Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2019 Nov 11;176(Suppl 1):S397–S493. doi: 10.1111/bph.14753

THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters

Stephen PH Alexander 1, Eamonn Kelly 2, Alistair Mathie 3, John A Peters 4, Emma L Veale 3, Jane F Armstrong 5, Elena Faccenda 5, Simon D Harding 5, Adam J Pawson 5, Joanna L Sharman 5, Christopher Southan 5, Jamie A Davies 5; CGTP Collaborators, Catriona MH Anderson 6, Stefan Bröer 7, Paul Dawson 8, Bruno Hagenbuch 9, James R Hammond 10, Jules Hancox 11, Ken‐ichi Inui 12, Yoshikatsu Kanai 13, Stephan Kemp 14, David T Thwaites 1, Tiziano Verri 15
PMCID: PMC6844579  PMID: 31710713

Abstract

The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14753. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

1.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Overview

The majority of biological solutes are charged organic or inorganic molecules. Cellular membranes are hydrophobic and, therefore, effective barriers to separate them allowing the formation of gradients, which can be exploited, for example, in the generation of energy. Membrane transporters carry solutes across cell membranes, which would otherwise be impermeable to them. The energy required for active transport processes is obtained from ATP turnover or by exploiting ion gradients.

ATP‐driven transporters can be divided into three major classes: P‐type ATPases; F‐type or V‐type ATPases and ATP‐binding cassette transporters. The first of these, P‐type ATPases, are multimeric proteins, which transport (primarily) inorganic cations. The second, F‐type or V‐type ATPases, are proton‐coupled motors, which can function either as transporters or as motors. Last, are ATP‐binding cassette transporters, heavily involved in drug disposition as well as transporting endogenous solutes.

The second largest family of membrane proteins in the human genome, after the G protein‐coupled receptors, are the SLC solute carrier family. Within the solute carrier family, there are a great variety of solutes transported, from simple inorganic ions to amino acids and sugars to relatively complex organic molecules like haem. The solute carrier family includes 65 families of almost 400 members. Many of these overlap in terms of the solutes that they carry. For example, amino acids accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43 families. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Some SLC family members remain orphan transporters, in as much as a physiological function has yet to be dtermined. Within the SLC super‐family, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain protein. Membrane topology predictions for other families suggest 3,4,6,7,8,9,10,11,12,13 or 14 TM domains. The SLC transporters include members which function as antiports, where solute movement in one direction is balanced by a solute moving in the reverse direction. Symports allow concentration gradients of one solute to allow co‐transport of a second solute across a membrane. A third, relatively small group are equilibrative transporters, which allow solutes to travel across membranes down their concentration gradients. A more complex family of transporters, the SLC27 fatty acid transporters also express enzymatic function. Many of the transporters also express electrogenic properties of ion channels.

Family structure

S399 ATP‐binding cassette transporter family

S399 ABCA subfamily

S401 ABCB subfamily

S403 ABCC subfamily

S404 ABCD subfamily of peroxisomal ABC transporters

S405 ABCG subfamily

S406 F‐type and V‐type ATPases

S406 F‐type ATPase

S407 V‐type ATPase

S407 P‐type ATPases

S407 Na+/K+‐ATPases

S408 Ca2+‐ATPases

S408 H+/K+‐ATPases

S408 Cu+‐ATPases

S409 Phospholipid‐transporting ATPases

S409 SLC superfamily of solute carriers

S410 SLC1 family of amino acid transporters

S410 Glutamate transporter subfamily

S412 Alanine/serine/cysteine transporter subfamily

S413 SLC2 family of hexose and sugar alcohol transporters

S413 Class I transporters

S414 Class II transporters

S415 Proton‐coupled inositol transporter

S415 SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

S415 SLC3 family

S416 SLC7 family

S417 SLC4 family of bicarbonate transporters

S417 Anion exchangers

S418 Sodium‐dependent HCO3 transporters

S418 SLC5 family of sodium‐dependent glucose transporters

S419 Hexose transporter family

S420 Choline transporter

S421 Sodium iodide symporter, sodium‐dependent multivitamin transporter and sodium‐coupled monocarboxylate transporters

S422 Sodium myo‐inositol cotransporter transporters

S423 SLC6 neurotransmitter transporter family

S423 Monoamine transporter subfamily

S424 GABA transporter subfamily

S425 Glycine transporter subfamily

S427 Neutral amino acid transporter subfamily

S428 SLC8 family of sodium/calcium exchangers

S429 SLC9 family of sodium/hydrogen exchangers

S429 SLC10 family of sodium‐bile acid co‐transporters

S431 SLC11 family of proton‐coupled metal ion transporters

S431 SLC12 family of cation‐coupled chloride transporters

S433 SLC13 family of sodium‐dependent sulphate/carboxylate transporters

S434 SLC14 family of facilitative urea transporters

S435 SLC15 family of peptide transporters

S437 SLC16 family of monocarboxylate transporters

S438 SLC17 phosphate and organic anion transporter family

S438 Type I sodium‐phosphate co‐transporters

S439 Sialic acid transporter

S439 Vesicular glutamate transporters (VGLUTs)

S440 Vesicular nucleotide transporter

S440 SLC18 family of vesicular amine transporters

S442 SLC19 family of vitamin transporters

S443 SLC20 family of sodium‐dependent phosphate transporters

S443 SLC22 family of organic cation and anion transporters

S444 Organic cation transporters (OCT)

S445 Organic zwitterions/cation transporters (OCTN)

S446 Organic anion transporters (OATs)

S446 Urate transporter

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=200

S447 Atypical SLC22B subfamily

S448 SLC23 family of ascorbic acid transporters

S449 SLC24 family of sodium/potassium/calcium exchangers

S450 SLC25 family of mitochondrial transporters

S450 Mitochondrial di‐ and tri‐carboxylic acid transporter subfamily

S451 Mitochondrial amino acid transporter subfamily

S452 Mitochondrial phosphate transporters

S452 Mitochondrial nucleotide transporter subfamily

S453 Mitochondrial uncoupling proteins

S454 Miscellaneous SLC25 mitochondrial transporters

S454 SLC26 family of anion exchangers

S454 Selective sulphate transporters

S455 Chloride/bicarbonate exchangers

S455 Anion channels

S456 Other SLC26 anion exchangers

S457 SLC27 family of fatty acid transporters

S458 SLC28 and SLC29 families of nucleoside transporters

S458 SLC28 family

S459 SLC29 family

S461 SLC30 zinc transporter family

S461 SLC31 family of copper transporters

S462 SLC32 vesicular inhibitory amino acid transporter

S463 SLC33 acetylCoA transporter

S464 SLC34 family of sodium phosphate co‐transporters

S465 SLC35 family of nucleotide sugar transporters

S466 SLC36 family of proton‐coupled amino acid transporters

S468 SLC37 family of phosphosugar/phosphate exchangers

S468 SLC38 family of sodium‐dependent neutral amino acid transporters

S469 System A‐like transporters

S469 System N‐like transporters

S470 Orphan SLC38 transporters

S470 SLC39 family of metal ion transporters

S471 SLC40 iron transporter

S472 SLC41 family of divalent cation transporters

S473 SLC42 family of Rhesus glycoprotein ammonium transporters

S473 SLC43 family of large neutral amino acid transporters

S474 SLC44 choline transporter‐like family

S475 SLC45 family of putative sugar transporters

S475 SLC46 family of folate transporters

S477 SLC47 family of multidrug and toxin extrusion transporters

S477 SLC48 heme transporter

S478 SLC49 family of FLVCR‐related heme transporters

S479 SLC50 sugar transporter

S479 SLC51 family of steroid‐derived molecule transporters

S480 SLC52 family of riboflavin transporters

S481 SLC53 Phosphate carriers

S481 SLC54 Mitochondrial pyruvate carriers

S482 SLC55 Mitochondrial cation/proton exchangers

S482 SLC56 Sideroflexins

S483 SLC57 NiPA‐like magnesium transporter family

S483 SLC58 MagT‐like magnesium transporter family

S484 SLC59 Sodium‐dependent lysophosphatidylcholine symporter family

S484 SLC60 Glucose transporters

S485 SLC61 Molybdate transporter family

S485 SLC62 Pyrophosphate transporters

S486 SLC63 Sphingosine‐phosphate transporters

S486 SLC64 Golgi Ca2+/H+ exchangers

S487 SLC65 NPC‐type cholesterol transporters

S488 SLCO family of organic anion transporting polypeptides

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=136

Overview

ATP‐binding cassette transporters are ubiquitous membrane proteins characterized by active ATP‐dependent movement of a range of substrates, including ions, lipids, peptides, steroids. Individual subunits are typically made up of two groups of 6TM‐spanning domains, with two nucleotide‐binding domains (NBD). The majority of eukaryotic ABC transporters are ‘full’ transporters incorporating both TM and NBD entities. Some ABCs, notably the ABCD and ABCG families are half‐transporters with only a single membrane spanning domain and one NBD, and are only functional as homo‐ or heterodimers. Eukaryotic ABC transporters convey substrates from the cytoplasm, either out of the cell or into intracellular organelles. Their role in the efflux of exogenous compounds, notably chemotherapeutic agents, has led to considerable interest.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=151

Overview

To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment [http://www.ncbi.nlm.nih.gov/pubmed/16586097?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=756 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=758 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=759
Common abbreviation ABC1, CERP ABC3, ABCC ABCR
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:29, http://www.uniprot.org/uniprot/O95477 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:33, http://www.uniprot.org/uniprot/Q99758 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:34, http://www.uniprot.org/uniprot/P78363
Selective ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9183 (Binding) [http://www.ncbi.nlm.nih.gov/pubmed/18805791?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7277 [http://www.ncbi.nlm.nih.gov/pubmed/15514211?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15140889?dopt=AbstractPlus]
Comments Loss‐of‐function mutations are associated with pulmonary surfactant deficiency Retinal‐specific transporter of N‐retinylPE; loss‐of‐function mutations are associated with childhood‐onset Stargardt disease, a juvenile onset macular degenerative disease. The earlier onset disease is often associated with the more severe and deleterious ABCA4 variants [http://www.ncbi.nlm.nih.gov/pubmed/25312043?dopt=AbstractPlus]. ABCA4 facilitates the clearance of all‐trans‐retinal from photoreceptor disc membranes following photoexcitation. ABCA4 can also transport N‐11‐cis‐retinylidene‐phosphatidylethanolamine, the Schiff‐base adduct of 11‐cis‐retinal; loss of function mutation cause a buildup of lipofuscin, atrophy of the central retina, and severe progressive loss in vision [http://www.ncbi.nlm.nih.gov/pubmed/24707049?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=760 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=761 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=762 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=766
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:35, http://www.uniprot.org/uniprot/Q8WWZ7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:36, http://www.uniprot.org/uniprot/Q8N139 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:37, http://www.uniprot.org/uniprot/Q8IZY2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14637, http://www.uniprot.org/uniprot/Q86UK0
Comments ABCA5 is a lysosomal protein whose loss of function compromises integrity of lysosomes and leads to intra‐endolysosomal accumulation of cholesterol. It has recently been associated with Congenital Generalized Hypertrichosis Terminalis (CGHT), a hair overgrowth syndrome, in a patient with a mutation in ABCA5 that significantly decreased its expression [http://www.ncbi.nlm.nih.gov/pubmed/24831815?dopt=AbstractPlus]. A recent genome wide association study identified an ABCA6 variant associated with cholesterol levels [http://www.ncbi.nlm.nih.gov/pubmed/25751400?dopt=AbstractPlus]. Genome wide association studies identify ABCA7 variants as associated with Alzheimer's Disease [http://www.ncbi.nlm.nih.gov/pubmed/21460840?dopt=AbstractPlus]. Reported to play a role in skin ceramide formation [http://www.ncbi.nlm.nih.gov/pubmed/18957418?dopt=AbstractPlus]. A recent study shows that ABCA12 expression also impacts cholesterol efflux from macrophages. ABCA12 is postulated to associate with ABCA1 and LXR beta, and stabilize expression of ABCA1. ABCA12 deficiency causes decreased expression of Abca1, Abcg1 and Nr1h2 [http://www.ncbi.nlm.nih.gov/pubmed/23931754?dopt=AbstractPlus].

Comments

A number of structural analogues are not found in man: Abca14 (http://www.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000062017;r=7:127347475‐127468866); Abca15 (http://www.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000054746;r=7:127472198‐127551201); Abca16 (http://www.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000051900;r=7:127553161‐127688327) and Abca17 (http://www.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000035435;r=17:24401204‐24487974).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=152

Overview

The ABCB subfamily is composed of four full transporters and two half transporters. This is the only human subfamily to have both half and full types of transporters. ABCB1 was discovered as a protein overexpressed in certain drug resistant tumor cells. It is expressed primarily in the blood brain barrier and liver and is thought to be involved in protecting cells from toxins. Cells that overexpress this protein exhibit multi‐drug resistance [http://www.ncbi.nlm.nih.gov/pubmed/11441126?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=768 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=769 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=770
Common abbreviation MDR1, PGP1 TAP1 TAP2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:40, http://www.uniprot.org/uniprot/P08183 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:43, http://www.uniprot.org/uniprot/Q03518 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:44, http://www.uniprot.org/uniprot/Q03519
Comments Responsible for the cellular export of many therapeutic drugs. The mouse and rat have two Abcb1 genes (gene names; Abcb1a and Abcb1b) while the human has only the one gene, ABCB1. Endoplasmic reticulum peptide transporter is a hetero‐dimer composed of the two half‐transporters, TAP1 (ABCB2) and TAP2 (ABCB3). The transporter shuttles peptides into the endoplasmic reticulum where they are loaded onto major histocompatibility complex class I (MHCI) molecules via the macromoldecular peptide‐loading complex and are eventually presented at the cell surface, attributing to TAP an important role in the adaptive immune response [http://www.ncbi.nlm.nih.gov/pubmed/24923865?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=771 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=772 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=773
Common abbreviation PGY3 MTABC3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:45, http://www.uniprot.org/uniprot/P21439 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:46, http://www.uniprot.org/uniprot/Q2M3G0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:47, http://www.uniprot.org/uniprot/Q9NP58
Comments Transports phosphatidylcholinefrom intracellular to extracellular face of the hepatocyte canalicular membrane [http://www.ncbi.nlm.nih.gov/pubmed/16622704?dopt=AbstractPlus]. Heterozygous ABCB4 variants contribute to mild cholestatic phenotypes, while homozygous deficiency leads to Progressive Intrahepatic Familial Cholestasis (PFIC) Type 3, and increased risk of cholesterol gallstones [http://www.ncbi.nlm.nih.gov/pubmed/23583734?dopt=AbstractPlus]. A drug efflux transporter that has been shown to identify cancer stem‐like cells in diverse human malignancies, and is also identified as a limbal stem cell that is required for corneal development and repair [http://www.ncbi.nlm.nih.gov/pubmed/25030174?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24934811?dopt=AbstractPlus]. Putative mitochondrial porphyrin transporter [http://www.ncbi.nlm.nih.gov/pubmed/17006453?dopt=AbstractPlus]; other subcellular localizations are possible, such as the plasma membrane, as a specific determinant of the Langereis blood group system [http://www.ncbi.nlm.nih.gov/pubmed/22246506?dopt=AbstractPlus]. Loss of Abcb6 expression in mice leads to decreased expression and activity of CYP450 [http://www.ncbi.nlm.nih.gov/pubmed/25623066?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=774 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=775 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=776
Common abbreviation ABC7 MABC1 TAPL
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:48, http://www.uniprot.org/uniprot/O75027 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:49, http://www.uniprot.org/uniprot/Q9NUT2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:50, http://www.uniprot.org/uniprot/Q9NP78
Comments Mitochondrial; reportedly essential for haematopoiesis [http://www.ncbi.nlm.nih.gov/pubmed/17192398?dopt=AbstractPlus]. Deletion studies in mice demonstrate that Abcb7 is essential in mammals and substantiate a role for mitochondria in cytosolic Fe‐S cluster assembly [http://www.ncbi.nlm.nih.gov/pubmed/16467350?dopt=AbstractPlus]. Mitochondrial; suggested to play a role in chemoresistance of melanoma [http://www.ncbi.nlm.nih.gov/pubmed/19147539?dopt=AbstractPlus]. Cardiac specific deletion of Abcb8 leads to cardiomyopathy and accumulation of mitochondrial iron, and is thus thought to modulate mitochondrial iron export [http://www.ncbi.nlm.nih.gov/pubmed/22375032?dopt=AbstractPlus]. A homodimeric transport complex that translocates cytosolic peptides into the lumen of lysosome for degradation [http://www.ncbi.nlm.nih.gov/pubmed/22641697?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=777 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=778
Common abbreviation MTABC2 ABC16
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:41, http://www.uniprot.org/uniprot/Q9NRK6 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:42, http://www.uniprot.org/uniprot/O95342
Ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4545 (Binding) (pK i 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/12404239?dopt=AbstractPlus]
Comments Mitochondrial location; the first human ABC transporter to have a crystal structure reported [http://www.ncbi.nlm.nih.gov/pubmed/23716676?dopt=AbstractPlus]. ABCB10 is important in early steps of heme synthesis in the heart and is required for normal red blood cell development [http://www.ncbi.nlm.nih.gov/pubmed/23720443?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22085049?dopt=AbstractPlus]. Loss‐of‐function mutations are associated with progressive familial intrahepatic cholestasis type 2 [http://www.ncbi.nlm.nih.gov/pubmed/19684528?dopt=AbstractPlus]. ATP‐dependent transport of bile acids into the confines of the canalicular space by ABCB11 (BSEP) generates an osmotic gradient and thereby, bile flow. Mutations in BSEP that decrease its function or expression cause Progressive Familial Cholestasis Type 2 (PFIC2), which in severe cases, can be fatal in the absence of a liver transplant. Drugs that inhibit BSEP function with IC50 values less than 25 μM [http://www.ncbi.nlm.nih.gov/pubmed/20829430?dopt=AbstractPlus] or decrease its expression [http://www.ncbi.nlm.nih.gov/pubmed/24335466?dopt=AbstractPlus] can cause Drug‐Induced Liver Injury (DILI) in the form of cholestatic liver injury.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=153

Overview

Subfamily ABCC contains thirteen members and nine of these transporters are referred to as Multidrug Resistance Proteins (MRPs). MRP proteins are found throughout nature and mediate many important functions. They are known to be involved in ion transport, toxin secretion, and signal transduction [http://www.ncbi.nlm.nih.gov/pubmed/11441126?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=779 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=780 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=781
Common abbreviation MRP1 MRP2, cMOAT MRP3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:51, http://www.uniprot.org/uniprot/P33527 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:53, http://www.uniprot.org/uniprot/Q92887 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:54, http://www.uniprot.org/uniprot/O15438
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8762 (pK i 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/9647783?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8776 (pK i 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/10570049?dopt=AbstractPlus]
Comments Exhibits a broad substrate specificity [http://www.ncbi.nlm.nih.gov/pubmed/17187268?dopt=AbstractPlus], including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 (Km 97 nM [http://www.ncbi.nlm.nih.gov/pubmed/7961706?dopt=AbstractPlus]) and estradiol‐17β‐glucuronide [http://www.ncbi.nlm.nih.gov/pubmed/9875554?dopt=AbstractPlus]. Loss‐of‐function mutations are associated with Dubin‐Johnson syndrome, in which plasma levels of conjugated bilirubin are elevated (http://omim.org/entry/237500). Transports conjugates of glutathione, sulfate or glucuronide [http://www.ncbi.nlm.nih.gov/pubmed/16586096?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=782 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=783 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=784
Common abbreviation MRP4 MRP5 MRP6
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:55, http://www.uniprot.org/uniprot/O15439 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:56, http://www.uniprot.org/uniprot/O15440 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:57, http://www.uniprot.org/uniprot/O95255
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8802 (pIC50 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/12523936?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8829 (pK i 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/22380603?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743 (pK i 5.9) [http://www.ncbi.nlm.nih.gov/pubmed/22380603?dopt=AbstractPlus]
Comments Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned [http://www.ncbi.nlm.nih.gov/pubmed/16586096?dopt=AbstractPlus]; reported to export prostaglandins in a manner sensitive to NSAIDS [http://www.ncbi.nlm.nih.gov/pubmed/12835412?dopt=AbstractPlus] Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned [http://www.ncbi.nlm.nih.gov/pubmed/16586096?dopt=AbstractPlus] Loss‐of‐function mutations in ABCC6 are associated with pseudoxanthoma elasticum (http://omim.org/entry/264800).
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2594 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2746 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=786
Systematic nomenclature ABCC8
Common abbreviation SUR1 SUR2 MRP8
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:59, http://www.uniprot.org/uniprot/Q09428 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:60, http://www.uniprot.org/uniprot/O60706 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14639, http://www.uniprot.org/uniprot/Q96J66
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6841 (pIC50 7) [http://www.ncbi.nlm.nih.gov/pubmed/15380228?dopt=AbstractPlus]
Comments The sulfonyurea drugs (acetohexamide, tolbutamide and glibenclamide) appear to bind sulfonylurea receptors and it has been shown experimentally that tritiated glibenclamide can be used to pull out a 140 kDa protein identified as SUR1 (now known as ABCC8) [http://www.ncbi.nlm.nih.gov/pubmed/22260657?dopt=AbstractPlus]. SUR2 (ABCC9) has also been identified [http://www.ncbi.nlm.nih.gov/pubmed/7502040?dopt=AbstractPlus]. However, this is not the full mechanism of action and the functional channel has been characterised as a hetero‐octamer formed by four SUR and four Kir6.2 subunits, with the Kir6.2 subunits forming the core ion pore and the SUR subunits providing the regulatory properties [http://www.ncbi.nlm.nih.gov/pubmed/10194514?dopt=AbstractPlus]. Co‐expression of Kir6.2 with SUR1, reconstitutes the ATP‐dependent K+ conductivity inhibited by the sulfonyureas [http://www.ncbi.nlm.nih.gov/pubmed/7502040?dopt=AbstractPlus]. Associated with familial atrial fibrillation, Cantu syndrome and familial isolated dilated cardiomyopathy. Single nucleotide polymorphisms distinguish wet vs. dry earwax (http://omim.org/entry/117800); an association between earwax allele and breast cancer risk is reported in Japanese but not European populations.

Comments

ABCC7 (also known as http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=707, a 12TM ABC transporter‐type protein, is a cAMP‐regulated epithelial cell membrane Cl channel involved in normal fluid transport across various epithelia and can be viewed in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=120 section of the Guide. ABCC8 (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000006071;r=11:17414432‐17498449, also known as SUR1, sulfonylurea receptor 1) and ABCC9 (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000069431;r=12:21950335‐22094336, also known as SUR2, sulfonylurea receptor 2) are unusual in that they lack transport capacity but regulate the activity of particular K+ channels (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=74), conferring nucleotide sensitivity to these channels to generate the canonical KATP channels. ABCC13 (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000243064;r=21:15646120‐15735075) is a possible pseudogene.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=154

Overview

Peroxisomes are indispensable organelles in higher eukaryotes. They are essential for the oxidation of a wide variety of metabolites, which include: saturated, monounsaturated and polyunsaturated fatty acids, branched‐chain fatty acids, bile acids and dicarboxylic acids [http://www.ncbi.nlm.nih.gov/pubmed/21488864?dopt=AbstractPlus]. However, the peroxisomal membrane forms an impermeable barrier to these metabolites. The mammalian peroxisomal membrane harbours three ATP‐binding cassette (ABC) half‐transporters, which act as homo‐ and/or heterodimers to transport these metabolites across the peroxisomal membrane.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=788 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=789 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=790
Common abbreviation ALDP ALDR PMP70
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:61, http://www.uniprot.org/uniprot/P33897 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:66, http://www.uniprot.org/uniprot/Q9UBJ2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:67, http://www.uniprot.org/uniprot/P28288
Comments Transports coenzyme A esters of very long chain fatty acids [http://www.ncbi.nlm.nih.gov/pubmed/18757502?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21145416?dopt=AbstractPlus]. Loss‐of‐function mutations in ABCD1 (mutation registry held by the Adrenoleukodystrophy database; https://adrenoleukodystrophy.info/) result in adrenoleukodystrophy (http://omim.org/entry/300100) [http://www.ncbi.nlm.nih.gov/pubmed/27312864?dopt=AbstractPlus]. In vitro experiments indicate that ABCD2 has overlapping substrate specificity with ABCD1 towards saturated and monounsaturated very long‐chain fatty acids, albeit at much lower specificity. ABCD2 has affinity for the polyunsaturated fatty acids C22:6‐CoA and C24:6‐CoA. However, in vivo proof for its true function is still lacking. No disease has yet been linked to a deficiency of ABCD2. Transports long‐chain dicarboxylic acids, branched‐chain fatty acids and C27 bile acids DHC‐CoA and THC‐CoA [http://www.ncbi.nlm.nih.gov/pubmed/25168382?dopt=AbstractPlus]. In mitochondrial fatty acid deficient cells and mice, ABCD3 accepts medium and long‐chain fatty acids

Comments

ABCD4 (http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000119688;r=14:74752126‐74769759, also known as PMP69, PXMP1‐L or P70R) is located at the lysosome and is involved in the transport of vitamin B12 (cobalamin) from lysosomes into the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/22922874?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=155

Overview

This family of ‘half‐transporters’ act as homo‐ or heterodimers; particularly ABCG5 and ABCG8 are thought to be obligate heterodimers. The ABCG5/ABCG heterodimer sterol transporter structure has been determined [http://www.ncbi.nlm.nih.gov/pubmed/27144356?dopt=AbstractPlus], suggesting an extensive intracellular nucleotide binding domain linked to the transmembrane domains by a fold in the primary sequence. The functional ABCG2 transporter appears to be a homodimer with structural similarities to the ABCG5/ABCG8 heterodimer [http://www.ncbi.nlm.nih.gov/pubmed/28554189?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=791 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=792 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=793 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=794 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=795
Common abbreviation ABC8 ABCP
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:73, http://www.uniprot.org/uniprot/P45844 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:74, http://www.uniprot.org/uniprot/Q9UNQ0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13884, http://www.uniprot.org/uniprot/Q9H172 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13886, http://www.uniprot.org/uniprot/Q9H222 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13887, http://www.uniprot.org/uniprot/Q9H221
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1024 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/11437380?dopt=AbstractPlus]
Comments Transports sterols and choline phospholipids [http://www.ncbi.nlm.nih.gov/pubmed/21175590?dopt=AbstractPlus] Exhibits a broad substrate specificity, including urate and haem, as well as multiple synthetic compounds [http://www.ncbi.nlm.nih.gov/pubmed/21175590?dopt=AbstractPlus]. Putative functional dependence on ABCG1 The ABCG5/ABCG8 heterodimer transports phytosterols and cholesterol [http://www.ncbi.nlm.nih.gov/pubmed/27144356?dopt=AbstractPlus]. Loss‐of‐function mutations in ABCG5 or ABCG8 are associated with sitosterolemia (http://omim.org/entry/210250). The ABCG5/ABCG8 heterodimer transports phytosterols and cholesterol [http://www.ncbi.nlm.nih.gov/pubmed/27144356?dopt=AbstractPlus]. Loss‐of‐function mutations in ABCG5 or ABCG8 are associated with sitosterolemia (http://omim.org/entry/210250).

Comments on ATP‐binding cassette transporter family

A further group of ABC transporter‐like proteins have been identified to lack membrane spanning regions and are not believed to be functional transporters, but appear to have a role in protein translation [http://www.ncbi.nlm.nih.gov/pubmed/16421098?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19570978?dopt=AbstractPlus]: https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:69 (http://www.uniprot.org/uniprot/P61221, also known as OABP or 2′‐5′ oligoadenylate‐binding protein); https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:70 (http://www.uniprot.org/uniprot/Q8NE71, also known as ABC50 or TNF‐a‐stimulated ABC protein); https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:71 (http://www.uniprot.org/uniprot/Q9UG63, also known as iron‐inhibited ABC transporter 2) and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:72 (http://www.uniprot.org/uniprot/Q9NUQ8).

Further reading on ATP‐binding cassette transporter family

Baker A et al. (2015) Peroxisomal ABC transporters: functions and mechanism. Biochem. Soc. Trans. 43: 959‐65 https://www.ncbi.nlm.nih.gov/pubmed/26517910?dopt=AbstractPlus

Beis K. (2015) Structural basis for the mechanism of ABC transporters. Biochem. Soc. Trans. 43: 889‐93 https://www.ncbi.nlm.nih.gov/pubmed/26517899?dopt=AbstractPlus

Chen Z et al. (2016) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 370: 153‐64 https://www.ncbi.nlm.nih.gov/pubmed/26499806?dopt=AbstractPlus

Kemp S et al. (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br. J. Pharmacol. 164: 1753‐66 https://www.ncbi.nlm.nih.gov/pubmed/21488864?dopt=AbstractPlus

Kerr ID et al. (2011) The ABCG family of membrane‐associated transporters: you don't have to be big to be mighty. Br. J. Pharmacol. 164: 1767‐79 https://www.ncbi.nlm.nih.gov/pubmed/21175590?dopt=AbstractPlus

Kloudova A et al. (2017) The Role of Oxysterols in Human Cancer. Trends Endocrinol. Metab. 28: 485‐496 https://www.ncbi.nlm.nih.gov/pubmed/28410994?dopt=AbstractPlus

López‐Marqués RL et al. (2015) Structure and mechanism of ATP‐dependent phospholipid transporters. Biochim. Biophys. Acta 1850: 461‐475 https://www.ncbi.nlm.nih.gov/pubmed/24746984?dopt=AbstractPlus

Neul C etal. (2016) Impact of Membrane Drug Transporters on Resistance to Small‐Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 37: 904‐932 https://www.ncbi.nlm.nih.gov/pubmed/27659854?dopt=AbstractPlus

Peña‐Solórzano D et al. (2017) ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 37: 987‐1050 https://www.ncbi.nlm.nih.gov/pubmed/28005280?dopt=AbstractPlus

Robey RW et al. (2018) Revisiting the role of ABC transporters in multidrug‐resistant cancer. Nat Rev Cancer 18: 452‐464 [https://www.ncbi.nlm.nih.gov/pubmed/29643473]

Vauthier V et al. (2017) Targeted pharmacotherapies for defective ABC transporters. Biochem. Pharmacol. 136: 1‐11 https://www.ncbi.nlm.nih.gov/pubmed/28245962?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=137

Overview

The F‐type (ATP synthase) and the V‐type (vacuolar or vesicular proton pump) ATPases, although having distinct sub‐cellular locations and roles, exhibit marked similarities in subunit structure and mechanism. They are both composed of a ‘soluble’ complex (termed F1 or V1) and a membrane complex (Fo or Vo). Within each ATPase complex, the two individual sectors appear to function as connected opposing rotary motors, coupling catalysis of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 synthesis or hydrolysis to proton transport. Both the F‐type and V‐type ATPases have been assigned enzyme commission number http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=3.6.3.14

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=156

Overview

The F‐type ATPase, also known as ATP synthase or ATP phosphohydrolase (H+‐transporting), is a mitochondrial membrane‐associated multimeric complex consisting of two domains, an F0 channel domain in the membrane and an F1 domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, although it is also possible for the enzyme to function as an AT‐Pase. The ATP5O subunit (oligomycin sensitivity‐conferring protein, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:850, (http://www.uniprot.org/uniprot/P48047)), acts as a connector between F1 and F0 motors.

The F1 motor, responsible for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 turnover, has the subunit composition α3β3γδε.

The F0 motor, responsible for ion translocation, is complex in mammals, with probably nine subunits centring on A, B, and C subunits in the membrane, together with D, E, F2, F6, G2 and 8 subunits. Multiple pseudogenes for the F0 motor proteins have been defined in the human genome.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=156.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=157

Overview

The V‐type ATPase is most prominently associated with lysosomes in mammals, but also appears to be expressed on the plasma membrane and neuronal synaptic vesicles.

The V1 motor, for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 turnover, has subunits with a of A‐H.

TheV0 motor, responsible for ion translocation, has six subunits (a‐e).

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=157.

Further reading on F‐type and V‐type ATPases

Brandt K et al. (2015) Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance. Biol. Chem. 396: 1031–42 https://www.ncbi.nlm.nih.gov/pubmed/25838297?dopt=AbstractPlus

Krah A. (2015) Linking structural features from mitochondrial and bacterial F‐type ATP synthases to their distinct mechanisms of ATPase inhibition. Prog. Biophys. Mol. Biol. 119: 94–102 https://www.ncbi.nlm.nih.gov/pubmed/26140992?dopt=AbstractPlus

Marshansky V et al. (2014) Eukaryotic V‐ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta 1837: 857–79 https://www.ncbi.nlm.nih.gov/pubmed/24508215?dopt=AbstractPlus

Noji H et al. (2017) Catalytic robustness and torque generation of the F_1‐ATPase. Biophys Rev 9: 103–118 https://www.ncbi.nlm.nih.gov/pubmed/28424741?dopt=AbstractPlus

Okuno D et al. (2013) Single‐molecule analysis of the rotation of F_1‐ATPase under high hydrostatic pressure. Biophys. J. 105: 1635–42 https://www.ncbi.nlm.nih.gov/pubmed/24094404?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138

Overview

Phosphorylation‐type ATPases (EC 3.6.3.‐) are associated with membranes and the transport of ions or phospholipids. Characteristics of the family are the transient phosphorylation of the transporters at an aspartate residue and the interconversion between E1 and E2 conformations in the activity cycle of the transporters, taken to represent ‘half‐channels’ facing the cytoplasm and extracellular/luminal side of the membrane, respectively.

Sequence analysis across multiple species allows the definition of five subfamilies, P1‐P5. The P1 subfamily includes heavy metal pumps, such as the copper ATPases. The P2 subfamily includes calcium, sodium/potassium and proton/potassium pumps. The P4 and P5 subfamilies include putative phospholipid flippases.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=158

Overview

The cell‐surface Na+/K+‐ATPase is an integral membrane protein which regulates the membrane potential of the cell by maintaining gradients of Na+ and K+ ions across the plasma membrane, also making a small, direct contribution to membrane potential, particularly in cardiac cells. For every molecule of ATP hydrolysed, the Na+/K+‐ATPase extrudes three Na+ ions and imports two K+ ions. The active transporter is a heteromultimer with incompletely defined stoichiometry, possibly as tetramers of heterodimers, each consisting of one of four large, ten TM domain catalytic α subunits and one of three smaller, single TM domain glycoprotein β‐subunits. Additional protein partners known as FXYD proteins (e.g. https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4026, http://www.uniprot.org/uniprot/P54710) appear to associate with and regulate the activity of the pump.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=158.

Comments

Na+/K+‐ATPases are inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4826 and cardiac glycosides, such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4726, as well as potentially endogenous cardiotonic steroids [http://www.ncbi.nlm.nih.gov/pubmed/19325075?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=159

Overview

The sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase (SERCA) is an intracellular membrane‐associated pump for sequestering calcium from the cytosol into intracellular organelles, usually associated with the recovery phase following excitation of muscle and nerves.

The plasma membrane Ca2+‐ATPase (PMCA) is a cell‐surface pump for extruding calcium from the cytosol, usually associated with the recovery phase following excitation of cells. The active pump is a homodimer, each subunit of which is made up of ten TM segments, with cytosolic C‐ and N‐termini and two large intracellular loops.

Secretory pathway Ca2+‐ATPases (SPCA) allow accumulation of calcium and manganese in the Golgi apparatus.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=159.

Comments

The fungal toxin http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4672 has been described to activate SERCA in kidney microsomes [http://www.ncbi.nlm.nih.gov/pubmed/1417961?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5350 [http://www.ncbi.nlm.nih.gov/pubmed/2530215?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5351 [http://www.ncbi.nlm.nih.gov/pubmed/1832668?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5486are widely employed to block SERCA. Thapsigargin has also been described to block the TRPV1 vanilloid receptor [http://www.ncbi.nlm.nih.gov/pubmed/12054538?dopt=AbstractPlus].

The stoichiometry of flux through the PMCA differs from SERCA, with the PMCA transporting 1 Ca2+ while SERCA transports 2 Ca2+.

Loss‐of‐function mutations in SPCA1 appear to underlie Hailey‐Hailey disease [http://www.ncbi.nlm.nih.gov/pubmed/10615129?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=160

Overview

The H+/K+ ATPase is a heterodimeric protein, made up of α and β subunits. The α subunit has 10 TM domains and exhibits catalytic and pore functions, while the β subunit has a single TM domain, which appears to be required for intracellular trafficking and stabilising the α subunit. The ATP4A and ATP4B subunits are expressed together, while the ATP12A subunit is suggested to be expressed with the β1 (ATP1B1) subunit of the Na+/K+‐ATPase [http://www.ncbi.nlm.nih.gov/pubmed/16525125?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=160.

Comments

The gastric H+/K+‐ATPase is inhibited by proton pump inhibitors used for treating excessive gastric acid secretion, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5487 and a metabolite of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5488.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=161

Overview

Copper‐transporting ATPases convey copper ions across cell‐surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:798, http://www.uniprot.org/uniprot/O00244).

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=161.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=162

Overview

These transporters are thought to translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from one side of the phospholipid bilayer to the other to generate asymmetric membranes. They are also proposed to be involved in the generation of vesicles from intracellular and cell‐surface membranes.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=162.

Comments

Loss‐of‐functionmutations in ATP8B1 are associated with type I familial intrahepatic cholestasis.

A further series of structurally‐related proteins have been identified in the human genome, with as yet undefined function, including https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24215 (http://www.uniprot.org/uniprot/Q9HD20), https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30213 (http://www.uniprot.org/uniprot/Q9NQ11), https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24113 (http://www.uniprot.org/uniprot/Q9H7F0), https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:25422 (http://www.uniprot.org/uniprot/Q4VNC1) and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:31789 (http://www.uniprot.org/uniprot/Q4VNC0).

Further reading on P‐type ATPases

Aperia A et al. (2016) Na+‐K+‐ATPase, a new class of plasma membrane receptors. Am. J. Physiol., Cell Physiol. 310: C491–5 https://www.ncbi.nlm.nih.gov/pubmed/26791490?dopt=AbstractPlus

Brini M et al. (2017) The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem. Biophys. Res. Commun. 483: 1116–1124 https://www.ncbi.nlm.nih.gov/pubmed/27480928?dopt=AbstractPlus

Bruce JIE. (2018) Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium 69: 28–36 https://www.ncbi.nlm.nih.gov/pubmed/27553475?dopt=AbstractPlus

Diederich M et al. (2017) Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem. Pharmacol. 125: 1–11 https://www.ncbi.nlm.nih.gov/pubmed/27553475?dopt=AbstractPlus

Dubois C et al. (2016) The calcium‐signaling toolkit: Updates needed. Biochim. Biophys. Acta 1863: 1337–43 https://www.ncbi.nlm.nih.gov/pubmed/26658643?dopt=AbstractPlus

Krebs J. (2015) The plethora of PMCA isoforms: Alternative splicing and differential expression. Biochim. Biophys. Acta 1853: 2018–24 https://www.ncbi.nlm.nih.gov/pubmed/25535949?dopt=AbstractPlus

Little R et al. (2016) Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol. Ther. 159: 23–34 https://www.ncbi.nlm.nih.gov/pubmed/26820758?dopt=AbstractPlus

López‐Marqués RL et al. (2015) Structure and mechanism of ATP‐dependent phospholipid transporters. Biochim. Biophys. Acta 1850: 461–475 https://www.ncbi.nlm.nih.gov/pubmed/24746984?dopt=AbstractPlus

Migocka M. (2015) Copper‐transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life 67: 737–45 https://www.ncbi.nlm.nih.gov/pubmed/26422816?dopt=AbstractPlus

Padányi R et al. (2016) Multifaceted plasmamembrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. Biochim. Biophys. Acta 1863: 1351–63 https://www.ncbi.nlm.nih.gov/pubmed/26707182?dopt=AbstractPlus

Pomorski TG et al. (2016) Lipid somersaults: Uncovering the mechanisms of protein‐mediated lipid flipping. Prog. Lipid Res. 64: 69–84 https://www.ncbi.nlm.nih.gov/pubmed/27528189?dopt=AbstractPlus

Retamales‐Ortega R et al. (2016) P2C‐Type ATPases and Their Regulation. Mol. Neurobiol. 53: 1343–54 https://www.ncbi.nlm.nih.gov/pubmed/25631710?dopt=AbstractPlus

Tadini‐Buoninsegni F et al. (2017) Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life 69: 218–225 https://www.ncbi.nlm.nih.gov/pubmed/28164426?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=863

Overview

The SLC superfamily of solute carriers is the second largest family of membrane proteins after G protein‐coupled receptors, but with a great deal fewer therapeutic drugs that exploit them. As with the ABC transporters, however, they play a major role in drug disposition and so can be hugely influential in determining the clinical efficacy of particular drugs.

48 families are identified on the basis of sequence similarities, but many of them overlap in terms of the solutes that they carry. For example, amino acid accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles.

Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TMdomain protein. Membrane topology predictions for other families suggest 3, 4 6, 7, 8, 9, 10, 11, 12, 13, or 14 TM domains.

Functionally, members may be divided into those dependent on gradients of ions (particularly sodium, chloride or protons), exchange of solutes or simple equilibrative gating. For many members, the stoichiometry of transport is not yet established. Furthermore, one family of transporters also possess enzymatic activity (SLC27), while many members function as ion channels (e.g. SLC1A7/EAAT5), which increases the complexity of function of the SLC superfamily.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=139

Overview

The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [http://www.ncbi.nlm.nih.gov/pubmed/8103691?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17088867?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14530974?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14612154?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9790568?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=163

Overview

Glutamate transporters present the unusual structural motif of 8TM segments and 2 re‐entrant loops [http://www.ncbi.nlm.nih.gov/pubmed/10734120?dopt=AbstractPlus]. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation [http://www.ncbi.nlm.nih.gov/pubmed/17230192?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19924125?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15483603?dopt=AbstractPlus] reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/20708631?dopt=AbstractPlus]). This structural data is in agreementwith the proposed quaternary structure for EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/15265858?dopt=AbstractPlus] and several functional studies that propose the monomer is the functional unit [http://www.ncbi.nlm.nih.gov/pubmed/16128593?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17360917?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17360916?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14982939?dopt=AbstractPlus]. Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers [http://www.ncbi.nlm.nih.gov/pubmed/21127051?dopt=AbstractPlus]. The activity of glutamate transporters located upon both neurones (predominantly EAAT3, 4 and 5) and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate‐glutamine cycle. The http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138 that maintains the ion gradients that drive transport has been demonstrated to co‐assemble with EAAT1 and EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/19553454?dopt=AbstractPlus]. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/20688910?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20883814?dopt=AbstractPlus]. Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss‐of‐function mutations in EAAT3 [http://www.ncbi.nlm.nih.gov/pubmed/21123949?dopt=AbstractPlus]. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting fromadministration of ß‐lactam antibiotics (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5326) is neuroprotective and occurs through NF‐?B‐mediated EAAT2 promoter activation [http://www.ncbi.nlm.nih.gov/pubmed/16274998?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18326497?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15635412?dopt=AbstractPlus] reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/21792905?dopt=AbstractPlus]). http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=86 activation (e.g. by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1056) also leads to enhanced expression of EAAT though promoter activation [http://www.ncbi.nlm.nih.gov/pubmed/17213861?dopt=AbstractPlus]. In addition, several translational activators of EAAT2 have recently been described [http://www.ncbi.nlm.nih.gov/pubmed/20508255?dopt=AbstractPlus] along with treatments that increase the surface expression of EAAT2 (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/21309758?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21426345?dopt=AbstractPlus]), or prevent its down‐regulation (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/21730107?dopt=AbstractPlus]). A thermodynamically uncoupled Cl‐ flux, activated by Na+ and glutamate [http://www.ncbi.nlm.nih.gov/pubmed/15834685?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14612154?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21572047?dopt=AbstractPlus] (Na+ and aspartate in the case of GltPh [http://www.ncbi.nlm.nih.gov/pubmed/21730107?dopt=AbstractPlus]), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability [http://www.ncbi.nlm.nih.gov/pubmed/17908688?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17041592?dopt=AbstractPlus]. Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter [http://www.ncbi.nlm.nih.gov/pubmed/21641307?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=868 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=869 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=870 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=871 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=872
Systematic nomenclature SLC1A3 SLC1A2 SLC1A1 SLC1A6 SLC1A7
Common abbreviation EAAT1 EAAT2 EAAT3 EAAT4 EAAT5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10941, http://www.uniprot.org/uniprot/P43003 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10940, http://www.uniprot.org/uniprot/P43004 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10939, http://www.uniprot.org/uniprot/P43005 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10944, http://www.uniprot.org/uniprot/P48664 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10945, http://www.uniprot.org/uniprot/O00341
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497 (K i 5.8×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6511, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6511, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516 [http://www.ncbi.nlm.nih.gov/pubmed/10570036?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6511 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6511, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6511, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 [http://www.ncbi.nlm.nih.gov/pubmed/8782106?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369
Stoichiometry Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) [http://www.ncbi.nlm.nih.gov/pubmed/9822723?dopt=AbstractPlus] 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) [http://www.ncbi.nlm.nih.gov/pubmed/8857541?dopt=AbstractPlus] Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+(out) Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4609 (membrane potential assay) (pIC50 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/19161278?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4631 (pK B 5) [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4531 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/16014807?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4631 (pK B 6.9) [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4317 (pK B 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/9145919?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4571 (pK B 5), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4573 (pK B 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/9145919?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4626 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/17017964?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4625 ([3H]D‐aspartate uptake assay) (pK i 6.1) [http://www.ncbi.nlm.nih.gov/pubmed/16183084?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4631 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/11078189?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4631 (pK i 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/11677257?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4573 (pK i 4.3) [http://www.ncbi.nlm.nih.gov/pubmed/11299317?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4631 (pK i 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/11677257?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 (Binding) (pK d 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4698, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4075 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 (Binding) (pK d 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4075 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 (Binding) (pK d 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4698, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 (Binding) (pK d 7.9) [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4698, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 (Binding) (pK d 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4698, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4534

Comments

The KB (or Ki) values reported, unless indicated otherwise, are derived from transporter currents mediated by EAATs expressed in voltage‐clamped Xenopus laevis oocytes [http://www.ncbi.nlm.nih.gov/pubmed/11299317?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11677257?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9145919?dopt=AbstractPlus]. KB (or Ki) values derived in uptake assays are generally higher (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus]). In addition to acting as a poorly transportable inhibitor of EAAT2, (2S,4R)‐4‐methylglutamate, also known as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4317, is a competitive substrate for EAAT1 (KM = 54μM; [http://www.ncbi.nlm.nih.gov/pubmed/19074430?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9145919?dopt=AbstractPlus]) and additionally is a potent kainate receptor agonist [http://www.ncbi.nlm.nih.gov/pubmed/8996224?dopt=AbstractPlus] which renders the compound unsuitable for autoradiographic localisation of EAATs [http://www.ncbi.nlm.nih.gov/pubmed/17590480?dopt=AbstractPlus]. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors [http://www.ncbi.nlm.nih.gov/pubmed/9463476?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5327 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4531 are both non‐substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 [http://www.ncbi.nlm.nih.gov/pubmed/14517179?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16014807?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4626 is a non‐substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (>10‐fold) and EAAT2 (5‐fold) [126, http://www.ncbi.nlm.nih.gov/pubmed/16368269?dopt=AbstractPlus]. Analogously, L‐β‐threo‐benzyl‐aspartate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4625) is a competitive nonsubstrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 [http://www.ncbi.nlm.nih.gov/pubmed/16183084?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4075 demonstrates low affinity binding (KD≅6.0 μM) to EAAT1 and EAAT2 in rat brain homogenates [http://www.ncbi.nlm.nih.gov/pubmed/11389172?dopt=AbstractPlus] and EAAT1 in murine astrocyte membranes [http://www.ncbi.nlm.nih.gov/pubmed/14994336?dopt=AbstractPlus], whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4492 binds with high affinity to all EAATs other than EAAT3 [http://www.ncbi.nlm.nih.gov/pubmed/17047096?dopt=AbstractPlus]. The novel isoxazole derivative http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5328 may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate [http://www.ncbi.nlm.nih.gov/pubmed/18451317?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4573 induces substrate‐like currents at EAAT4, but does not elicit heteroexchange of [3H]‐aspartate in synaptosome preparations, inconsistentwith the behaviour of a substrate inhibitor [http://www.ncbi.nlm.nih.gov/pubmed/11299317?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5352, a compound isolated from the venom from the spider Parawixia bistriata is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 [http://www.ncbi.nlm.nih.gov/pubmed/17646426?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12890709?dopt=AbstractPlus]. In addition to the agents listed in the table, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4497 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4516 act as non‐selective competitive substrate inhibitors of all EAATs. Zn2+ and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/15324920?dopt=AbstractPlus]).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=164

Overview

ASC transporters mediate Na+‐dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr and their structure is predicted to be similar to that of the glutamate transporters [http://www.ncbi.nlm.nih.gov/pubmed/8101838?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8662767?dopt=AbstractPlus]. ASCT1 and ASCT2 also exhibit thermodynamically uncoupled chloride channel activity associated with substrate transport [http://www.ncbi.nlm.nih.gov/pubmed/10698697?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8910405?dopt=AbstractPlus]. Whereas EAATs counter‐transport K+ (see above) ASCTs do not and their function is independent of the intracellular concentration of K+ [http://www.ncbi.nlm.nih.gov/pubmed/8910405?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=873 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=874
Systematic nomenclature SLC1A4 SLC1A5
Common abbreviation ASCT1 ASCT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10942, http://www.uniprot.org/uniprot/P43007 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10943, http://www.uniprot.org/uniprot/Q15758
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782 (low Vmax) = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 (enhanced at low pH)
Stoichiometry 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo‐, or hetero‐exchange; [http://www.ncbi.nlm.nih.gov/pubmed/8857541?dopt=AbstractPlus]) 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo‐, or hetero‐exchange; [http://www.ncbi.nlm.nih.gov/pubmed/10537079?dopt=AbstractPlus])
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4508 (pK i 4.3) [http://www.ncbi.nlm.nih.gov/pubmed/15670919?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4501 (pK i 3.1) [http://www.ncbi.nlm.nih.gov/pubmed/15107471?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4500 (pK i 3) [http://www.ncbi.nlm.nih.gov/pubmed/15107471?dopt=AbstractPlus]

Comments

The substrate specificity of ASCT1 may extend to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4704 [http://www.ncbi.nlm.nih.gov/pubmed/14502423?dopt=AbstractPlus]. At low pH (5.5) both ASCT1 and ASCT2 are able to exchange acidic amino acids such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5329 and glutamate [http://www.ncbi.nlm.nih.gov/pubmed/8603078?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8662767?dopt=AbstractPlus]. In addition to the inhibitors tabulated above, HgCl2, methylmercury and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5331, at low micromolar concentrations, non‐competitively inhibit ASCT2 by covalent modificiation of cysteine residues [http://www.ncbi.nlm.nih.gov/pubmed/20599776?dopt=AbstractPlus].

Further reading on SLC1 family of amino acid transporters

Beart PM et al. (2007) Transporters for L‐glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 150: 5–17 https://www.ncbi.nlm.nih.gov/pubmed/17088867?dopt=AbstractPlus

Bjrn‐Yoshimoto WE et al. (2016) The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem. Int. 98: 4–18 https://www.ncbi.nlm.nih.gov/pubmed/27233497?dopt=AbstractPlus

Fahlke C et al. (2016) Molecular physiology of EAAT anion channels. Pflugers Arch. 468: 491–502 https://www.ncbi.nlm.nih.gov/pubmed/26687113?dopt=AbstractPlus

Fontana AC. (2015) Current approaches to enhance glutamate transporter function and expression. J. Neurochem. 134: 982–1007 https://www.ncbi.nlm.nih.gov/pubmed/26096891?dopt=AbstractPlus

Grewer C et al. (2014) SLC1 glutamate transporters. Pflugers Arch. 466: 3–24 https://www.ncbi.nlm.nih.gov/pubmed/24240778?dopt=AbstractPlus

Jensen AA et al. (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20: 116–23 https://www.ncbi.nlm.nih.gov/pubmed/25466154?dopt=AbstractPlus

Kanai Y et al. (2013) The SLC1 high‐affinity glutamate and neutral amino acid transporter family. Mol. Aspects Med. 34: 108–20 https://www.ncbi.nlm.nih.gov/pubmed/23506861?dopt=AbstractPlus

Takahashi K et al. (2015) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci. 72: 3489–506 https://www.ncbi.nlm.nih.gov/pubmed/26033496?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=140

Overview

The SLC2 family transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654, inositol (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495) and related hexoses. Three classes of glucose transporter can be identified, separating GLUT1‐4 and 14, GLUT6, 8, 10 and 12; and GLUT5, 7, 9 and 11. Modelling suggests a 12 TM membrane topology, with intracellular termini, with functional transporters acting as homodimers or homotetramers.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=165

Overview

Class I transporters are able to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, but not http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654, in the direction of the concentration gradient and may be inhibited non‐selectively by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334. GLUT1 is the major glucose transporter in brain, placenta and erythrocytes, GLUT2 is found in the pancreas, liver and kidneys, GLUT3 is neuronal and placental, while GLUT4 is the insulin‐responsive transporter found in skeletal muscle, heart and adipose tissue. GLUT14 appears to result from gene duplication of GLUT3 and is expressed in the testes [http://www.ncbi.nlm.nih.gov/pubmed/12504846?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=875 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=876 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=877 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=878 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=879
Systematic nomenclature SLC2A1 SLC2A2 SLC2A3 SLC2A4 SLC2A14
Common abbreviation GLUT1 GLUT2 GLUT3 GLUT4 GLUT14
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11005, http://www.uniprot.org/uniprot/P11166 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11006, http://www.uniprot.org/uniprot/P11168 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11007, http://www.uniprot.org/uniprot/P11169 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11009, http://www.uniprot.org/uniprot/P14672 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18301, http://www.uniprot.org/uniprot/Q8TDB8
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4535 (D‐glucose = D‐glucosamine) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4733 [http://www.ncbi.nlm.nih.gov/pubmed/3945643?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 (D‐glucose = D‐glucosamine) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4535 (D‐glucosamine > D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 (D‐glucosamine > D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4535 (D‐glucosamine ≥ D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 (D‐glucosamine ≥ D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4643 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4643 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4643 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4643
Comments GLUT1 is a class I facilitative sugar transporter. GLUT1 functions to maintain basal glucose import which is required for cellular respiration.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=166

Overview

Class II transporters transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 and appear to be insensitive to http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334. Class II transporters appear to be predominantly intracellularly located.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=880 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=881 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=882
Systematic nomenclature SLC2A5 SLC2A7 SLC2A9
Common abbreviation GLUT5 GLUT7 GLUT9
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11010, http://www.uniprot.org/uniprot/P22732 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13445, http://www.uniprot.org/uniprot/Q6PXP3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13446, http://www.uniprot.org/uniprot/Q9NRM0
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 (D‐fructose > D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/1634504?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 (D‐fructose > D‐glucose) [http://www.ncbi.nlm.nih.gov/pubmed/1634504?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 [http://www.ncbi.nlm.nih.gov/pubmed/18477702?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/18477702?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 [http://www.ncbi.nlm.nih.gov/pubmed/18842065?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4731 [http://www.ncbi.nlm.nih.gov/pubmed/18842065?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=883 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=884 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=885 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=886 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=887
Systematic nomenclature SLC2A11 SLC2A6 SLC2A8 SLC2A10 SLC2A12
Common abbreviation GLUT11 GLUT6 GLUT8 GLUT10 GLUT12
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14239, http://www.uniprot.org/uniprot/Q9BYW1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11011, http://www.uniprot.org/uniprot/Q9UGQ3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13812, http://www.uniprot.org/uniprot/Q9NY64 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13444, http://www.uniprot.org/uniprot/O95528 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18067, http://www.uniprot.org/uniprot/Q8TD20
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4654 [http://www.ncbi.nlm.nih.gov/pubmed/17710649?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/11583593?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/10671487?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4733 [http://www.ncbi.nlm.nih.gov/pubmed/20639396?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/20639396?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/12914765?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=167

Overview

Proton‐coupled inositol transporters are expressed predominantly in the brain and can be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5334 [http://www.ncbi.nlm.nih.gov/pubmed/12135767?dopt=AbstractPlus].

Further reading on SLC2 family of hexose and sugar alcohol transporters

Augustin R. (2010) The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life 62: 315–33 https://www.ncbi.nlm.nih.gov/pubmed/20209635?dopt=AbstractPlus

Klip A et al. (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am. J. Physiol., Cell Physiol. 306: C879–86 https://www.ncbi.nlm.nih.gov/pubmed/24598362?dopt=AbstractPlus

Leney SE et al. (2009) Themolecular basis of insulin‐stimulated glucose uptake: signalling, trafficking and potential drug targets. J. Endocrinol. 203: 1–18 https://www.ncbi.nlm.nih.gov/pubmed/19389739?dopt=AbstractPlus

Mueckler M et al. (2013) The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34: 121‐38 https://www.ncbi.nlm.nih.gov/pubmed/23506862?dopt=AbstractPlus

Uldry M et al. (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 447: 480‐9 https://www.ncbi.nlm.nih.gov/pubmed/12750891?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=141

Overview

The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide‐linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=168

Overview

SLC3 family members are single TM proteins with extensive glycosylation of the exterior C‐terminus, which heterodimerize with SLC7 family members in the endoplasmic reticulum and assist in the plasma membrane localization of the transporter.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=168.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=169

Overview

SLC7 family members may be divided into two major groups: cationic amino acid transporters (CATs) and glycoprotein‐associated amino acid transporters (gpaATs). Cationic amino acid transporters are 14 TM proteins, which mediate pH and sodium‐independent transport of cationic amino acids (system y+), apparently as an exchange mechanism. These transporters are sensitive to inhibition by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5335.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=891 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=892 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=893 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=896 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=897
Systematic nomenclature SLC7A1 SLC7A2 SLC7A3 SLC7A5 SLC7A8
Common abbreviation CAT1 CAT2 CAT3 LAT1 LAT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11057, http://www.uniprot.org/uniprot/P30825 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11060, http://www.uniprot.org/uniprot/P52569 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11061, http://www.uniprot.org/uniprot/Q8WY07 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11063, http://www.uniprot.org/uniprot/Q01650 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11066, http://www.uniprot.org/uniprot/Q9UHI5
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9347 [http://www.ncbi.nlm.nih.gov/pubmed/19900191?dopt=AbstractPlus]

Comments

CAT4 appears to be non‐functional in heterologous expression [http://www.ncbi.nlm.nih.gov/pubmed/12049641?dopt=AbstractPlus], while SLC7A14 has yet to be characterized. Glycoprotein‐associated amino acid transporters are 12 TM proteins, which heterodimerize with members of the SLC3 family to act as cell‐surface amino acid exchangers.

Heterodimers between 4F2hc and LAT1 or LAT2 generate sodium‐independent system L transporters. LAT1 transports large neutral amino acids including branched‐chain and aromatic amino acids as well as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4841, whereas LAT2 transports most of the neutral amino acids.

Heterodimers between 4F2hc and y+LAT1 or y+LAT2 generate transporters similar to the system y+L , which transport cationic (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725) amino acids independent of sodium and neutral (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723) amino acids in a partially sodium‐dependent manner. These transporters are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5335‐insensitive. Heterodimers between rBAT and b0,+AT appear to mediate sodium‐independent system b0,+ transport of most of the neutral amino acids and cationic amino acids (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725).

Asc‐1 appears to heterodimerize with 4F2hc to allow the transport of small neutral amino acids (such as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727), as well as http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4171, in a sodium‐independent manner.

xCT generates a heterodimer with 4F2hc for a system x e‐c transporter that mediates the sodium‐independent exchange of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5413 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369.

AGT has been conjugated with SLC3 members as fusion proteins to generate functional transporters, but the identity of a native heterodimer has yet to be ascertained.

Further reading on SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

Bhutia YD et al. (2015) Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. Cancer Res. 75: 1782–8 https://www.ncbi.nlm.nih.gov/pubmed/25855379?dopt=AbstractPlus

Fotiadis D et al. (2013) The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34: 139–58 https://www.ncbi.nlm.nih.gov/pubmed/23506863?dopt=AbstractPlus

Palacín M et al. (2004) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 447: 490–4 https://www.ncbi.nlm.nih.gov/pubmed/14770309?dopt=AbstractPlus

Palacín M et al. (2005) The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 20: 112–24 https://www.ncbi.nlm.nih.gov/pubmed/15772300?dopt=AbstractPlus

Verrey F et al. (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447: 532–42 https://www.ncbi.nlm.nih.gov/pubmed/14770310?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=142

Overview

Together with the SLC26 family, the SLC4 family of transporters subserve anion exchange, principally of chloride and bicarbonate (HCO3 ), but also carbonate and hydrogen sulphate (HSO4 ). SLC4 family members regulate bicarbonate fluxes as part of carbon dioxidemovement, chyme neutralization and reabsorption in the kidney.

Within the family, subgroups of transporters are identifiable: the electroneutral sodium‐independent Cl/HCO3 transporters (AE1, AE2 and AE3), the electrogenic sodium‐dependent HCO3 transporters (NBCe1 and NBCe2) and the electroneutral HCO3 transporters (NBCn1 and NBCn2). Topographical information derives mainly from study of AE1, abundant in erythrocytes, which suggests a dimeric or tetrameric arrangement, with subunits made up of 13 TM domains and re‐entrant loops at TM9/10 and TM11/12. The N terminus exhibits sites for interaction with multiple proteins, including glycolytic enzymes, haemoglobin and cytoskeletal elements.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=170

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=171

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=908 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=909 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=910 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=911 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=912 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=913
Systematic nomenclature SLC4A4 SLC4A5 SLC4A7 SLC4A10 SLC4A8 SLC4A11
Common abbreviation NBCe1 NBCe2 NBCn1 NBCn2 NDCBE BTR1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11030, http://www.uniprot.org/uniprot/Q9Y6R1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18168, http://www.uniprot.org/uniprot/Q9BY07 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11033, http://www.uniprot.org/uniprot/Q9Y6M7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13811, http://www.uniprot.org/uniprot/Q6U841 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11034, http://www.uniprot.org/uniprot/Q2Y0W8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16438, http://www.uniprot.org/uniprot/Q8NBS3
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2339 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2339, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4507
Stoichiometry 1 Na+ : 2/3 HCO3 (out) or 1 Na+ : CO3 2* 1 Na+ : 2/3 HCO3 (out) or 1 Na+ : CO3 2* 1 Na+ : 1 HCO3 (out) or 1 Na+ : CO3 2* 1 Na+ : 1 HCO3 (out) or 1 Na : CO3 2* 1 Na+ : 2HCO3 (in) : 1 Cl (out)

Further reading on SLC4 family of bicarbonate transporters

Majumdar D et al. (2010) Na‐coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 171: 951‐72 [https://www.ncbi.nlm.nih.gov/pubmed/20884330?dopt=AbstractPlus]

Parker MD et al. (2013) The divergence, actions, roles, and relatives of sodium‐coupled bicarbonate transporters. Physiol. Rev. 93: 803‐959 [https://www.ncbi.nlm.nih.gov/pubmed/23589833?dopt=AbstractPlus]

Reithmeier RA et al. (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim. Biophys. Acta 1858: 1507‐32 [https://www.ncbi.nlm.nih.gov/pubmed/27058983?dopt=AbstractPlus]

Romero MF et al. (2013) The SLC4 family of bicarbonate (HCO_3) transporters. Mol. Aspects Med. 34: 159‐82 [https://www.ncbi.nlm.nih.gov/pubmed/23506864?dopt=AbstractPlus]

Thornell IM et al. (2015) Regulators of Slc4 bicarbonate transporter activity. Front Physiol 6: 166 [https://www.ncbi.nlm.nih.gov/pubmed/26124722?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=143

Overview

The SLC5 family of sodium‐dependent glucose transporters includes, in mammals, the Na+/substrate co‐transporters for glucose (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, monocarboxylates, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 and I [http://www.ncbi.nlm.nih.gov/pubmed/14993474?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12748858?dopt=AbstractPlus]. Members of the SLC5 and SLC6 families, along with other unrelated Na+ cotransporters (i.e. Mhp1 and BetP), share a common structural core that contains an inverted repeat of 5TM α‐helical domains [http://www.ncbi.nlm.nih.gov/pubmed/19631523?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=173

Overview

Detailed characterisation of members of the hexose transporter family is limited to SGLT1, 2 and 3, which are all inhibited in a competitive manner by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4757, a natural dihydrocholine glucoside, that exhibits modest selectivity towards SGLT2 (see [http://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus] for an extensive review). SGLT1 is predominantly expressed in the small intestine, mediating the absorption of glucose (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536), but also occurs in the brain, heart and in the late proximal straight tubule of the kidney. The expression of SGLT2 is almost exclusively restricted to the early proximal convoluted tubule of the kidney, where it is largely responsible for the renal reabsorption of glucose. SGLT3 is not a transporter but instead acts as a glucosensor generating an inwardly directed flux of Na+ that causes membrane depolarization [http://www.ncbi.nlm.nih.gov/pubmed/13130073?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=915 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=916 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=917 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=918 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=919
Systematic nomenclature SLC5A1 SLC5A2 SLC5A4 SLC5A9 SLC5A10
Common abbreviation SGLT1 SGLT2 SGLT3 SGLT4 SGLT5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11036, http://www.uniprot.org/uniprot/P13866 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11037, http://www.uniprot.org/uniprot/P31639 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11039, http://www.uniprot.org/uniprot/Q9NY91 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:22146, http://www.uniprot.org/uniprot/Q2M3M2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23155, http://www.uniprot.org/uniprot/A0PJK1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4646 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4640 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4640, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4744 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4586 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4841 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4842 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4642 [http://www.ncbi.nlm.nih.gov/pubmed/17110502?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4650, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4640 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4646, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536
Stoichiometry 2 Na+ : 1 glucose [http://www.ncbi.nlm.nih.gov/pubmed/8282810?dopt=AbstractPlus] 1 Na+ : 1 glucose [http://www.ncbi.nlm.nih.gov/pubmed/20980548?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9547 (pK i 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/28410751?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4594 (pIC50 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/20637636?dopt=AbstractPlus]
Comments SGLT3 acts as a glucosensor.

Comments

Recognition and transport of substrate by SGLTs requires that the sugar is a pyranose. De‐oxyglucose derivatives have reduced affinity for SGLT1, but the replacement of the sugar equatorial hydroxyl group by fluorine at some positions, excepting C2 and C3, is tolerated (see [http://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus] for a detailed quantification). Although SGLT1 and SGLT2 have been described as high‐ and lowaffinity sodium glucose co‐transporters, respectively, recent work suggests that they have a similar affinity for glucose under physiological conditions [http://www.ncbi.nlm.nih.gov/pubmed/20980548?dopt=AbstractPlus]. Selective blockers of SGLT2, and thus blocking 50% of renal glucose reabsorption, are in development for the treatment of diabetes (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/20508640?dopt=AbstractPlus]).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=172

Overview

The high affinity, hemicholinium‐3‐sensitive, choline transporter (CHT) is expressed mainly in cholinergic neurones on nerve cell terminals and synaptic vesicles (keratinocytes being an additional location). In autonomic neurones, expression of CHT requires an activity‐dependent retrograde signal from postsynaptic neurones [http://www.ncbi.nlm.nih.gov/pubmed/19186169?dopt=AbstractPlus]. Through recapture of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 generated by the hydrolysis of ACh by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294sterase, CHT serves to maintain acetylcholine synthesis within the presynaptic terminal [http://www.ncbi.nlm.nih.gov/pubmed/14993474?dopt=AbstractPlus]. Homozygous mice engineered to lack CHT die within one hour of birth as a result of hypoxia arising from failure of transmission at the neuromuscular junction of the skeletal muscles that support respiration [http://www.ncbi.nlm.nih.gov/pubmed/15173594?dopt=AbstractPlus]. A low affinity choline uptake mechanism that remains to be identified at the molecular level may involve multiple transporters. In addition, a family of choline transporter‐like (CTL) proteins, (which are members of the SLC44 family) with weak Na+ dependence have been described [http://www.ncbi.nlm.nih.gov/pubmed/15715662?dopt=AbstractPlus].

Comments

Ki and KD values for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4494 listed in the table are for human CHT expressed in Xenopus laevis oocytes [http://www.ncbi.nlm.nih.gov/pubmed/11068039?dopt=AbstractPlus], or COS‐7 cells [http://www.ncbi.nlm.nih.gov/pubmed/11027560?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5502 is a substrate for CHT that causes covalent modification and irreversible inactivation of the transporter. Several exogenous substances (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4760) that are substrates for CHT act as precursors to cholinergic false transmitters.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=174

Overview

The sodium‐iodide symporter (NIS) is an iodide transporter found principally in the thyroid gland where it mediates the accumulation of I within thyrocytes. Transport of I by NIS from the blood across the basolateral membrane followed by apical efflux into the colloidal lumen, mediated at least in part by pendrin (SLC22A4), and most likely not SMCT1 (SLC5A8) as once thought, provides the I required for the synthesis of the thyroid hormones triiodothyronine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634) and thyroxine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635) [http://www.ncbi.nlm.nih.gov/pubmed/19196800?dopt=AbstractPlus]. NIS is also expressed in the salivary glands, gastric mucosa, intestinal enterocytes and lactating breast. NIS mediates I absorption in the intestine and I secretion into the milk. SMVT is expressed on the apical membrane of intestinal enterocytes and colonocytes and is the main system responsible for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 (vitamin H) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4668 (vitamin B5) uptake in humans [http://www.ncbi.nlm.nih.gov/pubmed/19056639?dopt=AbstractPlus]. SMVT located in kidney proximal tubule epithelial cells mediates the reabsorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4668. SMCT1 (SLC5A8), which transports a wide range of monocarboxylates, is expressed in the apical membrane of epithelia of the small intestine, colon, kidney, brain neurones and the retinal pigment epithelium [http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus]. SMCT2 (SLC5A12) also localises to the apical membrane of kidney, intestine, and colon, but in the brain and retina is restricted to astrocytes and Müller cells, respectively [http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus]. SMCT1 is a high‐affinity transporter whereas SMCT2 is a lowaffinity transporter. The physiological substrates for SMCT1 and SMCT2 are lactate (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2934), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 in non‐colonic tissues such as the kidney. SMCT1 is also likely to be the principal transporter for the absorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 (vitamin B3) in the intestine and kidney [http://www.ncbi.nlm.nih.gov/pubmed/15651982?dopt=AbstractPlus]. In the small intestine and colon, the physiological substrates for these transporters are http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588 and the shortchain fatty acids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 that are produced by bacterial fermentation of dietary fiber [http://www.ncbi.nlm.nih.gov/pubmed/14966140?dopt=AbstractPlus]. In the kidney, SMCT2 is responsible for the bulk absorption of lactate because of its low‐affinity/high‐capacity nature. Absence of both transporters in the kidney leads to massive excretion of lactate in urine and consequently drastic decrease in the circulating levels of lactate in blood [http://www.ncbi.nlm.nih.gov/pubmed/16873376?dopt=AbstractPlus]. SMCT1 also functions as a tumour suppressor in the colon as well as in various other non‐colonic tissues [http://www.ncbi.nlm.nih.gov/pubmed/18992769?dopt=AbstractPlus]. The tumour‐suppressive function of SMCT1 is based on its ability to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, an inhibitor of histone deacetylases, into cells in non‐colonic tissues [http://www.ncbi.nlm.nih.gov/pubmed/17178845?dopt=AbstractPlus]; in the colon, the ability of SMCT1 to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, also inhibitors of histone deacetylases, underlies the tumour‐suppressive function of this transporter [http://www.ncbi.nlm.nih.gov/pubmed/18446519?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18992769?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16375929?dopt=AbstractPlus]. The ability of SMCT1 to promote histone acetylase inhibition through accumulation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062 in immune cells is also responsible for suppression of dendritic cell development in the colon [http://www.ncbi.nlm.nih.gov/pubmed/20601425?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=920 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=921 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=922 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=923
Systematic nomenclature SLC5A5 SLC5A6 SLC5A8 SLC5A12
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11040, http://www.uniprot.org/uniprot/Q92911 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11041, http://www.uniprot.org/uniprot/Q9Y289 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:19119, http://www.uniprot.org/uniprot/Q8N695 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:28750, http://www.uniprot.org/uniprot/Q1EHB4
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4524, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4529, I, NO3 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4515 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4822 [http://www.ncbi.nlm.nih.gov/pubmed/20980265?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4668 [http://www.ncbi.nlm.nih.gov/pubmed/20980265?dopt=AbstractPlus], I [http://www.ncbi.nlm.nih.gov/pubmed/20980265?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 [http://www.ncbi.nlm.nih.gov/pubmed/20980265?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1062, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4517, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4703, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2934, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1593, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4306, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4518, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4656, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4522, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4565, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4711, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4521, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4699, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4655 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1588
Stoichiometry 2Na+ : 1I [http://www.ncbi.nlm.nih.gov/pubmed/9341168?dopt=AbstractPlus]; 1Na+ : 1 ClO4 [http://www.ncbi.nlm.nih.gov/pubmed/18077370?dopt=AbstractPlus] 2Na+ : 1 biotin (or pantothenic acid) [http://www.ncbi.nlm.nih.gov/pubmed/10772912?dopt=AbstractPlus] 2Na+ : 1 monocarboxylate [http://www.ncbi.nlm.nih.gov/pubmed/17526579?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4820 (pIC50 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/16729224?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2713 (pIC50 4.2) [http://www.ncbi.nlm.nih.gov/pubmed/16729224?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4795 (pIC50 3.9) [http://www.ncbi.nlm.nih.gov/pubmed/16729224?dopt=AbstractPlus]

Comments

I, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4524, thiocyanate and NO3 are competitive substrate inhibitors of NIS [http://www.ncbi.nlm.nih.gov/pubmed/18077370?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4822 appears to act as a competitive substrate inhibitor of SMVT [http://www.ncbi.nlm.nih.gov/pubmed/10329687?dopt=AbstractPlus] and the anticonvulsant drugs http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5338 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5339 competitively block the transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4787 by brush border vesicles prepared from human intestine [http://www.ncbi.nlm.nih.gov/pubmed/2911998?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=175

Overview

Three different mammalian myo‐inositol cotransporters are currently known; two are the Na+‐coupled SMIT1 and SMIT2 tabulated below and the third is proton‐coupled HMIT (SLC2A13). SMIT1 and SMIT2 have a widespread and overlapping tissue location but in polarized cells, such as the Madin‐ Darby canine kidney cell line, they segregate to the basolateral and apical membranes, respectively [http://www.ncbi.nlm.nih.gov/pubmed/15181167?dopt=AbstractPlus]. In the nephron, SMIT1 mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 uptake as a ‘compatible osmolyte’ when inner medullary tubules are exposed to increases in extracellular osmolality, whilst SMIT2 mediates the reabsorption of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 from the filtrate. In some species (e.g. rat, but not rabbit) apically located SMIT2 is responsible for the uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 from the intestinal lumen [http://www.ncbi.nlm.nih.gov/pubmed/17932225?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=924 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=925
Systematic nomenclature SLC5A3 SLC5A11
Common abbreviation SMIT1 SMIT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11038, http://www.uniprot.org/uniprot/P53794 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23091, http://www.uniprot.org/uniprot/Q8WWX8
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4649 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4721 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4720 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4719, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4640 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4646, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4722 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4724 [http://www.ncbi.nlm.nih.gov/pubmed/7537337?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4495 = http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4645 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4724 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4720 [http://www.ncbi.nlm.nih.gov/pubmed/12133831?dopt=AbstractPlus]
Stoichiometry 2 Na+ :1 myo‐inositol [http://www.ncbi.nlm.nih.gov/pubmed/7537337?dopt=AbstractPlus] 2Na+ :1 myo‐inositol [http://www.ncbi.nlm.nih.gov/pubmed/15613375?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4757 [http://www.ncbi.nlm.nih.gov/pubmed/12133831?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4757 (pK i 4.1) [http://www.ncbi.nlm.nih.gov/pubmed/12133831?dopt=AbstractPlus]

Comments

The data tabulated are those for dog SMIT1 and rabbit SMIT2. SMIT2 transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4645, but SMIT1 does not. In addition, whereas SMIT1 transports both http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4724 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4720 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4722 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4721, SMIT2 transports only the D‐isomers of these sugars [http://www.ncbi.nlm.nih.gov/pubmed/12133831?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7537337?dopt=AbstractPlus]. Thus the substrate specificities of SMIT1 (for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4721) and SMIT2 (for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4645) allow discrimination between the two SMITs. Human SMIT2 appears not to transport glucose [http://www.ncbi.nlm.nih.gov/pubmed/19032932?dopt=AbstractPlus].

Further reading on SLC5 family of sodium‐dependent glucose transporters

DeFronzo RA et al. (2017) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 13: 11‐26 https://www.ncbi.nlm.nih.gov/pubmed/27941935?dopt=AbstractPlus

Koepsell H. (2017) The Na+‐D‐glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol. Ther. 170: 148‐165 https://www.ncbi.nlm.nih.gov/pubmed/27773781?dopt=AbstractPlus

Lehmann A et al. (2016) Intestinal SGLT1 inmetabolic health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 310: G887‐98 https://www.ncbi.nlm.nih.gov/pubmed/27012770?dopt=AbstractPlus

Wright EM. (2013) Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 34: 183‐96 https://www.ncbi.nlm.nih.gov/pubmed/23506865?dopt=AbstractPlus

Wright EM et al. (2011) Biology of human sodium glucose transporters. Physiol. Rev. 91: 733‐94 https://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=144

Overview

Members of the solute carrier family 6 (SLC6) of sodium‐ and (sometimes chloride‐) dependent neurotransmitter transporters [http://www.ncbi.nlm.nih.gov/pubmed/16540203?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21752877?dopt=AbstractPlus] are primarily plasma membrane located and may be divided into four subfamilies that transport monoamines, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 and neutral amino acids, plus the related bacterial NSS transporters [http://www.ncbi.nlm.nih.gov/pubmed/19022853?dopt=AbstractPlus]. The members of this superfamily share a structural motif of 10 TM segments that has been observed in crystal structures of the NSS bacterial homolog LeuTAa, a Na+‐dependent amino acid transporter from Aquiflex aeolicus [http://www.ncbi.nlm.nih.gov/pubmed/16041361?dopt=AbstractPlus] and in several other transporter families structurally related to LeuT [http://www.ncbi.nlm.nih.gov/pubmed/19996368?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=176

Overview

Monoamine neurotransmission is limited by perisynaptic transporters. Presynapticmonoamine transporters allow recycling of synaptically released http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=484, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=926 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=927 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=928
Systematic nomenclature SLC6A2 SLC6A3 SLC6A4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11048, http://www.uniprot.org/uniprot/P23975 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11049, http://www.uniprot.org/uniprot/Q01959 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11050, http://www.uniprot.org/uniprot/P31645
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4803, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4804 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4803, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4804 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4574, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4592
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5
Stoichiometry 1 noradrenaline: 1 Na+:1 Cl [http://www.ncbi.nlm.nih.gov/pubmed/8636118?dopt=AbstractPlus] 1 dopamine: 12 Na+: 1 Cl [http://www.ncbi.nlm.nih.gov/pubmed/8125921?dopt=AbstractPlus] 1 5‐HT:1 Na+:1 Cl (in), + 1 K+ (out) [http://www.ncbi.nlm.nih.gov/pubmed/6853478?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9880 (pK i 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/29615471?dopt=AbstractPlus] – Rat http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9880 (pK i 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/29615471?dopt=AbstractPlus] – Rat
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2586 (pK i 5.2) [31] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2586 (pK i 6.3) [31] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2586 (pK i 6) [31]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4797 (pK i 8.9), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7285 (pIC50 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/22420844?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4637 (pK i 8.4), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7285 (pK i 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/18983139?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4792 (pK i 8.1), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4808 (pK i 8) [http://www.ncbi.nlm.nih.gov/pubmed/10812041?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4797 (pK i 8), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4606 (pK i 7.9) [http://www.ncbi.nlm.nih.gov/pubmed/8878059?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4639 (pK i 7.6), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7554 (pK i 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/21129986?dopt=AbstractPluss], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7236 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/17228864?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2398 (pK i 9.7) [http://www.ncbi.nlm.nih.gov/pubmed/9537821?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4790 (pK i 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/9537821?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2398 (pK d 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/9537821?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4798 (pK i 9.1), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7177 (pIC50 9) [http://www.ncbi.nlm.nih.gov/pubmed/19720528?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7901 (pIC50 8.9) [233], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7189 (pK d 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/9537821?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=203 (pK i 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/9537821?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7547 (pK i 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/18487050?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4591 (Inhibitor) (pK d 9.3) [http://www.ncbi.nlm.nih.gov/pubmed/15300361?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4636 (Inhibitor) (pK d 8.4) http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4638 (Inhibitor) (pK d 8.5) [http://www.ncbi.nlm.nih.gov/pubmed/8302271?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4605 (Inhibitor) (pK d 8) [http://www.ncbi.nlm.nih.gov/pubmed/8302271?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4561 (Inhibitor) (pK d 9.7), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4621 (Inhibitor) (pK d 8.3)

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5409 labels all three monoamine transporters (NET, DAT and SERT) with affinities between 0.5 and 5 nM. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2286 is an inhibitor of all three transporters with pKi values between 6.5 and 7.2. Potential alternative splicing sites in non‐coding regions of SERT and NET have been identified. A bacterial homologue of SERT shows allosteric modulation by selected anti‐depressants [http://www.ncbi.nlm.nih.gov/pubmed/17687333?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=177

Overview

The activity of GABA‐transporters located predominantly upon neurones (GAT‐1), glia (GAT‐3) or both (GAT‐2, BGT‐ 1) serves to terminate phasic GABA‐ergic transmission, maintain low ambient extracellular concentrations of GABA, and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 are sufficient to sustain tonic inhibition mediated by high affinity GABAA receptors in certain neuronal populations [http://www.ncbi.nlm.nih.gov/pubmed/15111008?dopt=AbstractPlus]. GAT1 is the predominant GABA transporter in the brain and occurs primarily upon the terminals of presynaptic neurones and to a much lesser extent upon distal astocytic processes that are in proximity to axons terminals. GAT3 resides predominantly on distal astrocytic terminals that are close to the GABAergic synapse. By contrast, BGT1 occupies an extrasynaptic location possibly along with GAT2 which has limited expression in the brain [http://www.ncbi.nlm.nih.gov/pubmed/20026354?dopt=AbstractPlus]. TauT is a high affinity taurine transporter involved in osmotic balance that occurs in the brain and non‐neuronal tissues, such as the kidney, brush border membrane of the intestine and blood brain barrier [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16734743?dopt=AbstractPlus]. CT1, which transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496, has a ubiquitous expression pattern, often co‐localizing with creatine kinase [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=929 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=930 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=931 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=932 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=933 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=934
Systematic nomenclature SLC6A1 SLC6A13 SLC6A11 SLC6A12 SLC6A6 SLC6A8
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11042, http://www.uniprot.org/uniprot/P30531 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11046, http://www.uniprot.org/uniprot/Q9NSD5 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11044, http://www.uniprot.org/uniprot/P48066 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11045, http://www.uniprot.org/uniprot/P48065 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11052, http://www.uniprot.org/uniprot/P31641 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11055, http://www.uniprot.org/uniprot/P48029
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4564, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4691 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4564, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4691 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4691, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4564
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2365, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2365, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4550 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2365, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2379, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 [http://www.ncbi.nlm.nih.gov/pubmed/19074966?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496
Stoichiometry 2Na+: 1Cl: 1GABA 2Na+: 1Cl: 1GABA ≥ 2Na+: 2 Cl: 1GABA 3Na+: 1 (or 2) Cl: 1GABA 2Na+: 1Cl: 1 taurine Probably 2Na+: 1Cl: 1 creatine
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4669 (pIC50 7.4) [http://www.ncbi.nlm.nih.gov/pubmed/7851497?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4818 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/7851497?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4705 (pIC50 6.9) [149], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4612 (pIC50 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/7851497?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4583 (pIC50 4.9–5.7), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6512 (pIC50 5.1–5.4), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4756 (pIC50 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/15550575?dopt=AbstractPlus] – Mouse, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6513 (pIC50 3.6–3.9) http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4677 (pIC50 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/7874447?dopt=AbstractPlus] – Rat http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4677 (pIC50 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/7874447?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4610 (pK i 5.9) [http://www.ncbi.nlm.nih.gov/pubmed/9134205?dopt=AbstractPlus] – Mouse, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4583 (pIC50 4.9), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6512 (pIC50 3.7–4.7), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6513 (pIC50 3.6–4.5), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4756 (pIC50 4) [http://www.ncbi.nlm.nih.gov/pubmed/15550575?dopt=AbstractPlus] – Mouse
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4685 (Inhibitor)

Comments

The IC50 values for GAT1‐4 reported in the table reflect the range reported in the literature from studies of both human and mouse transporters. There is a tendency towards lower IC50 values for the human orthologue [http://www.ncbi.nlm.nih.gov/pubmed/19275529?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4677 is only weakly selective for GAT 2 and GAT3, with IC50 values in the range 22 to >30 μM at GAT1 and BGT1, whereas http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4610 has at least an order of magnitude selectivity for BGT1 [see [http://www.ncbi.nlm.nih.gov/pubmed/17175818?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15451399?dopt=AbstractPlus] for reviews]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5489 is a recently described compound that displays 20‐fold selectivity for GAT3 over GAT1 [http://www.ncbi.nlm.nih.gov/pubmed/16766089?dopt=AbstractPlus]. In addition to the inhibitors listed, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5490 is a moderately potent, though non‐selective, inhibitor of all cloned GABA transporters (IC50 = 26‐46 μM; [http://www.ncbi.nlm.nih.gov/pubmed/8057281?dopt=AbstractPlus]). Diaryloxime and diarylvinyl ether derivatives of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4564 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4691 that potently inhibit the uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5410 into rat synaptosomes have been described [http://www.ncbi.nlm.nih.gov/pubmed/10479278?dopt=AbstractPlus]. Several derivatives of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5418 (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5419 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5420) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 [see [http://www.ncbi.nlm.nih.gov/pubmed/17175818?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21428813?dopt=AbstractPlus] for reviews]. GAT3 is inhibited by physiologically relevant concentrations of Zn2+ [http://www.ncbi.nlm.nih.gov/pubmed/15829583?dopt=AbstractPlus]. Taut transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, but with low affinity, but CT1 does not, although it can be engineered to do so by mutagenesis guided by LeuT as a structural template [http://www.ncbi.nlm.nih.gov/pubmed/17400549?dopt=AbstractPlus]. Although inhibitors of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 transport by CT1 (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4707, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5491, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5492) are known (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/9882430?dopt=AbstractPlus]) they insufficiently characterized to be included in the table.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=178

Overview

Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 (a,b,c,d & e) differing in their N‐ and C‐termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 (a,b & c) have also been identified (see [http://www.ncbi.nlm.nih.gov/pubmed/16417482?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15950877?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16722246?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12354619?dopt=AbstractPlus] for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 concentrations influencing NMDA receptor‐mediated neurotransmission [http://www.ncbi.nlm.nih.gov/pubmed/9861038?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15555781?dopt=AbstractPlus], but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses [http://www.ncbi.nlm.nih.gov/pubmed/14622582?dopt=AbstractPlus]. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycinergic signalling and die within the first postnatal day [http://www.ncbi.nlm.nih.gov/pubmed/14622582?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15159536?dopt=AbstractPlus]. Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action [http://www.ncbi.nlm.nih.gov/pubmed/16554468?dopt=AbstractPlus]. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission [http://www.ncbi.nlm.nih.gov/pubmed/14622583?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18815261?dopt=AbstractPlus]. Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week [http://www.ncbi.nlm.nih.gov/pubmed/14622583?dopt=AbstractPlus] and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/18707791?dopt=AbstractPlus]). ATB0+ (SLC6A14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus]. ATB0+ is expressed in various peripheral tissues [http://www.ncbi.nlm.nih.gov/pubmed/12719981?dopt=AbstractPlus]. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=935 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=936 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=937 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=938
Systematic nomenclature SLC6A9 SLC6A5 SLC6A14 SLC6A7
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11056, http://www.uniprot.org/uniprot/P48067 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11051, http://www.uniprot.org/uniprot/Q9Y345 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11047, http://www.uniprot.org/uniprot/Q9UN76 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11054, http://www.uniprot.org/uniprot/Q99884
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4700, zwitterionic or cationic NOS inhibitors [http://www.ncbi.nlm.nih.gov/pubmed/11306607?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4694 [http://www.ncbi.nlm.nih.gov/pubmed/18522536?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4716 [http://www.ncbi.nlm.nih.gov/pubmed/15290873?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2365 [http://www.ncbi.nlm.nih.gov/pubmed/18599538?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19074966?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 [http://www.ncbi.nlm.nih.gov/pubmed/10446133?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314
Stoichiometry 2 Na+: 1 Cl: 1 glycine 3 Na+: 1 Cl: 1 glycine 2‐3 Na+: 1 Cl: 1 amino acid [http://www.ncbi.nlm.nih.gov/pubmed/10446133?dopt=AbstractPlus] Probably 2 Na+: 1 Cl: 1 L‐proline
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9057 (pK i 7.9) [http://www.ncbi.nlm.nih.gov/pubmed/19410451?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7546 (pEC50 <4.5) [http://www.ncbi.nlm.nih.gov/pubmed/20491477?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4618 (pIC50 8.5–9.1), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4778 (pIC50 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/18621075?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4604 (pIC50 8.6), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4712 (pIC50 7.8), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4598 (pIC50 7.6), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7546 (pEC50 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/20491477?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4667 (pIC50 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/11495577?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4622, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4767 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4693 (pIC50 3.6) [http://www.ncbi.nlm.nih.gov/pubmed/18522536?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8520 (pIC50 7.7) [http://www.ncbi.nlm.nih.gov/pubmed/25037917?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4576 (pIC50 7) [http://www.ncbi.nlm.nih.gov/pubmed/19159658?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4602 (Binding) (pK d 9) [http://www.ncbi.nlm.nih.gov/pubmed/12657266?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4490 (Binding) (pK d 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/20691713?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4584 (Binding) (pK d 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/18355687?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4491 (Binding) (pK d 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/20691713?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4603 (pK d 8.1–8.5), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4619 (pK d 7.7–8.2)
Comments N‐Oleoyl‐L‐carnitine (0.3μM, [http://www.ncbi.nlm.nih.gov/pubmed/22978602?dopt=AbstractPlus]) and and N‐arachidonoylglycine (IC50 5‐8 μM, [http://www.ncbi.nlm.nih.gov/pubmed/16899062?dopt=AbstractPlus) have been described as potential endogenous selective GlyT2 inhibitors

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4713 is a selective transportable inhibitor of GlyT1 and also a weak agonist at the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 binding site of the NMDA receptor [http://www.ncbi.nlm.nih.gov/pubmed/19433577?dopt=AbstractPlus], but has no effect on GlyT2. This difference has been attributed to a single glycine residue in TM6 (serine residue in GlyT2) [http://www.ncbi.nlm.nih.gov/pubmed/17383967?dopt=AbstractPlus]. Inhibition of GLYT1 by the sarcosine derivatives http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4620, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4601 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4600 is non‐competitive [http://www.ncbi.nlm.nih.gov/pubmed/12941372?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18815213?dopt=AbstractPlus]. IC50 values for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4600 reported in the literature vary, most likely due to differences in assay conditions [http://www.ncbi.nlm.nih.gov/pubmed/11454468?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12941372?dopt=AbstractPlus]. The tricyclic antidepressant http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=201 weakly inhibits GlyT2 (IC50 92 μM) with approximately 10‐fold selectivity over GlyT1 [http://www.ncbi.nlm.nih.gov/pubmed/10694221?dopt=AbstractPlus]. The endogenous lipids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2364 exert opposing effects upon GlyT1a, inhibiting (IC50 2 μM) and potentiating (EC50 13 μM) transport currents, respectively [http://www.ncbi.nlm.nih.gov/pubmed/12558979?dopt=AbstractPlus]. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5493, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5494 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5495 have been described as endogenous non‐competitive inhibitors of GlyT2a, but not GlyT1b [http://www.ncbi.nlm.nih.gov/pubmed/19875446?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20860669?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16899062?dopt=AbstractPlus]. Protons [http://www.ncbi.nlm.nih.gov/pubmed/10860934?dopt=AbstractPlus] and Zn2+ [http://www.ncbi.nlm.nih.gov/pubmed/15031290?dopt=AbstractPlus] act as non‐competitive inhibitors of GlyT1b, with IC50 values of 100 nM and 10 μM respectively, but neither ion affects GlyT2 (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/15324920?dopt=AbstractPlus]). Glycine transport by GLYT1 is inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5212, whereas GLYT2 transport is stimulated (both in the presence of Na+) [http://www.ncbi.nlm.nih.gov/pubmed/21574997?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=179

Overview

Certain members of neutral amino acid transport family are expressed upon the apical surface of epithelial cells and are important for the absorption of amino acids from the duodenum, jejunum and ileum and their reabsorption within the proximal tubule of the nephron (i.e. B0AT1 (SLC6A19), SLC6A18, SLC6A20). Others may function as transporters for neurotransmitters or their precursors (i.e. B0AT2, SLC6A17) [http://www.ncbi.nlm.nih.gov/pubmed/18400692?dopt=AbstractPlus]. B0AT1 has been proposed as a drug target to treat phenylketonuria [http://www.ncbi.nlm.nih.gov/pubmed/30046012?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=939 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=940 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=941 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=942 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=943 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=944
Systematic nomenclature SLC6A19 SLC6A15 SLC6A18 SLC6A16 SLC6A17 SLC6A20
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:27960, http://www.uniprot.org/uniprot/Q695T7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13621, http://www.uniprot.org/uniprot/Q9H2J7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26441, http://www.uniprot.org/uniprot/Q96N87 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13622, http://www.uniprot.org/uniprot/Q9GZN6 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:31399, http://www.uniprot.org/uniprot/Q9H1V8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30927, http://www.uniprot.org/uniprot/Q9NP91
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 [http://www.ncbi.nlm.nih.gov/pubmed/16540203?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 [http://www.ncbi.nlm.nih.gov/pubmed/16540203?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723 [http://www.ncbi.nlm.nih.gov/pubmed/20377526?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 [http://www.ncbi.nlm.nih.gov/pubmed/19147495?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314
Stoichiometry 1 Na+: 1 amino acid [http://www.ncbi.nlm.nih.gov/pubmed/15804236?dopt=AbstractPlus] 1Na+ : 1 amino acid [http://www.ncbi.nlm.nih.gov/pubmed/16185194?dopt=AbstractPlus] Na+‐ and Cl ‐dependent transport [http://www.ncbi.nlm.nih.gov/pubmed/19478081?dopt=AbstractPlus] Na+‐dependent, Cl‐independent transport [http://www.ncbi.nlm.nih.gov/pubmed/19147495?dopt=AbstractPlus] 2 Na+: 1 Cl: 1 imino acid [http://www.ncbi.nlm.nih.gov/pubmed/19657969?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10256 (pIC50 6.4) [http://www.ncbi.nlm.nih.gov/pubmed/30589598?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7401 (pIC50 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/24704252?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7601 (pIC50 4.4) [http://www.ncbi.nlm.nih.gov/pubmed/28176326?dopt=AbstractPlus]
Selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7216 (pIC50 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/25318072?dopt=AbstractPlus]
Comments Mutations in B0AT1 are associated with Hartnup disorder SLC6A18 is a functional transporter in mouse, but not in humans.

Further reading on SLC6 neurotransmitter transporter family

Bermingham DP et al. (2016) Kinase‐dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol. Rev. 68: 888‐953 [https://www.ncbi.nlm.nih.gov/pubmed/27591044?dopt=AbstractPlus]

Bröer S et al. (2012) The solute carrier 6 family of transporters. Br. J. Pharmacol. 167: 256‐78 [https://www.ncbi.nlm.nih.gov/pubmed/22519513?dopt=AbstractPlus]

Joncquel‐Chevalier Curt M et al. (2015) Creatine biosynthesis and transport in health and disease. Biochimie 119: 146‐65 [https://www.ncbi.nlm.nih.gov/pubmed/26542286?dopt=AbstractPlus]

Lohr KM et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20‐33 [https://www.ncbi.nlm.nih.gov/pubmed/27520881?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=180

Overview

The sodium/calcium exchangers (NCX) use the extracellular sodium concentration to facilitate the extrusion of calcium out of the cell. Alongside the plasma membrane Ca2+‐ATPase (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138#159_overview) and sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138), as well as the sodium/potassium/calcium exchangers (NKCX, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=202), NCX allow recovery of intracellular calcium back to basal levels after cellular stimulation. When intracellular sodium ion levels rise, for example, following depolarisation, these transporters can operate in the reverse direction to allow calcium influx and sodium efflux, as an electrogenic mechanism. Structural modelling suggests the presence of 9 TM segments, with a large intracellular loop between the fifth and sixth TM segments.

Comments

Although subtype‐selective inhibitors of NCX function are not widely available, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4597 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4593 act as non‐selective NCX inhibitors, while http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4617, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4232, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4666, and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6481 [http://www.ncbi.nlm.nih.gov/pubmed/23647096?dopt=AbstractPlus] act to inhibit NCX function with varying degrees of selectivity. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8438 is a selective NCX3 inhibitor [http://www.ncbi.nlm.nih.gov/pubmed/25942323?dopt=AbstractPlus] and and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9484 inhibits NCX3 preferentially over other isoforms [http://www.ncbi.nlm.nih.gov/pubmed/16973719?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27480939?dopt=AbstractPlus].

Further reading on SLC8 family of sodium/calcium exchangers

Giladi M et al. (2016) Structure‐Functional Basis of Ion Transport in Sodium‐Calcium Exchanger (NCX) Proteins. Int J Mol Sci 17: [https://www.ncbi.nlm.nih.gov/pubmed/27879668?dopt=AbstractPlus]

Khananshvili D. (2013) The SLC8 gene family of sodium‐calcium exchangers (NCX) ‐ structure, function, and regulation in health and disease. Mol. Aspects Med. 34: 220‐35 [https://www.ncbi.nlm.nih.gov/pubmed/23506867?dopt=AbstractPlus]

Sekler I. (2015) Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. Biochem. Biophys. Res. Commun. 460: 50‐2 [https://www.ncbi.nlm.nih.gov/pubmed/25998733?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=181

Overview

Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Na+ (in) : 1 H+ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellularmembranes [http://www.ncbi.nlm.nih.gov/pubmed/11641397?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15522866?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11279194?dopt=AbstractPlus]. Li+ and NH4 +, but not K+, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C‐terminus containing multiple regulatory sites. NHE1 is considered to be a ubiquitously‐expressed ‘housekeeping’ transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm [http://www.ncbi.nlm.nih.gov/pubmed/14634667?dopt=AbstractPlus] and osteoclasts [http://www.ncbi.nlm.nih.gov/pubmed/18269914?dopt=AbstractPlus]; gene disruption results in infertile male mice [http://www.ncbi.nlm.nih.gov/pubmed/14634667?dopt=AbstractPlus].

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=181.

Comments

Analogues of the non‐selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Na+ binding site. The more selective amiloride analogues http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4595 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4186 exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 [http://www.ncbi.nlm.nih.gov/pubmed/8246907?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8415663?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7685025?dopt=AbstractPlus].

Further reading on SLC9 family of sodium/hydrogen exchangers

Donowitz M et al. (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol. Aspects Med. 34: 236‐51 [https://www.ncbi.nlm.nih.gov/pubmed/23506868?dopt=AbstractPlus]

Kato A et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 73: 261‐81 [https://www.ncbi.nlm.nih.gov/pubmed/21054167?dopt=AbstractPlus]

Ohgaki R et al. (2011) Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50: 443‐50 [https://www.ncbi.nlm.nih.gov/pubmed/21171650?dopt=AbstractPlus]

Parker MD et al. (2015) Na+‐H+ exchanger‐1 (NHE1) regulation in kidney proximal tubule. Cell. Mol. Life Sci. 72: 2061‐74 [https://www.ncbi.nlm.nih.gov/pubmed/25680790?dopt=AbstractPlus]

Ruffin VA et al. (2014) Intracellular pH regulation by acid‐base transporters in mammalian neurons. Front Physiol 5: 43 [https://www.ncbi.nlm.nih.gov/pubmed/24592239?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=182

Overview

The SLC10 family transport bile acids, sulphated solutes, and other xenobiotics in a sodium‐dependent manner. The founding members, SLC10A1 (NTCP) and SLC10A2 (ASBT) function, along with members of the ABC transporter family (MDR1/ABCB1, BSEP/ABCB11 andMRP2/ABCC2) and the organic solute transporter obligate heterodimer OSTa:OSTß (SLC51), to maintain the enterohepatic circulation of bile acids [http://www.ncbi.nlm.nih.gov/pubmed/19498215?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20103563?dopt=AbstractPlus]. SLC10A6 (SOAT) functions as a sodium‐dependent transporter of sulphated solutes including sulfphated steroids and bile acids [http://www.ncbi.nlm.nih.gov/pubmed/17491011?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15020217?dopt=AbstractPlus]. Transport function has not yet been demonstrated for the 4 remaining members of the SLC10 family, SLC10A3 (P3), SLC10A4 (P4), SLC10A5 (P5), and SLC10A7 (P7), and the identity of their endogenous substrates remain unknown [http://www.ncbi.nlm.nih.gov/pubmed/17632081?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15020217?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17628207?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19682536?dopt=AbstractPlus]. Members of the SLC10 family are predicted to have seven transmembrane domains with an extracellular N‐terminus and cytoplasmic C‐terminus [http://www.ncbi.nlm.nih.gov/pubmed/16411770?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10471288?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=959 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=960 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=961
Systematic nomenclature SLC10A1 SLC10A2 SLC10A6
Common abbreviation NTCP ASBT SOAT
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10905, http://www.uniprot.org/uniprot/Q14973 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10906, http://www.uniprot.org/uniprot/Q12908 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30603, http://www.uniprot.org/uniprot/Q3KNW5
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4714 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4715, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4545 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4547 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=609 > cholic acid [http://www.ncbi.nlm.nih.gov/pubmed/9458785?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4290 [http://www.ncbi.nlm.nih.gov/pubmed/17491011?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528 [http://www.ncbi.nlm.nih.gov/pubmed/15020217?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4548
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528 [http://www.ncbi.nlm.nih.gov/pubmed/9458785?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17632081?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9398014?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749, iodothyronine sulphates [http://www.ncbi.nlm.nih.gov/pubmed/19682536?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4746, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4547, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4747 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4544 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=609 [http://www.ncbi.nlm.nih.gov/pubmed/9398014?dopt=AbstractPlus]
Stoichiometry 2 Na+: 1 bile acid [http://www.ncbi.nlm.nih.gov/pubmed/16411770?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17491011?dopt=AbstractPlus] >1 Na+: 1 bile acid [http://www.ncbi.nlm.nih.gov/pubmed/9458785?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9856990?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=63 (pIC50 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/10565843?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1024 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/10565843?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7596 (pIC50 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/10565843?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1024 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/23339484?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=589 (pK i 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/23339484?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9996t (pIC50 8.9) [237], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6530 (pIC50 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/12810816?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6529 (pIC50 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/14552767?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23678871?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4546 [http://www.ncbi.nlm.nih.gov/pubmed/9458785?dopt=AbstractPlus]
Comments http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4770 is a fluorescent bile acid analogue used as a probe [http://www.ncbi.nlm.nih.gov/pubmed/9856990?dopt=AbstractPlus].

Comments

Heterologously expressed SLC10A4 [http://www.ncbi.nlm.nih.gov/pubmed/18355966?dopt=AbstractPlus] or SLC10A7 [http://www.ncbi.nlm.nih.gov/pubmed/17628207?dopt=AbstractPlus] failed to exhibit significant transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4547, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4290, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551. SLC10A4 has recently been suggested to associate with neuronal vesicles [http://www.ncbi.nlm.nih.gov/pubmed/21742018?dopt=AbstractPlus].

Further reading on SLC10 family of sodium‐bile acid co‐transporters

Anwer MS et al. (2014) Sodium‐dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 466: 77‐89 [https://www.ncbi.nlm.nih.gov/pubmed/24196564?dopt=AbstractPlus]

Claro da Silva T et al. (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. Mol. Aspects Med. 34: 252‐69 [https://www.ncbi.nlm.nih.gov/pubmed/23506869?dopt=AbstractPlus]

Dawson PA. (2017) Roles of Ileal ASBT and OSTa‐OSTß in Regulating Bile Acid Signaling. Dig Dis 35: 261‐266 [https://www.ncbi.nlm.nih.gov/pubmed/28249269?dopt=AbstractPlus]

Zwicker BL et al. (2013) Transport and biological activities of bile acids. Int. J. Biochem. Cell Biol. 45: 1389‐98 [https://www.ncbi.nlm.nih.gov/pubmed/23603607?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=183

Overview

The family of proton‐coupled metal ion transporters are responsible for movements of divalent cations, particularly ferrous and manganese ions, across the cell membrane (SLC11A2/DMT1) and across endosomal (SLC11A2/DMT1) or lysosomal/phagosomal membranes (SLC11A1/NRAMP1), dependent on proton transport. Both proteins appear to have 12 TM regions and cytoplasmic N‐ and C‐ termini. NRAMP1 is involved in antimicrobial action in macrophages, although its precise mechanism is undefined. Facilitated diffusion of divalent cations into phagosomes may increase intravesicular free radicals to damage the pathogen. Alternatively, export of divalent cations from the phagosome may deprive the pathogen of essential enzyme cofactors. SLC11A2/DMT1 is more widely expressed and appears to assist in divalent cation assimilation from the diet, as well as in phagocytotic cells.

Comments

Loss‐of‐function mutations in NRAMP1 are associated with increased susceptibility to microbial infection (http://omim.org/entry/607948). Loss‐of‐function mutations in DMT1 are associated with microcytic anemia (http://omim.org/entry/206100).

Further reading on SLC11 family of proton‐coupled metal ion transporters

Codazzi F et al. (2015) Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci 8: 18 [https://www.ncbi.nlm.nih.gov/pubmed/26089776?dopt=AbstractPlus]

Montalbetti N et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270‐87 [https://www.ncbi.nlm.nih.gov/pubmed/23506870?dopt=AbstractPlus]

Wessling‐Resnick M. (2015) Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J. Biol. Chem. 290: 18984‐90 [https://www.ncbi.nlm.nih.gov/pubmed/26055722?dopt=AbstractPlus]

Zheng W et al. (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol. Ther. 133: 177‐88 [https://www.ncbi.nlm.nih.gov/pubmed/22115751?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=184

Overview

The SLC12 family of chloride transporters contribute to ion fluxes across a variety of tissues, particularly in the kidney and choroid plexus of the brain. Within this family, further subfamilies are identifiable: NKCC1, NKCC2 and NCC constitute a group of therapeutically‐relevant transporters, targets for loop and thiazide diuretics. These 12 TM proteins exhibit cytoplasmic termini and an extended extracellular loop at TM7/8 and are kidneyspecific (NKCC2 and NCC) or show a more widespread distribution (NKCC1). A second family, the K‐Cl co‐transporters are also 12 TM domain proteins with cytoplasmic termini, but with an extended extracellular loop at TM 5/6. CCC6 exhibits structural similarities with the K‐Cl co‐transporters, while CCC9 is divergent, with 11 TM domains and a cytoplasmic N‐terminus and extracellular C‐terminus.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=968 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=969 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=970 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=971 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=972
Systematic nomenclature SLC12A1 SLC12A2 SLC12A3 SLC12A4 SLC12A5
Common abbreviation NKCC2 NKCC1 NCC KCC1 KCC2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10910, http://www.uniprot.org/uniprot/Q13621 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10911, http://www.uniprot.org/uniprot/P55011 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10912, http://www.uniprot.org/uniprot/P55017 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10913, http://www.uniprot.org/uniprot/Q9UP95 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13818, http://www.uniprot.org/uniprot/Q9H2X9
Stoichiometry 1 Na+ : 1 K+ : 2 Cl (in) 1 Na+ : 1 K+ : 2 Cl (in) 1 Na+ : 1 Cl (in) 1 K+ : 1 Cl (out) 1 K+ : 1 Cl (out)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4837 (pIC50 6.5) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4742 (pIC50 6) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4839 (pIC50 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4742 (pIC50 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4837 (pIC50 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4839 (pIC50 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/11882915?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4835, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4167, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4836, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4838 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4589 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4665 (pIC50 6.2) [http://www.ncbi.nlm.nih.gov/pubmed/19279215?dopt=AbstractPlus],http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4589

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4589 is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR [http://www.ncbi.nlm.nih.gov/pubmed/11527541?dopt=AbstractPlus].

Further reading on SLC12 family of cation‐coupled chloride transporters

Arroyo JP et al. (2013) The SLC12 family of electroneutral cation‐coupled chloride cotransporters. Mol. Aspects Med. 34: 288‐98 [https://www.ncbi.nlm.nih.gov/pubmed/23506871?dopt=AbstractPlus]

Bachmann S et al. (2017) Regulation of renal Na‐(K)‐Cl cotransporters by vasopressin. Pflugers Arch. 469: 889‐897 [https://www.ncbi.nlm.nih.gov/pubmed/28577072?dopt=AbstractPlus]

Bazúa‐Valenti S et al. (2016) Physiological role of SLC12 family members in the kidney. Am. J. Physiol. Renal Physiol. 311: F131‐44 [https://www.ncbi.nlm.nih.gov/pubmed/27097893?dopt=AbstractPlus]

Huang X et al. (2016) Everything we always wanted to know about furosemide but were afraid to ask. Am. J. Physiol. Renal Physiol. 310: F958‐71 [https://www.ncbi.nlm.nih.gov/pubmed/26911852?dopt=AbstractPlus]

Kahle KT et al. (2015) K‐Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med 21: 513‐23 [https://www.ncbi.nlm.nih.gov/pubmed/26142773?dopt=AbstractPlus]

Martín‐Aragón Baudel MA et al. (2017) Chloride co‐transporters as possible therapeutic targets for stroke. J. Neurochem. 140: 195‐209 [https://www.ncbi.nlm.nih.gov/pubmed/27861901?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=185

Overview

Within the SLC13 family, two groups of transporters may be differentiated on the basis of the substrates transported: NaS1 and NaS2 convey sulphate, while NaC1‐3 transport carboxylates. NaS1 and NaS2 transporters are made up of 13 TM domains, with an intracellular N terminus and are electrogenic with physiological roles in the intestine, kidney and placenta. NaC1, NaC2 and NaC3 are made up of 11 TM domains with an intracellular N terminus and are electrogenic, with physiological roles in the kidney and liver.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=977 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=978 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=979 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=980 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=981
Systematic nomenclature SLC13A1 SLC13A2 SLC13A3 SLC13A4 SLC13A5
Common abbreviation NaS1 NaC1 NaC3 NaS2 NaC2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10916, http://www.uniprot.org/uniprot/Q9BZW2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10917, http://www.uniprot.org/uniprot/Q13183 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14430, http://www.uniprot.org/uniprot/Q8WWT9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15827, http://www.uniprot.org/uniprot/Q9UKG4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23089, http://www.uniprot.org/uniprot/Q86YT5
Endogenous substrates SeO4 2‐, SO4 2‐, S2O3 2‐ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3637 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3637 SO4 2‐ http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809
Stoichiometry 3 Na+ : 1 SO4 2‐ (in) 3 Na+ : 1 dicarboxylate2‐ (in) Unknown 3 Na+ : SO4 2‐ (in) Unknown

Further reading on SLC13 family of sodium‐dependent sulphate/carboxylate transporters

Bergeron MJ et al. (2013) SLC13 family of Na+‐coupled di‐ and tri‐carboxylate/sulfate transporters. Mol. Aspects Med. 34: 299‐312 [https://www.ncbi.nlm.nih.gov/pubmed/23506872?dopt=AbstractPlus]

Markovich D. (2014) Na+‐sulfate cotransporter SLC13A1. Pflugers Arch. 466: 131‐7 [https://www.ncbi.nlm.nih.gov/pubmed/24193406?dopt=AbstractPlus]

Pajor AM. (2014) Sodium‐coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch. 466: 119‐30 [https://www.ncbi.nlm.nih.gov/pubmed/24114175?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=186

Overview

As a product of protein catabolism, urea is moved around the body and through the kidneys for excretion. Although there is experimental evidence for concentrative urea transporters, these have not been defined at the molecular level. The SLC14 family are facilitative transporters, allowing http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4539 movement down its concentration gradient. Multiple splice variants of these transporters have been identified; for UT‐A transporters, in particular, there is evidence for cell‐specific expression of these variants with functional impact [http://www.ncbi.nlm.nih.gov/pubmed/21449978?dopt=AbstractPlus]. Topographical modelling suggests that the majority of the variants of SLC14 transporters have 10 TM domains, with a glycosylated extracellular loop at TM5/6, and intracellular C‐ and N‐termini. The UT‐A1 splice variant, exceptionally, has 20 TMdomains, equivalent to a combination of theUT‐A2 and UT‐A3 splice variants.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=982 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=983
Systematic nomenclature SLC14A1 SLC14A2
Common abbreviation UT‐B UT‐A
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10918, http://www.uniprot.org/uniprot/Q13336 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10919, http://www.uniprot.org/uniprot/Q15849
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4661 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4553 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4662 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4509 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4539 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4739 [http://www.ncbi.nlm.nih.gov/pubmed/17506977?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4539 [http://www.ncbi.nlm.nih.gov/pubmed/18256317?dopt=AbstractPlus]
Stoichiometry Equilibrative Equilibrative
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8881 (pIC50 ~8) [http://www.ncbi.nlm.nih.gov/pubmed/23597791?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8881 (pIC50 7.6) [http://www.ncbi.nlm.nih.gov/pubmed/23597791?dopt=AbstractPlus] –Mouse

Further reading on SLC14 family of facilitative urea transporters

Esteva‐Font C et al. (2015) Urea transporter proteins as targets for small‐molecule diuretics. Nat Rev Nephrol 11: 113‐23 [https://www.ncbi.nlm.nih.gov/pubmed/25488859?dopt=AbstractPlus]

LeMoine CM et al. (2015) Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. J. Exp. Biol. 218: 1936‐1945 [https://www.ncbi.nlm.nih.gov/pubmed/26085670?dopt=AbstractPlus]

Pannabecker TL. (2013) Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304: R488‐503 [https://www.ncbi.nlm.nih.gov/pubmed/23364530?dopt=AbstractPlus]

Shayakul C et al. (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol. Aspects Med. 34: 313‐22 [https://www.ncbi.nlm.nih.gov/pubmed/23506873?dopt=AbstractPlus]

Stewart G. (2011) The emerging physiological roles of the SLC14A family of urea transporters. Br. J. Pharmacol. 164: 1780‐92 [https://www.ncbi.nlm.nih.gov/pubmed/21449978?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=187

Overview

The Solute Carrier 15 (SLC15) family of peptide transporters, alias H+‐coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di‐ and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain‐to‐blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide‐like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=984 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=985
Systematic nomenclature SLC15A1 SLC15A2
Common abbreviation PEPT1 PEPT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10920, http://www.uniprot.org/uniprot/P46059 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10921, http://www.uniprot.org/uniprot/Q16348
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1022 [http://www.ncbi.nlm.nih.gov/pubmed/14578196?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16568107?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11375948?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9835627?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23259992?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9502 [http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5421 [http://www.ncbi.nlm.nih.gov/pubmed/28943923?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11518682?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24744852?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9501 [http://www.ncbi.nlm.nih.gov/pubmed/21366347?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23822979?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24744852?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9503 [http://www.ncbi.nlm.nih.gov/pubmed/15128310?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5024 [http://www.ncbi.nlm.nih.gov/pubmed/17487240?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15521010?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5024 [http://www.ncbi.nlm.nih.gov/pubmed/29784761?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23442152?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9501 [http://www.ncbi.nlm.nih.gov/pubmed/21366347?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9888294?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24744852?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19913073?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16041713?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/23442152?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20868728?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19612975?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5421 [http://www.ncbi.nlm.nih.gov/pubmed/24744852?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9843719?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9504 [http://www.ncbi.nlm.nih.gov/pubmed/23442152?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18474668?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9503 [http://www.ncbi.nlm.nih.gov/pubmed/15128310?dopt=AbstractPlus]
Endogenous substrates protons, dipeptides [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784 [http://www.ncbi.nlm.nih.gov/pubmed/19789362?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15901802?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11454935?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12649372?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16627568?dopt=AbstractPlus], tripeptides [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus] dipeptides, protons, tripeptides, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784 [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11454935?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17034769?dopt=AbstractPlus]
Stoichiometry Transport is electrogenic and involves a variable proton‐to‐substrate stoichiometry for uptake of neutral and mono‐ or polyvalently charged peptides, as well as 5‐aminolevulic acid. Transport is electrogenic and involves a variable proton‐to‐substrate stoichiometry for uptake of neutral and mono‐ or polyvalently charged peptides, as well as 5‐aminolevulic acid.
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9486 (pK i 5.7) [http://www.ncbi.nlm.nih.gov/pubmed/14706812?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4702 (pK i 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/15930458?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9882198?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4498 (pK i 5–5.3) [http://www.ncbi.nlm.nih.gov/pubmed/11284702?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4499 (pK i 8) [http://www.ncbi.nlm.nih.gov/pubmed/16868651?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11752223?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4498
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4489 [http://www.ncbi.nlm.nih.gov/pubmed/18344442?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4599 [http://www.ncbi.nlm.nih.gov/pubmed/30135242?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9753615?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15974593?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7592745?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9610386?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092716?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11454935?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18824524?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11284702?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18713951?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15567297?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10578127?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9379359?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9374833?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8843163?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10748266?dopt=AbstractPlus], [http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4659]http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4659 [http://www.ncbi.nlm.nih.gov/pubmed/12538834?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11714740?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11602669?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8956326?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9706043?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20660104?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16434549?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27903454?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16627568?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4489 [http://www.ncbi.nlm.nih.gov/pubmed/15781409?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4599 [http://www.ncbi.nlm.nih.gov/pubmed/14715149?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7592745?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9610386?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092716?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24548120?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11454935?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18824524?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18713951?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7756356?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15567297?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10578127?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9374833?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10748266?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4659 [http://www.ncbi.nlm.nih.gov/pubmed/16434549?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/26494147?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27903454?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18367661?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27836942?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus]
Comments A variety of dipeptides and drugs interact with PEPT1, including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4559 [http://www.ncbi.nlm.nih.gov/pubmed/15832510?dopt=AbstractPlus], D‐Phe‐Ala [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11284702?dopt=AbstractPlus], D‐Phe‐Gln [http://www.ncbi.nlm.nih.gov/pubmed/19789362?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784 [http://www.ncbi.nlm.nih.gov/pubmed/12649372?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14600253?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16632403?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6833 [http://www.ncbi.nlm.nih.gov/pubmed/10748266?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2414 [http://www.ncbi.nlm.nih.gov/pubmed/10578127?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4824 [http://www.ncbi.nlm.nih.gov/pubmed/11180195?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9753615?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15901802?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10087037?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4831 [http://www.ncbi.nlm.nih.gov/pubmed/8627565?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4832 [http://www.ncbi.nlm.nih.gov/pubmed/7592745?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4796 (benzylpenicillin) [http://www.ncbi.nlm.nih.gov/pubmed/15901802?dopt=AbstractPlus], as detected using [3H] and [14C] radio‐labelled probes. Other high‐affinity (non‐transported) inhibitors: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9486l (Ki 2 μM) [http://www.ncbi.nlm.nih.gov/pubmed/14706812?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11284702?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4498 (Ki 3‐7 μM) [http://www.ncbi.nlm.nih.gov/pubmed/14706812?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11284702?dopt=AbstractPlus]; other low‐affinity, (non‐transported) inhibitors: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4702 (Ki 3 mM) [http://www.ncbi.nlm.nih.gov/pubmed/19789362?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15930458?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9882198?dopt=AbstractPlus]. Like PEPT1, PEPT2 interact with dipeptides and drugs including http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4559 [http://www.ncbi.nlm.nih.gov/pubmed/17034769?dopt=AbstractPlus], D‐Phe‐Ala [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11752223?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784 [http://www.ncbi.nlm.nih.gov/pubmed/9637710?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11454935?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12649372?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/14600253?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16632403?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6833 [http://www.ncbi.nlm.nih.gov/pubmed/10748266?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2414 [http://www.ncbi.nlm.nih.gov/pubmed/10578127?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4831 [http://www.ncbi.nlm.nih.gov/pubmed/14600253?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4832 [http://www.ncbi.nlm.nih.gov/pubmed/7592745?dopt=AbstractPlus] and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4796 (benzylpenicillin) [http://www.ncbi.nlm.nih.gov/pubmed/14600253?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=986 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=987
Systematic nomenclature SLC15A3 SLC15A4
Common abbreviation PHT2 PHT1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18068, http://www.uniprot.org/uniprot/Q8IY34 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23090, http://www.uniprot.org/uniprot/Q8N697
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9506 [http://www.ncbi.nlm.nih.gov/pubmed/24695226?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5024 [http://www.ncbi.nlm.nih.gov/pubmed/24695226?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29305856?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9507 [http://www.ncbi.nlm.nih.gov/pubmed/29305856?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9502 [http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9507 [http://www.ncbi.nlm.nih.gov/pubmed/19570976?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21277849?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29224352?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9508 [http://www.ncbi.nlm.nih.gov/pubmed/19570976?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9505 [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24548120?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29224352?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5024 [http://www.ncbi.nlm.nih.gov/pubmed/24695226?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29224352?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4824 [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9506 [http://www.ncbi.nlm.nih.gov/pubmed/29784761?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/24695226?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus], dipeptides, tripeptides, protons http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/25238095?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27845049?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4559 [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus]
Stoichiometry PHT2 has not been analyzed systematically with respect to driving force, mode of transport, and substrate specificity. The pH dependence observed for transport of histidine [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus] and the model peptides used, i.e., carnosine [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus] and histidyl‐leucine [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus], suggest a similar mode of operation as PEPT1 and PEPT2 proteins. PHT1 has not been analyzed systematically with respect to driving force, mode of transport, and substrate specificity. The pH dependence observed for transport of histidine [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/25238095?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27845049?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus] and the model peptide used, i.e., carnosine [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus], suggest a similar mode of operation as PEPT1 and PEPT2 proteins.
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4623 [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4623 (Binding) [http://www.ncbi.nlm.nih.gov/pubmed/27845049?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/29305823?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4670 [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27845049?dopt=AbstractPlus]
Comments PHT2 interacts with [3H]carnosine [http://www.ncbi.nlm.nih.gov/pubmed/11336635?dopt=AbstractPlus]. Other PHT1 ligands include [3H]histidine [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27543355?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27845049?dopt=AbstractPlus], d3‐L‐histidine [http://www.ncbi.nlm.nih.gov/pubmed/29224352?dopt=AbstractPlus], [3H]carnosine [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9092568?dopt=AbstractPlus] [14C]GlySar [http://www.ncbi.nlm.nih.gov/pubmed/24548120?dopt=AbstractPlus], [3H]GlySar [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22950754?dopt=AbstractPlus] and [3H]valacyclovir [http://www.ncbi.nlm.nih.gov/pubmed/16289537?dopt=AbstractPlus].

Comments

The members of the SLC15 family of peptide transporters are particularly promiscuous in the transport of di/tripeptides, and D‐amino acid containing peptides are also transported. While SLC15A3 and SLC15A4 transport histidine, none of them transport tetrapeptides. In addition, many molecules, among which beta‐lactam antibiotics, angiotensinconverting enzyme inhibitors and sartans, variably interact with the SLC15 family transporters. Known substrates include http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4831, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4824, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784, L‐Dopa prodrugs, gemcitabine prodrugs, floxuridine prodrugs, Maillard reaction products, JBP485, zanamivir, oseltamivir prodrugs, doxorubicin prodrugs, polymyxins, and didanosine prodrugs. Frequently used pharmaceutical excipients such as Tween®20, Tween®80, Solutol ®HS 15 and Cremophor EL®strongly inhibit cellular uptake of Gly‐Sar by SLC15A1 and/or SLC15A2 [http://www.ncbi.nlm.nih.gov/pubmed/27903454?dopt=AbstractPlus]. There is evidence to suggest the existence of a fifth member of this transporter family, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:33455 (http://www.uniprot.org/uniprot/A6NIM6; http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000188991;r=12:16188485‐16277685;t=ENST00000344941), but to date there is no established biological function or reported pharmacology for this protein [http://www.ncbi.nlm.nih.gov/pubmed/21044875?dopt=AbstractPlus].

Further reading on SLC15 family of peptide transporters

Anderson CM et al. (2010) Hijacking solute carriers for proton‐coupled drug transport. Physiology (Bethesda) 25: 364‐77 [https://www.ncbi.nlm.nih.gov/pubmed/21186281?dopt=AbstractPlus]

Brandsch M. (2013) Drug transport via the intestinal peptide transporter PepT1. Curr Opin Pharmacol 13: 881‐7 [https://www.ncbi.nlm.nih.gov/pubmed/24007794?dopt=AbstractPlus]

Brandsch M. (2009) Transport of drugs by proton‐coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5: 887‐905 [https://www.ncbi.nlm.nih.gov/pubmed/19519280?dopt=AbstractPlus]

Fredriksson R et al. (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 582: 3811‐6 [https://www.ncbi.nlm.nih.gov/pubmed/18948099?dopt=AbstractPlus]

Newstead S. (2015) Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta 1850: 488‐499 [https://www.ncbi.nlm.nih.gov/pubmed/24859687?dopt=AbstractPlus]

Newstead S. (2017) Recent advances in understanding proton coupled peptide transport via the POT family. Curr. Opin. Struct. Biol. 45: 17‐24 [https://www.ncbi.nlm.nih.gov/pubmed/27865112?dopt=AbstractPlus]

Newstead S. (2011) Towards a structural understanding of drug and peptide transport within the proton‐dependent oligopeptide transporter (POT) family. Biochem. Soc. Trans. 39: 1353‐8 [https://www.ncbi.nlm.nih.gov/pubmed/21936814?dopt=AbstractPlus]

Smith DE et al. (2013) Proton‐coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol. Aspects Med. 34: 323‐36 [https://www.ncbi.nlm.nih.gov/pubmed/23506874?dopt=AbstractPlus]

Thwaites DT et al. (2007) H+‐coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp. Physiol. 92: 603‐19 [https://www.ncbi.nlm.nih.gov/pubmed/17468205?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=188

Overview

Members of the SLC16 family may be divided into subfamilies on the basis of substrate selectivities, particularly lactate (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809 and ketone bodies, as well as aromatic amino acids. Topology modelling suggests 12 TM domains, with intracellular termini and an extended loop at TM 6/7.

The proton‐coupledmonocarboxylate transporters (monocarboxylate transporters 1, 4, 2 and 3) allowtransport of the products of cellularmetabolism, principally lactate (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=988 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=990 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=991 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=989 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=995 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=992 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=993
Systematic nomenclature SLC16A1 SLC16A7 SLC16A8 SLC16A3 SLC16A5 SLC16A2 SLC16A10
Common abbreviation MCT1 MCT2 MCT3 MCT4 MCT6 MCT8 TAT1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10922, http://www.uniprot.org/uniprot/P53985 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10928, http://www.uniprot.org/uniprot/O60669 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16270, http://www.uniprot.org/uniprot/O95907 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10924, http://www.uniprot.org/uniprot/O15427 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10926, http://www.uniprot.org/uniprot/O15375 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10923, http://www.uniprot.org/uniprot/P36021 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17027, http://www.uniprot.org/uniprot/Q8TF71
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4711 [http://www.ncbi.nlm.nih.gov/pubmed/16707723?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1593 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4809, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2932 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2634 [http://www.ncbi.nlm.nih.gov/pubmed/16887882?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 4 [http://www.ncbi.nlm.nih.gov/pubmed/16887882?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3639, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791
Stoichiometry 1 H+ : 1 monocarboxylate (out) 1 H+ : 1 monocarboxylate (out) 1 H+ : 1 monocarboxylate (out) 1 H+ : 1 monocarboxylate (out) Unknown Unknown Unknown
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8813 (Compound 30 is a channel blocker.) (pKi 8.3) [http://www.ncbi.nlm.nih.gov/pubmed/16455256?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8818 (pIC50 8) [http://www.ncbi.nlm.nih.gov/pubmed/24095010?dopt=AbstractPlus]
Comments MCT6 has been reported to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4837, but not short chain fatty acids [http://www.ncbi.nlm.nih.gov/pubmed/16174808?dopt=AbstractPlus].

Comments

MCT1 and MCT2, but not MCT3 and MCT4, are inhibited by CHC, which also inhibits members of the mitochondrial transporter family, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=147.

MCT5‐MCT7, MCT9 and MCT11‐14 are regarded as orphan transporters.

Further reading on SLC16 family of monocarboxylate transporters

Bernal J et al. (2015) Thyroid hormone transporters‐functions and clinical implications. Nat Rev Endocrinol 11: 406‐417 https://www.ncbi.nlm.nih.gov/pubmed/25942657?dopt=AbstractPlus

Halestrap AP. (2013) The SLC16 gene family ‐ structure, role and regulation in health and disease. Mol. Aspects Med. 34: 337‐49 https://www.ncbi.nlm.nih.gov/pubmed/23506875?dopt=AbstractPlus

Jones RS et al. (2016) Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin. Pharmacol. Ther. 100: 454‐463 https://www.ncbi.nlm.nih.gov/pubmed/27351344?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145

Overview

The SLC17 family are sometimes referred to as Type I sodium‐phosphate co‐transporters, alongside Type II (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=221) and Type III (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195) transporters. Within the SLC17 family, however, further subgroups of organic anion transporters may be defined, allowing the accumulation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4644 in the endoplasmic reticulum and glutamate (e.g. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369) or nucleotides in synaptic and secretory vesicles. Topology modelling suggests 12 TM domains.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=189

Overview

Type I sodium‐phosphate co‐transporters are expressed in the kidney and intestine.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1002 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1003 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1004 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1005
Systematic nomenclature SLC17A1 SLC17A2 SLC17A3 SLC17A4
Common abbreviation NPT1 NPT3 NPT4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10929, http://www.uniprot.org/uniprot/Q14916 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10930, http://www.uniprot.org/uniprot/O00624 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10931, http://www.uniprot.org/uniprot/O00476 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10932, http://www.uniprot.org/uniprot/Q9Y2C5
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4357 [http://www.ncbi.nlm.nih.gov/pubmed/8643577?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4796 [http://www.ncbi.nlm.nih.gov/pubmed/8643577?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2339 [http://www.ncbi.nlm.nih.gov/pubmed/20566650?dopt=AbstractPlus], organic acids [306], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4731 [http://www.ncbi.nlm.nih.gov/pubmed/20566650?dopt=AbstractPlus], phosphate [http://www.ncbi.nlm.nih.gov/pubmed/20566650?dopt=AbstractPlus]
Stoichiometry Unknown Unknown Unknown Unknown

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=190

Overview

The sialic acid transporter is expressed on both lysosomes and synaptic vesicles, where it appears to allow export of sialic acid and accumulation of acidic amino acids, respectively [446], driven by proton gradients. In lysosomes, degradation of glycoproteins generates amino acids and sugar residues, which are metabolized further following export from the lysosome.

Comments

Loss‐of‐function mutations in sialin are associated with Salla disease (http://omim.org/entry/604369), an autosomal recessive neurodegenerative disorder associated with sialic acid storage disease [http://www.ncbi.nlm.nih.gov/pubmed/10581036?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=191

Overview

Vesicular glutamate transporters (VGLUTs) allow accumulation of glutamate into synaptic vesicles, as well as secretory vesicles in endocrine tissues. The roles of VGLUTs in kidney and liver are unclear. These transporters appear to utilize the proton gradient and also express a chloride conductance [http://www.ncbi.nlm.nih.gov/pubmed/10938000?dopt=AbstractPlus].

Comments

Endogenous ketoacids produced during fasting have been proposed to regulate VGLUT function through blocking chloride ion‐mediated allosteric enhancement of transporter function [http://www.ncbi.nlm.nih.gov/pubmed/20920794?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=192

Overview

The vesicular nucleotide transporter is the most recent member of the SLC17 family to have an assigned function. Uptake of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 was independent of pH, but dependent on chloride ions and membrane potential [http://www.ncbi.nlm.nih.gov/pubmed/18375752?dopt=AbstractPlus].

Comments

VGLUTs and VNUT can be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4177 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4579.

Further reading on SLC17 phosphate and organic anion transporter family

Moriyama Y et al. (2017) Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal. 13: 387‐404 https://www.ncbi.nlm.nih.gov/pubmed/28616712?dopt=AbstractPlus

Omote H et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu. Rev. Pharmacol. Toxicol. 56: 385‐402 https://www.ncbi.nlm.nih.gov/pubmed/26514205?dopt=AbstractPlus

Reimer RJ. (2013) SLC17: a functionally diverse family of organic anion transporters. Mol. Aspects Med. 34: 350‐9 https://www.ncbi.nlm.nih.gov/pubmed/23506876?dopt=AbstractPlus

Takamori S. (2016) Vesicular glutamate transporters as anion channels? Pflugers Arch. 468: 513‐8 https://www.ncbi.nlm.nih.gov/pubmed/26577586?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=193

Overview

The vesicular amine transporters (VATs) are putative 12 TM domain proteins that function to transport singly positively charged amine neurotransmitters and hormones from the cytoplasm and concentrate them within secretory vesicles. They function as amine/proton antiporters driven by secondary active transport utilizing the proton gradient established by a multi‐subunit http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=137#V‐typeATPase that acidifies secretory vesicles (reviewed by [http://www.ncbi.nlm.nih.gov/pubmed/12827358?dopt=AbstractPlus]). The vesicular acetylcholine transporter (VAChT; [http://www.ncbi.nlm.nih.gov/pubmed/8071310?dopt=AbstractPlus]) localizes to cholinergic neurons, but non‐neuronal expression has also been claimed [http://www.ncbi.nlm.nih.gov/pubmed/21482687?dopt=AbstractPlus]. Vesicular monoamine transporter 1 (VMAT1, [http://www.ncbi.nlm.nih.gov/pubmed/8245983?dopt=AbstractPlus]) is mainly expressed in peripheral neuroendocrine cells, but most likely not in the CNS, whereas VMAT2 [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] distributes between both central and peripheral sympathetic monoaminergic neurones [http://www.ncbi.nlm.nih.gov/pubmed/21272013?dopt=AbstractPlus]. The vescular polyamine transporter (VPAT) is highly expressed in the lungs and placenta, with moderate expression in brain and testis, and with low expression in heart and skeletal muscle [http://www.ncbi.nlm.nih.gov/pubmed/25355561?dopt=AbstractPlus]. VPAT mediates vesicular accumulation of polyamines in mast cells [http://www.ncbi.nlm.nih.gov/pubmed/28082679?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1011 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1012 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1013
Systematic nomenclature SLC18A1 SLC18A2 SLC18A3
Common abbreviation VMAT1 VMAT2 VAChT
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10934, http://www.uniprot.org/uniprot/P54219 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10935, http://www.uniprot.org/uniprot/Q05940 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10936, http://www.uniprot.org/uniprot/Q16572
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2147 (K i 4.7×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 (K i 3.4×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4613 (K i 3.1×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 (K i 6.9×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4574 (K i 1.9×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 (K i 3.7×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2147 (K i 2.1×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4613 (K i 5.1×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 (K i 8.9×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], MDMA (K i 6.9×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4558 [http://www.ncbi.nlm.nih.gov/pubmed/15979764?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4569 [http://www.ncbi.nlm.nih.gov/pubmed/15979764?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4652 [http://www.ncbi.nlm.nih.gov/pubmed/15979764?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4773 [http://www.ncbi.nlm.nih.gov/pubmed/15979764?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204 (K i 4.6×10‐3M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 (K i 1.4×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 (K i 3.8×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 (K i 1.3×10‐5M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 (K i 5.5×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204 (K i 1.4×10‐4M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 (K i 1.4×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 (K i 9×10‐7M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 (K i 3.4×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479 (K i 1.9×10‐6M) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=294 (K i 7.9×10‐4M) [http://www.ncbi.nlm.nih.gov/pubmed/15485505?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20225888?dopt=AbstractPlus], choline (K i 5×10‐3M) [http://www.ncbi.nlm.nih.gov/pubmed/15485505?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20225888?dopt=AbstractPlus]
Stoichiometry 1 amine (in): 2H+ (out) 1 amine (in): 2H+ (out) 1 amine (in): 2H+ (out)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4823 (pK i 7.5) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=88 (pK i 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4834 (pK i 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4823 (pK i 7.9) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4834 (pK i 7) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=88 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4768 (pK i 10.9) [http://www.ncbi.nlm.nih.gov/pubmed/7702637?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4759 (pK i 8.7) [http://www.ncbi.nlm.nih.gov/pubmed/7702637?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4766 (Inhibitor) (pK d 8.2) [http://www.ncbi.nlm.nih.gov/pubmed/8910293?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4764 (Inhibitor) (pK d 8.1) [http://www.ncbi.nlm.nih.gov/pubmed/7855735?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4608 (Inhibitor),http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4763 (Inhibitor) [http://www.ncbi.nlm.nih.gov/pubmed/9325342?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4758 (pK d 8.4) [http://www.ncbi.nlm.nih.gov/pubmed/8910293?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4762

Comments

pKi values for endogenous and synthetic substrate inhibitors of human VMAT1 and VMAT2 are for inhibition of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3248 uptake in transfected and permeabilised CV‐1 cells as detailed by [http://www.ncbi.nlm.nih.gov/pubmed/8643547?dopt=AbstractPlus]. In addition to the monoamines listed in the table, the trace amines http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2144 are probable substrates for VMAT2 [http://www.ncbi.nlm.nih.gov/pubmed/21272013?dopt=AbstractPlus]. Probes listed in the table are those currently employed; additional agents have been synthesized (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/19632829?dopt=AbstractPlus]).

Further reading on SLC18 family of vesicular amine transporters

German CL et al. (2015) Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol. Rev. 67: 1005‐24 https://www.ncbi.nlm.nih.gov/pubmed/26408528?dopt=AbstractPlus

Lohr KM et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20‐33 https://www.ncbi.nlm.nih.gov/pubmed/27520881?dopt=AbstractPlus

Omote H et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu. Rev. Pharmacol. Toxicol. 56: 385‐402 https://www.ncbi.nlm.nih.gov/pubmed/26514205?dopt=AbstractPlus

Sitte HH et al. (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 36: 41‐50 https://www.ncbi.nlm.nih.gov/pubmed/25542076?dopt=AbstractPlus

Wimalasena K. (2011) Vesicular monoamine transporters: structure‐function, pharmacology, and medicinal chemistry. Med Res Rev 31: 483‐519 https://www.ncbi.nlm.nih.gov/pubmed/20135628?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=194

Overview

The B vitamins http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629 are transported across the cell membrane, particularly in the intestine, kidneys and placenta, using pH differences as driving forces. Topological modelling suggests the transporters have 12 TM domains.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1014 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1015 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1016
Systematic nomenclature SLC19A1 SLC19A2 SLC19A3
Common abbreviation FOLT ThTr1 ThTr2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10937, http://www.uniprot.org/uniprot/P41440 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10938, http://www.uniprot.org/uniprot/O60779 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16266, http://www.uniprot.org/uniprot/Q9BZV2
Substrates N5‐formyltetrahydrofolate, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4816, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4815, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 [http://www.ncbi.nlm.nih.gov/pubmed/7826387?dopt=AbstractPlus]
Endogenous substrates Other tetrahydrofolate‐cofactors, Organic phosphates; in particular, adenine nucleotides, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4675 [http://www.ncbi.nlm.nih.gov/pubmed/7826387?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4684 [http://www.ncbi.nlm.nih.gov/pubmed/7826387?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4580 [http://www.ncbi.nlm.nih.gov/pubmed/11997266?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629
Stoichiometry Folate (in) : organic phosphate (out), precise stoichiometry unknown A facilitative carrier not known to be coupled to an inorganic or organic ion gradient A facilitative carrier not known to be coupled to an inorganic or organic ion gradient
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8890 (pK i 6.6) [http://www.ncbi.nlm.nih.gov/pubmed/15615544?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4815 (pK i 5.3) [http://www.ncbi.nlm.nih.gov/pubmed/15615544?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4562 [http://www.ncbi.nlm.nih.gov/pubmed/9525913?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4674 [http://www.ncbi.nlm.nih.gov/pubmed/9525913?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4628 [http://www.ncbi.nlm.nih.gov/pubmed/10542220?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4628 [http://www.ncbi.nlm.nih.gov/pubmed/11731220?dopt=AbstractPlus]

Comments

Loss‐of‐function mutations in ThTr1 underlie thiamine‐responsive megaloblastic anemia syndrome [http://www.ncbi.nlm.nih.gov/pubmed/10391223?dopt=AbstractPlus].

Further reading on SLC19 family of vitamin transporters

Matherly LH et al. (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42: 632‐49 https://www.ncbi.nlm.nih.gov/pubmed/24396145?dopt=AbstractPlus

Zhao R et al. (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1‐3 and SLC46A1) and folate receptors. Mol. Aspects Med. 34: 373‐85 https://www.ncbi.nlm.nih.gov/pubmed/23506878?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195

Overview

The SLC20 family is looked upon not only as ion transporters, but also as retroviral receptors. As ion transporters, they are sometimes referred to as Type III sodium‐phosphate co‐transporters, alongside Type I (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145) and Type II (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=221). PiTs are cell‐surface transporters, composed of ten TM domains with extracellular C‐ and N‐termini. PiT1 is a focus for dietary phosphate and http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=90 regulation of parathyroid hormone secretion from the parathyroid gland. PiT2 appears to be involved in intestinal absorption of dietary phosphate.

Further reading on SLC20 family of sodium‐dependent phosphate transporters

Biber J et al. (2013) Phosphate transporters and their function. Annu. Rev. Physiol. 75: 535‐50 https://www.ncbi.nlm.nih.gov/pubmed/23398154?dopt=AbstractPlus

Forster IC et al. (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34: 386‐95 https://www.ncbi.nlm.nih.gov/pubmed/23506879?dopt=AbstractPlus

Shobeiri N et al. (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 77: 39‐54 https://www.ncbi.nlm.nih.gov/pubmed/23506202?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=146

Overview

The SLC22 family of transporters is mostly composed of non‐selective transporters, which are expressed highly in liver, kidney and intestine, playing a major role in drug disposition. The family may be divided into three subfamilies based on the nature of the substrate transported: organic cations (OCTs), organic anions (OATs) and organic zwiterrion/cations (OCTN). Membrane topology is predicted to contain 12 TM domains with intracellular termini, and an extended extracellular loop at TM 1/2.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=196

Overview

Organic cation transporters (OCT) are electrogenic, Na+‐independent and reversible.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1019 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1020 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1021
Systematic nomenclature SLC22A1 SLC22A2 SLC22A3
Common abbreviation OCT1 OCT2 OCT3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10963, http://www.uniprot.org/uniprot/O15245 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10966, http://www.uniprot.org/uniprot/O15244 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10967, http://www.uniprot.org/uniprot/O75751
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2399, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 [http://www.ncbi.nlm.nih.gov/pubmed/17476361?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4829 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 [http://www.ncbi.nlm.nih.gov/pubmed/9260930?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4001 [http://www.ncbi.nlm.nih.gov/pubmed/9260930?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343 [http://www.ncbi.nlm.nih.gov/pubmed/9260930?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2294 [http://www.ncbi.nlm.nih.gov/pubmed/9260930?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5343 [http://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 [http://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2342, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 [http://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1884, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 [http://www.ncbi.nlm.nih.gov/pubmed/11907186?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 [http://www.ncbi.nlm.nih.gov/pubmed/10385678?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204 [http://www.ncbi.nlm.nih.gov/pubmed/10385678?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505 [http://www.ncbi.nlm.nih.gov/pubmed/20402963?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 [http://www.ncbi.nlm.nih.gov/pubmed/20402963?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 [http://www.ncbi.nlm.nih.gov/pubmed/20402963?dopt=AbstractPlus]
Stoichiometry Unknown Unknown Unknown
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=516 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/9655880?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8482 (pK i 7) [http://www.ncbi.nlm.nih.gov/pubmed/9260930?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8826 (pK i 7.8) [http://www.ncbi.nlm.nih.gov/pubmed/10196521?dopt=AbstractPlus]

Comments

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2869 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2510 are able to inhibit all three organic cation transporters.

Further reading on Organic cation transporters (OCT)

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34: 413‐35 https://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus

Lozano E et al. (2013) Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int 2013: 692071 https://www.ncbi.nlm.nih.gov/pubmed/23984399?dopt=AbstractPlus

Pelis RM et al. (2014) SLC22, SLC44, and SLC47 transporters–organic anion and cation transporters: molecular and cellular properties. Curr Top Membr 73: 233‐61 https://www.ncbi.nlm.nih.gov/pubmed/24745985?dopt=AbstractPlus

Yin J et al. (2016) Renal drug transporters and their significance in drug‐drug interactions. Acta Pharm Sin B 6: 363‐373 https://www.ncbi.nlm.nih.gov/pubmed/27709005?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=197

Overview

Organic zwitterions/cation transporters (OCTN) function as organic cation uniporters, organic cation/proton exchangers or sodium/http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4780 co‐transporters.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1022 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1023 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1024
Systematic nomenclature SLC22A4 SLC22A5 SLC22A16
Common abbreviation OCTN1 OCTN2 CT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10968, http://www.uniprot.org/uniprot/Q9H015 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10969, http://www.uniprot.org/uniprot/O76082 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20302, http://www.uniprot.org/uniprot/Q86VW1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2406, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1227, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2406, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1227
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4780 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4780, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4520 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4780
Stoichiometry Unknown Unknown Unknown

Comments

Mutations in the SLC22A5 gene lead to primary carnitine deficiency [http://www.ncbi.nlm.nih.gov/pubmed/26828774?dopt=AbstractPlus].

Further reading on Organic zwitterions/cation transporters (OCTN)

Pochini L et al. (2013) OCTN cation transporters in health and disease: role as drug targets and assay development. J Biomol Screen 18: 851‐67 https://www.ncbi.nlm.nih.gov/pubmed/23771822?dopt=AbstractPlus

Tamai I. (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 34: 29‐44 https://www.ncbi.nlm.nih.gov/pubmed/22952014?dopt=AbstractPlus

Yin J et al. (2016) Renal drug transporters and their significance in drug‐drug interactions. Acta Pharm Sin B 6: 363‐373 https://www.ncbi.nlm.nih.gov/pubmed/27709005?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=198

Overview

Organic anion transporters (OATs) are non‐selective transporters prominent in the kidney, placenta and blood‐brain barrier.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1025 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1026 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1027 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1030 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1029 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1028
Systematic nomenclature SLC22A6 SLC22A7 SLC22A8 SLC22A11 SLC22A10 SLC22A9
Common abbreviation OAT1 OAT2 OAT3 OAT5 OAT4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10970, http://www.uniprot.org/uniprot/Q4U2R8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10971, http://www.uniprot.org/uniprot/Q9Y694 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10972, http://www.uniprot.org/uniprot/Q8TCC7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18120, http://www.uniprot.org/uniprot/Q9NSA0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18057, http://www.uniprot.org/uniprot/Q63ZE4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16261, http://www.uniprot.org/uniprot/Q8IVM8
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4810, non‐steroidal anti‐inflammatory drugs http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4810, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883, non‐steroidal anti‐inflammatory drugs http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4731 [http://www.ncbi.nlm.nih.gov/pubmed/29847376?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749 [http://www.ncbi.nlm.nih.gov/pubmed/10224140?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4810 [http://www.ncbi.nlm.nih.gov/pubmed/10224140?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 [http://www.ncbi.nlm.nih.gov/pubmed/10224140?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4672 [http://www.ncbi.nlm.nih.gov/pubmed/10224140?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4731 [http://www.ncbi.nlm.nih.gov/pubmed/29847376?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528 [http://www.ncbi.nlm.nih.gov/pubmed/10660625?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749 [http://www.ncbi.nlm.nih.gov/pubmed/10660625?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4672 [http://www.ncbi.nlm.nih.gov/pubmed/10660625?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4672 [http://www.ncbi.nlm.nih.gov/pubmed/15068970?dopt=AbstractPlus]
Stoichiometry Unknown Unknown Unknown Unknown Unknown Unknown
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4357 (Inhibition of urate transport by human SCL22A6.) (pIC50 4.9) [http://www.ncbi.nlm.nih.gov/pubmed/12472777?dopt=AbstractPlus]

Further reading on Organic anion transporters (OATs)

Burckhardt G et al. (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 29‐104 https://www.ncbi.nlm.nih.gov/pubmed/21103968?dopt=AbstractPlus

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34: 413‐35 https://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus

Shen H et al. (2017) Organic Anion Transporter 2: An Enigmatic Human Solute Carrier. Drug Metab. Dispos. 45: 228‐236 https://www.ncbi.nlm.nih.gov/pubmed/27872146?dopt=AbstractPlus

Yin J et al. (2016) Renal drug transporters and their significance in drug‐drug interactions. Acta Pharm Sin B 6: 363‐373 https://www.ncbi.nlm.nih.gov/pubmed/27709005?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=199

Overview

URAT1, a member of the OAT (organic anion transporter) family, is an anion‐exchanging uptake transporter localized to the apical (brush border) membrane of renal proximal tubular cells. It is an anion exchanger that specifically reabsorbs uric acid from the proximal tubule in exchange for monovalent anions such as lactate, nicotinoate, acetoacetate, and hydroxybutyrate [http://www.ncbi.nlm.nih.gov/pubmed/12024214?dopt=AbstractPlus].

Further reading on Urate transporter

Nigam SK et al. (2018) The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr. Opin. Nephrol. Hypertens. 27: 305‐313 https://www.ncbi.nlm.nih.gov/pubmed/29847376?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=859

Overview

This family of transporters has previously been classified as part of the atypical major facilitator superfamily (MSF) protein superfamily [http://www.ncbi.nlm.nih.gov/pubmed/9529885?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/28878041?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27939446?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22458847?dopt=AbstractPlus]. The atypical SLCs share sequence similarities and phylogenetic ancestry with other SLCs, and they have historically been classified in to subfamilies (also referred to as atypical MFS transporter families (AMTF1‐15)) based on phylogenetic, sequence and structural analyses [http://www.ncbi.nlm.nih.gov/pubmed/28878041?dopt=AbstractPlus].

Comments

There are three human synaptic vesicle glycoprotein 2 family members, SV2A, SV2B and SV2C. They have transmembrane transporter activity and can be classified in to the SLC superfamily of solute carriers in subfamily SLC22, as SCL22B1, B2 and B3 respectively. SV2A (SCL22B1) has been identified as the brain binding‐site for the antiepileptic drugs levetiracetam [http://www.ncbi.nlm.nih.gov/pubmed/23484603?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27752944?dopt=AbstractPlus] and brivaracetam [http://www.ncbi.nlm.nih.gov/pubmed/26663401?dopt=AbstractPlus].

Further reading on Atypical SLC22B subfamily

Löscher W et al. (2016) Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 30: 1055‐1077 https://www.ncbi.nlm.nih.gov/pubmed/27752944?dopt=AbstractPlus

Mendoza‐Torreblanca JG et al. (2013) Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur. J. Neurosci. 38: 3529‐39 https://www.ncbi.nlm.nih.gov/pubmed/24102679?dopt=AbstractPlus

Further reading on SLC22 family of organic cation and anion transporters

Burckhardt G. (2012) Drug transport by Organic Anion Transporters (OATs). Pharmacol. Ther. 136: 106‐30 https://www.ncbi.nlm.nih.gov/pubmed/22841915?dopt=AbstractPlus

Hillgren KM et al. (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94: 52‐63 https://www.ncbi.nlm.nih.gov/pubmed/23588305?dopt=AbstractPlus

International Transporter Consortium et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9: 215‐36 https://www.ncbi.nlm.nih.gov/pubmed/20190787?dopt=AbstractPlus

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34: 413‐35 https://www.ncbi.nlm.nih.gov/pubmed/23506881?dopt=AbstractPlus

Lozano E et al. (2018) Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 8: https://www.ncbi.nlm.nih.gov/pubmed/29659532?dopt=AbstractPlus

Nigam SK. (2018) The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 58: 663‐687 https://www.ncbi.nlm.nih.gov/pubmed/29309257?dopt=AbstractPlus

Zamek‐Gliszczynski MJ et al. (2018) Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin. Pharmacol. Ther. 104: 890‐899 https://www.ncbi.nlm.nih.gov/pubmed/30091177?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=201

Overview

Predicted to be 12 TM segment proteins, members of this family transport the reduced form of ascorbic acid (while the oxidized form may be handled by members of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=140 (GLUT1/SLC2A1, GLUT3/SLC2A3 and GLUT4/SLC2A4). http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 is considered a non‐selective inhibitor of these transporters, with an affinity in the micromolar range.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1041 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1042 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1043
Systematic nomenclature SLC23A1 SLC23A2 SLC23A3
Common abbreviation SVCT1 SVCT2 SVCT3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10974, http://www.uniprot.org/uniprot/Q9UHI7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10973, http://www.uniprot.org/uniprot/Q9UGH3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20601, http://www.uniprot.org/uniprot/Q6PIS1
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4781 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4651 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4733 [http://www.ncbi.nlm.nih.gov/pubmed/10331392?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4781 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4651 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4733 [http://www.ncbi.nlm.nih.gov/pubmed/10331392?dopt=AbstractPlus]
Stoichiometry 2 Na+: 1 ascorbic acid (in) [http://www.ncbi.nlm.nih.gov/pubmed/10331392?dopt=AbstractPlus] 2 Na+: 1 ascorbic acid (in) [http://www.ncbi.nlm.nih.gov/pubmed/10331392?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4285 (pK i 4.2) [http://www.ncbi.nlm.nih.gov/pubmed/10331392?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4532 (Binding) [http://www.ncbi.nlm.nih.gov/pubmed/11895172?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4532
Comments SLC23A3 does not transport ascorbic acid and remains an orphan transporter.

Further reading on SLC23 family of ascorbic acid transporters

Bürzle M et al. (2013) The sodium‐dependent ascorbic acid transporter family SLC23. Mol. Aspects Med. 34: 436‐54 https://www.ncbi.nlm.nih.gov/pubmed/23506882?dopt=AbstractPlus

May JM. (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br. J. Pharmacol. 164: 1793‐801 https://www.ncbi.nlm.nih.gov/pubmed/21418192?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=202

Overview

The sodium/potassium/calcium exchange family of transporters utilize the extracellular sodium gradient to drive calcium and potassium co‐transport out of the cell. As is the case for NCX transporters (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=180), NKCX transporters are thought to be bidirectional, with the possibility of calcium influx following depolarization of the plasma membrane. Topological modeling suggests the presence of 10 TM domains, with a large intracellular loop between the fifth and sixth TM regions.

Comments

NKCX6 has been proposed to be the sole member of a CAX Na+/Ca2+ exchanger family, which may be the mitochondrial transporter responsible for calcium accumulation from the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/25998733?dopt=AbstractPlus].

Further reading on SLC24 family of sodium/potassium/calcium exchangers

Schnetkamp PP. (2013) The SLC24 gene family of Na+/Ca2+‐K+ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol. Aspects Med. 34: 455‐64 https://www.ncbi.nlm.nih.gov/pubmed/23506883?dopt=AbstractPlus

Schnetkamp PP et al. (2014) The SLC24 family of K+‐dependent Na+‐Ca2+ exchangers: structure‐function relationships. Curr Top Membr 73: 263‐87 https://www.ncbi.nlm.nih.gov/pubmed/24745986?dopt=AbstractPlus

Sekler I. (2015) Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. Biochem. Biophys. Res. Commun. 460: 50‐2 https://www.ncbi.nlm.nih.gov/pubmed/25998733?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=147

Overview

Mitochondrial transporters are nuclear‐encoded proteins, which convey solutes across the inner mitochondrial membrane. Topological modelling suggests homodimeric transporters, each with six TM segments and termini in the cytosol.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=203

Overview

Mitochondrial di‐ and tri‐carboxylic acid transporters are grouped on the basis of commonality of substrates and include the citrate transporter which facilitates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478 export from the mitochondria to allow the generation of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5236 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 through the action of ATP:citrate lyase.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1051 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1052 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1053 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1057
Systematic nomenclature SLC25A1 SLC25A10 SLC25A11 SLC25A21
Common abbreviation CIC DIC OGC ODC
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10979, http://www.uniprot.org/uniprot/P53007 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10980, http://www.uniprot.org/uniprot/Q9UBX3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10981, http://www.uniprot.org/uniprot/Q02978 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14411, http://www.uniprot.org/uniprot/Q9BQT8
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4692, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2480, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2478 SO4 2‐, phosphate, S2O3 2‐, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3637, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2480 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3636, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2480 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3636, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4657
Stoichiometry Malate2‐ (in) : H‐citrate2‐ (out) PO3 4‐ (in) : malate2‐ (out) Malate2‐ (in) : oxoglutarate2‐ (out) Oxoadipate (in) : oxoglutarate (out)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4701

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=204

Overview

Mitochondrial amino acid transporters can be subdivided on the basis of their substrates. Mitochondrial ornithine transporters play a role in the http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4539 cycle by exchanging cytosolic ornithine (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4682) for mitochondrial citrulline (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4683) in equimolar amounts. Further members of the family include transporters of S‐adenosylmethionine and carnitine.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1054 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1055 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1056 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1058 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1059 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1060 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1076
Systematic nomenclature SLC25A12 SLC25A13 SLC25A18 SLC25A22 SLC25A2 SLC25A15 SLC25A20
Common abbreviation GC2 GC1 ORC2 ORC1 CAC
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10982, http://www.uniprot.org/uniprot/O75746 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10983, http://www.uniprot.org/uniprot/Q9UJS0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10988, http://www.uniprot.org/uniprot/Q9H1K4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:19954, http://www.uniprot.org/uniprot/Q9H936 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:22921, http://www.uniprot.org/uniprot/Q9BXI2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10985, http://www.uniprot.org/uniprot/Q9Y619 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1421, http://www.uniprot.org/uniprot/O43772
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4695, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4695, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3309 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4681 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4680 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4683 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4682 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4679 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=725 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=722 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721 [http://www.ncbi.nlm.nih.gov/pubmed/12807890?dopt=AbstractPlus]
Stoichiometry Aspartate : glutamate H+ (bidirectional) Aspartate : glutamate H+ (bidirectional) Glutamate : H+ (bidirectional) Glutamate : H+ (bidirectional) 1 Ornithine (in) :1 citrulline : 1 H+ (out) 1 Ornithine (in) :1 citrulline : 1 H+ (out)
Comments Exchanges cytosolic acylcarnitine for mitochondrial carnitine

Comments

Both ornithine transporters are inhibited by the polyamine http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=710 [http://www.ncbi.nlm.nih.gov/pubmed/19429682?dopt=AbstractPlus]. Loss‐of‐function mutations in these genes are associated with hyperornithinemia‐hyperammonemia‐homocitrullinuria.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=205

Overview

Mitochondrial phosphate transporters allow the import of inorganic phosphate for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 production.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1061
Systematic nomenclature SLC25A3
Common abbreviation PHC
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10989, http://www.uniprot.org/uniprot/Q00325
Stoichiometry PO3 4‐ (in) : OH (out) or PO3 4‐ : H+ (in)

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=206

Overview

Mitochondrial nucleotide transporters, defined by structural similarlities, include the adenine nucleotide translocator family (SLC25A4, SLC25A5, SLC25A6 and SLC25A31), which under conditions of aerobic metabolism, allow coupling between mitochondrial oxidative phosphorylation and cytosolic energy consumption by exchanging cytosolic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712 for mitochondrial http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713. Further members of the mitochondrial nucleotide transporter subfamily convey diverse substrates including CoA, although not all members have had substrates identified.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1062 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1063 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1064 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1065 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1071 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1072
Systematic nomenclature SLC25A4 SLC25A5 SLC25A6 SLC25A31 SLC25A16 SLC25A17
Common abbreviation ANT1 ANT2 ANT3 ANT4 GDC PMP34
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10990, http://www.uniprot.org/uniprot/P12235 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10991, http://www.uniprot.org/uniprot/P05141 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10992, http://www.uniprot.org/uniprot/P12236 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:25319, http://www.uniprot.org/uniprot/Q9H0C2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10986, http://www.uniprot.org/uniprot/P16260 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10987, http://www.uniprot.org/uniprot/O43808
Substrates CoA and congeners http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2455
Stoichiometry ADP3‐ (in) : ATP4‐ (out) ADP3‐ (in) : ATP4‐ (out) ADP3‐ (in) : ATP4‐ (out) ADP3‐ (in) : ATP4‐ (out) CoA (in) ATP (in)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4689, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4572

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=207

Overview

Mitochondrial uncoupling proteins allow dissipation of the mitochondrial proton gradient associated with thermogenesis and regulation of radical formation.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=209

Overview

Many of the transporters identified below have yet to be assigned functions and are currently regarded as orphans.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=209.

Further reading on SLC25 family of mitochondrial transporters

Baffy G. (2017) Mitochondrial uncoupling in cancer cells: Liabilities and opportunities. Biochim. Biophys. Acta 1858: 655‐664 https://www.ncbi.nlm.nih.gov/pubmed/28088333?dopt=AbstractPlus

Bertholet AM et al. (2017) UCP1: A transporter for H+ and fatty acid anions. Biochimie 134: 28‐34 https://www.ncbi.nlm.nih.gov/pubmed/27984203?dopt=AbstractPlus

Clémençon B et al. (2013) The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol. Aspects Med. 34: 485‐93 https://www.ncbi.nlm.nih.gov/pubmed/23506884?dopt=AbstractPlus

Palmieri F. (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34: 465‐84 https://www.ncbi.nlm.nih.gov/pubmed/23266187?dopt=AbstractPlus

Seifert EL et al. (2015) The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem. Biophys. Res. Commun. 464: 369‐75 https://www.ncbi.nlm.nih.gov/pubmed/26091567?dopt=AbstractPlus

Taylor EB. (2017) Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol. 27: 633‐644 https://www.ncbi.nlm.nih.gov/pubmed/28522206?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=148

Overview

Along with the SLC4 family, the SLC26 family acts to allow movement of monovalent and divalent anions across cell membranes. The predicted topology is of 10‐14 TM domains with intracellular C‐ and N‐termini, probably existing as dimers. Within the family, subgroups may be identified on the basis of functional differences, which appear to function as anion exchangers and anion channels (SLC26A7 and SLC26A9).

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=210

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=211

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=212

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=213

Further reading on SLC26 family of anion exchangers

Alper SL et al. (2013) The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 34: 494‐515 https://www.ncbi.nlm.nih.gov/pubmed/23506885?dopt=AbstractPlus

Kato A et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 73: 261‐81 https://www.ncbi.nlm.nih.gov/pubmed/21054167?dopt=AbstractPlus

Nofziger C et al. (2011) Pendrin function in airway epithelia. Cell. Physiol. Biochem. 28: 571‐8 https://www.ncbi.nlm.nih.gov/pubmed/22116372?dopt=AbstractPlus

Soleimani M. (2013) SLC26 Cl‐/HCO3‐ exchangers in the kidney: roles in health and disease. Kidney Int. 84: 657‐66 https://www.ncbi.nlm.nih.gov/pubmed/23636174?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=214

Overview

Fatty acid transporter proteins (FATPs) are a family (SLC27) of six transporters (FATP1‐6). They have at least one, and possibly six [http://www.ncbi.nlm.nih.gov/pubmed/11470793?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7954810?dopt=AbstractPlus], transmembrane segments, and are predicted on the basis of structural similarities to form dimers. SLC27 members have several structural domains: integral membrane associated domain, peripheral membrane associated domain, FATP signature, intracellular AMP binding motif, dimerization domain, lipocalin motif, and an ER localization domain (identified in FATP4 only) [http://www.ncbi.nlm.nih.gov/pubmed/9079682?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17062637?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17065791?dopt=AbstractPlus]. These transporters are unusual in that they appear to express intrinsic very longchain acyl‐CoA synthetase (http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=6.2.1.‐ , http://www.genome.jp/kegg‐bin/search_brite?option=‐a&search_string=6.2.1.7) enzyme activity. Within the cell, these transporters may associate with plasma and peroxisomal membranes. FATP1‐4 and ‐6 transport long‐ and very long‐chain fatty acids, while FATP5 transports long‐chain fatty acids as well as bile acids [http://www.ncbi.nlm.nih.gov/pubmed/11980911?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/7954810?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1108 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1109 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1110 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1111 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1112 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1113
Systematic nomenclature SLC27A1 SLC27A2 SLC27A3 SLC27A4 SLC27A5 SLC27A6
Common abbreviation FATP1 FATP2 FATP3 FATP4 FATP5 FATP6
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10995, http://www.uniprot.org/uniprot/Q6PCB7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10996, http://www.uniprot.org/uniprot/O14975 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10997, http://www.uniprot.org/uniprot/Q5K4L6 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10998, http://www.uniprot.org/uniprot/Q6P1M0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10999, http://www.uniprot.org/uniprot/Q9Y2P5 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11000, http://www.uniprot.org/uniprot/Q9Y2P4
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4710 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4585 [http://www.ncbi.nlm.nih.gov/pubmed/12556534?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059 [http://www.ncbi.nlm.nih.gov/pubmed/7954810?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4710 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4585 [http://www.ncbi.nlm.nih.gov/pubmed/12556534?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4710 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391 [http://www.ncbi.nlm.nih.gov/pubmed/10518211?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1055 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1054 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4710 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4585 [http://www.ncbi.nlm.nih.gov/pubmed/12556534?dopt=AbstractPlus]
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8810 (pIC50 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/16644217?dopt=AbstractPlus]
Comments FATP4 is genetically linked to http://www.omim.org/entry/275210?search=275210&highlight=275210.

Comments

Although the stoichiometry of fatty acid transport is unclear, it has been proposed to be facilitated by the coupling of fatty acid transport to conjugation with http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044 to form fatty acyl CoA esters. Small molecule inhibitors of FATP2 [http://www.ncbi.nlm.nih.gov/pubmed/17928635?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19913517?dopt=AbstractPlus] and FATP4 [http://www.ncbi.nlm.nih.gov/pubmed/16644217?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20448275?dopt=AbstractPlus], as well as bile acid inhibitors of FATP5 [http://www.ncbi.nlm.nih.gov/pubmed/20448275?dopt=AbstractPlus], have been described; analysis of the mechanism of action of some of these inhibitors suggests that transport may be selectively inhibited without altering enzymatic activity of the FATP.

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5496 accumulation has been used as a non‐selective index of fatty acid transporter activity.

FATP2 has two variants: Variant 1 encodes the full‐length protein, while Variant 2 encodes a shorter isoform missing an internal protein segment. FATP6 also has two variants: Variant 2 encodes the same protein as Variant 1 but has an additional segment in the 5′ UTR.

Further reading on SLC27 family of fatty acid transporters

Anderson CM et al. (2013) SLC27 fatty acid transport proteins. Mol. Aspects Med. 34: 516–28 https://www.ncbi.nlm.nih.gov/pubmed/23506886?dopt=AbstractPlus

Dourlen P et al. (2015) Fatty acid transport proteins in disease: New insights from invertebrate models. Prog. Lipid Res. 60: 30–40 https://www.ncbi.nlm.nih.gov/pubmed/26416577?dopt=AbstractPlus

Schwenk RW et al. (2010) Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fatty Acids 82: 149–54 https://www.ncbi.nlm.nih.gov/pubmed/20206486?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=149

Overview

Nucleoside transporters are divided into two families, the sodium‐dependent, concentrative solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29). The endogenous substrates are typically nucleosides, although some family members can also transport nucleobases and organic cations.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=215

Overview

SLC28 family membersappear to have 13 TM segments with cytoplasmic N‐termini and extracellular C‐termini, and function as concentrative nucleoside transporters.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1114 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1115 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1116
Systematic nomenclature SLC28A1 SLC28A2 SLC28A3
Common abbreviation CNT1 CNT2 CNT3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11001, http://www.uniprot.org/uniprot/O00337 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11002, http://www.uniprot.org/uniprot/O43868 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16484, http://www.uniprot.org/uniprot/Q9HAS3
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6842 [http://www.ncbi.nlm.nih.gov/pubmed/25011570?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4793 [http://www.ncbi.nlm.nih.gov/pubmed/22644860?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4828, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4825 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4799 [http://www.ncbi.nlm.nih.gov/pubmed/16840788?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4833, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4806, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4802 [http://www.ncbi.nlm.nih.gov/pubmed/16837649?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4737 [http://www.ncbi.nlm.nih.gov/pubmed/16837649?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4828, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4737, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4799, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4614, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4801, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4833, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4825, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4729, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4793
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4728, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4728
Stoichiometry 1 Na+ : 1 nucleoside (in) 1 Na+ : 1 nucleoside (in) 2 Na+/H+
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8837 (pK i 5.5) [http://www.ncbi.nlm.nih.gov/pubmed/19097778?dopt=AbstractPlus]
Comments CNT3 forms cyclic homotrimers [http://www.ncbi.nlm.nih.gov/pubmed/28661652?dopt=AbstractPlus]. Genetic variants of SLC28A3 are associated with increased risk of anthracycline‐induced cardiomyopathy [http://www.ncbi.nlm.nih.gov/pubmed/30351207?dopt=AbstractPlus].

Further reading on SLC28 family

Johnson ZL et al. (2014) Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. Elife 3: e03604 https://www.ncbi.nlm.nih.gov/pubmed/25082345?dopt=AbstractPlus

Pastor‐Anglada M et al. (2008) SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica 38: 972–94 https://www.ncbi.nlm.nih.gov/pubmed/18668436?dopt=AbstractPlus

Pastor‐Anglada M et al. (2015) Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 6: 13 https://www.ncbi.nlm.nih.gov/pubmed/25713533?dopt=AbstractPlus

Pastor‐Anglada M et al. (2018) Who Is Who in Adenosine Transport. Front Pharmacol 9: 627 https://www.ncbi.nlm.nih.gov/pubmed/29962948?dopt=AbstractPlus

Young JD et al. (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med. 34: 529–47 https://www.ncbi.nlm.nih.gov/pubmed/23506887?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=216

Overview

SLC29 family members appear to be composed of 11 TM segments with cytoplasmic N‐termini and extracellular C‐termini. ENT1, ENT2 and ENT4 are cell‐surface transporters, while ENT3 is intracellular, possibly lysosomal [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus]. ENT1‐3 are described as broad‐spectrum equilibrative nucleoside transporters, while ENT4 is primarily a polyspecific organic cation transporter at neutral pH [http://www.ncbi.nlm.nih.gov/pubmed/21816955?dopt=AbstractPlus].

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1117 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1118
Systematic nomenclature SLC29A1 SLC29A2
Common abbreviation ENT1 ENT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11003, http://www.uniprot.org/uniprot/Q99808 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11004, http://www.uniprot.org/uniprot/Q14542
Endogenous substrates in order of increasing Km: http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4728 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4555 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4788 < http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4581
Substrates abacavir [http://www.ncbi.nlm.nih.gov/pubmed/30097436?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=548 [http://www.ncbi.nlm.nih.gov/pubmed/28089688?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4805, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4806, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4793, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=372, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4827, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4828, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4833, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4755, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4737, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4799, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6842 [http://www.ncbi.nlm.nih.gov/pubmed/25011570?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4801 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4737, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=372, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4827, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4755, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4799, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4793, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4806, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4825
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4581 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4555 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4788 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4728 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4556, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4581, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4555, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8490
Stoichiometry Equilibrative Equilibrative
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4512 (pK i 9.7), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4590 (pK i 9.6) [http://www.ncbi.nlm.nih.gov/pubmed/10763851?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4734 (pK i 9.4) [http://www.ncbi.nlm.nih.gov/pubmed/14634039?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4513 (pK i 9.3), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4717 (pK i 9), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 (pK i 8.8) [http://www.ncbi.nlm.nih.gov/pubmed/14634039?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1765 (pK i 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/24414167?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4511 3H]nitrobenzylmercaptopurine ribonucleoside (pK d 9.3)
Comments ENT1 has 100‐1000‐fold lower affinity for nucleobases as compared with nucleosides [http://www.ncbi.nlm.nih.gov/pubmed/21795683?dopt=AbstractPlus]. The affinities of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4590, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4717, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4734 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 at ENT1 transporters are species dependent, exhibiting lower affinity at rat transporters than at human transporters [http://www.ncbi.nlm.nih.gov/pubmed/14634039?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9705281?dopt=AbstractPlus]. The loss of ENT1 activity in ENT1‐null mice has been associated with a hypermineralization disorder similar to human diffuse idiopathic skeletal hyperostosis [http://www.ncbi.nlm.nih.gov/pubmed/23184610?dopt=AbstractPlus]. Lack of ENT1 also results in the Augustine‐null blood type [http://www.ncbi.nlm.nih.gov/pubmed/25896650?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1119 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1120
Systematic nomenclature SLC29A3 SLC29A4
Common abbreviation ENT3 PMAT
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23096, http://www.uniprot.org/uniprot/Q9BZD2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23097, http://www.uniprot.org/uniprot/Q7RTT9
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4825 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4828 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4833 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4802 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4630 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4801 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4799 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4755 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4729 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2343 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 [http://www.ncbi.nlm.nih.gov/pubmed/17600084?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=548 [http://www.ncbi.nlm.nih.gov/pubmed/28089688?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4554 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4566 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4718 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4567 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4788 [http://www.ncbi.nlm.nih.gov/pubmed/15701636?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2150 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2844 [http://www.ncbi.nlm.nih.gov/pubmed/20592246?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=940 [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus]
Stoichiometry Equilibrative Equilibrative
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8482 (pK i 7) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4607 (pK i 6) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4807 (pK i 5.9) [http://www.ncbi.nlm.nih.gov/pubmed/24021350?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2406 (pK i 4.7) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=203 (pK i 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2342 (pK i 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2510 (pK i 4.6) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2399 (pK i 4.5) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 (pK i <3.3) [http://www.ncbi.nlm.nih.gov/pubmed/16099839?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus]
Comments Defects in SLC29A3 have been implicated in histiocytosis‐lymphadenopathy plus syndrome (http://omim.org/entry/602782) and lysosomal storage diseases [http://www.ncbi.nlm.nih.gov/pubmed/22174130?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20595384?dopt=AbstractPlus]. Uptake of substrates by PMAT is pH dependent, with greater uptake observed at acidic extracellular pH [http://www.ncbi.nlm.nih.gov/pubmed/16873718?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17600084?dopt=AbstractPlus].

Further reading on SLC29 family

Boswell‐Casteel RC et al. (2017) Equilibrative nucleoside transporters‐A review. Nucleosides Nucleotides Nucleic Acids 36: 7–30 https://www.ncbi.nlm.nih.gov/pubmed/27759477?dopt=AbstractPlus

Pastor‐Anglada M et al. (2018) Who Is Who in Adenosine Transport. Front Pharmacol 9: 627 https://www.ncbi.nlm.nih.gov/pubmed/29962948?dopt=AbstractPlus

Wang J. (2016) The plasma membranemonoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clin. Pharmacol. Ther. 100: 489–499 https://www.ncbi.nlm.nih.gov/pubmed/27506881?dopt=AbstractPlus

Further reading on SLC28 and SLC29 families of nucleoside transporters

Boswell‐Casteel RC et al. (2017) Equilibrative nucleoside transporters‐A review. Nucleosides Nucleotides Nucleic Acids 36: 7–30 https://www.ncbi.nlm.nih.gov/pubmed/27759477?dopt=AbstractPlus

Pastor‐Anglada M et al. (2015) Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 6: 13 https://www.ncbi.nlm.nih.gov/pubmed/25713533?dopt=AbstractPlus

Young JD. (2016) The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30‐year collaborative odyssey. Biochem. Soc. Trans. 44: 869–76 https://www.ncbi.nlm.nih.gov/pubmed/27284054?dopt=AbstractPlus

Young JD et al. (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med. 34: 529–47 https://www.ncbi.nlm.nih.gov/pubmed/23506887?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=217

Overview

Along with the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=228, SLC30 transporters regulate the movement of zinc ions around the cell. In particular, these transporters remove zinc ions from the cytosol, allowing accumulation into intracellular compartments or efflux through the plasma membrane. ZnT1 is thought to be placed on the plasma membrane extruding zinc, while ZnT3 is associated with synaptic vesicles and ZnT4 and ZnT5 are linked with secretory granules. Membrane topology predictions suggest a multimeric assembly, potentially heteromultimeric [http://www.ncbi.nlm.nih.gov/pubmed/15994300?dopt=AbstractPlus], with subunits having six TM domains, and both termini being cytoplasmic. Dityrosine covalent linking has been suggested as a mechanism for dimerisation, particularly for ZnT3 [http://www.ncbi.nlm.nih.gov/pubmed/19521526?dopt=AbstractPlus]. The mechanism for zinc transport is unknown.

Information on members of this family may be found in the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=217.

Comments

ZnT8/SLC30A8 is described as a type 1 diabetes susceptibility gene.

Zinc fluxes may be monitored through the use of radioisotopic Zn‐65 or the fluorescent dye FluoZin 3.

Further reading on SLC30 zinc transporter family

Bouron A et al. (2014) Contribution of calcium‐conducting channels to the transport of zinc ions. Pflugers Arch. 466: 381–7 https://www.ncbi.nlm.nih.gov/pubmed/23719866?dopt=AbstractPlus

Hojyo S et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43–50 https://www.ncbi.nlm.nih.gov/pubmed/27394923?dopt=AbstractPlus

Huang L et al. (2013) The SLC30 family of zinc transporters ‐ a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34: 548‐60 https://www.ncbi.nlm.nih.gov/pubmed/23506888?dopt=AbstractPlus

Kambe T et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281–95 https://www.ncbi.nlm.nih.gov/pubmed/24710731?dopt=AbstractPlus

Kambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749–784 https://www.ncbi.nlm.nih.gov/pubmed/26084690?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=218

Overview

SLC31 family members, alongside the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=138#Cu2+‐ATPase are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell‐surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter [http://www.ncbi.nlm.nih.gov/pubmed/15494390?dopt=AbstractPlus]. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N‐terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy‐independent [http://www.ncbi.nlm.nih.gov/pubmed/11734551?dopt=AbstractPlus].

Comments

Copper accumulation through CTR1 is sensitive to silver ions, but not divalent cations [http://www.ncbi.nlm.nih.gov/pubmed/11734551?dopt=AbstractPlus].

Further reading on SLC31 family of copper transporters

Howell SB et al. (2010) Copper transporters and the cellular pharmacology of the platinumcontaining cancer drugs. Mol. Pharmacol. 77: 887–94 https://www.ncbi.nlm.nih.gov/pubmed/20159940?dopt=AbstractPlus

Kaplan JH et al. (2016) How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal. Biophys. J. 110: 7–13 https://www.ncbi.nlm.nih.gov/pubmed/26745404?dopt=AbstractPlus

Kim H et al. (2013) SLC31 (CTR) family of copper transporters in health and disease. Mol. Aspects Med. 34: 561–70 https://www.ncbi.nlm.nih.gov/pubmed/23506889?dopt=AbstractPlus

Monne M et al. (2014) Antiporters of the mitochondrial carrier family. Curr Top Membr 73: 289–320 https://www.ncbi.nlm.nih.gov/pubmed/24745987?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=219

Overview

The vesicular inhibitory amino acid transporter, VIAAT (also termed the vesicular GABA transporter VGAT), which is the sole representative of the SLC32 family, transports http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067, or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, into synaptic vesicles [http://www.ncbi.nlm.nih.gov/pubmed/12750892?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10865121?dopt=AbstractPlus], and is a member of the structurally‐defined amino acid‐polyamineorganocation/ APC clan composed of SLC32, SLC36 and SLC38 transporter families (see [http://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus]). VIAAT was originally suggested to be composed of 10 TM segments with cytoplasmic N‐ and C‐termini [http://www.ncbi.nlm.nih.gov/pubmed/9349821?dopt=AbstractPlus]. However, an alternative 9TM structure with the N terminus facing the cytoplasm and the C terminus residing in the synaptic vesicle lumen has subsequently been reported [http://www.ncbi.nlm.nih.gov/pubmed/19052203?dopt=AbstractPlus]. VI‐AAT acts as an antiporter for inhibitory amino acids and protons. The accumulation ofGABA and glycine within vesicles is driven by both the chemical (ΔpH) and electrical (Δψ) components of the proton electrochemical gradient (ΔμH +) established by a vacuolar H+‐ATPase [http://www.ncbi.nlm.nih.gov/pubmed/9349821?dopt=AbstractPlus]. However, one study, [http://www.ncbi.nlm.nih.gov/pubmed/19843525?dopt=AbstractPlus], presented evidence that VIAAT is instead a Cl/GABA co‐transporter. VIAAT co‐exists with http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145#show_object_1007 (SLC17A7), or http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145#show_object_1008 (SLC17A6), in the synaptic vesicles of selected nerve terminals [http://www.ncbi.nlm.nih.gov/pubmed/19627441?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20519538?dopt=AbstractPlus]. VIAAT knock out mice die between embryonic day 18.5 and birth [http://www.ncbi.nlm.nih.gov/pubmed/16701208?dopt=AbstractPlus]. In cultures of spinal cord neurones established from earlier embryos, the corelease of of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 from synaptic vesicles is drastically reduced, providing direct evidence for the role of VIAAT in the sequestration of both transmitters [http://www.ncbi.nlm.nih.gov/pubmed/21190592?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16701208?dopt=AbstractPlus].

Further reading on SLC32 vesicular inhibitory amino acid transporter

Anne C et al. (2014) Vesicular neurotransmitter transporters: mechanistic aspects. Curr Top Membr 73: 149‐74 https://www.ncbi.nlm.nih.gov/pubmed/24745982?dopt=AbstractPlus

Schiöth HB et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571‐85 https://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=220

Overview

Acetylation of proteins is a post‐translational modification mediated by specific acetyltransferases, using the donor http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038. SLC33A1/AT1 is a putative 11 TM transporter present on the endoplasmic reticulum, expressed in all tissues, but particularly abundant in the pancreas [http://www.ncbi.nlm.nih.gov/pubmed/9096318?dopt=AbstractPlus], which imports cytosolic http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 into these intracellular organelles.

Comments

In heterologous expression studies, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038 transport through AT1 was inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3044, but not http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1058, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713 or http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1782[http://www.ncbi.nlm.nih.gov/pubmed/20826464?dopt=AbstractPlus]. A loss‐of‐function mutation in ACATN1/SLC33A1 has been associated with spastic paraplegia (SPG42, [http://www.ncbi.nlm.nih.gov/pubmed/19061983?dopt=AbstractPlus]), although this observation could not be replicated in a subsequent study [http://www.ncbi.nlm.nih.gov/pubmed/20461110?dopt=AbstractPlus].

Further reading on SLC33 acetylCoA transporter

Hirabayashi Y et al. (2004) The acetyl‐CoA transporter family SLC33. Pflugers Arch. 447: 760‐2 https://www.ncbi.nlm.nih.gov/pubmed/12739170?dopt=AbstractPlus

Hirabayashi Y et al. (2013) The acetyl‐CoA transporter family SLC33. Mol. Aspects Med. 34: 586‐9 https://www.ncbi.nlm.nih.gov/pubmed/23506891?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=221

Overview

The SLC34 family are sometimes referred to as Type II sodium‐phosphate co‐transporters, alongside Type I (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=145) and Type III (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195) transporters. Topological modelling suggests eight TM domains with C‐ and N‐ termini in the cytoplasm, and a re‐entrant loop at TM7/8. SLC34 family members are expressed on the apical surfaces of epithelia in the intestine and kidneys to regulate body phosphate levels, principally NaPi‐IIa and NaPi‐IIb, respectively. NaPi‐IIa and NaPi‐IIb are electrogenic, while NaPiIIc is electroneutral [http://www.ncbi.nlm.nih.gov/pubmed/18989094?dopt=AbstractPlus].

Comments

These transporters can be inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5497, in contrast to type III sodium‐phosphate cotransporters, the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=195.

Further reading on SLC34 family of sodium phosphate co‐transporters

Biber J et al. (2013) Phosphate transporters and their function. Annu. Rev. Physiol. 75: 535‐50 https://www.ncbi.nlm.nih.gov/pubmed/23398154?dopt=AbstractPlus

Forster IC et al. (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34: 386‐95 https://www.ncbi.nlm.nih.gov/pubmed/23506879?dopt=AbstractPlus

Shobeiri N et al. (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 77: 39‐54 https://www.ncbi.nlm.nih.gov/pubmed/23506202?dopt=AbstractPlus

Wagner CA et al. (2014) The SLC34 family of sodium‐dependent phosphate transporters. Pflugers Arch. 466: 139‐53 https://www.ncbi.nlm.nih.gov/pubmed/24352629?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=222

Overview

Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide‐conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swopping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SL35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1‐4 and SLC35F1‐5.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1138 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1139 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1140 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1144 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1145
Systematic nomenclature SLC35A1 SLC35A2 SLC35A3 SLC35B2 SLC35B3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11021, http://www.uniprot.org/uniprot/P78382 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11022, http://www.uniprot.org/uniprot/P78381 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11023, http://www.uniprot.org/uniprot/Q9Y2D2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16872, http://www.uniprot.org/uniprot/Q8TB61 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:21601, http://www.uniprot.org/uniprot/Q9H1N7
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4663 [http://www.ncbi.nlm.nih.gov/pubmed/9644260?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1782 [http://www.ncbi.nlm.nih.gov/pubmed/9010752?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8889805?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1779 [http://www.ncbi.nlm.nih.gov/pubmed/9010752?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/8889805?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1779 [http://www.ncbi.nlm.nih.gov/pubmed/10393322?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1719 [http://www.ncbi.nlm.nih.gov/pubmed/12716889?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1719 [http://www.ncbi.nlm.nih.gov/pubmed/16492677?dopt=AbstractPlus]
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1146 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1147 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1149 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1150
Systematic nomenclature SLC35B4 SLC35C1 SLC35D1 SLC35D2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20584, http://www.uniprot.org/uniprot/Q969S0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20197, http://www.uniprot.org/uniprot/Q96A29 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20800, http://www.uniprot.org/uniprot/Q9NTN3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20799, http://www.uniprot.org/uniprot/Q76EJ3
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4730 [http://www.ncbi.nlm.nih.gov/pubmed/15911612?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1779 [http://www.ncbi.nlm.nih.gov/pubmed/15911612?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4578 [http://www.ncbi.nlm.nih.gov/pubmed/11326279?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4741 [http://www.ncbi.nlm.nih.gov/pubmed/11322953?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1784 [http://www.ncbi.nlm.nih.gov/pubmed/11322953?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4741 [http://www.ncbi.nlm.nih.gov/pubmed/15607426?dopt=AbstractPlus]

Further reading on SLC35 family of nucleotide sugar transporters

Ishida N et al. (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447: 768‐75 https://www.ncbi.nlm.nih.gov/pubmed/12759756?dopt=AbstractPlus

Orellana A et al. (2016) Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J. Mol. Biol. 428: 3150‐3165 https://www.ncbi.nlm.nih.gov/pubmed/27261257?dopt=AbstractPlus

Song Z. (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol. Aspects Med. 34: 590‐600 https://www.ncbi.nlm.nih.gov/pubmed/23506892?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=223

Overview

Members of the SLC36 family of proton‐coupled amino acid transporters are involved in membrane transport of amino acids and derivatives. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma‐membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [3]. In lysosomes, PAT1 functions as an effluxmechanism for amino acids produced during intralysosomal proteolysis [http://www.ncbi.nlm.nih.gov/pubmed/12761825?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/11390972?dopt=AbstractPlus]. PAT2 is expressed at the apical membrane of the renal proximal tubule [http://www.ncbi.nlm.nih.gov/pubmed/19033659?dopt=AbstractPlus] and at the plasma‐membrane in brown/beige adipocytes [http://www.ncbi.nlm.nih.gov/pubmed/25080478?dopt=AbstractPlus]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [http://www.ncbi.nlm.nih.gov/pubmed/29971004?dopt=AbstractPlus]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1161 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1162
Systematic nomenclature SLC36A1 SLC36A2
Common abbreviation PAT1 PAT2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18761, http://www.uniprot.org/uniprot/Q7Z2H8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18762, http://www.uniprot.org/uniprot/Q495M3
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4259 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9487 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4550 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9488 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4784 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4322 [http://www.ncbi.nlm.nih.gov/pubmed/19594759?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4707 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9489 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4821 [http://www.ncbi.nlm.nih.gov/pubmed/16331283?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4686 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4727 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 [http://www.ncbi.nlm.nih.gov/pubmed/12727219?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9489, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9488, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4686 [http://www.ncbi.nlm.nih.gov/pubmed/15644866?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2365 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2379 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4171 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4676 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4704 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4713 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4537 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4678 [http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4713, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4704
Stoichiometry 1 H+ : 1 amino acid (symport) 1 H+ : 1 amino acid (symport)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671 (pK i 3) [http://www.ncbi.nlm.nih.gov/pubmed/16126914?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 (pK i 2.3) [http://www.ncbi.nlm.nih.gov/pubmed/16126914?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4709 (pK i 2.3) [http://www.ncbi.nlm.nih.gov/pubmed/16126914?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5 (pK i 2.2) [http://www.ncbi.nlm.nih.gov/pubmed/16126914?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4671 (pIC50 2.8) [http://www.ncbi.nlm.nih.gov/pubmed/20691150?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4693 (pIC50 2.5) [http://www.ncbi.nlm.nih.gov/pubmed/20691150?dopt=AbstractPlus]
Comments [3H] or [14C] labelled substrates as listed above are used as probes. PAT1 can also function as an electroneutral transport system for protons and fatty acids including acetic acid, propanoic acid and butyric acid [http://www.ncbi.nlm.nih.gov/pubmed/15345686?dopt=AbstractPlus]. In addition, forskolin, phosphodiesterase inhibitors, amiloride analogues and SLC9A3 (NHE3) selective inhibitors all reduce PAT1 activity indirectly (in intact mammalian intestinal epithelia such as human intestinal Caco‐2 cells) by inhibiting the Na+/H+ exchanger NHE3 which is required to maintain the H+‐electrochemical gradient driving force for H+/amino acid cotransport [http://www.ncbi.nlm.nih.gov/pubmed/15521011?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15754324?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus]. [3H] or [14C] labelled substrates as listed above are used as probes. Loss‐of‐function mutations in PAT2 lead to iminoglycinuria and hyperglycinuria in man [http://www.ncbi.nlm.nih.gov/pubmed/19033659?dopt=AbstractPlus]. PAT2 can also function as an electroneutral transport system for protons and fatty acids including acetic acid, propanoic acid and butyric acid [http://www.ncbi.nlm.nih.gov/pubmed/15345686?dopt=AbstractPlus]. Replacement of a Phe residue in transmembrane domain 3 with Cys (that has a smaller side‐chain) broadens substrate specificity to include larger substrates (e.g. methionine, leucine) [http://www.ncbi.nlm.nih.gov/pubmed/29058016?dopt=AbstractPlus].
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1163 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1164
Systematic nomenclature SLC36A3 SLC36A4
Common abbreviation PAT3 PAT4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:19659, http://www.uniprot.org/uniprot/Q495N2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:19660, http://www.uniprot.org/uniprot/Q6YBV0
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=717 [http://www.ncbi.nlm.nih.gov/pubmed/21097500?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314 [http://www.ncbi.nlm.nih.gov/pubmed/21097500?dopt=AbstractPlus]
Stoichiometry Unknown Unknown
Comments The function of the testes‐specific PAT3 remains unknown. PAT4 is not proton‐coupled and functions by facilitated diffusion in an electroneutral, Na+‐independent, manner [http://www.ncbi.nlm.nih.gov/pubmed/21097500?dopt=AbstractPlus]. PAT4 is expressed ubiquitously and is predominantly associated with the Golgi [http://www.ncbi.nlm.nih.gov/pubmed/26434594?dopt=AbstractPlus].. High PAT4 expression is associated with reduced relapse‐free survival after colorectal cancer surgery [http://www.ncbi.nlm.nih.gov/pubmed/26434594?dopt=AbstractPlus].

Further reading on SLC36 family of proton‐coupled amino acid transporters

Schiöth HB et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571‐85 https://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus

Thwaites DT et al. (2011) The SLC36 family of proton‐coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164: 1802‐16 https://www.ncbi.nlm.nih.gov/pubmed/21501141?dopt=AbstractPlus

Thwaites DT et al. (2007) Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1. Biochim. Biophys. Acta 1768: 179‐97 https://www.ncbi.nlm.nih.gov/pubmed/17123464?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=224

Overview

The family of sugar‐phosphate exchangers pass particular phosphorylated sugars across intracellular membranes, exchanging for inorganic phosphate. Of the family of sugar phosphate transporters, most information is available on SPX4, the glucose‐6‐phosphate transporter. This is a 10 TM domain protein with cytoplasmic termini and is associated with the endoplasmic reticulum, with tissue‐specific splice variation.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1165 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1166 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1168
Systematic nomenclature SLC37A1 SLC37A2 SLC37A4
Common abbreviation SPX1 SPX2 SPX4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:11024, http://www.uniprot.org/uniprot/P57057 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:20644, http://www.uniprot.org/uniprot/Q8TED4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:4061, http://www.uniprot.org/uniprot/O43826
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4740, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4647 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4647 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4647
Stoichiometry Glucose 6‐phosphate (in): phosphate (out) [http://www.ncbi.nlm.nih.gov/pubmed/21949678?dopt=AbstractPlus]. Glucose 6‐phosphate (in): phosphate (out) [http://www.ncbi.nlm.nih.gov/pubmed/21949678?dopt=AbstractPlus]. Glucose 6‐phosphate (in): phosphate (out) [http://www.ncbi.nlm.nih.gov/pubmed/18337460?dopt=AbstractPlus].
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8845 (pIC50 8.7) [101] – Rat
Comments Multiple polymorphisms have been described for the SLC37A4 gene, some of which associate with a glycogen storage disease [http://www.ncbi.nlm.nih.gov/pubmed/15260472?dopt=AbstractPlus].

Further reading on SLC37 family of phosphosugar/phosphate exchangers

Chou JY et al. (2014) The SLC37 family of sugar‐phosphate/phosphate exchangers. Curr Top Membr 73: 357–82 https://www.ncbi.nlm.nih.gov/pubmed/24745989?dopt=AbstractPlus

Chou JY et al. (2013) The SLC37 family of phosphate‐linked sugar phosphate antiporters. Mol. Aspects Med. 34: 601–11 https://www.ncbi.nlm.nih.gov/pubmed/23506893?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=150

Overview

The SLC38 family of transporters appears to be responsible for the functionally‐defined system A and system N mechanisms of amino acid transport and are mostly expressed in the CNS. Two distinct subfamilies are identifiable within the SLC38 transporters. SNAT1, SNAT2 and SNAT4 appear to resemble system A transporters in accumulating neutral amino acids under the influence of the sodium gradient. SNAT3 and SNAT5 appear to resemble system N transporters in utilizing proton co‐transport to accumulate amino acids. The predicted membrane topology is of 11 TM domains with an extracellular C‐terminus and intracellular N‐terminus [http://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=225

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1169 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1170 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1171
Systematic nomenclature SLC38A1 SLC38A2 SLC38A4
Common abbreviation SNAT1 SNAT2 SNAT4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13447, http://www.uniprot.org/uniprot/Q9H2H9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13448, http://www.uniprot.org/uniprot/Q96QD8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14679, http://www.uniprot.org/uniprot/Q969I6
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4782, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794 [http://www.ncbi.nlm.nih.gov/pubmed/11692272?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4785, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 [http://www.ncbi.nlm.nih.gov/pubmed/10930503?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=721, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=724 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3314, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 [http://www.ncbi.nlm.nih.gov/pubmed/11342143?dopt=AbstractPlus]
Stoichiometry 1 Na+ : 1 amino acid (in) [http://www.ncbi.nlm.nih.gov/pubmed/11692272?dopt=AbstractPlus] 1 Na+ : 1 amino acid (in) [http://www.ncbi.nlm.nih.gov/pubmed/10930503?dopt=AbstractPlus] 1 Na+ : 1 neutral amino acid (in) [http://www.ncbi.nlm.nih.gov/pubmed/11342143?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4542, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4543 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4542, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4543 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4542, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4635, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4543, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4084
Comments Transport of cationic amino acids by SNAT4 was sodium‐independent [http://www.ncbi.nlm.nih.gov/pubmed/11342143?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=226

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1172 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1173
Systematic nomenclature SLC38A3 SLC38A5
Common abbreviation SNAT3 SNAT5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18044, http://www.uniprot.org/uniprot/Q99624 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18070, http://www.uniprot.org/uniprot/Q8WUX1
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310 , http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1369 [http://www.ncbi.nlm.nih.gov/pubmed/10823827?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4697 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4533, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=726, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=723 > http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=727, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=720 [http://www.ncbi.nlm.nih.gov/pubmed/11243884?dopt=AbstractPlus]
Stoichiometry 1 Na+ : 1 amino acid (in) : 1 H+ (out) [http://www.ncbi.nlm.nih.gov/pubmed/11850497?dopt=AbstractPlus] 1 Na+ : 1 amino acid (in) : 1 H+ (out) [http://www.ncbi.nlm.nih.gov/pubmed/11243884?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4633, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4634 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4623, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4670

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=227

Further reading on SLC38 family of sodium‐dependent neutral amino acid transporters

Bhutia YD et al. (2016) Glutamine transporters inmammalian cells and their functions in physiology and cancer. Biochim. Biophys. Acta 1863: 2531–9 https://www.ncbi.nlm.nih.gov/pubmed/26724577?dopt=AbstractPlus

Bröer S. (2014) The SLC38 family of sodium‐amino acid co‐transporters. Pflugers Arch. 466: 155–72 https://www.ncbi.nlm.nih.gov/pubmed/24193407?dopt=AbstractPlus

Bröer S et al. (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem. J. 436: 193–211 https://www.ncbi.nlm.nih.gov/pubmed/21568940?dopt=AbstractPlus

Hägglund MG et al. (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J. Biol. Chem. 286: 20500–11 https://www.ncbi.nlm.nih.gov/pubmed/21511949?dopt=AbstractPlus

Schiöth HB et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571–85 https://www.ncbi.nlm.nih.gov/pubmed/23506890?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=228

Overview

Along with the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=217, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co‐transport of bicarbonate ions [http://www.ncbi.nlm.nih.gov/pubmed/18270315?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/18037372?dopt=AbstractPlus].

Comments

Zinc fluxes may be monitored through the use of radioisotopic Zn‐65 or the fluorescent dye FluoZin 3. The bicarbonate transport inhibitor http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4177 has been reported to inhibit cation accumulation through ZIP14 [http://www.ncbi.nlm.nih.gov/pubmed/18270315?dopt=AbstractPlus].

Further reading on SLC39 family of metal ion transporters

Hojyo S et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43–50 https://www.ncbi.nlm.nih.gov/pubmed/27394923?dopt=AbstractPlus

Jeong J et al. (2013) The SLC39 family of zinc transporters. Mol. Aspects Med. 34: 612–9 https://www.ncbi.nlm.nih.gov/pubmed/23506894?dopt=AbstractPlus

Kambe T et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281–95 https://www.ncbi.nlm.nih.gov/pubmed/24710731?dopt=AbstractPlus

Kambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749–784 https://www.ncbi.nlm.nih.gov/pubmed/26084690?dopt=AbstractPlus

Marger L et al. (2014) Zinc: an underappreciated modulatory factor of brain function. Biochem. Pharmacol. 91: 426–35 https://www.ncbi.nlm.nih.gov/pubmed/25130547?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=229

Overview

Alongside the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=183 of proton‐coupled metal transporters, ferroportin allows the accumulation of iron from the diet. Whilst SLC11A2 functions on the apical membrane, ferroportin acts on the basolateral side of the enterocyte, as well as regulating macrophage and placental iron levels. The predicted topology is of 12 TM domains, with intracellular termini [http://www.ncbi.nlm.nih.gov/pubmed/19150361?dopt=AbstractPlus], with the functional transporter potentially a dimeric arrangement [http://www.ncbi.nlm.nih.gov/pubmed/15667655?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17077321?dopt=AbstractPlus]. Ferroportin is essential for iron homeostasis [http://www.ncbi.nlm.nih.gov/pubmed/16054062?dopt=AbstractPlus]. Ferroportin is expressed on the surface of cells that store and transport iron, such as duodenal enterocytes, hepatocytes, adipocytes and reticuloendothelial macrophages. Levels of ferroportin are regulated by its association with (binding to) hepcidin, a 25 amino acid hormone responsive to circulating iron levels (amongst other signals). Hepcidin binding targets ferroportin for internalisation and degradation, lowering the levels of iron export to the blood. Novel therapeutic agents which stabilise ferroportin or protect it from hepcidin‐induced degradation are being developed as antianemia agents. Anti‐ferroportin monoclonal antibodies are such an agent.

Comments

Hepcidin (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15598, http://www.uniprot.org/uniprot/P81172), cleaved into http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5378 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15598, http://www.uniprot.org/uniprot/P81172) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5379 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15598, http://www.uniprot.org/uniprot/P81172), is a small protein that increases upon inflammation, binds to ferroportin to regulate its cellular distribution and degradation. Gene disruption in mice results in embryonic lethality [http://www.ncbi.nlm.nih.gov/pubmed/16054062?dopt=AbstractPlus], while loss‐of‐function mutations in man are associated with haemochromatosis [http://www.ncbi.nlm.nih.gov/pubmed/15956209?dopt=AbstractPlus].

Further reading on SLC40 iron transporter

McKie AT et al. (2004) The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447: 801–6 https://www.ncbi.nlm.nih.gov/pubmed/12836025?dopt=AbstractPlus

Montalbetti N et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270–87 https://www.ncbi.nlm.nih.gov/pubmed/23506870?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=230

Overview

By analogy with bacterial orthologues, this family is probably magnesium transporters. The prokaryote orthologue, MgtE, is responsible for uptake of divalent cations, while the heterologous expression studies of mammalian proteins suggest Mg2+ efflux [http://www.ncbi.nlm.nih.gov/pubmed/22031603?dopt=AbstractPlus], possibly as a result of co‐expression of particular protein partners (see [http://www.ncbi.nlm.nih.gov/pubmed/23506895?dopt=AbstractPlus]). Topological modelling suggests 10 TM domains with cytoplasmic C‐ and N‐ termini.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1195 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1196
Systematic nomenclature SLC41A1 SLC41A2
Common abbreviation MgtE
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:19429, http://www.uniprot.org/uniprot/Q8IVJ1 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:31045, http://www.uniprot.org/uniprot/Q96JW4
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4160 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4164 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2344 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2440 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708 [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], Sr2+ [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus], Fe2+ [http://www.ncbi.nlm.nih.gov/pubmed/15713785?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2344 [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708 [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4160 [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2476 [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus], Mn2+ [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus], Fe2+ [http://www.ncbi.nlm.nih.gov/pubmed/15809054?dopt=AbstractPlus]
Stoichiometry Unknown Unknown

Further reading on SLC41 family of divalent cation transporters

Payandeh J et al. (2013) The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta 1828: 2778‐92 https://www.ncbi.nlm.nih.gov/pubmed/23954807?dopt=AbstractPlus

Sahni J et al. (2013) The SLC41 family of MgtE‐like magnesium transporters. Mol. Aspects Med. 34: 620‐8 https://www.ncbi.nlm.nih.gov/pubmed/23506895?dopt=AbstractPlus

Schweigel‐Röntgen M et al. (2014) SLC41 transporters–molecular identification and functional role. Curr Top Membr 73: 383‐410 https://www.ncbi.nlm.nih.gov/pubmed/24745990?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=231

Overview

Rhesus is commonly defined as a ’factor’ that determines, in part, blood type, and whether neonates suffer from haemolytic disease of the newborn. These glycoprotein antigens derive from two genes, https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10008 (http://www.uniprot.org/uniprot/P18577) and https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10009 (http://www.uniprot.org/uniprot/Q02161), expressed on the surface of erythrocytes. On erythrocytes, RhAG associates with these antigens and functions as an ammonium transporter. RhBG and RhBG are non‐erythroid related sequences associated with epithelia. Topological modelling suggests the presence of 12TM with cytoplasmic N‐ and C‐ termini. The majority of information on these transporters derives from orthologues in yeast, plants and bacteria. More recent evidence points to family members being permeable to carbon dioxide, leading to the term gas channels.

Further reading on SLC42 family of Rhesus glycoprotein ammonium transporters

Nakhoul NL et al. (2013) Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid‐base transport. Mol. Aspects Med. 34: 629‐37 https://www.ncbi.nlm.nih.gov/pubmed/23506896?dopt=AbstractPlus

Weiner ID et al. (2011) Role of NH3 and NH4 + transporters in renal acid‐base transport. Am. J. Physiol. Renal Physiol. 300: F11‐23 https://www.ncbi.nlm.nih.gov/pubmed/21048022?dopt=AbstractPlus

Weiner ID et al. (2014) Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Renal Physiol. 306: F1107‐20 https://www.ncbi.nlm.nih.gov/pubmed/24647713?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=232

Overview

LAT3 (SLC43A1) and LAT4 (SLC43A2) are transporters with system L amino acid transporter activity, along with the structurally and functionally distinct transporters LAT1 and LAT2 that are members of the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=141#SLC7 family. LAT3 and LAT4 contain 12 put.ative TM domains with both N and C termini located intracellularly. They transport neutral amino acids in a manner independent of Na+ and Cl and with two kinetic components [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15659399?dopt=AbstractPlus]. LAT3/SLC43A1 is expressed in human tissues at high levels in the pancreas, liver, skeletal muscle and fetal liver [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus] whereas LAT4/SLC43A2 is primarily expressed in the placenta, kidney and peripheral blood leukocytes [http://www.ncbi.nlm.nih.gov/pubmed/15659399?dopt=AbstractPlus]. SLC43A3 is expressed in vascular endothelial cells [http://www.ncbi.nlm.nih.gov/pubmed/18483404?dopt=AbstractPlus] but remains to be characterised.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1201 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1202
Systematic nomenclature SLC43A1 SLC43A2
Common abbreviation LAT3 LAT4
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:9225, http://www.uniprot.org/uniprot/O75387 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23087, http://www.uniprot.org/uniprot/Q8N370
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4750 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4751 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4752 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814 [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3311, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4750, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4751, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3312, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3313, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4794, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4814
Stoichiometry Operates by facilitative diffusion Operates by facilitative diffusion

Comments

Covalent modification of LAT3 by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5335 inhibits its function [http://www.ncbi.nlm.nih.gov/pubmed/12930836?dopt=AbstractPlus] and at LAT4 inhibits the low‐, but not high‐affinity component of transport [http://www.ncbi.nlm.nih.gov/pubmed/15659399?dopt=AbstractPlus].

Further reading on SLC43 family of large neutral amino acid transporters

Bodoy S et al. (2013) The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol. Aspects Med. 34: 638‐45 https://www.ncbi.nlm.nih.gov/pubmed/23268354?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=233

Overview

Members of the choline transporter‐like family are encoded by five genes (CTL1‐CTL5) with further diversity occurring through alternative splicing of CTL1, 4 and 5 [http://www.ncbi.nlm.nih.gov/pubmed/15715662?dopt=AbstractPlus]. CTL family members are putative 10TM domain proteins with extracellular termini that mediate Na+‐independent transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 with an affinity that is intermediate to that of the high affinity choline transporter CHT1 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=143#show_object_914) and the low affinity organiccation transporters [OCT1 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=146#show_object_1019) andOCT2 (http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=146#show_object_1020)] [http://www.ncbi.nlm.nih.gov/pubmed/16636297?dopt=AbstractPlus]. CLT1 is expressed almost ubiquitously in human tissues [http://www.ncbi.nlm.nih.gov/pubmed/11698453?dopt=AbstractPlus] and mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 transport across the plasma and mitochondrial membranes [http://www.ncbi.nlm.nih.gov/pubmed/19357133?dopt=AbstractPlus]. Transport of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551 by CTL2, which in rodents is expressed as two isoforms (CTL2P1 and CLTP2; [http://www.ncbi.nlm.nih.gov/pubmed/20665236?dopt=AbstractPlus]) in lung, colon, inner ear and spleen and to a lesser extent in brain, tongue, liver, and kidney, has only recently been demonstrated [http://www.ncbi.nlm.nih.gov/pubmed/20665236?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20410607?dopt=AbstractPlus]. CTL3‐5 remain to be characterized functionally.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1204
Systematic nomenclature SLC44A1
Common abbreviation CTL1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:18798, http://www.uniprot.org/uniprot/Q8WWI5
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551
Stoichiometry Unknown: uptake enhanced in the absence of extracellular Na+, reduced by membrane depolarization, extracellular acidification and collapse of plasma membrane H+ electrochemical gradient
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4494 (pK i 3.5–4.5)

Comments

Data tabulated are features observed for CLT1 endogenous to: rat astrocytes [http://www.ncbi.nlm.nih.gov/pubmed/16000150?dopt=AbstractPlus]; rat renal tubule epithelial cells [http://www.ncbi.nlm.nih.gov/pubmed/19236841?dopt=AbstractPlus]; human colon carcinoma cells [http://www.ncbi.nlm.nih.gov/pubmed/19135976?dopt=AbstractPlus]; human keratinocytes [http://www.ncbi.nlm.nih.gov/pubmed/19122366?dopt=AbstractPlus] and human neuroblastoma cells [http://www.ncbi.nlm.nih.gov/pubmed/21185344?dopt=AbstractPlus]. Choline uptake by CLT1 is inhibited by numerous organic cations (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/16000150?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/19236841?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/21185344?dopt=AbstractPlus]). In the guinea‐pig, CTL2 is a target for antibody‐induced hearing loss [http://www.ncbi.nlm.nih.gov/pubmed/14973250?dopt=AbstractPlus] and in man, a polymorphism in CTL2 constitutes the human neutrophil alloantigen‐3a (HNA‐3a; [http://www.ncbi.nlm.nih.gov/pubmed/20037594?dopt=AbstractPlus]).

Further reading on SLC44 choline transporter‐like family

Inazu M. (2014) Choline transporter‐like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos 35: 431‐49 https://www.ncbi.nlm.nih.gov/pubmed/24532461?dopt=AbstractPlus

Traiffort E et al. (2013) The choline transporter‐like family SLC44: properties and roles in human diseases. Mol. Aspects Med. 34: 646‐54 https://www.ncbi.nlm.nih.gov/pubmed/23506897?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=234

Overview

Members of the SLC45 family remain to be fully characterised. SLC45A1 was initially identified in the rat brain, particularly predominant in the hindbrain, as a proton‐associated sugar transport, induced by hypercapnia [http://www.ncbi.nlm.nih.gov/pubmed/12417639?dopt=AbstractPlus]. The protein is predicted to have 12TM domains, with intracellular termini. The SLC45A2 gene is thought to encode a transporter protein that mediates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5415 synthesis. Mutations in SLC45A2 are a cause of oculocutaneous albinism type 4 (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/11574907?dopt=AbstractPlus]), and polymorphisms in this gene are associated with variations in skin and hair color (e.g. [http://www.ncbi.nlm.nih.gov/pubmed/15714523?dopt=AbstractPlus]).

Further reading on SLC45 family of putative sugar transporters

Bartölke R et al. (2014) Proton‐associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. Biochem. J. 464: 193‐201 https://www.ncbi.nlm.nih.gov/pubmed/25164149?dopt=AbstractPlus

Vitavska O et al. (2013) The SLC45 gene family of putative sugar transporters. Mol. Aspects Med. 34: 655‐60 https://www.ncbi.nlm.nih.gov/pubmed/23506898?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=235

Overview

Based on the proptypicalmember of this family, PCFT, this family includes proton‐driven transporters with 11 TMsegments. SLC46A1 has been described to act as an intestinal proton‐coupled high‐affinity http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 transporter [http://www.ncbi.nlm.nih.gov/pubmed/17129779?dopt=AbstractPlus], with lower affinity for http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4349. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4563 accumulation is independent of Na+ or K+ ion concentrations, but driven by extracellular protons with an as yet undefined stoichiometry.

Further reading on SLC46 family of folate transporters

Hou Z et al. (2014) Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr 73: 175‐204 https://www.ncbi.nlm.nih.gov/pubmed/24745983?dopt=AbstractPlus

Matherly LH et al. (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42: 632‐49 https://www.ncbi.nlm.nih.gov/pubmed/24396145?dopt=AbstractPlus

Wilson MR et al. (2015) Structural determinants of human proton‐coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem. J. 469: 33‐44 https://www.ncbi.nlm.nih.gov/pubmed/25877470?dopt=AbstractPlus

Zhao R et al. (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 31: 177‐201 https://www.ncbi.nlm.nih.gov/pubmed/21568705?dopt=AbstractPlus

Zhao R et al. (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1‐3 and SLC46A1) and folate receptors. Mol. Aspects Med. 34: 373‐85 https://www.ncbi.nlm.nih.gov/pubmed/23506878?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=236

Overview

These proton:organic cation exchangers are predicted to have 13 TM segments [http://www.ncbi.nlm.nih.gov/pubmed/19515813?dopt=AbstractPlus] and are suggested to be responsible for excretion of many drugs in the liver and kidneys.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1216 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1217
Systematic nomenclature SLC47A1 SLC47A2
Common abbreviation MATE1 MATE2‐K
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:25588, http://www.uniprot.org/uniprot/Q96FL8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:26439, http://www.uniprot.org/uniprot/Q86VL8
Substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2342 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4830 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 (K m 7.8×10‐4M) [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4832 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 (K m 1.7×10‐4M) [http://www.ncbi.nlm.nih.gov/pubmed/16928787?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4552 [http://www.ncbi.nlm.nih.gov/pubmed/17495125?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4783 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4811 [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4779 (K m 1.9×10‐3M) [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4829 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4568 [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 (K m 1.2×10‐4M) [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4658 [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus]
Endogenous substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4496 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4629 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus]
Sub/family‐selective inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4800 (pK i 7.1) [http://www.ncbi.nlm.nih.gov/pubmed/20065018?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 (pK i 6) [http://www.ncbi.nlm.nih.gov/pubmed/19164462?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4800 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/20065018?dopt=AbstractPlus] – Mouse, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1231 (pK i 5.1) [http://www.ncbi.nlm.nih.gov/pubmed/19164462?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4575 [http://www.ncbi.nlm.nih.gov/pubmed/16330770?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16850272?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4503 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/16850272?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4575 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4503 [http://www.ncbi.nlm.nih.gov/pubmed/17509534?dopt=AbstractPlus]

Comments

DAPI has been used to allow quantification of MATE1 and MATE2‐mediated transport activity [http://www.ncbi.nlm.nih.gov/pubmed/20047987?dopt=AbstractPlus]. MATE2 and MATE2‐B are inactive splice variants of MATE2‐K [http://www.ncbi.nlm.nih.gov/pubmed/16807400?dopt=AbstractPlus].

Further reading on SLC47 family of multidrug and toxin extrusion transporters

Damme K et al. (2011) Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab. Rev. 43: 499‐523 https://www.ncbi.nlm.nih.gov/pubmed/21923552?dopt=AbstractPlus

Motohashi H et al. (2013) Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2‐K. Mol. Aspects Med. 34: 661‐8 https://www.ncbi.nlm.nih.gov/pubmed/23506899?dopt=AbstractPlus

Nies AT et al. (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch. Toxicol. 90: 1555‐84 https://www.ncbi.nlm.nih.gov/pubmed/27165417?dopt=AbstractPlus

Wagner DJ et al. (2016) Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol. Res. 111: 237‐246 https://www.ncbi.nlm.nih.gov/pubmed/27317943?dopt=AbstractPlus

Yonezawa A et al. (2011) Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br. J. Pharmacol. 164: 1817‐25 https://www.ncbi.nlm.nih.gov/pubmed/21457222?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=237

Overview

HRG1 has been identified as a cell surface and lysosomal heme transporter [http://www.ncbi.nlm.nih.gov/pubmed/18418376?dopt=AbstractPlus]. In addition, evidence suggests this 4TM‐containing protein associates with the http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=137#V‐type ATPase in lysosomes [http://www.ncbi.nlm.nih.gov/pubmed/19875448?dopt=AbstractPlus]. Recent studies confirm its lysosomal location and demonstrate that it has an important physiological function in macrophages ingesting senescent red blood cells (erythrophagocytosis), recycling heme (released from the red cell hemoglobin) from the phagolysosome into the cytosol, where the heme is subsequently catabolized to recycle the iron [http://www.ncbi.nlm.nih.gov/pubmed/23395172?dopt=AbstractPlus].

Further reading on SLC48 heme transporter

Khan AA et al. (2013) Heme and FLVCR‐related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669‐82 https://www.ncbi.nlm.nih.gov/pubmed/23506900?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=335

Overview

FLVCR1 was initially identified as a cell‐surface attachment site for feline leukemia virus subgroup C [http://www.ncbi.nlm.nih.gov/pubmed/10400745?dopt=AbstractPlus], and later identified as a cell surface accumulation which exports heme from the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/15369674?dopt=AbstractPlus]. A recent study indicates that an isoform of FLVCR1 is located in the mitochondria, the site of the final steps of heme synthesis, and appears to transport heme into the cytosol [http://www.ncbi.nlm.nih.gov/pubmed/23187127?dopt=AbstractPlus]. FLVCR‐mediated heme transport is essential for erythropoiesis. Flvcr1 gene mutations have been identified as the cause of PCARP (http://www.omim.org/entry/609033?search=609033&highlight=609033 (PCARP) [http://www.ncbi.nlm.nih.gov/pubmed/21070897?dopt=AbstractPlus].There are three paralogs of FLVCR1 in the human genome.

FLVCR2, most similar to FLVCR1 [http://www.ncbi.nlm.nih.gov/pubmed/11943475?dopt=AbstractPlus], has been reported to function as a heme importer [http://www.ncbi.nlm.nih.gov/pubmed/20823265?dopt=AbstractPlus]. In addition, a congenital syndrome of proliferative vasculopathy and hydranencephaly, also known as Fowler&apos;s syndrome, is associated with a loss‐of‐function mutation in FLVCR2 [http://www.ncbi.nlm.nih.gov/pubmed/20206334?dopt=AbstractPlus].

The functions of the other two members of the SLC49 family, MFSD7 and DIRC2, are unknown, although DIRC2 has been implicated in hereditary renal carcinomas [http://www.ncbi.nlm.nih.gov/pubmed/11912179?dopt=AbstractPlus].

Comments

Non‐functional splice alternatives of FLVCR1 have been implicated as a cause of a congenital red cell aplasia, http://omim.org/entry/105650 [http://www.ncbi.nlm.nih.gov/pubmed/18815190?dopt=AbstractPlus].

Further reading on SLC49 family of FLVCR‐related heme transporters

Khan AA et al. (2013) Heme and FLVCR‐related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669‐82 https://www.ncbi.nlm.nih.gov/pubmed/23506900?dopt=AbstractPlus

Khan AA et al. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta 1813: 668‐82 https://www.ncbi.nlm.nih.gov/pubmed/21238504?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=336

Overview

A mouse stromal cell cDNA library was used to clone C2.3 [http://www.ncbi.nlm.nih.gov/pubmed/8630032?dopt=AbstractPlus], later termed Rag1‐activating protein 1, with a sequence homology predictive of a 4TM topology. The plant orthologues, termed SWEETs, appear to be 7 TM proteins, with extracellular N‐termini, and the capacity for bidirectional flux of http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536 [http://www.ncbi.nlm.nih.gov/pubmed/21107422?dopt=AbstractPlus]. Expression of mouse SWEET in the mammary gland was suggestive of a role in Golgi lactose synthesis [http://www.ncbi.nlm.nih.gov/pubmed/21107422?dopt=AbstractPlus].

Further reading on SLC50 sugar transporter

Wright EM. (2013) Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 34: 183‐96 https://www.ncbi.nlm.nih.gov/pubmed/23506865?dopt=AbstractPlus

Wright EM et al. (2011) Biology of human sodium glucose transporters. Physiol. Rev. 91: 733‐94 https://www.ncbi.nlm.nih.gov/pubmed/21527736?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=337

Overview

The SLC51 organic solute transporter family of transporters is a pair of heterodimeric proteins which regulate bile salt movements in the small intestine, bile duct, and liver, as part of the enterohepatic circulation [http://www.ncbi.nlm.nih.gov/pubmed/16317684?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15563450?dopt=AbstractPlus]. OSTα/OSTβ is also expressed in steroidogenic cells of the brain and adrenal gland, where it may contribute to steroid movement [http://www.ncbi.nlm.nih.gov/pubmed/20649839?dopt=AbstractPlus]. Bile acid transport is suggested to be facilitative and independent of sodium, potassium, chloride ions or protons [http://www.ncbi.nlm.nih.gov/pubmed/16317684?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15563450?dopt=AbstractPlus]. OSTα/OSTβ heterodimers have been shown to transport http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4546, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5577, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6504 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5577 [http://www.ncbi.nlm.nih.gov/pubmed/16317684?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15563450?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20649839?dopt=AbstractPlus]. OSTα/OSTβ‐mediated transport of bile salts is inhibited by http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9184 [http://www.ncbi.nlm.nih.gov/pubmed/29675448?dopt=AbstractPlus]. OSTα is suggested to be a seven TM protein, while OSTβ is a single TM ‘ancillary’ protein, both of which are thought to have intracellular C‐termini [http://www.ncbi.nlm.nih.gov/pubmed/17650074?dopt=AbstractPlus]. Both proteins function in solute transport and bimolecular fluorescence complementation studies suggest the possibility of OSTα homooligomers, as well as OSTα/OSTβ hetero‐oligomers [http://www.ncbi.nlm.nih.gov/pubmed/22535958?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17650074?dopt=AbstractPlus]. An inherited mutation in OSTβ is associated with congenital diarrhea in children [http://www.ncbi.nlm.nih.gov/pubmed/28898457?dopt=AbstractPlus].

Further reading on SLC51 family of steroid‐derived molecule transporters

Ballatori N. (2011) Pleiotropic functions of the organic solute transporter Ostα‐Ostβ. Dig Dis 29: 13‐7 https://www.ncbi.nlm.nih.gov/pubmed/21691099?dopt=AbstractPlus

Ballatori N et al. (2013) The heteromeric organic solute transporter, OSTα‐OSTβ/SLC51: a transporter for steroid‐derived molecules. Mol. Aspects Med. 34: 683‐92 https://www.ncbi.nlm.nih.gov/pubmed/23506901?dopt=AbstractPlus

Dawson PA. (2011) Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol 169‐203 https://www.ncbi.nlm.nih.gov/pubmed/21103970?dopt=AbstractPlus

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=786

Overview

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6578, also known as vitamin B2, is a precursor of the enzyme cofactors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5185 (FMN) and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5184 (FAD). Riboflavin transporters are predicted to possess 10 or 11 TM segments.

Comments

Although expressed elsewhere, RFVT3 is found on the luminal surface of intestinal epithelium and is thought to mediate uptake of dietary riboflavin, while RFVT1 and RFVT2 are thought to allow movement from the epithelium into the blood.

Further reading on SLC52 family of riboflavin transporters

Yonezawa A et al. (2013) Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol. Aspects Med. 34: 693‐701 [https://www.ncbi.nlm.nih.gov/pubmed/23506902?dopt=AbstractPlus]

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1005

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3021
Systematic nomenclature SLC53A1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:12827, http://www.uniprot.org/uniprot/Q9UBH6
Substrates Phosphate [http://www.ncbi.nlm.nih.gov/pubmed/23791524?dopt=AbstractPlus]
Comments XPR1/SLC53A1 is a phosphate carrier which appears to play a role in bone and tooth mineralization. It is ubiquitously expressed [http://www.ncbi.nlm.nih.gov/pubmed/9990033?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9927670?dopt=AbstractPlus]. The pathological consequences of defective SLC53A1 expression in the brain [http://www.ncbi.nlm.nih.gov/pubmed/25938945?dopt=AbstractPlus] and kidney [http://www.ncbi.nlm.nih.gov/pubmed/27799484?dopt=AbstractPlus] have been reported.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1006

Comments

SLC54 family transporters appear to function as mechanisms for accumulating pyruvate into mitochondria to link glycolysis with oxidative phosphorylation.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1007

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3025 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3026 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3027
Systematic nomenclature SLC55A1 SLC55A2 SLC55A3
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:6556, http://www.uniprot.org/uniprot/O95202 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:14648, http://www.uniprot.org/uniprot/Q2VYF4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:24241, http://www.uniprot.org/uniprot/Q6P1Q0
Transport type Exchanger / Ca2+:H+ [http://www.ncbi.nlm.nih.gov/pubmed/19797662?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27669901?dopt=AbstractPlus] Exchanger / K+:H+ [http://www.ncbi.nlm.nih.gov/pubmed/17925330?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15138253?dopt=AbstractPlus]
Substrates Ca2+, K+, H+ [http://www.ncbi.nlm.nih.gov/pubmed/17925330?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/15138253?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17541427?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/20197279?dopt=AbstractPlus]
Comments SLC55A1 is ubiquitously expressed [http://www.ncbi.nlm.nih.gov/pubmed/10486213?dopt=AbstractPlus]. Arguments against SLC55A1&apos;s role as a Ca2+ transporter are outlined by Zotova et al. (2010) [http://www.ncbi.nlm.nih.gov/pubmed/20197279?dopt=AbstractPlus].

Comments

The family of SLC55 mitochondrial transporters appear to regulate ion fluxes and to maintain tubular networks.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1008

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3028 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3029 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3030 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3031 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3032
Systematic nomenclature SLC56A1 SLC56A2 SLC56A3 SLC56A4 SLC56A5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16085, http://www.uniprot.org/uniprot/Q9H9B4 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16086, http://www.uniprot.org/uniprot/Q96NB2 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16087, http://www.uniprot.org/uniprot/Q9BWM7 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:16073, http://www.uniprot.org/uniprot/Q8TD22
Comments Sideroflexin 1 (SFXN1/SLC56A1) was probably falsely identified as a tricarboxylate carrier in the 1993 article by Azzi et al. [http://www.ncbi.nlm.nih.gov/pubmed/8132491?dopt=AbstractPlus], as discussed several years later in [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus]. SFXN1 likely transports pyridoxin or another heme precursor or the 5′‐aminolevulinate synthase 2 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:397; https://www.uniprot.org/uniprot/P22557) cofactor [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/12670026?dopt=AbstractPlus]. SFXN1 has recently been suggested to be a mitochondrial serine transporter [http://www.ncbi.nlm.nih.gov/pubmed/30442778?dopt=AbstractPlus]. It is mainly expressed in adult kidney and liver (mouse) [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus]. In mice sideroflexin 2 expression is mainly detected in adult kidney and liver [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus]. In human tissues it is detected at highest levels in kidney, liver and pancreas [http://www.ncbi.nlm.nih.gov/pubmed/12670026?dopt=AbstractPlus]. Sideroflexin 3 is ubiquitously expressed in mouse tissues [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus]. Sideroflexin 4 is expressed in mouse kidney, brain and heart [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus]. The SFXN4a isoform is most highly expressed in human kidney and pancreas, and the SFXN4b isoform is barely detectable in brain [http://www.ncbi.nlm.nih.gov/pubmed/14756423?dopt=AbstractPlus]. Sideroflexin 5 is expressed in mouse brain and liver [http://www.ncbi.nlm.nih.gov/pubmed/11274051?dopt=AbstractPlus].

Comments

These are a family of incompletely‐characterised mitochondrial transporters.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1009

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3033 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3034 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3035 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3037
Systematic nomenclature SLC57A1 SLC57A2 SLC57A3 SLC57A5
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17043, http://www.uniprot.org/uniprot/Q7RTP0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:17044, http://www.uniprot.org/uniprot/Q8N8Q9 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:27194, http://www.uniprot.org/uniprot/Q6NVV3 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:25233, http://www.uniprot.org/uniprot/Q6P499
Substrates Sr2+, Fe2+ and Co2+ to a lesser extent [http://www.ncbi.nlm.nih.gov/pubmed/18667602?dopt=AbstractPlus], Mg2+ [http://www.ncbi.nlm.nih.gov/pubmed/17166836?dopt=AbstractPlus] Mg2+ [http://www.ncbi.nlm.nih.gov/pubmed/18667602?dopt=AbstractPlus] Mg2+, Sr2+, Ba2+, Fe2+, Cu2+ [http://www.ncbi.nlm.nih.gov/pubmed/18667602?dopt=AbstractPlus]
Comments Human tissue expression: Constitutively expressed at low levels, with significant enrichment in the brain [http://www.ncbi.nlm.nih.gov/pubmed/14508710?dopt=AbstractPlus]. Mouse tissue expression: Widely expressed, including in the heart, kidney, liver, colon, less in the brain, and not in the small intestine [http://www.ncbi.nlm.nih.gov/pubmed/17166836?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1010

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1011

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3041 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3042
Systematic nomenclature SLC59A1 SLC59A2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:25897, http://www.uniprot.org/uniprot/Q8NA29 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:37207, http://www.uniprot.org/uniprot/A6NFX1
Transport type Co‐transporter: LPC:Na+, uptake
Substrates LPC (lysophosphatidylcholine) form of DHA (docosahexaenoic acid) [http://www.ncbi.nlm.nih.gov/pubmed/24828044?dopt=AbstractPlus]
Comments MFSD2B/SLC59A has been suggested to be a sphingosine 1‐phosphate transporter in erythropoietic cells [http://www.ncbi.nlm.nih.gov/pubmed/29563527?dopt=AbstractPlus]. It is expressed in brain, intestine, kidney, liver, lung, mammary gland, and prostate [http://www.ncbi.nlm.nih.gov/pubmed/18694395?dopt=AbstractPlus]; relatively low expression in BAT (brown adipose tissue), but upregulated during cold‐induced thermogenesis [http://www.ncbi.nlm.nih.gov/pubmed/18694395?dopt=AbstractPlus]. Subcellular locations: plasma membrane [http://www.ncbi.nlm.nih.gov/pubmed/26747400?dopt=AbstractPlus] and ER [http://www.ncbi.nlm.nih.gov/pubmed/18694395?dopt=AbstractPlus]. Expressed in the spleen, lung, testis and subcellularly in the ER [http://www.ncbi.nlm.nih.gov/pubmed/18694395?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1012

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1013

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3045
Systematic nomenclature SLC61A1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:28156, http://www.uniprot.org/uniprot/Q6N075
Substrates molybdate [http://www.ncbi.nlm.nih.gov/pubmed/21464289?dopt=AbstractPlus]
Comments MFSD5/SLC61 is a putative 12TM cell‐surface protein which appears to allow the accumulation of molybdate, and where the neural expression appears to respond to changes in the diet. It is expressed in cervix, stomach, nerve and skin [http://www.ncbi.nlm.nih.gov/pubmed/21464289?dopt=AbstractPlus]; ubiquitous but higher in skeletal muscle, olfactory bulb [http://www.ncbi.nlm.nih.gov/pubmed/18948099?dopt=AbstractPlus]; blood, cortex, hypothalamus, cerebellum and spinal cord (mouse) [http://www.ncbi.nlm.nih.gov/pubmed/27272503?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1014

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3046
Systematic nomenclature SLC62A1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:15492, Qhttp://www.uniprot.org/uniprot/Q9HCJ1
Substrates Pyrophosphate [http://www.ncbi.nlm.nih.gov/pubmed/10894769?dopt=AbstractPlus]
Comments ANKH/SLC62 is a putative 8TM membrane protein, also known as progressive ankylosis protein homolog. Mutations in this protein are associated with bone and joint abnormalities. It is expressed in kidney and bone [http://www.ncbi.nlm.nih.gov/pubmed/19910700?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1015

Overview

The SLC63 family of transporters has roles inside the cell (SLC63A1/SPNS1) or on the cell surface (SLC63A2/SPNS2) in sphingolipid transport.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1016

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3050
Systematic nomenclature SLC64A1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:30760, http://www.uniprot.org/uniprot/Q9HC07
Transport type Exchanger/ Ca2+:H+
Substrates Mn2+ [http://www.ncbi.nlm.nih.gov/pubmed/28270545?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27008884?dopt=AbstractPlus], Ca2+, H+ [http://www.ncbi.nlm.nih.gov/pubmed/23569283?dopt=AbstractPlus]
Comments TMEM165/SLC64 is a putative 6TM intracellular membrane protein. Mutations in the protein are associated with congenital disorder of glycosylation. It has been suggested to be essential for milk production in the mammary gland [http://www.ncbi.nlm.nih.gov/pubmed/30622138?dopt=AbstractPlus]. TMEM165 deficiency (via siRNA knockdown) causes Golgi glycosylation defects in transfected HEK cells [http://www.ncbi.nlm.nih.gov/pubmed/22683087?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1017

Overview

The SLC65 family of intracellular cholesterol transporters are 13TM membrane proteins. NPC1/SLC65A1 is an intracellular cholesterol transporter, which together with NPC2 (Uniprot ID https://www.uniprot.org/uniprot/P61916), allows the accumulation into the cytosol of cholesterol acquired from low density lipoproteins.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3051 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2629
Systematic nomenclature SLC65A1 SLC65A2
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7897, http://www.uniprot.org/uniprot/O15118 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:7898, http://www.uniprot.org/uniprot/Q9UHC9
Substrates Cholesterol [http://www.ncbi.nlm.nih.gov/pubmed/17989073?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17989072?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/27410046?dopt=AbstractPlus] Cholesterol [http://www.ncbi.nlm.nih.gov/pubmed/14976318?dopt=AbstractPlus]
Selective antagonists http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6816 (Inhibition) (pK d 6.7) [http://www.ncbi.nlm.nih.gov/pubmed/15928087?dopt=AbstractPlus]
Comments Expression is ubiquitous [http://www.ncbi.nlm.nih.gov/pubmed/14976318?dopt=AbstractPlus], with highest levels detected in liver, lung, and pancreas [http://www.ncbi.nlm.nih.gov/pubmed/10783261?dopt=AbstractPlus]. NPC1 plays a critical role in the regulation of intracellular cholesterol trafficking [http://www.ncbi.nlm.nih.gov/pubmed/9211849?dopt=AbstractPlus]. Mutations in the NPC1 gene have been identified in patients with the lipid storage disorder Niemann‐Pick disease type C1 [http://www.ncbi.nlm.nih.gov/pubmed/12554680?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/9211849?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10521290?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/10480349?dopt=AbstractPlus]. Expressed in small intestine, gallbladder, liver, testis and stomach [http://www.ncbi.nlm.nih.gov/pubmed/14976318?dopt=AbstractPlus].

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=238

Overview

The SLCO superfamily is comprised of the organic anion transporting polypeptides (OATPs). The 11 human OATPs are divided into 6 families and ten subfamilies based on amino acid identity. These proteins are located on the plasma membrane of cells throughout the body. They have 12 TM domains and intracellular termini, with multiple putative glycosylation sites. OATPs mediate the sodium‐independent uptake of a wide range of amphiphilic substrates, including many drugs and toxins. Due to the multispecificity of these proteins, this guide lists classes of substrates and inhibitors for each family member. More comprehensive lists of substrates, inhibitors, and their relative affinities may be found in the review articles listed below.

Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1219 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1220 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1221 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1222
Systematic nomenclature SLCO1A2 SLCO1B1 SLCO1B3 SLCO1C1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10956, http://www.uniprot.org/uniprot/P46721 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10959, http://www.uniprot.org/uniprot/Q9Y6L6 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10961, http://www.uniprot.org/uniprot/Q9NPD5 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:13819, http://www.uniprot.org/uniprot/Q9NYB5
Substrates fluoroquinolones, beta blockers, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1615, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2954, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4819, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506, anticancer drugs, antibiotics, HIV protease inhibitors, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4664, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4826, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4735 [http://www.ncbi.nlm.nih.gov/pubmed/15737679?dopt=AbstractPlus] statins, opioids, β‐lactam antibiotics, bile acid derivatives and conjugates, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506, anticancer drugs, HIV protease inhibitors, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4819, antifungals, ACE inhibitors, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765, endothelin receptor antagonists, sartans http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765, opioids, sartans, statins, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4726, anticancer drugs, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506, bile acid derivatives and conjugates, β‐lactam antibiotics, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4826, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4632, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4813, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4819, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1456, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4736 statins, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506
Endogenous substrates bile acids, thyroid hormones, steroid conjugates, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4577, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1883 leukotrienes, steroid conjugates, thyroid hormones, bile acids, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4577 steroid conjugates, thyroid hormones, bile acids, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=864 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:1569, http://www.uniprot.org/uniprot/P06307), http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4577, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354 thyroid hormones, steroid conjugates
Ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2953 (Binding)
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4570 (pK i 5) [http://www.ncbi.nlm.nih.gov/pubmed/12085361?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765 (pK i 4.3) [http://www.ncbi.nlm.nih.gov/pubmed/12085361?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4738 [http://www.ncbi.nlm.nih.gov/pubmed/17301733?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1024 (pK i 7.3) [http://www.ncbi.nlm.nih.gov/pubmed/14530907?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749 (pIC50 7.2) [http://www.ncbi.nlm.nih.gov/pubmed/20448812?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765 (pK i 6) [http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4570 (pK i 5.7) [http://www.ncbi.nlm.nih.gov/pubmed/12085361?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3439 [http://www.ncbi.nlm.nih.gov/pubmed/17470528?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4688, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4844 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1024 (pIC50 6.1) [http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17496208?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743 (pIC50 6.1) [http://www.ncbi.nlm.nih.gov/pubmed/17496208?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765 (pIC50 5.8) [http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus, http://www.ncbi.nlm.nih.gov/pubmed/17496208?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3439, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4688, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4570 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1608, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4357, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4547
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4505, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3819, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4687, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4505, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4765, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4687 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4627, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4505, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748
Comments Although rat and mouse OATP1A4 are considered the orthologs of human OATP1A2 we do not cross‐link to gene or protein databases for these since in reality there are five genes in rodents that arose through gene duplication in this family and it is not clear which one of these is the "true" ortholog. Other inhibitors include, fibrates, flavonoids, glitazones and macrolide antibiotics. http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749 or the drug substrates http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2949, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2953 and http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2954 are used as a probe. Other inhibitors include, HIV protease inhibitors, glitazones and macrolide antibiotics. CCK‐8 is used as an OATP1B3‐selective probe.
Nomenclature http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1223 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1224 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1225 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1226 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1227
Systematic nomenclature SLCO2A1 SLCO2B1 SLCO3A1 SLCO4A1 SLCO4C1
HGNC, UniProt https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10955, http://www.uniprot.org/uniprot/Q92959 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10962, http://www.uniprot.org/uniprot/O94956 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10952, http://www.uniprot.org/uniprot/Q9UIG8 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:10953, http://www.uniprot.org/uniprot/Q96BD0 https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:23612, http://www.uniprot.org/uniprot/Q6ZQN7
Substrates synthetic prostaglandin derivatives http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2566, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506, statins, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2414, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4812, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4819, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4664, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3494, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=592 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4796 dipeptidyl peptidase‐4 inhibitors, anticancer drugs, cardiac glycosides
Endogenous substrates prostaglandins, eicosanoids http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4749, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4528, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2635 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=997, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2168 (https://www.genenames.org/data/gene‐symbol‐report/#!/hgnc_id/HGNC:894, http://www.uniprot.org/uniprot/P01185), thyroid hormones, prostaglandins thyroid hormones, prostaglandins, bile acids, steroid conjugates thyroid hormones, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352, steroid conjugates
Inhibitors http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4530 (Inhibition of PGF uptake in PGT‐expressing HeLa cells) (pK i 5.4) [http://www.ncbi.nlm.nih.gov/pubmed/7754369?dopt=AbstractPlus] – Rat, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4506 (Inhibition of PGF uptake in PGT‐expressing HeLa cells) (pK i 5.2) [http://www.ncbi.nlm.nih.gov/pubmed/7754369?dopt=AbstractPlus] – Rat http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4920 (pK i 6.3) [http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6193 (pK i 5.6) [http://www.ncbi.nlm.nih.gov/pubmed/22541068?dopt=AbstractPlus], http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3439, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2414, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4570, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4743 [http://www.ncbi.nlm.nih.gov/pubmed/17496208?dopt=AbstractPlus]
Labelled ligands http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1916 (Binding) [http://www.ncbi.nlm.nih.gov/pubmed/9506966?dopt=AbstractPlus] http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4505, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1916, http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4748 http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4725
Comments Other inhibitors include NSAIDs Other inhibitors include glitazones and citrus juices

Further reading on SLCO family of organic anion transporting polypeptides

Hagenbuch B et al. (2013) The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34: 396‐412 https://www.ncbi.nlm.nih.gov/pubmed/23506880?dopt=AbstractPlus

Hillgren KM et al. (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94: 52‐63 https://www.ncbi.nlm.nih.gov/pubmed/23588305?dopt=AbstractPlus

International Transporter Consortium et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9: 215‐36 https://www.ncbi.nlm.nih.gov/pubmed/20190787?dopt=AbstractPlus

Lee HH et al. (2017) Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol 83: 1176‐1184 https://www.ncbi.nlm.nih.gov/pubmed/27936281?dopt=AbstractPlus

Roth M et al. (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 165: 1260‐87 https://www.ncbi.nlm.nih.gov/pubmed/22013971?dopt=AbstractPlus

Zamek‐Gliszczynski MJ et al. (2018) Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin. Pharmacol. Ther. 104: 890‐899 https://www.ncbi.nlm.nih.gov/pubmed/30091177?dopt=AbstractPlus

Further reading on SLC superfamily of solute carriers

Bhutia YD et al. (2016) SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem. J. 473: 1113‐24 https://www.ncbi.nlm.nih.gov/pubmed/27118869?dopt=AbstractPlus

Colas C et al. (2016) SLC Transporters: Structure, Function, and Drug Discovery. Medchemcomm 7: 1069‐1081 https://www.ncbi.nlm.nih.gov/pubmed/27672436?dopt=AbstractPlus

César‐Razquin A et al. (2015) A Call for Systematic Research on Solute Carriers. Cell 162: 478‐87 https://www.ncbi.nlm.nih.gov/pubmed/26232220?dopt=AbstractPlus

Lin L et al. (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14: 543‐60 https://www.ncbi.nlm.nih.gov/pubmed/26111766?dopt=AbstractPlus

Naa|cz KA. (2017) Solute Carriers in the Blood‐Brain Barier: Safety in Abundance. Neurochem. Res. 42: 795‐809 https://www.ncbi.nlm.nih.gov/pubmed/27503090?dopt=AbstractPlus

Neul C et al. (2016) Impact of Membrane Drug Transporters on Resistance to Small‐Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 37: 904‐932 https://www.ncbi.nlm.nih.gov/pubmed/27659854?dopt=AbstractPlus

Nigam SK. (2015) What do drug transporters really do? Nat Rev Drug Discov 14: 29‐44 https://www.ncbi.nlm.nih.gov/pubmed/25475361?dopt=AbstractPlus

Pedersen NB et al. (2016) Glycosylation of solute carriers: mechanisms and functional consequences. Pflugers Arch. 468: 159‐76 https://www.ncbi.nlm.nih.gov/pubmed/26383868?dopt=AbstractPlus

Perland E et al. (2017) Classification Systems of Secondary Active Transporters. Trends Pharmacol. Sci. 38: 305‐315 https://www.ncbi.nlm.nih.gov/pubmed/27939446?dopt=AbstractPlus

Rives ML et al. (2017) Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol. 135: 1‐11 https://www.ncbi.nlm.nih.gov/pubmed/28214518?dopt=AbstractPlus

Alexander Stephen PH, Kelly Eamonn, Mathie Alistair, Peters John A, Veale Emma L, Armstrong Jane F, Faccenda Elena, Harding Simon D, Pawson Adam J, Sharman Joanna L, Southan Christopher, Davies Jamie A and CGTP Collaborators (2019) THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 176: S397–S493. doi: 10.1111/bph.14753.

References


Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES