Skip to main content
Critical Care logoLink to Critical Care
letter
. 2019 Nov 13;23:354. doi: 10.1186/s13054-019-2639-7

Attainment of therapeutic vancomycin level within the first 24 h: Authors' response

João Pedro Baptista 1,, Jason A Roberts 2,3,4, Eduardo Sousa 1, Ricardo Freitas 1, Nuno Devesa 1, Jorge Pimentel 5
PMCID: PMC6852771  PMID: 31722733

In sepsis, time is life. However, time is not the only variable of the complex equation of antibiotic therapy; the dose of antibiotic administered needs to be adequate. Subtherapeutic antibiotic concentrations potentially lead to decreased microbial killing, treatment failure, and emergence of resistance and/or increased mortality. Early therapeutic drug monitoring and timely dose optimization, ideally during the first 24 h, minimize the likelihood of subtherapeutic antibiotic concentrations and ineffective antibiotic therapy. Vancomycin remains a first-line option for the treatment of methicillin-resistant Staphylococcus aureus and other resistant Gram-positive bacteria. Of note, vancomycin is one of the antibiotics with the highest likelihood of under dosing [1]. Continuous infusion (CI), after adequate loading dose (LD), seems to have pharmacological advantages in the critically ill and enables more consistent achievement of therapeutic exposures.

A nomogram for dosing vancomycin can be easily used at the bedside of the patient, providing rapidly personalized dosing. One of the key factors facilitating the nomogram is the fact that renal clearance of vancomycin is strongly correlated with the measured urinary creatinine clearance (CLCR). Unfortunately, it is more common in clinical practice to use the less accurate mathematical estimates of renal function in unstable patients, instead of measured CLCR [2]. Such an approach serves to compromise the reliability of the nomogram in the critical care setting.

We appreciate and read with interest the comments of Honoré et al., regarding our study in 2014, where we developed and validated a dosing nomogram for vancomycin in CI in a population of critically ill patients [3, 4]. Some clarifications, however, are needed. First, we never intended to compare CI with a LD of vancomycin; instead, we used, sequentially, LD (between 1 and 1.5 g) followed by CI (30 mg/kg/day). Later, with nomogram-guided dosing using an 8 h-CLCR, we achieved target vancomycin exposures in 84% of patients in the validation group in the first 24 h. Of these, 40% had demonstrated augmented renal clearance (8 h-CLCR > 130 mL/min/1.73m2). Secondly, patients with compromised renal function or needing of renal replacement therapy were excluded in our study, meaning that our nomogram should not be considered applicable to this group of patients. Third, the volume of distribution and the half-life of vancomycin increases significantly in critically ill patients with renal insufficiency. On the other hand, vancomycin (medium molecular size molecule) is effectively cleared by continuous renal replacement therapies (CRRT). Considering the large inter-study variability, there is no clear recommendation about the optimal vancomycin regimen during CRRT [5]. A vancomycin loading dose of 15–20 mg/kg actual body weight would likely be more appropriate in CRRT patients. Finally, future studies confirming our dosing protocol are welcome; however, the chosen target population should be similar (with exclusion of patients under CRRT) so that the obtained results can be extrapolated to different contexts.

Acknowledgements

None

Authors’ contributions

JPB conceived the study and wrote the initial draft, with all of the remaining authors contributing to subsequent revisions. All of the authors have read and approved the final article for publication.

Funding

None

Availability of data and materials

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

JAR: Consultancies/Advisory Boards – MSD (2019); QPEX (2019); Discuva Ltd. (2019); Accelerate Diagnostics (2017); Bayer (2017); Biomerieux (2016). Speaking Fees – MSD (2018); Biomerieux (2018). Industry Grants – MSD (2017); The Medicines Company (2017); Cardeas Pharma (2016); Biomerieux (2019).

All the other authors declare that they have no competing interests.

Footnotes

This comment refers to the article available at 10.1186/s13054-019-2515-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

João Pedro Baptista, Email: joaopedrobaptista@gmail.com.

Jason A. Roberts, Email: j.roberts2@uq.edu.au

Eduardo Sousa, Email: j.eduardo.sousa@gmail.com.

Ricardo Freitas, Email: rabpsf@gmail.com.

Nuno Devesa, Email: nmdevesa@gmail.com.

Jorge Pimentel, Email: jmppimentel@gmail.com.

References

  • 1.Al-Dorzi HM, Eissa AT, Khan RM, Harbi SAA, Aldabbagh T, Arabi YM. Dosing errors of empirical antibiotics in critically ill patients with severe sepsis or septic shock: a prospective observational study. Int J Health Sci (Qassim) 2019;13(4):48–55. [PMC free article] [PubMed] [Google Scholar]
  • 2.Baptista JP, Neves M, Rodrigues L, Teixeira L, Pinho J, Pimentel J. Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients. J Nephrol. 2014;27(4):403–410. doi: 10.1007/s40620-013-0036-x. [DOI] [PubMed] [Google Scholar]
  • 3.Honore PM, De Bels D, Attou R, Redant S, Gallerani A, Kashani K. Attainment of therapeutic vancomycin level within the first 24 h. Crit Care. 2019;23:228. doi: 10.1186/s13054-019-2515-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Baptista JP, Roberts JA, Sousa E, Freitas R, Deveza N, Pimentel J. Decreasing the time to achieve therapeutic vancomycin concentrations in critically ill patients: developing and testing of a dosing nomogram. Crit Care. 2014;18(6):654. doi: 10.1186/s13054-014-0654-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens*. Crit Care Med. 2014;42(7):1640–1650. doi: 10.1097/CCM.0000000000000317. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable


Articles from Critical Care are provided here courtesy of BMC

RESOURCES