK i 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/20139357?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7575 (pK i 9.2) [http://www.ncbi.nlm.nih.gov/pubmed/20503967?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8760 (pK i 10.4) [192], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7688 (pIC50 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/19492147?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2358 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2394 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2392 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2397 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2424
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3309, http://www.uniprot.org/uniprot/P08246 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9071, http://www.uniprot.org/uniprot/P00747 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9051, http://www.uniprot.org/uniprot/P00750 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9475, http://www.uniprot.org/uniprot/P07477 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12019, http://www.uniprot.org/uniprot/Q15661
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.37 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.7 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.68 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.4 http://www.genome.jp/dbget‐bin/www_bget?ec:3.4.21.59
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6476 (pK i 8) [http://www.ncbi.nlm.nih.gov/pubmed/21791628?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6441 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/21741848?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6570 {Bovine} (Binding) (pIC50 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/17666018?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6573 (Binding) (pIC50 3.6) [http://www.ncbi.nlm.nih.gov/pubmed/17666018?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4262 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/9544206?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4262 (pIC50 10) [http://www.ncbi.nlm.nih.gov/pubmed/12939527?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6574 (Binding) (pIC50 4.4) [http://www.ncbi.nlm.nih.gov/pubmed/24900876?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7863 (pIC50 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/11172730?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=752

Overview

The T1 macropain beta subunits form the catalytic proteinase core of the 20S proteasome complex [http://www.ncbi.nlm.nih.gov/pubmed/16142822?dopt=AbstractPlus]. This catalytic core enables the degradation of peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the cleavage site. The β5 subunit is the principal target of the approved drug proteasome inhibitor http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6391.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=755

Overview

One member of this family has garnered intense interest as a clinical drug target. As liver PCSK9 acts to maintain cholesterol homeostasis, it has become a target of intense interest for clinical drug development. Inhibition of PCSK9 can lower low‐density cholesterol (LDL‐C) by clearing LDLR‐bound LDL particles, thereby lowering circulating cholesterol levels. It is hypothesised that this action may improve outcomes in patients with atherosclerotic cardiovascular disease [http://www.ncbi.nlm.nih.gov/pubmed/18836590?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/25083925?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19506257?dopt=AbstractPlus]. Therapeutics which inhibit PCSK9 are viewed as potentially lucrative replacements for statins, upon statin patent expiry. Several monoclonal antibodies including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6744, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7730, RG‐7652 and LY3015014 are under development. One RNAi therapeutic, code named ALN‐PCS02, is also in development [http://www.ncbi.nlm.nih.gov/pubmed/24145894?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24094767?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18695239?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=755.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=758

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=883

Overview

The Poly ADP‐ribose polymerase family is a series of enzymes, where the best characterised members are nuclear proteins which are thought to function by binding to single strand breaks in DNA, allowing the recruitment of repair enzymes by the synthesis of NAD‐derived ADP‐ribose polymers, which are subsequently degraded by a glycohydrolase (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:8605, http://www.uniprot.org/uniprot/Q86W56).

Further reading on Poly ADP‐ribose polymerases

Berger NA et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non‐oncological diseases. Br J Pharmacol. 175: 192‐222 https://www.ncbi.nlm.nih.gov/pubmed/28213892

Faraoni I et al. (2019) Targeting ADP‐ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol https://www.ncbi.nlm.nih.gov/pubmed/31028744

Zeniou M et al. (2019) Therapeutic considerations of PARP in stem cell biology: Relevance in cancer and beyond. Biochem Pharmacol https://www.ncbi.nlm.nih.gov/pubmed/31202733

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=900

Overview

Hypoxia‐inducible factors (HIFs) are rapidly‐responding sensors of reductions in local oxygen tensions, prompting changes in gene transcription. Listed here are the 4‐prolyl hydroxylase family, members of which have been identified to hydroxylate proline residues in HIF1α (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4910; https://www.uniprot.org/uniprot/Q16665) leading to an increased degradation through proteasomal hydrolysis. This action requires molecular oxygen and 2‐oxoglutarate, and so reduced oxygen tensions prevents HIF1α hydroxylation, allowing its translocation to the nucleus and dimerisation with HIF1β (also known as https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:700; https://www.uniprot.org/uniprot/P27540), thereby allowing interaction with the genome as a transcription factor.

Further reading on Prolyl hydroxylases

Joharapurkar AA et al. (2018) Prolyl Hydroxylase Inhibitors: A Breakthrough in the Therapy of Anemia Associated with Chronic Diseases. J Med Chem 61: 6964‐6982 https://www.ncbi.nlm.nih.gov/pubmed/29712435

Lanigan SM and O’Connor JJ. (2019) Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 148: 117‐130 https://www.ncbi.nlm.nih.gov/pubmed/30578795

Singh L et al. (2018) Prolyl hydroxylase 2: a promising target to inhibit hypoxia‐induced cellular metabolism in cancer cells. Drug Discov Today 23: 1873‐1882 https://www.ncbi.nlm.nih.gov/pubmed/29772209

Vasta JD and Raines RT et al. (2018) Collagen Prolyl 4‐Hydroxylase as a Therapeutic Target. J Med Chem 61: 10403‐10411 https://www.ncbi.nlm.nih.gov/pubmed/29986141

Watts ER and Walmsley SR. (2019) Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med 25: 33‐46 https://www.ncbi.nlm.nih.gov/pubmed/30442494

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=776

Overview

S1P (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911) is a bioactive lipid which, after release from cells via certain transporters, acts as a ligand for a family of five S1P‐specific G protein‐coupled receptors (S1P1‐5). However, it also has a number of intracellular targets. S1P is formed by the ATP‐dependent phosphorylation of sphingosine, catalysed by two isoforms of sphingosine kinase (EC 2.7.1.91). It can be dephosphorylated back to sphingosine by sphingosine 1‐phosphate phosphatase (EC 3.1.3) or cleaved into phosphoethanolamine and hexadecenal by sphingosine 1‐phosphate lyase (EC 4.1.2.27). Recessive mutations in the S1P lyase (SPL) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS). In general, S1P promotes cell survival, proliferation, migration, adhesion and inhibition of apoptosis. Intracellular S1P affects epigenetic regulation, endosomal processing, mitochondrial function and cell proliferation/senescence. S1P has myriad physiological functions, including vascular development, lymphocyte trafficking and neurogenesis. However, S1P is also involved in a number of diseases such as cancer, inflammation and fibrosis. Therefore, its GPCRs and enzymes of synthesis and degradation are a major focus for drug discovery.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=777

Overview

SPHK1 and SPHK2 are encoded by different genes with some redundancy of function; genetic deletion of both Sphk1 and Sphk2, but not either alone, is embryonic lethal in mice. There are splice variants of each isoform (SphK1a‐c and SphK2a, b), distinguished by their N‐terminal sequences. SPHK1 and SPHK2 differ in tissue distribution, sub‐cellular localisation, biochemical properties and regulation. They regulate discrete pools of S1P. Receptor stimulation induces SPHK1 translocation from the cytoplasm to the plasma membrane. SPHK1 translocation is regulated by phosphorylation/dephosphorylation, specific protein:protein interactions and interaction with specific lipids at the plasma membrane. SPHK1 is a dimeric protein, as confirmed by its crystal structure which forms a positive cluster, between protomers, essential for interaction with anionic phospholipids in the plasma membrane. SPHK2 is localised to the ER or associated with mitochondria or shuttles in/out of the nucleus, regulated by phosphorylation. Intracellular targets of nuclear S1P include the catalytic subunit of telomerase (TERT) and regulators of gene expression including histone deacetylases (HDAC 1/2) and peroxisome proliferator‐activated receptor gamma (PPARγ). SPHK2 phosphorylates the pro‐drug FTY720 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2407, which is used to treat some forms of multiple sclerosis) to a mimic of S1P and that acts as a functional antagonist of S1P1 receptors. Inhibitors of SPHK1 and SPHK2 have therapeutic potential in many diseases.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2204 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2205
Common abbreviation SPHK1 SPHK2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11240, http://www.uniprot.org/uniprot/Q9NYA1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18859, http://www.uniprot.org/uniprot/Q9NRA0
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.91 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 dihydrosphingosine + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 http://www.genome.jp/dbget‐bin/www_bget?ec:2.7.1.91: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2452 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 dihydrosphingosine + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911 + http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708 [http://www.ncbi.nlm.nih.gov/pubmed/22677141?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6041 (pK i 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/20061445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 (pIC50 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/25788259?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 (pK i 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/25788259?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6041 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/22970244?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6623 (pK i 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/22397330?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10217 (pK i 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/28406646?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10218 (pIC50 6.8) [http://www.ncbi.nlm.nih.gov/pubmed/28231433?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6624 (pK i 5) [http://www.ncbi.nlm.nih.gov/pubmed/20061445?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6625 (pK i 4.8) [http://www.ncbi.nlm.nih.gov/pubmed/21620961?dopt=AbstractPlus]
Comments SK1 inhibitors induce its proteasomal degradation [http://www.ncbi.nlm.nih.gov/pubmed/20926375?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. SK1 crystal structures confirm that it is dimeric [http://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlus]; there is no crystal structure available for SK2. There is no crystal structure available for SK2.

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10219 is competitive with ATP; other SPHK inhibitors are competitive with sphingosine. ABC294640 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6624) has known off‐target effects on dihydroceramide desaturase (DEGS1) [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/26494858?dopt=AbstractPlus]) and induces proteasomal degradation of SK1 [http://www.ncbi.nlm.nih.gov/pubmed/26934645?dopt=AbstractPlus]. ABC294640 is in clinical trials for advanced cholangiocarcinoma, advanced hepatocellular carcinoma and refractory/relapsed multiple myeloma (to view ClinicalTrials.gov list click https://clinicaltrials.gov/ct2/results?cond=&term=ABC294640).

Further reading on Sphingosine kinase

Adams DR et al. (2016) Sphingosine Kinases: Emerging Structure‐Function Insights. Trends Biochem. Sci. 41: 395‐409 https://www.ncbi.nlm.nih.gov/pubmed/27021309?dopt=AbstractPlus

Lynch KR et al. (2016) Sphingosine kinase inhibitors: a review of patent literature (2006‐2015). Expert Opin Ther Pat 26: 1409‐1416 https://www.ncbi.nlm.nih.gov/pubmed/27539678?dopt=AbstractPlus

Pitman MR et al. (2016) Recent advances in the development of sphingosine kinase inhibitors. Cell. Signal. 28: 1349‐63 https://www.ncbi.nlm.nih.gov/pubmed/27297359?dopt=AbstractPlus

Pulkoski‐Gross MJ et al. (2018) An intrinsic lipid‐binding interface controls sphingosine kinase 1 function. J. Lipid Res. 59: 462‐474 https://www.ncbi.nlm.nih.gov/pubmed/29326159?dopt=AbstractPlus

Pyne NJ et al. (2017) Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends Pharmacol. Sci. 38: 581‐591 https://www.ncbi.nlm.nih.gov/pubmed/28606480?dopt=AbstractPlus

Pyne S et al. (2018) Sphingosine Kinases as Druggable Targets. Handb Exp Pharmacol https://www.ncbi.nlm.nih.gov/pubmed/29460151?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=778

Comments

SGPP1 and SGPP2 are non‐redundant endoplasmic reticulum enzymes that dephosphorylate intracellular http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=911. The phenotype of Sgpp1(‐/‐) mice differ with genetic background. Sgpp2(‐/‐) mice are also available. No specific SGPP inhibitors available [http://www.ncbi.nlm.nih.gov/pubmed/22052905?dopt=AbstractPlus].

Further reading on Sphingosine 1‐phosphate phosphatase

Allende ML et al. (2013) Sphingosine‐1‐phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J. Biol. Chem. 288: 18381‐91 https://www.ncbi.nlm.nih.gov/pubmed/23637227?dopt=AbstractPlus

Huang WC et al. (2016) Sphingosine‐1‐phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans. FASEB J. 30: 2945‐58 https://www.ncbi.nlm.nih.gov/pubmed/27130484?dopt=AbstractPlus

Lépine S et al. (2011) Sphingosine‐1‐phosphate phosphohydrolase‐1 regulates ER stress‐induced autophagy. Cell Death Differ. 18: 350‐61 https://www.ncbi.nlm.nih.gov/pubmed/20798685?dopt=AbstractPlus

Mandala SM et al. (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine‐1‐ phosphate and induces cell death. Proc. Natl. Acad. Sci. U.S.A. 97: 7859‐64 https://www.ncbi.nlm.nih.gov/pubmed/10859351?dopt=AbstractPlus

Taguchi Y et al. (2016) Sphingosine‐1‐phosphate Phosphatase 2 Regulates Pancreatic Islet β‐Cell Endoplasmic Reticulum Stress and Proliferation. J. Biol. Chem. 291: 12029‐38 https://www.ncbi.nlm.nih.gov/pubmed/27059959?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=777

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6626 (2‐Acetyl‐5‐tetrahydroxybutyl imidazole) inhibits the enzyme activity in intact cell preparations [http://www.ncbi.nlm.nih.gov/pubmed/16151014?dopt=AbstractPlus]. Recessive mutations in the S1P lyase (SGPL1) gene underlie a recently identified sphingolipidosis: SPL Insufficiency Syndrome (SPLIS) [http://www.ncbi.nlm.nih.gov/pubmed/30274713?dopt=AbstractPlus]. A Phase 2 clinical trial of LX3305 (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9851) for rheumatoid arthritis has been completed (see https://clinicaltrials.gov/ct2/show/NCT00903383).

Further reading on Sphingosine 1‐phosphate lyase

Bamborschke D et al. (2018) A novel mutation in sphingosine‐1‐phosphate lyase causing congenital brain malformation. Brain Dev. 40: 480‐483 https://www.ncbi.nlm.nih.gov/pubmed/29501407?dopt=AbstractPlus

Choi YJ et al. (2019) Sphingosine phosphate lyase insufficiency syndrome (SPLIS): A novel inborn error of sphingolipid metabolism. Adv Biol Regul 71: 128‐140 https://www.ncbi.nlm.nih.gov/pubmed/30274713

Lovric S et al. (2017) Mutations in sphingosine‐1‐phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Invest. 127: 912‐928 https://www.ncbi.nlm.nih.gov/pubmed/28165339?dopt=AbstractPlus

Prasad R et al. (2017) Sphingosine‐1‐phosphate lyase mutations cause primary adrenal insufficiency and steroid‐resistant nephrotic syndrome. J. Clin. Invest. 127: 942‐953 https://www.ncbi.nlm.nih.gov/pubmed/28165343?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=779

Overview

The thyroid hormones triiodothyronine and thyroxine, usually abbreviated as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635, respectively, are synthesized in the thyroid gland by sequential metabolism of tyrosine residues in the glycosylated homodimeric protein thyroglobulin (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11764, http://www.uniprot.org/uniprot/P01266) under the influence of the haem‐containing protein iodide peroxidase. Iodide peroxidase/TPO is a haem‐containing enzyme, from the same structural family as eosinophil peroxidase (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:3423, http://www.uniprot.org/uniprot/P11678), lactoperoxidase (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6678, http://www.uniprot.org/uniprot/P22079) and myeloperoxidase (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7218, http://www.uniprot.org/uniprot/P05164). Circulating thyroid hormone is bound to thyroxine‐binding globulin (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11583, http://www.uniprot.org/uniprot/P05543).

Tissue deiodinases

These are 1 TM selenoproteins that remove an iodine from http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 (3,3′,5,5′‐tetraiodothyronine) to generate http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 (3,3′,5‐triiodothyronine, a more potent agonist at thyroid hormone receptors) or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2636 (rT3, 3,3′,5′‐triiodothyronine, a relatively inactive analogue). DIO1 is also able to deiodinate RT3 to form 3,3′‐diidothyronine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6648). Iodotyrosine deiodinase is a 1TM homodimeric enzyme.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2526 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2481 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2482 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2483 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2488
Common abbreviation TPO DIO1 DIO2 DIO3 IYD
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12015, http://www.uniprot.org/uniprot/P07202 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2883, http://www.uniprot.org/uniprot/P49895 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2884, http://www.uniprot.org/uniprot/Q92813 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:2885, http://www.uniprot.org/uniprot/P55073 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21071, http://www.uniprot.org/uniprot/Q6PHW0
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.11.1.8: [Thyroglobulin]‐L‐tyrosine + http://www.genome.jp/dbget‐bin/www_bget?ec:1.97.1.10 + H+ + I ‐> [Thyroglobulin]‐3,5,3′‐triiodo‐L‐thyronine + [thyroglobulin]‐aminoacrylate + H2O http://www.genome.jp/dbget‐bin/www_bget?ec:1.97.1.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2636 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6648 http://www.genome.jp/dbget‐bin/www_bget?ec:1.97.1.10: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2636 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6648 http://www.genome.jp/dbget‐bin/www_bget?ec:1.97.1.11: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2636 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6648 http://www.genome.jp/dbget‐bin/www_bget?ec:1.22.1.1: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5117 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791 + I http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6651 ‐> http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5117 + I
Cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=707 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3041
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6649 [http://www.ncbi.nlm.nih.gov/pubmed/748042?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6650 [http://www.ncbi.nlm.nih.gov/pubmed/748042?dopt=AbstractPlus]
Comments Carbimazole is a pro‐drug for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6649

Further reading on Thyroid hormone turnover

Darras VM et al. (2015) Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor‐mediated impact on vertebrate development. Biochim. Biophys. Acta 1849: 130‐41 https://www.ncbi.nlm.nih.gov/pubmed/24844179?dopt=AbstractPlus

Gereben B et al. (2015) Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11: 642‐652 https://www.ncbi.nlm.nih.gov/pubmed/26416219?dopt=AbstractPlus

Mondal S et al. (2017) Novel thyroid hormone analogues, enzyme inhibitors andmimetics, and their action. Mol. Cell. Endocrinol. 458: 91‐104 https://www.ncbi.nlm.nih.gov/pubmed/28408161?dopt=AbstractPlus

Schweizer U et al. (2015) New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol. 55: R37‐52 https://www.ncbi.nlm.nih.gov/pubmed/26390881?dopt=AbstractPlus

van der Spek AH et al. (2017) Thyroid hormone metabolism in innate immune cells. J. Endocrinol. 232: R67‐R81 https://www.ncbi.nlm.nih.gov/pubmed/27852725?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=923

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2886
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6381, http://www.uniprot.org/uniprot/O15229
EC number http://www.genome.jp/dbget‐bin/www_bget?ec:1.14.13.9 L‐kynurenine + NADPH + O2 <=> 3‐hydroxy‐L‐kynurenine + NADP(+) + H2O
Comments Kynurenine 3‐monooxygenase participates in metabolism of the essential amino acid tryptophan.

Further reading on 1.14.13.9 Kynurenine 3‐monooxygenase

Dounay AB et al. (2015) Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J. Med. Chem. 58: 8762‐82 https://www.ncbi.nlm.nih.gov/pubmed/26207924?dopt=AbstractPlus

Erhardt S et al. (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112: 297‐306 https://www.ncbi.nlm.nih.gov/pubmed/27245499?dopt=AbstractPlus

Fujigaki H et al. (2017) L‐Tryptophan‐kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology 112: 264‐274 https://www.ncbi.nlm.nih.gov/pubmed/26767951?dopt=AbstractPlus

Smith JR et al. (2016) Kynurenine‐3‐monooxygenase: a review of structure, mechanism, and inhibitors. Drug Discov. Today 21: 315‐24 https://www.ncbi.nlm.nih.gov/pubmed/26589832?dopt=AbstractPlus

Song P et al. (2017) Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell. Mol. Life Sci. 74: 2899‐2916 https://www.ncbi.nlm.nih.gov/pubmed/28314892?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=898

Overview

Farnesyltransferase is a member of the prenyltransferases family which also includes geranylgeranyltransferase types I (EC 2.5.1.59) and II (EC 2.5.1.60) [http://www.ncbi.nlm.nih.gov/pubmed/8621375?dopt=AbstractPlus]. Protein farnesyltransferase catalyses the post‐translational formation of a thioether linkage between the C‐1 of an isoprenyl group and a cysteine residue fourth from the C‐terminus of a protein (ie to the CaaX motif, where ’a’ is an aliphatic amino acid and ’X’ is usually serine, methionine, alanine or glutamine; leucine for EC 2.5.1.59) [http://www.ncbi.nlm.nih.gov/pubmed/7756316?dopt=AbstractPlus]. Farnesyltransferase is a dimer, composed of an alpha and beta subunit and requires Mg2+ and Zn2+ ions as cofactors. The active site is located between the subunits. Prenylation creates a hydrophobic domain on protein tails which acts as a membrane anchor.

Substrates of the prenyltransferases include Ras, Rho, Rab, other Ras‐related small GTP‐binding proteins, G‐protein γ‐subunits, nuclear lamins, centromeric proteins and many proteins involved in visual signal transduction.

In relation to the causative association between oncogenic Ras proteins and cancer, farnesyltransferase has become an important mechanistic drug discovery target.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=898.

Further reading on 2.5.1.58 Protein farnesyltransferase

Gao S et al. (2016) The Role of Geranylgeranyltransferase I‐Mediated Protein Prenylation in the Brain. Mol. Neurobiol. 53: 6925‐6937 https://www.ncbi.nlm.nih.gov/pubmed/26666664?dopt=AbstractPlus

Shen M et al. (2015) Farnesyltransferase and geranylgeranyltransferase I: structures, mechanism, inhibitors and molecular modeling. Drug Discov. Today 20: 267‐76 https://www.ncbi.nlm.nih.gov/pubmed/25450772?dopt=AbstractPlus

Shen Y et al. (2015) The Recent Development of Farnesyltransferase Inhibitors as Anticancer and Antimalarial Agents. Mini Rev Med Chem 15: 837‐57 https://www.ncbi.nlm.nih.gov/pubmed/25963569?dopt=AbstractPlus

Wang M et al. (2016) Protein prenylation: unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 17: 110‐22 https://www.ncbi.nlm.nih.gov/pubmed/26790532?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=848

Overview

Histone deacetylases act as erasers of epigenetic acetylation marks on lysine residues in histones. Removal of the acetyl groups facilitates tighter packing of chromatin (heterochromatin formation) leading to transcriptional repression.

The histone deacetylase family has been classified in to five subfamilies based on phylogenetic comparison with yeast homologues:

Class I contains HDACs 1, 2, 3 and 8

Class IIa contains HDACs 4, 5, 7 and 9

Class IIb contains HDACs 6 and 10

Class III contains the sirtuins (SIRT1‐7)

Class IV contains only HDAC11.

Classes I, II and IV use Zn+ as a co‐factor, whereas catalysis by Class III enzymes requires NAD+ as a co‐factor, and members of this subfamily have ADP‐ribosylase activity in addition to protein deacetylase function [http://www.ncbi.nlm.nih.gov/pubmed/20132909?dopt=AbstractPlus].

HDACs have more general protein deacetylase activity, being able to deacetylate lysine residues in non‐histone proteins [http://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=AbstractPlus] such as microtubules [http://www.ncbi.nlm.nih.gov/pubmed/12024216?dopt=AbstractPlus], the hsp90 chaperone [http://www.ncbi.nlm.nih.gov/pubmed/15916966?dopt=AbstractPlus] and the tumour suppressor p53 [http://www.ncbi.nlm.nih.gov/pubmed/11099047?dopt=AbstractPlus].

Dysregulated HDACactivity has been identified in cancer cells and tumour tissues [http://www.ncbi.nlm.nih.gov/pubmed/11704848?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19383284?dopt=AbstractPlus], making HDACs attractive molecular targets in the search for novel mechanisms to treat cancer [http://www.ncbi.nlm.nih.gov/pubmed/24382387?dopt=AbstractPlus]. Several small molecule HDAC inhibitors are already approved for clinical use: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7006, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6852, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7489, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7496, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7009 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8305. HDACs and HDAC inhibitors currently in development as potential anti‐cancer therapeutics are reviewed by Simó‐Riudalbas and Esteller (2015) [http://www.ncbi.nlm.nih.gov/pubmed/25039449?dopt=AbstractPlus].

Further reading on 3.5.1.‐ Histone deacetylases (HDACs)

Ellmeier W et al. (2018) Histone deacetylase function in CD4+ T cells. Nat. Rev. Immunol. 18: 617‐634 https://www.ncbi.nlm.nih.gov/pubmed/30022149?dopt=AbstractPlus

Maolanon AR et al. (2017) Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 18: 5‐49 https://www.ncbi.nlm.nih.gov/pubmed/27748555?dopt=AbstractPlus

Micelli C et al. (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today 20: 718‐35 https://www.ncbi.nlm.nih.gov/pubmed/25687212?dopt=AbstractPlus

Millard CJ et al. (2017) Targeting Class I Histone Deacetylases in a "Complex" Environment. Trends Pharmacol. Sci. 38: 363‐377 https://www.ncbi.nlm.nih.gov/pubmed/28139258?dopt=AbstractPlus

Roche J et al. (2016) Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 121: 451‐483 https://www.ncbi.nlm.nih.gov/pubmed/27318122?dopt=AbstractPlus

Zagni C et al. (2017) The Search for Potent, Small‐Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 37: 1373‐1428 https://www.ncbi.nlm.nih.gov/pubmed/28181261?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=918

Overview

In humans, the peptidyl arginine deiminases (PADIs; http://www.genenames.org/cgi‐bin/genefamilies/set/677) are a family of five enzymes, PADI1‐4 and PADI6. PADIs catalyze the deimination of protein L‐arginine residues to L‐citrulline and ammonia, generating peptidyl‐citrulline on histones, fibrinogen, and other biologically relevant proteins. The human isozymes exhibit tissue‐specific expression patterns [http://www.ncbi.nlm.nih.gov/pubmed/12606753?dopt=AbstractPlus]. Overexpression and/or increased PADI activity is observed in several diseases, including rheumatoid arthritis, Alzheimer's disease, multiple sclerosis, lupus, Parkinson's disease, and cancer [http://www.ncbi.nlm.nih.gov/pubmed/23175390?dopt=AbstractPlus]. Pharmacological PADI inhibition reverses protein‐hypercitrullination and disease in mouse models of multiple sclerosis [http://www.ncbi.nlm.nih.gov/pubmed/23118341?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=918.

Further reading on 3.5.3.15 Peptidyl arginine deiminases (PADI)

Koushik S et al. (2017) PAD4: pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin. Ther. Targets 21: 433‐447 https://www.ncbi.nlm.nih.gov/pubmed/28281906?dopt=AbstractPlus

Tu R et al. (2016) Peptidyl Arginine Deiminases and Neurodegenerative Diseases. Curr. Med. Chem. 23: 104‐14 https://www.ncbi.nlm.nih.gov/pubmed/26577926?dopt=AbstractPlus

Whiteley CG. (2014) Arginine metabolising enzymes as targets against Alzheimers’ disease. Neurochem. Int. 67: 23‐31 https://www.ncbi.nlm.nih.gov/pubmed/24508404?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=896

Overview

small G‐proteins, are a family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). They are a type of G‐protein found in the cytosol that are homologous to the alpha subunit of heterotrimeric G‐proteins, but unlike the alpha subunit of G proteins, a small GTPase can function independently as a hydrolase enzyme to bind to and hydrolyze a guanosine triphosphate (GTP) to form guanosine diphosphate (GDP). The best‐known members are the Ras GTPases and hence they are sometimes called Ras subfamily GTPases.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=897

Overview

The RAS proteins (HRAS, NRAS and KRAS) are small membrane‐localised G protein‐likemolecules of 21 kd. They act as an on/off switch linking receptor and non‐receptor tyrosine kinase activation to downstream cytoplasmic or nuclear events. Binding of GTP activates the switch, and hydrolysis of the GTP to GDP inactivates the switch.

The RAS proto‐oncogenes are the most frequently mutated class of proteins in human cancers. Common mutations compromise the GTP‐hydrolysing ability of the proteins causing constitutive activation [http://www.ncbi.nlm.nih.gov/pubmed/7900159?dopt=AbstractPlus], which leads to increased cell proliferation and decreased apoptosis [http://www.ncbi.nlm.nih.gov/pubmed/17721087?dopt=AbstractPlus]. Because of their importance in oncogenic transformation these proteins have become the targets of intense drug discovery effort [http://www.ncbi.nlm.nih.gov/pubmed/22004085?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=897.

Further reading on RAS subfamily

Dorard C et al. (2017) Deciphering the RAS/ERK pathway in vivo. Biochem. Soc. Trans. 45: 27‐36 https://www.ncbi.nlm.nih.gov/pubmed/28202657?dopt=AbstractPlus

Keeton AB et al. (2017) The RAS‐Effector Interaction as a Drug Target. Cancer Res. 77: 221‐226 https://www.ncbi.nlm.nih.gov/pubmed/28062402?dopt=AbstractPlus

Lu S et al. (2016) Ras Conformational Ensembles, Allostery, and Signaling. Chem. Rev. 116: 6607‐65 https://www.ncbi.nlm.nih.gov/pubmed/26815308?dopt=AbstractPlus

Ostrem JM et al. (2016) Direct small‐molecule inhibitors of KRAS: from structural insights to mechanism‐based design. Nat Rev Drug Discov 15: 771‐785 https://www.ncbi.nlm.nih.gov/pubmed/27469033?dopt=AbstractPlus

Papke B et al. (2017) Drugging RAS: Know the enemy. Science 355: 1158‐1163 https://www.ncbi.nlm.nih.gov/pubmed/28302824?dopt=AbstractPlus

Quah SY et al. (2016) Pharmacological modulation of oncogenic Ras by natural products and their derivatives: Renewed hope in the discovery of novel anti‐Ras drugs. Pharmacol. Ther. 162: 35‐57 https://www.ncbi.nlm.nih.gov/pubmed/27016467?dopt=AbstractPlus

Simanshu DK et al. (2017) RAS Proteins and Their Regulators in Human Disease. Cell 170: 17‐33 https://www.ncbi.nlm.nih.gov/pubmed/28666118?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=938

Overview

The Rab family of proteins is a member of the Ras superfamily of monomeric G proteins. Rab GTPases regulate many steps of membrane traffic, including vesicle formation, vesicle movement along actin and tubulin networks, and membrane fusion. These processes make up the route through which cell surface proteins are trafficked from the Golgi to the plasma membrane and are recycled. Surface protein recycling returns proteins to the surface whose function involves carrying another protein or substance inside the cell, such as the transferrin receptor, or serves as a means of regulating the number of a certain type of protein molecules on the surface ( see http://www.genenames.org/cgi‐bin/genefamilies/set/388, http://www.genenames.org/cgi‐bin/genefamilies/set/388 ).

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=938.

Alexander Stephen PH, Fabbro Doriano, Kelly Eamonn, Mathie Alistair, Peters John A, Veale Emma L, Armstrong Jane F, Faccenda Elena, Harding Simon D, Pawson Adam J, Sharman Joanna L, Southan Christopher, Davies Jamie A and CGTP Collaborators (2019) THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176: S297–S396. doi: 10.1111/bph.14752.

References


Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES