Skip to main content
BMC Oral Health logoLink to BMC Oral Health
. 2019 Nov 13;19:246. doi: 10.1186/s12903-019-0906-2

Composition and diversity of the subgingival microbiome and its relationship with age in postmenopausal women: an epidemiologic investigation

Michael J LaMonte 1,, Robert J Genco 2, Michael J Buck 3, Daniel I McSkimming 4, Lu Li 5, Kathleen M Hovey 1, Christopher A Andrews 6, Wei Zheng 5, Yijun Sun 5, Amy E Millen 1, Maria Tsompana 3, Hailey R Banack 1, Jean Wactawski-Wende 1
PMCID: PMC6854792  PMID: 31722703

Abstract

Background

The extent to which the composition and diversity of the oral microbiome varies with age is not clearly understood.

Methods

The 16S rRNA gene of subgingival plaque in 1219 women, aged 53–81 years, was sequenced and its taxonomy annotated against the Human Oral Microbiome Database (v.14.5). Composition of the subgingival microbiome was described in terms of centered log(2)-ratio (CLR) transformed OTU values, relative abundance, and prevalence. Correlations between microbiota abundance and age were evelauted using Pearson Product Moment correlations. P-values were corrected for multiple testing using the Bonferroni method.

Results

Of the 267 species identified overall, Veillonella dispar was the most abundant bacteria when described by CLR OTU (mean 8.3) or relative abundance (mean 8.9%); whereas Streptococcus oralis, Veillonella dispar and Veillonella parvula were most prevalent (100%, all) when described as being present at any amount. Linear correlations between age and several CLR OTUs (Pearson r = − 0.18 to 0.18), of which 82 (31%) achieved statistical significance (P < 0.05). The correlations lost significance following Bonferroni correction. Twelve species that differed across age groups (each corrected P < 0.05); 5 (42%) were higher in women ages 50–59 compared to ≥70 (corrected P < 0.05), and 7 (48%) were higher in women 70 years and older.

Conclusions

We identified associations between several bacterial species and age across the age range of postmenopausal women studied. Understanding the functions of these bacteria could identify intervention targets to enhance oral health in later life.

Keywords: Aging, Women, Oral Microbiome, Epidemiology

Background

The availability of high throughput metagenomics sequencing technology has allowed for deeper understanding of complex microbiota ecologies and their aggregate functional capacities within a defined microbiome [1, 2]. Marked differences in composition and function of microbiomes have been shown between various body sites among individuals [3, 4]. It has become increasingly clear that the microbiota and microbiome are correlated with both health and disease states in humans [5], and that the aging process could be an important determinant of these relationships [6, 7]. Aging is a complex, multifactorial process characterized by progressively lower resilience to stress, increased homeostatic imbalance, and greater susceptibility to pathologic insult and disease onset [8]. Changes in microbiome diversity and function have been observed with increasing age [9]. Alterations in the host environment that occur with physiologic aging processes could enable untoward shifts in relative abundance of commensal and pathogenic bacteria, and enhanced expression of pathogen genomes which, in turn, could heighten disease susceptibility. In support of this hypothesis are studies demonstrating links between human microbiomes and several diseases of aging including obesity, diabetes, heart disease, and certain cancers [5, 7, 10].

The oral microbiota comprise one of the most complex and diverse human microbiomes [3, 11, 12]. Oral bacteria have important functional roles that contribute to maintenance of oral health [13], to oral diseases such as caries and periodontitis in the setting of dysbiosis [14, 15], and potentially to systemic diseases of aging by way of bacterial translocation through ulcerated oral epithelium, aspiration, or ingestion [7, 16]. This could have important implications to public health given the rapid growth in numbers of older adults expected in coming decades.

Surprisingly, there exists a limited understanding of oral microbiota in aging populations. Feres et al. [17] conducted a comprehensive review of published literature and concluded that the majority of oral microbiome studies have included younger and middle-aged adults. Only a small number of studies have described the microbiome in older adults, among which sample sizes of adults 60 years and older tended to be, on average, modest (e.g., < 200), the majority of whom were men and were selected to have moderate to severe periodontitis [1719]. A majority of previous studies have used low throughput microbial measurement techniques, such as microbial culture and targeted DNA probes, which result in an incomplete characterization of the oral microbiome composition and diversity in relationship to groups of men and women of differing ages. Recent investigations have extended these previous studies by using next generation sequencing methods, but again relatively small sample sizes (< 100) limited the contrasts that could be performed in relation to age in the majority of these studies [2023].

Thus, at present, an incomplete understanding of the composition and characteristics of the oral microbiome exists in the context of aging, particularly in women. A critical step in advancing knowledge on how the oral microbiome relates with the frequency of oral (e.g., periodontitis) or systemic (e.g., breast cancer) diseases of aging, is to first understand the extent of the composition and how the microbiota vary with host characteristics, such as age. This information will be important in later understanding the interplay of the microbiome with pathogenic changes over time. Application of epidemiologic study methods to study populations not selected on disease status is a suggested approach to establish a foundational understanding of microbiome diversity expected in a population that then allow for hypotheses pertaining to disease-related variation that can then be accurately evaluated [24]. The objective of this current cross-sectional investigation was to describe the composition and diversity of the subgingival plaque microbiome and its relationship with age in a cohort of ambulatory postmenopausal women, aged 53–81 years, who were enrolled in an ongoing study from the community dwelling women without selection on periodontal health status at enrollment.

Methods

Participants

The present study included 1219 postmenopausal women enrolled in the Buffalo Osteoporosis and Periodontitis (OsteoPerio) Study, which is an ancillary study conducted at the Buffalo (NY) clinical center of the Women’s Health Initiative Observational Study (WHI OS). Participants provided written informed consent for all components of the studies, which were conducted in accord with the Helsinki Declaration on human subjects research. Experimental protocols for all aspects of the WHI study, the OsteoPerio Study, and the microbiome study detailed in this paper were approved by the Institutional Review Board at the University at Buffalo. This manuscript conforms to the STROBE guidelines for human observational studies. Details about recruitment, enrollment criteria, study implementation and measurements have been published for the WHI OS [25] and the OsteoPerio study [26, 27]. Briefly, 2249 postmenopausal women, ages 50–79, enrolled into the WHI OS at the Buffalo center between 1994 and 1998. Of these, 1362 enrolled into the OsteoPerio study 3 years later in 1997–2001 (mean age 66; range 53–81 years). Enrollment into the OsteoPerio study required at least 6 teeth present and no history of bone disease other than osteoporosis and no history of cancer in the previous 10 years. Women completed standardized questionnaires pertaining to demographic information, lifestyle habits, and personal health history, as well as undertaking a whole mouth oral examination conducted by trained and calibrated examiners. Neighborhood socioeconomic status was derived from questionnaire responses and census tract information [28]. Detailed descriptions of the oral examination measures and their reproducibility have been published [26]. Figure 1 shows a flow chart of participant enrollment into the OsteoPerio study.

Fig. 1.

Fig. 1

Flow of participants into the Buffalo OsteoPerio Study

Subgingival plaque samples

A protocol for obtaining subgingival plaque samples was developed for this study and has been published [29]. Fine paper points – (#504; Henry Schein, Melville, NY) were placed in the gingival pockets of up to 12 pre-specified teeth (6 maxillary and 6 mandibular arch teeth) for 10 S. index teeth [3, 5, 7, 9, 12, 14, 19, 21, 23, 25, 28, 30, and] were usually sampled. Alternative teeth [2, 4, 8, 10, 13, 15, 18, 20, 24, 26, 29, 31, and] were used if the corresponding index tooth was missing. Paper points containing all subgingival plaque samples from each arch were placed directly into 4 mL lactated Ringer’s solution. The solution was taken to the lab where it was vortexed for dispersion of microorganisms, placed in cryogenic straws, frozen immediately at -80 °C and later placed in cryogenic tanks at -196 °C as previously described [29]. Before next generation sequencing, samples were placed in − 80 freezers and later thawed, with upper and lower arch samples combined into a single aliquot for the purpose of sequencing.

DNA isolation and purification

Genomic DNA was isolated using the QIAsymphony SP automated system (Qiagen, Valencia, CA) with the QIAsymphony DSP Virus/Pathogen Mini Kit (Qiagen, Valencia, CA) and the Complex200_V6_DSP protocol after enzymatic pretreatment. In detail, 500 μl of oral plaque solution contained in a barcoded 2 ml tube was equilibrated at room temperature (15-25 °C). Bacteria was pelleted by centrifugation at 5000×g for 10 min, resuspended in a 300 μl lysis solution (20 mg/ml lysozyme in 20 mM Tris-HCl, pH 8.0; 2 mM EDTA; 1.2% Triton X-100) and incubated at 37 °C for 30 min. Following incubation, tubes were briefly centrifuged to remove drops from inside the lid and then placed in the tube carrier of the QIAsymphony SP.

DNA extraction and purification was done according to the Qiasymphony DSP Virus /Pathogen Kit Instructions. Carrier RNA-AVE mixture was added to all samples for increased recovery of nucleic acids. After DNA purification, samples were eluted in a barcoded 96 well elution plate (Qiagen, Valencia, CA). All batches of samples were performed with DNA extraction negative controls and positive controls from a single large pool of mixed plaque samples.

16S rRNA amplification and sequencing

Metagenomic amplification of the extracted DNA for 16S amplification of the V3–V4 hypervariable region proceeded following the Illumina manufacturer protocol (Illumina Inc., San Diego, CA) with modifications developed for our study [30]. The Illumina protocol relies on limited cycle PCR for addition of Illumina sequencing adapters and dual-index barcodes to the 16S rRNA V3-V4 ampli. We also included as part of the 96-well plates, samples of the UltraClean DNA free PCR water (MO BIO Laboratories, Carlsbad, CA) and RNase/DNase free water (Ambion, Foster City, CA) as negative controls, and genomic DNA from microbial community HM-277D (microbial community B; BEI Resources; Manassas, VA) as a positive control during the amplification process. Metagenomic DNA was amplified using the 16S V3 (341F) forward and V4 (805R) reverse primer pairs with added Illumina adapter overhang nucleotide sequences. Amplicon PCR was completed with 42 μl of genomic DNA, 4 μl of amplicon PCR forward primer (5 μM), 4 μl of amplicon PCR reverse primer (5 μM), and 50 μl of 2x KAPA HiFi HotStart Ready Mix (KapaBiosystems) at 95 °C initial denaturation for 3 min, followed by 25 cycles of 95 °C for 30 s, 62.3 °C for 30 s, and 72 °C for 30 s, and a final extension at 72 °C for 5 min. Reactions were cleaned with Agencourt AMPure XP beads (Beckman Coulter Genomics, South Plainfield, NJ) according to the manufacturer’ s protocol.

Library generation was performed using 5 μl of amplicon PCR product DNA, 5 μl of Illumina Nextera XT Index Primer 1 (N7xx), 5 μl of Nextera XTIndex Primer 2 (S5xx), 25 μ l of 2x KAPA HiFi HotStart Ready Mix, and 10 μl of PCR-grade water (UltraClean MO BIO Laboratories, Inc.), with thermocycling at 95 °C for 3 min, followed by 8 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and a final extension at 72 °C for 5 min. 16S metagenomic libraries were purified with Agencourt AMPure XP beads and quantified with Quant-iT PicoGreen. Nextera index primer sets (A, B, and C) were rotated for each batch to reduce sequence carryover between MiSeq runs.

Library quality control was performed with the Fragment Analyzer (Advanced Analytical Technologies, Inc., Ankeny, IA) to ascertain average size distribution. Generated 16S rRNA V3-V4 libraries were further quality-controlled using the following internal study criteria: 1. Library concentration of all negative(s) is < 5 ng/μl, 2. Participant samples have a fragment peak distribution with average size of ~ 600 bp, and 3. Negative controls yield a straight line when run in the Fragment Analyzer. If the above cutoffs were met, libraries were normalized and pooled to 4 nM based on PicoGreen concentrations. The pool of normalized libraries were then quantified with the NEBNext Library Quant Kit (New England Biolabs, Inc., Ipswich, M.), denatured with NaOH and diluted to a final concentration of 10 pM with a 20% PhiX (Illumina, Inc., San Diego, CA). 2 × 300 bp paired-end sequencing is performed in the Illumina MiSeq System (Illumina Inc., San Diego, CA) by multiplexing 96 samples per sequencing run with the MiSeq Reagent Kit.

Joining of Illumina paired-end reads were completed using Paired-End reAd mergeR (PEAR version 0.9.6). The percentage of successfully joined pair-end defined the “merge rate”; paired-end reads that could not be joined were removed from downstream analyses. Sequence quality filtering was done with the Fastx-Toolkit (V.0.013) to isolate reads with 90% of their bases having a score higher than Q30, which defined the “pass rate”; reads not meeting this criterion were removed. Primer sequences were trimmed based on the length of the forward and reverse sequencing primers. Following quality-filtering, reads were deduplicated by recording the number and type of identical sequences to reduce downstream processing time.

Taxonomy annotation was done with BLAST [31] at a 97% similarity, for species-level assignment approximation, against bacterial sequences from the HOMD version 14.5. Input query reads were given the same taxonomic label as the best hit in the reference sequence collection, defining the “hit count”; reads with no hits were excluded from downstream analyses. Sequences with the same labels were clustered into one OTU and the raw OTU table was constructed by combining absolute sequence abundances from the deduplication step, generated taxonomy annotations and manually generated metadata. We subsequently filtered the raw OTU table by discarding OTUs with a frequency < 0.02% of the total read count. At the preprocessing sequence analysis step we require a ‘Merge Rate’ ≥ 90%, ‘Pass Rate’ ≥ 60%, and ‘Hit Count’ per sample ≥ 3000.

Statistical analysis

For this analysis we used several approaches to characterize the composition and diversity of the subgingival microbiome and their relationships with age. Individual OTU counts were normalized using the centered log(2)-ratio (CLR) transformation. Gloor et al. [32] recommends the CLR transformation to account for the complex compositional data structure, to reduce the likelihood of spurious correlations, and to enhance the meaningfulness of subcomposition comparisons. A positive CLR OTU value for given taxon indicates a relatively higher amount than the overall composition mean, which is 0; a negative value indicates relatively lower amount. The fold-difference for a reported CLR OTU value relative to the compositional mean, can be determined by raising 2 to the power of the base 2 logarithm. For example, a mean CLR of 3, reflects an 8-fold (23) higher abundance compared to the compositional mean; a mean CLR of − 3 reflects an 8-fold lower abundance. The CLR distribution of each OTU was approximately normal and the variances in groups were similar by visual inspection. Alpha diversity was used to assess species richness and evenness across age categories. The rarefaction curve, bias-corrected Chao1 (richness), OTU count (richness), and Shannon entropy (evenness) values were calculated for each sample using scikit- bio v0.5.5. Beta diversity was evaluated using principal component analysis (PCA) [33]. T-tests were used to evaluate differences in alpha diversity, and PERMANOVA was used to evaluate differences in beta diversity, using SciPy v1.3.0. Comparisons of microbiota between age categories was performed using analysis of variance and evaluation of linear relationships between microbiota and age performed using Pearson product-moment correlations. We nominally defined correlations of |r| < 0.10 as weak, 0.10–0.49 as moderate, 0.50–0.70 as strong, and > 0.70 as very strong. We report uncorrected p-values and indicate which are statistically significant after Bonferroni correction for multiple testing.

To provide additional perspective and comparability with previous studies, we also describe microbiome composition and diversity according to conventional measures of relative abundance (the amount of a specific taxon relative to the total composition of the sample in which it is measured) and prevalence (presence of a taxon regardless of relative composition). To minimize the total number of hypothesis tests performed, formal comparisons using these measures were not conducted and these data are presented for descriptive purposes only.

Results

Characteristics of study group

Participant characteristics are shown for descriptive purposes in Table 1. Women in the present study were, on average, 66 years of age and the vast majority (97%) were Caucasian. Prevalence of current smoking (3%) and diabetes history (5.2%) was modest, and about half the group reported current use of hormone therapy. The group retained the majority of their natural teeth (mean, 23), the frequency of reported teeth brushing two or more times per day was high (77%) as was frequency of dental visits one or more times per year (91%). Mean pocket depth was 2.2 mm (range 1.2–3.8). As expected, prevalence of current smoking and current hormone therapy use declined with increasing age, and, prevalence of diabetes history was highest among the oldest women. The number of teeth present and frequency of dental visits declined with increasing age and, frequency of teeth brushing was higher in older than younger women. Both neighborhood socioeconomic status and mean pocket depth were similar across age groups.

Table 1.

Baseline characteristics of OsteoPerio Microbiome Study participants for the overall cohort and by age groups

Characteristic Overall
(N = 1219)
50–59
(N = 239)
60–69
(N = 554)
≥70
(N = 426)
Age (years), mean (SD) 66.2 (7.0) 56.7 (1.8) 64.2 (2.9) 74.1 (3.3)
Race-ethnicity: White, N (%) 1187 (97.4) 233 (97.5) 537 (96.9) 417 (97.9)
Neighborhood SES, mean (SD) 76.2 (6.9) 75.7 (7.5) 76.6 (6.8) 75.9 (6.7)
Smoking, N (%)
 Never 642 (52.7) 117 (48.9) 280 (50.5) 245 (57.6)
 Former 537 (44.1) 107 (44.8) 257 (46.4) 173 (40.7)
 Current 39 (3.2) 15 (6.3) 17 (3.1) 7 (1.7)
History of treated diabetes, N (%) 63 (5.2) 9 (3.8) 26 (4.7) 28 (6.6)
History of treated hypertension, N (%) 392 (32.2) 63 (26.4) 148 (26.7) 181 (42.5)
History of treated high cholesterol, N (%) 201 (16.5) 26 (10.9) 76 (13.7) 99 (23.4)
Hormone therapy use, N (%)
 Never 390 (32.0) 53 (22.2) 158 (28.5) 179 (42.0)
 Former E-Alone 132 (10.9) 12 (5.0) 50 (9.0) 70 (16.5)
 Former E + P 111 (9.1) 24 (10.1) 58 (10.5) 29 (6.8)
 Current E-Alone 307 (25.2) 66 (27.7) 136 (24.6) 105 (24.7)
 Current E + P 277 (22.8) 83 (34.9) 152 (27.4) 42 (9.9)
 Years taking hormone therapya 5.6 (7.3) 4.6 (4.5) 6.2 (7.0) 5.5 (8.8)
Number of teeth present, mean (SD) 23.2 (5.3) 24.8 (4.0) 23.6 (5.2) 21.9 (5.8)
Brush teeth ≥2 times/day, N (%) 942 (77.3) 178 (74.5) 422 (76.2) 342 (80.3)
Floss teeth daily, N (%) 529 (43.6) 90 (37.7) 247 (44.8) 192 (45.4)
Dental visit ≥1 time/year, N (%) 1114 (91.4) 225 (94.1) 504 (91.0) 385 (90.4)
Mean Pocket Depth (mm), mean (SD) 2.2 (0.4) 2.2 (0.4) 2.2 (0.4) 2.1 (0.4)
Gingival Bleeding (%), mean (SD) 34.4 (23.2) 33.0 (23.5) 34.5 (22.9) 35.1 (23.4)

SES socioeconomic statusn. See methods section for its definition and derivation, E estrogen, P progesti

aNever users coded as 0 years

Microbial community structure and composition

After filtering out OTUs < 0.02%, the total number of sequence reads for the overall cohort of 1219 women was 120,388,085 (mean reads per sample, 98,760; range 3034 to 1,080,317). Sequence reads per sample was somewhat higher with increasing age, with means (SDs) of 89,442 (71,698), 97,794 (86,908), and 105,243 (80,183) reads in women ages 50–59, 60–69, and ≥ 70 years, respectively. There were 267 microbial taxa identified in the subgingival plaque samples after filtering at 0.02%. The taxonomic classification and mean reads for each taxon overall and by age groups, are presented in Table 2. Of the 120,388,085 read, 46.2% were of the phylum Firmicutes, 17.2% Bacteroidetes, 13.5% Fusobacterium, 8.6% Proteobacteria, 6.0% Actinobacteria, and the remaining were among other phyla of < 4%, each (Fig. 2). The distribution of phyla was consistent across age groups. At the genus level, the highest mean relative abundance was for Veillonella (16.7%), followed by Streptococcus (14.2%), Fusobacterium (10.7%), Prevotella (8.6%), and Selenomonas (7.7%); relative abundance of the remaining genera was < 4%, each. This pattern was consistent across age groups. At the species level, among all women, the highest number of mean reads was for Veillonella dispar (Firmicutes phylum; mean, 8136) and Veillonella parvula (Firmicutes phylum; mean, 6262) (Table 2). Mean reads for each taxon increased across incremental age groups.

Table 2.

Taxonomic classification and mean reads for the 267 bacteria identified, overall and by age groups

Phyla Class Genus Species Age Categories (years)
Overall 50–59 60–69 ≥70
p__Actinobacteria c__Actinobacteria g__Actinobaculum s__sp._oral_taxon_183 89.8 95.0 88.9 88.0
p__Actinobacteria c__Actinobacteria g__Actinobaculum s__sp._oral_taxon_848 48.2 37.3 52.9 48.2
p__Actinobacteria c__Actinobacteria g__Actinomyces s__gerencseriae 68.6 60.5 66.7 75.6
p__Actinobacteria c__Actinobacteria g__Actinomyces s__israelii 25.1 19.5 24.1 29.5
p__Actinobacteria c__Actinobacteria g__Actinomyces s__johnsonii 106.0 104.9 105.2 107.6
p__Actinobacteria c__Actinobacteria g__Actinomyces s__massiliensis 112.1 134.2 121.5 87.4
p__Actinobacteria c__Actinobacteria g__Actinomyces s__meyeri 59.3 64.8 61.6 53.3
p__Actinobacteria c__Actinobacteria g__Actinomyces s__naeslundii 453.1 482.6 447.6 443.6
p__Actinobacteria c__Actinobacteria g__Actinomyces s__oris 225.7 236.6 218.8 228.5
p__Actinobacteria c__Actinobacteria g__Actinomyces s__sp._oral_taxon_169 195.8 251.2 183.7 180.4
p__Actinobacteria c__Actinobacteria g__Actinomyces s__sp._oral_taxon_170 60.4 44.8 59.8 70.0
p__Actinobacteria c__Actinobacteria g__Actinomyces s__sp._oral_taxon_171 88.2 86.5 89.2 87.9
p__Actinobacteria c__Actinobacteria g__Actinomyces s__sp._oral_taxon_178 27.0 23.9 26.8 29.0
p__Actinobacteria c__Actinobacteria g__Actinomyces s__sp._oral_taxon_180 119.0 121.7 123.6 111.5
p__Actinobacteria c__Actinobacteria g__Bifidobacterium s__dentium 88.5 83.0 75.8 108.2
p__Actinobacteria c__Actinobacteria g__Corynebacterium s__durum 121.3 153.3 120.2 104.7
p__Actinobacteria c__Actinobacteria g__Corynebacterium s__matruchotii 1107 1095 1178 1020
p__Actinobacteria c__Actinobacteria g__Microbacterium s__flavescens 1.5 1.8 1.6 1.1
p__Actinobacteria c__Actinobacteria g__Rothia s__aeria 323.3 311.6 378.9 257.6
p__Actinobacteria c__Actinobacteria g__Rothia s__dentocariosa 975.6 915.0 1039 927.8
p__Actinobacteria c__Actinobacteria g__Rothia s__mucilaginosa 185.3 125.4 179.1 226.9
p__Actinobacteria c__Actinobacteria g__Scardovia s__wiggsiae 68.7 74.1 69.7 64.4
p__Actinobacteria c__Coriobacteriia g__Atopobium s__parvulum 77.9 57.2 78.3 88.8
p__Actinobacteria c__Coriobacteriia g__Atopobium s__rimae 200.0 107.8 200.0 251.7
p__Actinobacteria c__Coriobacteriia g__Atopobium s__sp._oral_taxon_199 47.4 39.1 61.2 34.0
p__Actinobacteria c__Coriobacteriia g__Atopobium s__sp._oral_taxon_416 25.4 1.1 14.6 53.1
p__Actinobacteria c__Coriobacteriia g__Olsenella s__sp._oral_taxon_807 46.9 38.6 44.5 54.7
p__Bacteroidetes c__Bacteroidetes_[C-1] g__Bacteroidetes_[G-5] s__sp._oral_taxon_511 137.4 87.8 155.7 141.4
p__Bacteroidetes c__Bacteroidia g__Alloprevotella s__rava 82.4 52.8 87.6 92.3
p__Bacteroidetes c__Bacteroidia g__Alloprevotella s__sp._oral_taxon_308 28.6 21.3 24.9 37.4
p__Bacteroidetes c__Bacteroidia g__Alloprevotella s__sp._oral_taxon_473 77.5 63.0 82.6 79.1
p__Bacteroidetes c__Bacteroidia g__Alloprevotella s__tannerae 1562 1427 1580 1615
p__Bacteroidetes c__Bacteroidia g__Bacteroidaceae_[G-1] s__sp._oral_taxon_272 39.5 24.6 28.6 62.2
p__Bacteroidetes c__Bacteroidia g__Bacteroidales_[G-2] s__sp._oral_taxon_274 885.8 548.7 935.5 1010
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__catoniae 104.1 111.4 115.8 84.7
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__endodontalis 602.5 560.5 657.1 555.0
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__gingivalis 1055 781.4 752.8 1603
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__sp._oral_taxon_275 46.0 29.0 62.6 33.9
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__sp._oral_taxon_278 39.2 22.1 43.1 43.6
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__sp._oral_taxon_279 310.5 255.9 315.5 334.7
p__Bacteroidetes c__Bacteroidia g__Porphyromonas s__sp._oral_taxon_284 183.2 187.5 187.8 174.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__baroniae 50.3 29.2 60.5 48.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__buccae 53.1 17.3 63.0 60.4
p__Bacteroidetes c__Bacteroidia g__Prevotella s__dentalis 102.3 63.3 120.3 100.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__denticola 773.5 501.4 724.4 989.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__histicola 100.3 48.8 72.7 165.3
p__Bacteroidetes c__Bacteroidia g__Prevotella s__intermedia 671.5 613.0 766.5 580.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__loescheii 119.6 131.7 138.7 87.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__maculosa 185.9 139.8 180.0 219.4
p__Bacteroidetes c__Bacteroidia g__Prevotella s__melaninogenica 339.1 236.0 321.8 419.4
p__Bacteroidetes c__Bacteroidia g__Prevotella s__micans 42.7 37.6 37.1 52.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__multiformis 46.7 9.2 36.1 81.6
p__Bacteroidetes c__Bacteroidia g__Prevotella s__nigrescens 1997 1719 1960 2200
p__Bacteroidetes c__Bacteroidia g__Prevotella s__oralis 174.4 78.8 158.9 248.2
p__Bacteroidetes c__Bacteroidia g__Prevotella s__oris 1968 1700 2093 1956
p__Bacteroidetes c__Bacteroidia g__Prevotella s__oulorum 211.7 216.2 182.8 246.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__pallens 94.4 91.5 71.4 125.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__pleuritidis 579.6 478.7 606.4 601.4
p__Bacteroidetes c__Bacteroidia g__Prevotella s__saccharolytica 73.7 52.8 80.9 76.1
p__Bacteroidetes c__Bacteroidia g__Prevotella s__salivae 120.5 94.7 117.3 139.1
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_292 69.4 50.1 57.5 95.7
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_300 269.5 256.3 243.5 310.7
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_306 41.1 17.2 38.9 57.5
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_313 70.5 86.9 44.0 95.8
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_314 65.2 59.2 52.7 85.0
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_317 832.0 631.4 832.4 944.0
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_376 44.8 45.1 43.6 46.1
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_472 250.3 270.4 279.0 201.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_475 21.8 19.1 17.4 28.9
p__Bacteroidetes c__Bacteroidia g__Prevotella s__sp._oral_taxon_526 55.1 21.5 70.7 53.7
p__Bacteroidetes c__Bacteroidia g__Prevotella s__veroralis 113.8 84.1 160.3 70.0
p__Bacteroidetes c__Bacteroidia g__Tannerella s__forsythia 577.6 374.7 542.0 737.8
p__Bacteroidetes c__Bacteroidia g__Tannerella s__sp._oral_taxon_286 93.0 68.6 100.9 96.6
p__Bacteroidetes c__Bacteroidia g__Tannerella s__sp._oral_taxon_808 35.6 25.4 32.6 45.3
p__Bacteroidetes c__Flavobacteriia g__Bergeyella s__sp._oral_taxon_322 164.1 194.8 173.9 134.1
p__Bacteroidetes c__Flavobacteriia g__Bergeyella s__sp._oral_taxon_907 34.8 34.7 36.7 32.4
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__gingivalis 502.9 619.2 471.7 478.3
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__granulosa 597.4 513.3 629.6 602.6
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__leadbetteri 614.5 534.6 619.4 653.0
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_323 37.7 26.7 40.2 40.5
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_324 33.8 19.5 32.3 43.8
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_326 258.0 222.7 281.8 246.9
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_332 64.5 104.3 60.6 47.3
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_336 159.5 127.8 157.8 179.6
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_338 62.3 62.5 56.7 69.5
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_380 29.6 23.3 40.3 19.1
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_412 43.7 42.0 46.4 41.2
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_864 76.3 76.5 80.4 70.9
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_902 45.4 51.0 43.5 44.7
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sp._oral_taxon_903 37.1 26.6 37.4 42.5
p__Bacteroidetes c__Flavobacteriia g__Capnocytophaga s__sputigena 416.4 448.8 405.0 413.0
p__Chloroflexi c__Anaerolineae g__Anaerolineae_[G-1] s__sp._oral_taxon_439 59.1 30.1 54.2 81.8
p__Firmicutes c__Bacilli g__Abiotrophia s__defectiva 104.2 135.7 109.9 79.0
p__Firmicutes c__Bacilli g__Gemella s__haemolysans 338.8 412.1 338.9 297.4
p__Firmicutes c__Bacilli g__Gemella s__morbillorum 603.8 670.7 622.2 542.2
p__Firmicutes c__Bacilli g__Gemella s__sanguinis 44.3 33.8 36.2 60.7
p__Firmicutes c__Bacilli g__Granulicatella s__adiacens 532.6 564.2 523.2 527.1
p__Firmicutes c__Bacilli g__Granulicatella s__elegans 39.7 49.7 37.7 36.7
p__Firmicutes c__Bacilli g__Lactobacillus s__gasseri 31.4 9.3 37.7 35.5
p__Firmicutes c__Bacilli g__Streptococcus s__anginosus 479.8 409.3 468.1 534.6
p__Firmicutes c__Bacilli g__Streptococcus s__australis 28.9 21.0 24.1 39.5
p__Firmicutes c__Bacilli g__Streptococcus s__constellatus 283.7 208.0 279.1 332.2
p__Firmicutes c__Bacilli g__Streptococcus s__cristatus 516.2 457.7 546.4 509.7
p__Firmicutes c__Bacilli g__Streptococcus s__gordonii 998.1 853.8 991.3 1088
p__Firmicutes c__Bacilli g__Streptococcus s__intermedius 897.1 1038 949.4 749.9
p__Firmicutes c__Bacilli g__Streptococcus s__lactarius 56.8 97.9 40.2 55.3
p__Firmicutes c__Bacilli g__Streptococcus s__mutans 530.8 392.2 500.4 648.0
p__Firmicutes c__Bacilli g__Streptococcus s__oralis 6725 8031 6651 6089
p__Firmicutes c__Bacilli g__Streptococcus s__parasanguinis_I 59.7 48.6 51.2 77.0
p__Firmicutes c__Bacilli g__Streptococcus s__parasanguinis_II 141.3 124.2 126.4 170.2
p__Firmicutes c__Bacilli g__Streptococcus s__salivarius 460.0 399.7 455.1 500.2
p__Firmicutes c__Bacilli g__Streptococcus s__sanguinis 1128 1441 1133 945.5
p__Firmicutes c__Bacilli g__Streptococcus s__sinensis 29.3 32.1 14.3 47.4
p__Firmicutes c__Bacilli g__Streptococcus s__sobrinus 52.0 2.5 19.9 121.7
p__Firmicutes c__Bacilli g__Streptococcus s__sp._oral_taxon_056 90.0 102.7 82.4 92.7
p__Firmicutes c__Bacilli g__Streptococcus s__sp._oral_taxon_074 68.3 54.3 71.9 71.6
p__Firmicutes c__Clostridia g__Butyrivibrio s__sp._oral_taxon_080 24.6 14.1 35.9 15.9
p__Firmicutes c__Clostridia g__Catonella s__morbi 230.1 228.9 222.5 240.8
p__Firmicutes c__Clostridia g__Filifactor s__alocis 368.2 274.3 418.9 355.0
p__Firmicutes c__Clostridia g__Johnsonella s__ignava 114.9 104.7 111.8 124.5
p__Firmicutes c__Clostridia g__Johnsonella s__sp._oral_taxon_166 32.7 17.7 43.8 26.7
p__Firmicutes c__Clostridia g__Lachnoanaerobaculum s__orale 31.4 35.3 24.9 37.6
p__Firmicutes c__Clostridia g__Lachnoanaerobaculum s__saburreum 152.3 124.4 153.0 167.0
p__Firmicutes c__Clostridia g__Lachnoanaerobaculum s__umeaense 52.9 50.6 55.5 50.7
p__Firmicutes c__Clostridia g__Lachnospiraceae_[G-3] s__sp._oral_taxon_100 132.2 118.4 143.0 125.9
p__Firmicutes c__Clostridia g__Lachnospiraceae_[G-8] s__sp._oral_taxon_500 45.1 40.6 48.1 43.7
p__Firmicutes c__Clostridia g__Oribacterium s__sp._oral_taxon_078 112.2 68.2 102.9 149.0
p__Firmicutes c__Clostridia g__Parvimonas s__micra 848.4 791.4 915.0 793.8
p__Firmicutes c__Clostridia g__Parvimonas s__sp._oral_taxon_393 265.1 361.3 250.6 230.0
p__Firmicutes c__Clostridia g__Peptostreptococcaceae_[XI][G-1] s__[Eubacterium]_infirmum 38.9 32.2 32.2 51.2
p__Firmicutes c__Clostridia g__Peptostreptococcaceae_[XI][G-5] s__[Eubacterium]_saphenum 87.3 55.6 107.1 79.2
p__Firmicutes c__Clostridia g__Peptostreptococcaceae_[XI][G-6] s__[Eubacterium]_nodatum 64.3 60.2 55.8 77.7
p__Firmicutes c__Clostridia g__Peptostreptococcaceae_[XI][G-7] s__[Eubacterium]_yurii_subsps._yur 146.2 167.1 151.3 127.9
p__Firmicutes c__Clostridia g__Peptostreptococcaceae_[XI][G-9] s__[Eubacterium]_brachy 200.8 208.5 203.6 192.7
p__Firmicutes c__Clostridia g__Peptostreptococcus s__stomatis 107.9 130.7 103.5 100.7
p__Firmicutes c__Clostridia g__Pseudoramibacter s__alactolyticus 70.8 73.3 52.7 93.0
p__Firmicutes c__Clostridia g__Ruminococcaceae_[G-1] s__sp._oral_taxon_075 83.8 109.4 79.6 74.9
p__Firmicutes c__Clostridia g__Shuttleworthia s__satelles 35.3 21.3 40.5 36.3
p__Firmicutes c__Clostridia g__Stomatobaculum s__longum 55.2 47.4 52.5 63.0
p__Firmicutes c__Erysipelotrichia g__Solobacterium s__moorei 42.1 40.4 41.0 44.6
p__Firmicutes c__Mollicutes g__Mycoplasma s__salivarium 33.0 24.9 30.9 40.4
p__Firmicutes c__Negativicutes g__Anaeroglobus s__geminatus 767.6 402.1 582.4 1214
p__Firmicutes c__Negativicutes g__Centipeda s__periodontii 93.0 45.3 106.0 102.9
p__Firmicutes c__Negativicutes g__Dialister s__invisus 612.2 466.3 625.5 676.8
p__Firmicutes c__Negativicutes g__Dialister s__pneumosintes 225.5 179.8 224.8 252.1
p__Firmicutes c__Negativicutes g__Megasphaera s__micronuciformis 208.0 136.7 212.5 242.2
p__Firmicutes c__Negativicutes g__Megasphaera s__sp._oral_taxon_123 158.7 166.4 138.4 180.8
p__Firmicutes c__Negativicutes g__Mitsuokella s__sp._oral_taxon_131 117.5 40.4 143.3 127.2
p__Firmicutes c__Negativicutes g__Mitsuokella s__sp._oral_taxon_521 31.2 11.1 13.3 65.7
p__Firmicutes c__Negativicutes g__Selenomonas s__artemidis 738.5 720.4 712.4 782.7
p__Firmicutes c__Negativicutes g__Selenomonas s__dianae 47.4 36.6 36.3 67.9
p__Firmicutes c__Negativicutes g__Selenomonas s__flueggei 166.3 137.2 160.7 190.0
p__Firmicutes c__Negativicutes g__Selenomonas s__infelix 272.6 194.0 268.0 322.7
p__Firmicutes c__Negativicutes g__Selenomonas s__noxia 1502 1474 1514 1500
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_126 102.4 92.1 105.4 104.2
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_133 44.7 44.7 43.4 46.3
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_134 357.6 200.4 361.3 440.9
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_136 318.2 182.9 317.6 394.8
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_137 494.2 423.6 520.8 499.2
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_146 119.4 98.3 117.8 133.2
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_149 19.7 9.7 25.0 18.4
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_442 27.3 14.0 37.6 21.3
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_478 15.5 12.0 12.6 21.2
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_892 223.3 222.2 211.7 239.0
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_919 187.4 170.1 178.5 208.7
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_936 83.7 62.0 73.5 109.1
p__Firmicutes c__Negativicutes g__Selenomonas s__sp._oral_taxon_937 22.1 14.6 22.5 25.7
p__Firmicutes c__Negativicutes g__Selenomonas s__sputigena 3283 2195 2957 4319
p__Firmicutes c__Negativicutes g__Veillonella s__atypica 586.0 380.8 569.5 722.5
p__Firmicutes c__Negativicutes g__Veillonella s__denticariosi 201.2 265.6 159.9 218.6
p__Firmicutes c__Negativicutes g__Veillonella s__dispar 8720 7556 8534 9615
p__Firmicutes c__Negativicutes g__Veillonella s__parvula 6529 5964 6121 7376
p__Firmicutes c__Negativicutes g__Veillonella s__rogosae 202.3 138.4 208.0 230.9
p__Firmicutes c__Negativicutes g__Veillonella s__sp._oral_taxon_780 109.3 147.1 100.8 99.2
p__Firmicutes c__Negativicutes g__Veillonellaceae_[G-1] s__sp._oral_taxon_129 54.4 27.0 45.9 81.0
p__Firmicutes c__Negativicutes g__Veillonellaceae_[G-1] s__sp._oral_taxon_145 59.1 39.5 58.4 70.9
p__Firmicutes c__Negativicutes g__Veillonellaceae_[G-1] s__sp._oral_taxon_150 295.0 204.8 251.6 402.1
p__Firmicutes c__Negativicutes g__Veillonellaceae_[G-1] s__sp._oral_taxon_155 265.6 194.6 212.4 374.6
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__naviforme 826.5 725.4 813.9 899.6
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__nucleatum_subsp._animalis 1650 1387 1575 1896
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__nucleatum_subsp._nucleatum 223.2 165.8 149.4 351.4
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__nucleatum_subsp._polymorphum 1439 1467 1499 1345
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__nucleatum_subsp._vincentii 3930 3647 3798 4262
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__periodonticum 87.3 57.2 88.7 102.2
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__sp._oral_taxon_203 1968 1576 2223 1857
p__Fusobacteria c__Fusobacteriia g__Fusobacterium s__sp._oral_taxon_370 34.1 36.1 37.0 29.2
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__buccalis 399.0 365.5 436.8 368.7
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__goodfellowii 22.9 26.0 24.7 18.7
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__hofstadii 346.7 418.6 364.3 283.4
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__hongkongensis 388.3 297.8 360.4 475.3
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__shahii 387.0 312.2 250.1 607.1
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_212 253.4 237.4 264.5 248.1
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_215 107.2 117.0 107.5 101.2
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_219 36.9 37.3 35.4 38.6
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_223 78.4 39.0 82.6 95.1
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_225 244.7 299.5 328.2 105.5
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_392 195.9 187.9 212.8 178.3
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_417 363.2 241.0 408.8 372.5
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_498 210.4 135.1 176.6 296.4
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__sp._oral_taxon_879 52.3 57.8 31.4 76.5
p__Fusobacteria c__Fusobacteriia g__Leptotrichia s__wadei 767.1 783.8 675.4 877.0
p__Gracilibacteria_(GN02) c__GN02_[C-2] g__GN02_[G-2] s__sp._oral_taxon_873 24.8 31.7 18.7 29.0
p__Proteobacteria c__Alphaproteobacteria g__Bradyrhizobium s__elkanii 31.9 36.6 31.5 29.8
p__Proteobacteria c__Alphaproteobacteria g__Brevundimonas s__diminuta 0.6 0.9 0.5 0.6
p__Proteobacteria c__Alphaproteobacteria g__Porphyrobacter s__tepidarius 0.2 0.1 0.1 0.3
p__Proteobacteria c__Alphaproteobacteria g__Sphingomonas s__echinoides 9.2 8.0 9.3 9.7
p__Proteobacteria c__Alphaproteobacteria g__Sphingomonas s__sp._oral_taxon_006 0.5 0.3 0.2 1.1
p__Proteobacteria c__Betaproteobacteria g__Eikenella s__corrodens 264.4 284.9 279.0 233.9
p__Proteobacteria c__Betaproteobacteria g__Kingella s__denitrificans 159.5 149.8 146.3 182.3
p__Proteobacteria c__Betaproteobacteria g__Kingella s__oralis 311.9 324.2 285.2 339.8
p__Proteobacteria c__Betaproteobacteria g__Lautropia s__mirabilis 145.1 173.9 144.3 129.9
p__Proteobacteria c__Betaproteobacteria g__Leptothrix s__sp._oral_taxon_025 0.3 0.6 0.4 0.2
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__bacilliformis 84.2 70.1 80.2 97.4
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__elongata 499.3 682.7 506.5 387.0
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__flavescens 440.2 302.3 352.9 631.0
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__oralis 376.2 558.0 272.4 409.2
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__pharyngis 70.1 86.1 41.5 98.3
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__sicca 730.6 656.1 784.9 701.7
p__Proteobacteria c__Betaproteobacteria g__Neisseria s__subflava 174.1 125.9 194.7 174.4
p__Proteobacteria c__Betaproteobacteria g__Ottowia s__sp._oral_taxon_894 70.0 88.8 70.2 59.3
p__Proteobacteria c__Deltaproteobacteria g__Desulfobulbus s__sp._oral_taxon_041 139.1 91.1 132.8 174.4
p__Proteobacteria c__Epsilonproteobacteria g__Campylobacter s__concisus 242.1 186.5 241.4 274.2
p__Proteobacteria c__Epsilonproteobacteria g__Campylobacter s__curvus 39.6 46.6 31.6 46.1
p__Proteobacteria c__Epsilonproteobacteria g__Campylobacter s__gracilis 858.3 734.1 849.7 939.1
p__Proteobacteria c__Epsilonproteobacteria g__Campylobacter s__showae 496.9 422.2 521.4 507.0
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__actinomycetemcomitans 49.2 68.1 46.4 42.2
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__aphrophilus 312.9 232.7 392.3 254.5
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__paraphrophilus 111.5 126.7 141.8 63.6
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__segnis 233.8 295.3 259.7 165.6
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__sp._oral_taxon_458 158.1 130.8 151.6 181.8
p__Proteobacteria c__Gammaproteobacteria g__Aggregatibacter s__sp._oral_taxon_513 61.5 35.1 85.1 45.7
p__Proteobacteria c__Gammaproteobacteria g__Cardiobacterium s__hominis 277.9 342.4 295.3 219.1
p__Proteobacteria c__Gammaproteobacteria g__Cardiobacterium s__valvarum 234.5 257.9 245.6 207.0
p__Proteobacteria c__Gammaproteobacteria g__Haemophilus s__haemolyticus 50.2 95.7 34.4 45.4
p__Proteobacteria c__Gammaproteobacteria g__Haemophilus s__parahaemolyticus 78.5 71.7 121.9 26.0
p__Proteobacteria c__Gammaproteobacteria g__Haemophilus s__parainfluenzae 1042 1480 940.9 927.4
p__Proteobacteria c__Gammaproteobacteria g__Haemophilus s__sp._oral_taxon_036 75.0 82.2 71.0 76.2
p__Proteobacteria c__Gammaproteobacteria g__Pseudomonas s__fluorescens 52.5 52.2 53.4 51.6
p__SR1 c__SR1_[C-1] g__SR1_[G-1] s__sp._oral_taxon_874 26.9 26.4 29.2 24.3
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_346 1103 901.9 1098 1223
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_347 100.0 143.7 105.6 68.1
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_348 106.9 75.8 123.5 102.9
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_349 1107 900.9 1062 1279
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_352 49.4 42.8 43.6 60.5
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_488 136.2 146.7 156.0 104.4
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_869 125.1 120.6 128.5 123.1
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-1] s__sp._oral_taxon_952 665.5 706.5 669.6 637.1
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-2] s__sp._oral_taxon_350 156.1 137.7 139.2 188.3
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-3] s__sp._oral_taxon_351 33.2 21.1 35.6 36.9
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-5] s__sp._oral_taxon_356 616.8 371.0 677.8 675.5
p__Saccharibacteria_(TM7) c__TM7_[C-1] g__TM7_[G-6] s__sp._oral_taxon_870 82.6 93.6 83.9 74.6
p__Spirochaetes c__Spirochaetia g__Treponema s__denticola 372.7 246.3 374.0 442.1
p__Spirochaetes c__Spirochaetia g__Treponema s__lecithinolyticum 65.5 62.1 65.8 67.0
p__Spirochaetes c__Spirochaetia g__Treponema s__maltophilum 83.6 56.0 73.1 112.7
p__Spirochaetes c__Spirochaetia g__Treponema s__medium 45.7 27.4 60.7 36.3
p__Spirochaetes c__Spirochaetia g__Treponema s__socranskii 297.0 211.8 294.6 348.0
p__Spirochaetes c__Spirochaetia g__Treponema s__sp._oral_taxon_231 102.7 75.9 117.3 98.6
p__Spirochaetes c__Spirochaetia g__Treponema s__sp._oral_taxon_237 160.6 104.6 160.5 192.0
p__Spirochaetes c__Spirochaetia g__Treponema s__sp._oral_taxon_247 44.0 8.2 68.9 31.7
p__Spirochaetes c__Spirochaetia g__Treponema s__vincentii 27.6 36.1 33.3 15.4
p__Synergistetes c__Synergistia g__Fretibacterium s__fastidiosum 551.9 462.9 595.3 545.5
p__Synergistetes c__Synergistia g__Fretibacterium s__sp._oral_taxon_358 81.3 46.0 93.4 85.3
p__Synergistetes c__Synergistia g__Fretibacterium s__sp._oral_taxon_359 722.3 648.0 814.1 644.6
p__Synergistetes c__Synergistia g__Fretibacterium s__sp._oral_taxon_360 1247 818.0 1325 1385
p__Synergistetes c__Synergistia g__Fretibacterium s__sp._oral_taxon_361 54.1 4.5 61.8 71.9
p__Synergistetes c__Synergistia g__Fretibacterium s__sp._oral_taxon_362 212.8 161.8 233.9 213.9
p__Synergistetes c__Synergistia g__Pyramidobacter s__piscolens 5.7 7.9 4.6 5.9

Fig. 2.

Fig. 2

Distribution of phyla among the total reads identified, overall and according to categories of age. Numbers on chart are mean relative abundance. The “other” phylum category comprises 5 phyla ranging in frequency from 0.02 to 3.9%

For three known highly virulent periodontal pathogens, Porphyromonas ginigivalis (Bacteroidetes phylum), Tannerella forsythia (Bacteroidetes phylum), and Treponema denticola (Spirochaetes phylum), overall mean reads were 1055, 577.6, and 372.7, respectively; mean reads for each increased with age. Mean reads for bacteria typically associated with periodontal health (Streptococcus oralis, sanguinis and intermedius; Firmicutes phylum) were 6725, 1128, and 897; each decreasing across incremental age groups. To further evaluate the distribution of the two predominant phyla, we computed the Firmicutes-to-Bacteroidetes ratio by summing the mean reads separately within each of these phyla (Table 2) and then creating a ratio of these sums. The ratio was 1.56 among all women, and increased with age: 1.45 (50–69 years); 1.55 (60–69 years); and 1.61 (≥70 years).

We next evaluated alpha (within-group) and beta (between-group) diversity of the bacterial species in the overall cohort and according to age categories. For alpha (within-group) diversity, mean (SD), OTU count richness, Chao1 richness, and Shannon entropy evenness were 165 (45.1), 185.0 (31.2), and 5.0 (0.7), respectively, among all women, and remained consistent across age categories (Fig. 3). Beta (between-group) diversity is shown in the PCA plot in Fig. 4. A Permutation MANOVA test yielded P = 0.001, suggesting that differences were present in mean vectors across age categories, despite unclear clustering in the PCA plot itself.

Fig. 3.

Fig. 3

Alpha (within-group) diversity of identified taxa according to age groups. Panel a gives the rarefaction curve and Panel b gives measures of richness (Chao-1, P = 0.55; OTU counts, P = 0.35) and evenness (Shannon entropy, P = 0.42)

Fig. 4.

Fig. 4

Beta (between-group) diversity of identified taxa according to age groups. Permutation MANOVA test yielded P = 0.001, suggesting differences are present in mean vectors (triangles) across age categories, despite unclear clustering in the PCA plot

Table 3 presents the top 20 highest and top 20 lowest OTUs based on their CLR mean for the overall cohort and according to age categories. Also shown in Table 3 are linear correlations between these OTUs and age, as well as an indication of whether or not the OTU has previously been cultured and named in the HOMD, and a notation of membership within the Socransky color complex of bacterial species previously identified using targeted methods [34]. Veillonella dispar (CLR mean, 8.3), S. Oralis (CLR mean 8.1), and Veillonella parvula (CLR mean, 7.6) had the greatest abundance, about a 256-fold (28) higher than the overall composition mean. There were 18 (90%) taxa with a 16-fold or greater (CLR mean ≥ 4) elevation in abundance based on CLR mean OTUs. Among the top 20 most abundant bacteria, 19 (95%) were previously named, whereas one (5%) was previously unnamed in HOMD. Among the top 20 taxa were bacteria previously associated with both periodontal health (S. oralis, sanguinis, gordonii, and intermedius) and periodontal disease (V. parvula; Fusobacterium nucleatum; Parvomonas micra; Prevotella nigrescens; Rothia dentocariosa; Actinomyces naeslundii). Ten of the top 20 bacteria were included in Socransky’s complex organization, with four (20%) from the yellow complex typically associated with healthy periodontium and four (20%) from the orange complex which is associated with periodontitis. Among taxa with reduced abundance, Porphyrobacter tepidarius (CLR mean, − 3.6), Sphingomonas sp._oral_taxon 006 (CLR mean, − 3.6), Pyramidobacter piscolens (CLR mean, − 3.5), Leptothirix sp._oral_taxon 025 (CLR mean, − 3.5), and Treponema sp._oral_taxon 247 (CLR mean, − 3.5) each had a 11-fold or lower abundance relative to the overall composition mean. Seven (35%) of the 20 least abundant bacteria have been previously named in HOMD; two (10%) are unnamed; and, 11 (55%) have been phylotyped, but as yet not named.

Table 3.

Top 20 highest* and lowest* mean CLR OTU for the overall cohort and by age categories, and their linear correlation with age

Rank Order* OTU Label Culture Status Socransky Complex Overall Cohort (N = 1219) Age Categories (years) Linear Correlation
50–59 (N = 239) 60–69 (N = 554) ≥70 (N = 426) p-value Pearson r p-value

CLR OTU

Mean (SE)

CLR OTU

Mean (SE)

CLR OTU

Mean (SE)

CLR OTU

Mean (SE)

20 Most Abundant Species
 1 Veillonella dispar N 8.25 (0.06) 8.23 (0.13) 8.11 (0.09) 8.45 (0.10) 0.045 0.08 0.008
 2 Streptococcus oralis N Y 8.06 (0.05) 8.40 (0.11) 8.06 (0.08) 7.87 (0.09) 0.002 −0.10 <.001
 3 Veillonella parvula N P 7.60 (0.07) 7.48 (0.15) 7.45 (0.09) 7.86 (0.11) 0.014 0.10 0.001
 4 Fusobacterium nucleatum_subsp._vincentii N O 6.43 (0.08) 6.21 (0.17) 6.48 (0.11) 6.50 (0.13) 0.356 0.02 0.587
 5 Selenomonas sputigena N 5.63 (0.08) 5.34 (0.17) 5.44 (0.12) 6.03 (0.14) 0.001 0.10 <.001
 6 Fusobacterium nucleatum_subsp._animalis N 5.39 (0.07) 5.29 (0.14) 5.29 (0.10) 5.57 (0.12) 0.136 0.10 0.106
 7 Campylobacter gracilis N O 5.19 (0.05) 5.02 (0.11) 5.15 (0.07) 5.33 (0.09) 0.052 0.10 0.016
 8 Fusobacterium nucleatum_subsp._polymorphum N O 5.19 (0.07) 5.36 (0.15) 5.28 (0.09) 4.97 (0.12) 0.052 −0.10 0.019
 9 Prevotella oris N 5.08 (0.09) 5.25 (0.18) 5.05 (0.13) 5.03 (0.16) 0.646 −0.10 0.118
 10 Streptococcus sanguinis N Y 4.91 (0.07) 5.57 (0.15) 5.04 (0.10) 4.38 (0.13) <.001* −0.18 <.001*
 11 Corynebacterium matruchotii N 4.81 (0.07) 4.87 (0.17) 4.86 (0.10) 4.70 (0.12) 0.550 −0.04 0.171
 12 Selenomonas noxia N 4.81 (0.08) 4.63 (0.18) 4.69 (0.11) 5.06 (0.13) 0.049 0.10 <.001
 13 Prevotella nigrescens N O 4.31 (0.10) 4.48 (0.21) 4.28 (0.15) 4.26 (0.18) 0.714 − 0.03 0.370
 14 Parvimonas micra N 4.29 (0.08) 4.08 (0.17) 4.35 (0.11) 4.33 (0.12) 0.401 0.00 0.967
 15 Rothia dentocariosa U 4.28 (0.09) 4.46 (0.19) 4.38 (0.13) 4.04 (0.15) 0.113 −0.10 0.008
 16 Fusobacterium sp._oral_taxon_203 N 4.23 (0.10) 4.08 (0.22) 4.36 (0.15) 4.16 (0.17) 0.497 −0.01 0.713
 17 Streptococcus gordonii N Y 4.19 (0.08) 3.93 (0.18) 4.15 (0.12) 4.40 (0.13) 0.090 0.04 0.039
 18 Granulicatella adiacens N 4.15 (0.06) 4.23 (0.14) 4.11 (0.09) 4.15 (0.10) 0.749 0.00 0.991
 19 Streptococcus intermedius N Y 3.94 (0.10) 4.33 (0.21) 3.86 (0.15) 3.81 (0.16) 0.119 −0.10 0.016
 20 Actinomyces naeslundii N B 3.85 (0.06) 4.00 (0.14) 3.88 (0.09) 3.72 (0.11) 0.230 −0.10 0.008
20 Least Abundant Species
 1 Porphyrobacter tepidarius N − 3.58 (0.03) −3.51 (0.08) − 3.65 (0.05) − 3.54 (0.06) 0.216 0.01 0.869
 2 Sphingomonas sp._oral_taxon_006 P − 3.55 (0.04) − 3.49 (0.08) − 3.60 (0.05) − 3.52 (0.06) 0.407 −0.00 0.989
 3 Pyramidobacter piscolens P − 3.53 (0.04) − 3.44 (0.10) − 3.60 (0.06) − 3.47 (0.07) 0.251 − 0.01 0.919
 4 Leptothrix sp._oral_taxon_025 P −3.50 (0.04) − 3.37 (0.08) − 3.53 (0.06) −3.53 (0.06) 0.216 −0.04 0.221
 5 Treponema sp._oral_taxon_247 P −3.45 (0.05) −3.35 (0.09) − 3.50 (0.07) −3.44 (0.08) 0.436 − 0.02 0.566
 6 Atopobium sp._oral_taxon_416 P −3.38 (0.05) −3.45 (0.09) − 3.44 (0.07) −3.27 (0.09) 0.202 0.10 0.042
 7 Brevundimonas diminuta N −3.30 (0.04) −3.17 (0.09) − 3.35 (0.06) −3.30 (0.07) 0.232 −0.03 0.306
 8 Prevotella multiformis N −3.08 (0.06) −3.12 (0.11) − 3.10 (0.09) −3.05 (0.10) 0.901 0.03 0.359
 9 GN02_[G-2] sp._oral_taxon_873 P −3.06 (0.05) −3.08 (0.12) − 3.03 (0.08) −3.10 (0.09) 0.851 −0.00 0.927
 10 Streptococcus sobrinus U −3.04 (0.06) −3.21 (0.10) − 3.19 (0.09) −2.75 (0.14) 0.005 0.11 <.001*
 11 Aggregatibacter actinomycetemcomitans P − 3.01 (0.07) − 2.97 (0.15) − 3.09 (0.10) − 2.94 (0.11) 0.575 0.03 0.349
 12 Fretibacterium sp._oral_taxon_361 P −2.98 (0.06) −3.18 (0.10) −2.97 (0.09) − 2.88 (0.11) 0.207 0.02 0.469
 13 Butyrivibrio sp._oral_taxon_080 P −2.96 (0.06) −2.85 (0.13) − 2.90 (0.09) −3.10 (0.09) 0.193 −0.10 0.038
 14 Lactobacillus gasseri N −2.95 (0.06) −3.08 (0.12) −3.09 (0.09) −2.70 (0.12) 0.012 0.10 0.002
 15 Mitsuokella sp._oral_taxon_521 N −2.90 (0.06) −2.91 (0.12) − 2.92 (0.08) −2.87 (0.11) 0.929 0.02 0.603
 16 Microbacterium flavescens P −2.89 (0.04) −2.73 (0.09) − 2.89 (0.06) −2.97 (0.07) 0.151 −0.10 0.051
 17 Prevotella sp._oral_taxon_475 N −2.87 (0.06) −2.81 (0.12) − 2.84 (0.09) −2.95 (0.09) 0.575 −0.04 0.157
 18 Neisseria pharyngis N −2.87 (0.06) −2.81 (0.13) − 2.95 (0.09) −2.80 (0.11) 0.479 0.01 0.760
 19 Fretibacterium sp._oral_taxon_358 U −2.84 (0.07) −2.87 (0.14) − 2.88 (0.10) −2.77 (0.12) 0.708 0.02 0.494
 20 Treponema medium P −2.79 (0.06) −2.85 (0.14) − 2.74 (0.10) −2.81 (0.10) 0.777 0.02 0.579

*OTUs are ranked according to mean CLR OTU. The 20 most abundant OTUs have positive mean CRL; the 20 least abundant OTUs have negative mean CLR

The CLR OTU can be interpreted as a log [2] fold-difference for the given species relative to the overall compositional geometric mean. A mean CLR of 3 indicates a 8-fold [23] higher abundance, and a mean CLR of −3 indicates a 8-fold lower abundance, relative to the overall compositional geometric mean

SE standard error, Pearson r the Pearson product-moment correlation coefficient

p-values: bolded are significant at alpha .05; asterisk are significant at alpha 0.05 after Bonferroni correction

Culture status annotation in HOMD: N = named; U = unnamed; P = phylotyped

Socransky complex32: R = red; O = orange; P = purple; G = green; Y = yellow; B = blue; −-- = not part of the Socransky classification

Linear correlations (Table 3) among the 20 most abundant bacteria ranged from r = − 0.18 to r = 0.10, with 11 (55%) of the correlations achieving statistical significance (uncorrected P < 0.05; bolded). After Bonferroni correction, only 1 (9%) of these remained statistically significant (S. sanguinis, r = − 0.18; corrected P < 0.001). Among the 20 least abundant bacteria, linear correlations ranged from − 0.10 to 0.11. Four (20%) correlations achieved statistical significance (uncorrected P < 0.05; bolded), of which 1 (25%) remained significant after Bonferonni correction (Streptococcus sobrinus, r = 0.11; corrected P < 0.001).

Differences in mean CLR across age categories achieved statistical significance (P < 0.05) for 8 (40%) of the 20 most abundant bacteria, of which only 1 (12.5%) remained significant following Bonferroni correction (S. sanguinis, corrected P < 0.001). Mean CLR differences across age categories among the least abundant bacteria were significant (P < 0.05) for two bacteria, neither of which remained significant after Bonferroni correction.

Table 4 presents the rank ordered mean CLR OTUs for all 267 taxa identified, as well as their linear correlations with age, culture status and Socransky classification. A total of 148 (55.4%) taxa had names previously annotated in the HOMD database, whereas 60 (22.5%) were unnamed and are OTUs potentially identifying new bacteria. In the overall cohort, 117 (43.8%) taxa demonstrated elevated abundance (CLR > 0), the remaining 150 (57.3%) demonstrating reduced abundance (CLR < 0), relative to the overall composition mean. Twenty eight (10.5%) taxa that demonstrated a 8-fold (i.e., 23) or greater elevation in abundance based on mean CLR OTUs. There were 15 (5.6%) taxa with a 8-fold lower abundance relative to the overall composition mean. Of the virulent periodontal pathogens included in Socransky’s classification, [34] only T. forsythia (mean CLR, 1.87) and F. nucleatum (mean CLR, 6.4) had an elevated abundance, whereas T. denticola (mean CLR, − 0.28), P. gingivalis (mean CLR, − 0.56), P. intermedia (mean CLR, − 1.36) were, on average, in lower abundance. Several bacteria associated with healthy periodontium were in higher abundance: S. oralis (mean CLR, 5.5), sanguinis (mean CLR, 3.4), gordonii (mean CLR, 2.8), and intermedius (mean CLR, 2.6); P. micra (mean CLR, 3.0).

Table 4.

Mean CLR OTUs for each of 267 bacterial species in the overall cohort and by age categories, and its linear correlation with age

Rank Order* OTU Label Culture Status Socransky Complex Overall
Cohort
(N = 1219)
Age Categories (years) Linear Correlation
CLR OTU
Mean (SE)
50–59
(N = 239)
CLR OTU
Mean (SE)
60–69
(N = 554)
CLR OTU
Mean (SE)
≥70
(N = 426)
CLR OTU
Mean (SE)
p-value Pearson r p-value
1 Veillonella dispar N 8.25 (0.06) 8.23 (0.13) 8.11 (0.09) 8.45 (0.10) 0.045 0.08 0.008
2 Streptococcus oralis N Y 8.06 (0.05) 8.40 (0.11) 8.06 (0.08) 7.87 (0.09) 0.002 −0.10 <.001
3 Veillonella parvula N P 7.60 (0.07) 7.48 (0.15) 7.45 (0.09) 7.86 (0.11) 0.014 0.10 0.001
4 Fusobacterium nucleatum_subsp._vincentii N O 6.43 (0.08) 6.21 (0.17) 6.48 (0.11) 6.50 (0.13) 0.356 0.02 0.587
5 Selenomonas sputigena N 5.63 (0.08) 5.34 (0.17) 5.44 (0.12) 6.03 (0.14) 0.001 0.10 <.001
6 Fusobacterium nucleatum_subsp._animalis N 5.39 (0.07) 5.29 (0.14) 5.29 (0.10) 5.57 (0.12) 0.136 0.10 0.106
7 Campylobacter gracilis N O 5.19 (0.05) 5.02 (0.11) 5.15 (0.07) 5.33 (0.09) 0.052 0.10 0.016
8 Fusobacterium nucleatum_subsp._polymorphum N O 5.19 (0.07) 5.36 (0.15) 5.28 (0.09) 4.97 (0.12) 0.052 −0.10 0.019
9 Prevotella oris N 5.08 (0.09) 5.25 (0.18) 5.05 (0.13) 5.03 (0.16) 0.646 −0.10 0.118
10 Streptococcus sanguinis N Y 4.91 (0.07) 5.57 (0.15) 5.04 (0.10) 4.38 (0.13) <.001* −0.18 <.001*
11 Corynebacterium matruchotii N 4.81 (0.07) 4.87 (0.17) 4.86 (0.10) 4.70 (0.12) 0.550 −0.04 0.171
12 Selenomonas noxia N 4.81 (0.08) 4.63 (0.18) 4.69 (0.11) 5.06 (0.13) 0.049 0.10 <.001
13 Prevotella nigrescens N O 4.31 (0.10) 4.48 (0.21) 4.28 (0.15) 4.26 (0.18) 0.714 −0.03 0.370
14 Parvimonas micra N 4.29 (0.08) 4.08 (0.17) 4.35 (0.11) 4.33 (0.12) 0.401 0.00 0.967
15 Rothia dentocariosa U 4.28 (0.09) 4.46 (0.19) 4.38 (0.13) 4.04 (0.15) 0.113 −0.10 0.008
16 Fusobacterium sp._oral_taxon_203 N 4.23 (0.10) 4.08 (0.22) 4.36 (0.15) 4.16 (0.17) 0.497 −0.01 0.713
17 Streptococcus gordonii N Y 4.19 (0.08) 3.93 (0.18) 4.15 (0.12) 4.40 (0.13) 0.090 0.04 0.039
18 Granulicatella adiacens N 4.15 (0.06) 4.23 (0.14) 4.11 (0.09) 4.15 (0.10) 0.749 0.00 0.991
19 Streptococcus intermedius N Y 3.94 (0.10) 4.33 (0.21) 3.86 (0.15) 3.81 (0.16) 0.119 −0.10 0.016
20 Actinomyces naeslundii N B 3.85 (0.06) 4.00 (0.14) 3.88 (0.09) 3.72 (0.11) 0.230 −0.10 0.008
21 TM7_[G-1] sp._oral_taxon_346 P 3.78 (0.09) 3.63 (0.19) 3.90 (0.12) 3.70 (0.16) 0.421 0.00 0.917
22 Haemophilus parainfluenzae N 3.74 (0.09) 4.21 (0.19) 3.73 (0.13) 3.48 (0.15) 0.014 −0.10 0.004
23 Fusobacterium naviforme N 3.58 (0.08) 3.61 (0.18) 3.62 (0.12) 3.52 (0.14) 0.852 −0.03 0.294
24 Dialister invisus N 3.51 (0.08) 3.12 (0.16) 3.50 (0.11) 3.75 (0.13) 0.013 0.10 0.003
25 Capnocytophaga gingivalis N G 3.36 (0.08) 3.39 (0.18) 3.45 (0.11) 3.23 (0.13) 0.423 −0.04 0.172
26 Streptococcus cristatus N 3.27 (0.07) 3.17 (0.16) 3.27 (0.11) 3.32 (0.13) 0.776 0.01 0.754
27 Gemella morbillorum N 3.14 (0.09) 3.37 (0.20) 3.35 (0.13) 2.73 (0.16) 0.004 −0.11 <.001*
28 Streptococcus salivarius U 3.02 (0.08) 3.05 (0.18) 2.79 (0.13) 3.29 (0.14) 0.028 0.10 0.090
29 TM7_[G-1] sp._oral_taxon_349 N 2.99 (0.10) 2.71 (0.22) 3.15 (0.14) 2.95 (0.18) 0.251 0.04 0.204
30 Bacteroidales_[G-2] sp._oral_taxon_274 N 2.96 (0.10) 2.47 (0.22) 3.15 (0.14) 3.00 (0.16) 0.030 0.03 0.328
31 Campylobacter showae P O 2.89 (0.08) 3.00 (0.17) 2.81 (0.11) 2.93 (0.14) 0.609 −0.01 0.685
32 Veillonella atypica N 2.88 (0.09) 2.47 (0.20) 2.56 (0.13) 3.53 (0.14) <.001* 0.16 <.001*
33 Eikenella corrodens N 2.87 (0.07) 3.00 (0.15) 3.07 (0.10) 2.53 (0.12) 0.001 −0.11 <.001*
34 Capnocytophaga leadbetteri N 2.86 (0.09) 2.87 (0.20) 2.93 (0.13) 2.78 (0.16) 0.758 −0.03 0.334
35 Fretibacterium sp._oral_taxon_360 N 2.81 (0.11) 2.29 (0.23) 2.89 (0.16) 3.00 (0.19) 0.048 0.04 0.148
36 Prevotella sp._oral_taxon_317 N 2.73 (0.10) 2.79 (0.22) 2.68 (0.16) 2.76 (0.18) 0.907 −0.00 0.965
37 Capnocytophaga granulosa U 2.72 (0.09) 2.39 (0.21) 2.84 (0.13) 2.75 (0.16) 0.189 0.04 0.152
38 Alloprevotella tannerae N 2.71 (0.12) 2.69 (0.24) 2.78 (0.17) 2.64 (0.20) 0.865 0.01 0.788
39 Kingella oralis P 2.66 (0.08) 2.66 (0.19) 2.65 (0.11) 2.68 (0.14) 0.983 −0.01 0.847
40 TM7_[G-1] sp._oral_taxon_952 U 2.58 (0.10) 2.80 (0.22) 2.83 (0.14) 2.12 (0.16) 0.002 −0.10 <.001
41 Selenomonas artemidis N 2.51 (0.11) 2.77 (0.24) 2.39 (0.16) 2.52 (0.19) 0.419 −0.00 0.957
42 Campylobacter concisus N G 2.41 (0.06) 2.22 (0.14) 2.37 (0.10) 2.56 (0.11) 0.152 0.10 0.036
43 Actinomyces oris N B 2.36 (0.08) 2.63 (0.17) 2.37 (0.11) 2.18 (0.13) 0.104 −0.10 0.021
44 Treponema socranskii N 2.22 (0.07) 1.84 (0.17) 2.16 (0.11) 2.52 (0.13) 0.004 0.10 <.001
45 Cardiobacterium hominis N 2.21 (0.08) 2.50 (0.19) 2.45 (0.12) 1.75 (0.14) <.001* −0.11 <.001
46 Leptotrichia wadei N 2.15 (0.10) 2.21 (0.23) 1.94 (0.16) 2.38 (0.18) 0.159 0.03 0.305
47 Anaeroglobus geminatus P 2.12 (0.10) 1.32 (0.22) 1.94 (0.15) 2.79 (0.18) <.001* 0.17 <.001*
48 Gemella haemolysans N 2.11 (0.09) 2.42 (0.20) 2.10 (0.13) 1.96 (0.14) 0.161 −0.10 0.018
49 Capnocytophaga sputigena N G 2.11 (0.09) 2.31 (0.21) 2.23 (0.13) 1.84 (0.17) 0.113 −0.10 0.094
50 Rothia aeria N 2.11 (0.09) 2.49 (0.20) 2.42 (0.14) 1.48 (0.15) <.001* −0.15 <.001*
51 Bergeyella sp._oral_taxon_322 N 2.08 (0.07) 2.38 (0.16) 2.11 (0.10) 1.87 (0.11) 0.028 −0.10 0.008
52 Leptotrichia hongkongensis N 2.02 (0.09) 2.02 (0.21) 1.94 (0.14) 2.13 (0.16) 0.660 0.03 0.337
53 Rothia mucilaginosa U 1.95 (0.08) 1.79 (0.17) 1.90 (0.11) 2.09 (0.13) 0.321 0.03 0.237
54 Prevotella melaninogenica N 1.90 (0.08) 1.75 (0.17) 1.78 (0.12) 2.14 (0.14) 0.095 0.10 0.049
55 Actinomyces sp._oral_taxon_169 N 1.89 (0.09) 2.28 (0.20) 1.96 (0.13) 1.59 (0.15) 0.016 −0.10 <.001
56 Tannerella forsythia N R 1.87 (0.10) 1.50 (0.21) 1.80 (0.14) 2.18 (0.17) 0.042 0.10 0.029
57 Selenomonas sp._oral_taxon_136 N 1.86 (0.08) 1.21 (0.18) 1.76 (0.12) 2.36 (0.15) <.001* 0.16 <.001*
58 Catonella morbi N 1.86 (0.08) 2.08 (0.17) 1.89 (0.11) 1.69 (0.13) 0.184 −0.10 0.020
59 Prevotella denticola N 1.74 (0.10) 1.46 (0.23) 1.60 (0.15) 2.10 (0.18) 0.040 0.10 0.006
60 Neisseria sicca N 1.72 (0.11) 1.58 (0.25) 1.88 (0.16) 1.60 (0.18) 0.416 −0.01 0.678
61 Peptostreptococcaceae_[XI][G-9] [Eubacterium]_brac U 1.70 (0.08) 2.08 (0.16) 1.72 (0.12) 1.47 (0.14) 0.030 −0.10 0.003
62 Neisseria elongata N 1.63 (0.10) 1.95 (0.25) 1.81 (0.15) 1.22 (0.17) 0.012 −0.10 0.008
63 Cardiobacterium valvarum U 1.49 (0.09) 1.60 (0.21) 1.63 (0.13) 1.26 (0.14) 0.137 −0.10 0.044
64 Porphyromonas sp._oral_taxon_279 P 1.49 (0.09) 1.46 (0.20) 1.62 (0.13) 1.34 (0.16) 0.394 −0.02 0.494
65 Selenomonas infelix U 1.48 (0.08) 1.56 (0.17) 1.44 (0.12) 1.50 (0.15) 0.871 −0.01 0.709
66 Leptotrichia sp._oral_taxon_212 U 1.44 (0.09) 1.63 (0.21) 1.64 (0.13) 1.08 (0.16) 0.013 −0.10 0.011
67 Actinomyces sp._oral_taxon_180 N 1.44 (0.07) 1.54 (0.15) 1.45 (0.10) 1.38 (0.11) 0.704 −0.03 0.235
68 Prevotella sp._oral_taxon_300 N 1.43 (0.09) 1.31 (0.19) 1.24 (0.13) 1.75 (0.15) 0.025 0.10 0.007
69 Prevotella maculosa N 1.42 (0.08) 1.07 (0.17) 1.32 (0.11) 1.75 (0.13) 0.003 0.10 0.001
70 Streptococcus mutans N 1.39 (0.11) 0.98 (0.24) 1.19 (0.16) 1.87 (0.20) 0.005 0.10 <.001
71 Actinomyces massiliensis N B 1.38 (0.07) 1.68 (0.17) 1.50 (0.10) 1.05 (0.11) 0.002 −0.12 <.001*
72 Fretibacterium fastidiosum N 1.30 (0.10) 1.12 (0.22) 1.25 (0.15) 1.47 (0.17) 0.393 0.04 0.173
73 Veillonellaceae_[G-1] sp._oral_taxon_150 N 1.23 (0.09) 0.74 (0.20) 1.00 (0.13) 1.81 (0.16) <.001* 0.14 <.001*
74 Neisseria flavescens N 1.23 (0.10) 0.98 (0.21) 1.28 (0.14) 1.30 (0.17) 0.425 0.02 0.533
75 Prevotella oulorum P 1.22 (0.09) 1.23 (0.20) 1.00 (0.13) 1.50 (0.15) 0.041 0.10 0.059
76 Streptococcus anginosus N Y 1.17 (0.11) 1.03 (0.23) 0.92 (0.16) 1.56 (0.19) 0.024 0.10 0.013
77 Lachnoanaerobaculum saburreum N 1.07 (0.08) 0.85 (0.18) 1.12 (0.12) 1.13 (0.14) 0.384 0.04 0.208
78 Veillonellaceae_[G-1] sp._oral_taxon_155 N 1.00 (0.09) 0.66 (0.20) 0.84 (0.13) 1.39 (0.15) 0.004 0.10 <.001
79 Selenomonas sp._oral_taxon_892 L 0.98 (0.08) 1.18 (0.19) 1.05 (0.12) 0.76 (0.15) 0.148 −0.10 0.030
80 Actinomyces johnsonii N B 0.97 (0.07) 1.18 (0.16) 0.92 (0.11) 0.92 (0.12) 0.365 −0.04 0.229
81 Selenomonas sp._oral_taxon_137 U 0.95 (0.11) 0.95 (0.25) 1.21 (0.17) 0.61 (0.20) 0.064 −0.04 0.145
82 Corynebacterium durum U 0.93 (0.08) 1.53 (0.19) 1.07 (0.12) 0.42 (0.13) <.001* −0.15 <.001*
83 Lautropia mirabilis U 0.88 (0.09) 1.28 (0.21) 0.99 (0.13) 0.53 (0.15) 0.006 −0.10 <.001
84 Veillonella rogosae N 0.87 (0.09) 1.06 (0.20) 1.08 (0.13) 0.49 (0.16) 0.010 −0.10 <.001
85 Leptotrichia sp._oral_taxon_417 N 0.86 (0.09) 0.41 (0.20) 0.95 (0.13) 1.01 (0.16) 0.048 0.10 0.006
86 Selenomonas flueggei N 0.81 (0.08) 0.58 (0.18) 0.81 (0.12) 0.93 (0.14) 0.317 0.04 0.122
87 Selenomonas sp._oral_taxon_134 P 0.77 (0.10) 0.55 (0.21) 0.75 (0.14) 0.94 (0.18) 0.367 0.03 0.251
88 Streptococcus parasanguinis_II U 0.74 (0.09) 0.58 (0.19) 0.49 (0.13) 1.15 (0.15) 0.003 0.11 <.001*
89 Megasphaera micronuciformis N 0.70 (0.08) 0.47 (0.19) 0.46 (0.13) 1.14 (0.14) <.001 0.12 <.001*
90 Capnocytophaga sp._oral_taxon_336 N 0.69 (0.09) 0.68 (0.19) 0.69 (0.13) 0.71 (0.16) 0.991 0.02 0.480
91 Oribacterium sp._oral_taxon_078 U 0.66 (0.08) −0.03 (0.17) 0.51 (0.11) 1.26 (0.14) <.001* 0.18 <.001*
92 Actinomyces sp._oral_taxon_171 P 0.66 (0.08) 0.82 (0.18) 0.66 (0.12) 0.57 (0.13) 0.527 −0.10 0.090
93 Lachnospiraceae_[G-3] sp._oral_taxon_100 U 0.59 (0.08) 0.60 (0.18) 0.73 (0.12) 0.41 (0.14) 0.200 −0.03 0.239
94 Parvimonas sp._oral_taxon_393 U 0.58 (0.11) 1.11 (0.24) 0.63 (0.16) 0.22 (0.17) 0.010 −0.12 <.001*
95 Actinomyces gerencseriae N B 0.56 (0.07) 0.49 (0.17) 0.37 (0.11) 0.86 (0.13) 0.012 0.10 0.008
96 Dialister pneumosintes P 0.55 (0.09) 0.64 (0.20) 0.42 (0.14) 0.65 (0.16) 0.477 0.03 0.357
97 Kingella denitrificans N 0.54 (0.09) 0.21 (0.20) 0.45 (0.13) 0.84 (0.15) 0.025 0.10 0.024
98 Porphyromonas endodontalis N 0.52 (0.12) 1.09 (0.27) 0.56 (0.17) 0.13 (0.20) 0.015 −0.10 <.001
99 TM7_[G-5] sp._oral_taxon_356 P 0.49 (0.11) 0.30 (0.23) 0.61 (0.16) 0.43 (0.19) 0.517 0.02 0.580
100 Selenomonas sp._oral_taxon_919 U 0.47 (0.08) 0.72 (0.18) 0.45 (0.12) 0.35 (0.15) 0.287 −0.10 0.096
101 Leptotrichia buccalis N 0.45 (0.10) 0.23 (0.23) 0.77 (0.14) 0.16 (0.16) 0.011 −0.03 0.375
102 Prevotella sp._oral_taxon_472 N 0.45 (0.10) 0.65 (0.23) 0.80 (0.15) −0.13 (0.17) <.001* −0.10 <.001
103 Capnocytophaga sp._oral_taxon_326 P 0.41 (0.10) 0.38 (0.23) 0.62 (0.15) 0.15 (0.17) 0.121 −0.10 0.080
104 Streptococcus constellatus N O 0.35 (0.10) 0.25 (0.21) 0.18 (0.15) 0.63 (0.17) 0.114 0.04 0.139
105 Prevotella salivae N 0.34 (0.08) −0.22 (0.18) 0.32 (0.12) 0.69 (0.14) <.001 0.15 <.001*
106 Leptotrichia sp._oral_taxon_392 U 0.33 (0.09) 0.49 (0.20) 0.58 (0.13) − 0.08 (0.15) 0.003 −0.10 0.001
107 Actinobaculum sp._oral_taxon_183 N 0.32 (0.08) 0.29 (0.17) 0.28 (0.12) 0.40 (0.14) 0.765 0.01 0.742
108 Neisseria oralis U 0.31 (0.11) 0.47 (0.25) 0.35 (0.15) 0.19 (0.18) 0.618 −0.04 0.133
109 Atopobium rimae N 0.21 (0.09) −0.08 (0.19) 0.17 (0.13) 0.43 (0.16) 0.124 0.10 0.108
110 Leptotrichia hofstadii N 0.20 (0.10) 0.10 (0.22) 0.27 (0.15) 0.17 (0.17) 0.804 0.01 0.743
111 Streptococcus sp._oral_taxon_074 N 0.15 (0.07) 0.15 (0.16) 0.25 (0.11) 0.02 (0.12) 0.340 −0.04 0.154
112 Fretibacterium sp._oral_taxon_359 L 0.15 (0.11) 0.14 (0.25) 0.04 (0.16) 0.30 (0.18) 0.537 0.02 0.552
113 Leptotrichia shahii U 0.11 (0.10) 0.30 (0.22) −0.09 (0.15) 0.26 (0.19) 0.209 0.03 0.298
114 Tannerella sp._oral_taxon_286 U 0.11 (0.07) − 0.15 (0.16) 0.26 (0.10) 0.06 (0.13) 0.101 0.03 0.370
115 Porphyromonas sp._oral_taxon_284 N 0.08 (0.10) 0.14 (0.21) 0.22 (0.14) − 0.14 (0.16) 0.223 −0.10 0.080
116 Peptostreptococcaceae_[XI][G-7] [Eubacterium]_yuri P 0.05 (0.10) 0.50 (0.21) 0.19 (0.14) −0.40 (0.16) 0.001 −0.14 <.001*
117 Selenomonas sp._oral_taxon_146 L 0.04 (0.08) 0.04 (0.18) − 0.03 (0.12) 0.14 (0.14) 0.659 0.014 0.633
118 Fusobacterium periodonticum N O −0.02 (0.07) −0.12 (0.16) 0.13 (0.11) −0.17 (0.13) 0.174 −0.02 0.488
119 Actinomyces meyeri L B −0.04 (0.08) 0.29 (0.18) 0.05 (0.12) − 0.35 (0.13) 0.010 −0.11 <.001*
120 Leptotrichia sp._oral_taxon_215 N − 0.05 (0.08) 0.16 (0.18) 0.01 (0.12) − 0.24 (0.14) 0.157 −0.04 0.170
121 Prevotella oralis N − 0.06 (0.10) −0.34 (0.20) − 0.13 (0.14) 0.20 (0.17) 0.105 0.10 0.030
122 Prevotella pleuritidis N − 0.10 (0.12) −0.07 (0.27) 0.09 (0.18) −0.38 (0.20) 0.211 −0.04 0.190
123 Abiotrophia defectiva N −0.15 (0.09) −0.05 (0.19) − 0.01 (0.13) − 0.38 (0.14) 0.138 − 0.10 0.028
124 Gemella sanguinis N −0.19 (0.07) −0.16 (0.15) − 0.35 (0.10) − 0.00 (0.12) 0.077 0.04 0.204
125 Fusobacterium nucleatum_subsp._nucleatum N O −0.25 (0.08) −0.44 (0.17) − 0.30 (0.11) − 0.08 (0.14) 0.209 0.03 0.259
126 Atopobium parvulum N − 0.25 (0.08) −0.28 (0.17) − 0.47 (0.11) 0.06 (0.14) 0.009 0.10 0.005
127 Aggregatibacter sp._oral_taxon_458 N − 0.25 (0.09) − 0.11 (0.19) − 0.17 (0.13) − 0.44 (0.15) 0.309 −0.10 0.047
128 Streptococcus parasanguinis_I N − 0.26 (0.08) −0.29 (0.17) − 0.48 (0.11) 0.05 (0.13) 0.008 0.10 0.008
129 Aggregatibacter aphrophilus N − 0.27 (0.11) −0.18 (0.25) − 0.01 (0.17) − 0.66 (0.18) 0.027 − 0.10 0.015
130 Treponema denticola N R −0.28 (0.10) −0.16 (0.22) − 0.25 (0.15) − 0.39 (0.18) 0.692 − 0.04 0.211
131 Prevotella saccharolytica U − 0.37 (0.07) − 0.38 (0.16) − 0.26 (0.11) − 0.51 (0.13) 0.336 − 0.01 0.663
132 TM7_[G-1] sp._oral_taxon_488 P − 0.39 (0.10) − 0.39 (0.22) − 0.11 (0.15) − 0.76 (0.16) 0.015 −0.04 0.132
133 Johnsonella ignava U − 0.41 (0.09) −0.50 (0.21) − 0.34 (0.14) − 0.45 (0.16) 0.783 − 0.01 0.783
134 Actinomyces israelii N B −0.47 (0.06) −0.65 (0.13) − 0.52 (0.09) − 0.30 (0.11) 0.091 0.10 0.012
135 Lachnoanaerobaculum umeaense P − 0.47 (0.07) −0.35 (0.17) − 0.39 (0.11) − 0.65 (0.12) 0.198 −0.03 0.316
136 Streptococcus sp._oral_taxon_056 U − 0.49 (0.08) −0.38 (0.19) − 0.37 (0.12) − 0.73 (0.14) 0.127 −0.04 0.050
137 Olsenella sp._oral_taxon_807 N − 0.49 (0.07) −0.93 (0.15) − 0.50 (0.10) − 0.25 (0.12) 0.002 0.11 <.001*
138 Solobacterium moorei U − 0.51 (0.06) −0.49 (0.15) − 0.60 (0.09) − 0.42 (0.11) 0.437 0.04 0.221
139 Treponema maltophilum P − 0.53 (0.08) −0.78 (0.16) − 0.59 (0.11) − 0.32 (0.13) 0.070 0.10 0.040
140 TM7_[G-1] sp._oral_taxon_348 N − 0.53 (0.08) − 0.66 (0.17) − 0.29 (0.13) − 0.77 (0.14) 0.026 − 0.03 0.373
141 Porphyromonas gingivalis N R −0.56 (0.12) −0.70 (0.26) − 0.60 (0.17) − 0.43 (0.22) 0.688 0.03 0.348
142 Centipeda periodontii N − 0.60 (0.08) − 0.94 (0.15) − 0.55 (0.11) − 0.47 (0.13) 0.074 0.06 0.031
143 Selenomonas sp._oral_taxon_126 N − 0.60 (0.08) −0.77 (0.18) − 0.56 (0.12) − 0.56 (0.14) 0.588 0.03 0.386
144 Desulfobulbus sp._oral_taxon_041 U −0.66 (0.10) −1.02 (0.20) − 0.70 (0.14) − 0.40 (0.17) 0.064 0.10 0.027
145 Alloprevotella rava U −0.68 (0.08) −0.78 (0.18) − 0.64 (0.12) − 0.69 (0.14) 0.809 0.02 0.464
146 Actinobaculum sp._oral_taxon_848 P − 0.70 (0.08) −0.83 (0.17) − 0.82 (0.11) −0.46 (0.13) 0.080 0.10 0.016
147 Stomatobaculum longum N − 0.70 (0.07) − 0.95 (0.16) − 0.76 (0.11) −0.48 (0.13) 0.054 0.11 <.001
148 Prevotella histicola N − 0.75 (0.09) − 0.96 (0.18) −1.04 (0.13) − 0.26 (0.16) <.001 0.11 <.001*
149 Aggregatibacter segnis U − 0.79 (0.10) − 0.42 (0.22) − 0.69 (0.14) −1.13 (0.15) 0.020 − 0.11 <.001*
150 Leptotrichia sp._oral_taxon_225 N − 0.80 (0.10) − 0.43 (0.22) − 0.60 (0.15) − 1.25 (0.15) 0.002 − 0.11 <.001*
151 Ruminococcaceae_[G-1] sp._oral_taxon_075 N − 0.80 (0.08) − 0.79 (0.17) − 0.69 (0.12) −0.94 (0.13) 0.350 −0.03 0.341
152 Peptostreptococcus stomatis U − 0.80 (0.09) −0.50 (0.19) − 0.77 (0.13) − 1.02 (0.14) 0.085 − 0.10 0.032
153 Porphyromonas catoniae P − 0.92 (0.09) − 0.50 (0.20) − 0.79 (0.13) −1.31 (0.14) 0.002 − 0.10 <.001
154 Actinomyces sp._oral_taxon_178 P −0.93 (0.06) − 1.15 (0.14) − 0.94 (0.09) − 0.78 (0.10) 0.099 0.05 0.080
155 Prevotella pallens N − 0.93 (0.08) −1.00 (0.17) − 1.05 (0.11) −0.73 (0.14) 0.191 0.10 0.054
156 Filifactor alocis U − 0.94 (0.10) −0.66 (0.23) − 0.98 (0.15) − 1.05 (0.18) 0.382 − 0.10 0.077
157 Selenomonas sp._oral_taxon_936 P −0.96 (0.08) − 0.91 (0.17) −1.05 (0.12) − 0.87 (0.14) 0.578 0.03 0.323
158 TM7_[G-1] sp._oral_taxon_347 N − 0.97 (0.09) −0.64 (0.20) − 0.95 (0.14) −1.17 (0.14) 0.107 − 0.10 0.071
159 Haemophilus sp._oral_taxon_036 N −1.01 (0.09) − 0.65 (0.19) − 1.00 (0.13) − 1.21 (0.15) 0.075 − 0.10 0.002
160 Prevotella sp._oral_taxon_292 P − 1.06 (0.08) − 1.34 (0.17) − 1.15 (0.12) −0.79 (0.15) 0.040 0.10 0.001
161 Leptotrichia sp._oral_taxon_498 N − 1.07 (0.09) −1.28 (0.20) − 1.20 (0.13) −0.77 (0.16) 0.059 0.10 0.013
162 Capnocytophaga sp._oral_taxon_338 U − 1.08 (0.09) −1.17 (0.20) − 1.12 (0.13) −0.98 (0.15) 0.671 0.01 0.808
163 Alloprevotella sp._oral_taxon_308 N − 1.14 (0.07) −0.90 (0.14) −1.28 (0.10) − 1.10 (0.12) 0.111 −0.01 0.799
164 Treponema sp._oral_taxon_231 P − 1.15 (0.09) −1.04 (0.18) − 1.03 (0.13) − 1.36 (0.15) 0.206 − 0.10 0.074
165 TM7_[G-1] sp._oral_taxon_352 N − 1.15 (0.07) − 1.31 (0.15) − 1.11 (0.10) − 1.11 (0.12) 0.545 0.04 0.173
166 Prevotella buccae U − 1.23 (0.07) −1.71 (0.14) − 1.36 (0.11) − 0.78 (0.12) <.001* 0.14 <.001*
167 Prevotella loescheii N −1.24 (0.09) −0.96 (0.21) −0.97 (0.14) − 1.74 (0.15) <.001 − 0.10 0.001
168 Capnocytophaga sp._oral_taxon_864 U − 1.27 (0.08) −0.98 (0.20) −1.15 (0.13) − 1.57 (0.13) 0.020 − 0.10 0.005
169 Actinomyces sp._oral_taxon_170 U −1.29 (0.08) − 0.99 (0.19) − 1.16 (0.13) − 1.62 (0.13) 0.011 − 0.10 <.001
170 Lachnoanaerobaculum orale U − 1.31 (0.07) − 1.09 (0.16) − 1.46 (0.09) −1.23 (0.12) 0.085 0.02 0.513
171 Ottowia sp._oral_taxon_894 N − 1.31 (0.08) −1.44 (0.18) − 1.24 (0.12) − 1.33 (0.14) 0.662 −0.00 0.938
172 Streptococcus lactarius N − 1.32 (0.07) − 1.06 (0.15) − 1.46 (0.10) − 1.30 (0.12) 0.097 −0.02 0.414
173 Peptostreptococcaceae_[XI][G-1] [Eubacterium]_infi P − 1.33 (0.07) − 1.59 (0.15) − 1.41 (0.09) − 1.08 (0.12) 0.014 0.10 0.002
174 Leptotrichia sp._oral_taxon_219 N − 1.34 (0.07) −1.39 (0.17) − 1.27 (0.11) −1.39 (0.12) 0.736 −0.01 0.717
175 Prevotella intermedia P O −1.36 (0.11) −1.31 (0.25) − 1.35 (0.17) − 1.41 (0.18) 0.943 −0.04 0.181
176 Veillonella denticariosi U − 1.37 (0.09) − 1.51 (0.19) − 1.39 (0.13) − 1.27 (0.15) 0.621 0.04 0.156
177 Fretibacterium sp._oral_taxon_362 N − 1.43 (0.08) −1.48 (0.19) − 1.43 (0.12) − 1.42 (0.14) 0.965 0.00 0.888
178 Bacteroidetes_[G-5] sp._oral_taxon_511 U − 1.47 (0.09) − 1.44 (0.19) − 1.43 (0.14) − 1.54 (0.15) 0.846 −0.03 0.378
179 Prevotella sp._oral_taxon_313 P − 1.49 (0.08) −1.14 (0.18) − 1.75 (0.11) − 1.35 (0.14) 0.007 0.02 0.431
180 TM7_[G-3] sp._oral_taxon_351 P − 1.50 (0.06) −1.84 (0.13) − 1.39 (0.10) − 1.45 (0.11) 0.029 0.10 0.018
181 Streptococcus australis N − 1.51 (0.07) −1.62 (0.15) − 1.57 (0.11) − 1.38 (0.13) 0.373 0.03 0.295
182 Granulicatella elegans N − 1.59 (0.07) −1.18 (0.17) − 1.72 (0.11) −1.65 (0.12) 0.023 −0.10 0.067
183 TM7_[G-1] sp._oral_taxon_869 P − 1.60 (0.09) −1.64 (0.20) − 1.55 (0.14) − 1.64 (0.15) 0.890 0.01 0.663
184 Capnocytophaga sp._oral_taxon_902 N −1.65 (0.08) − 1.56 (0.19) − 1.68 (0.12) −1.67 (0.14) 0.860 −0.04 0.220
185 Prevotella dentalis P −1.66 (0.08) −1.65 (0.19) − 1.82 (0.12) −1.47 (0.14) 0.180 0.03 0.326
186 Campylobacter curvus N − 1.67 (0.07) −1.57 (0.17) − 1.79 (0.10) − 1.58 (0.13) 0.365 0.03 0.335
187 Pseudoramibacter alactolyticus P − 1.68 (0.08) − 2.18 (0.17) −1.73 (0.12) − 1.35 (0.15) 0.001 0.12 <.001*
188 TM7_[G-6] sp._oral_taxon_870 N − 1.71 (0.08) −1.47 (0.18) − 1.69 (0.12) − 1.85 (0.13) 0.220 −0.10 0.085
189 Veillonellaceae_[G-1] sp._oral_taxon_129 N − 1.71 (0.08) − 1.96 (0.16) − 1.80 (0.11) − 1.46 (0.14) 0.042 0.10 0.010
190 Tannerella sp._oral_taxon_808 U − 1.75 (0.07) −2.03 (0.14) −1.70 (0.10) − 1.65 (0.12) 0.104 0.10 0.011
191 Peptostreptococcaceae_[XI][G-6] [Eubacterium]_noda L − 1.75 (0.08) − 1.67 (0.18) − 1.90 (0.11) −1.61 (0.14) 0.238 0.02 0.425
192 Mitsuokella sp._oral_taxon_131 N − 1.79 (0.09) −2.18 (0.17) − 1.96 (0.13) − 1.36 (0.16) <.001 0.14 <.001*
193 Mycoplasma salivarium P − 1.80 (0.07) −1.77 (0.15) − 1.87 (0.11) − 1.71 (0.12) 0.579 0.03 0.302
194 Haemophilus haemolyticus P − 1.81 (0.08) −1.30 (0.19) − 1.92 (0.12) − 1.94 (0.12) 0.006 −0.10 0.043
195 Bergeyella sp._oral_taxon_907 P −1.81 (0.07) −1.86 (0.15) − 1.72 (0.10) − 1.92 (0.12) 0.405 − 0.01 0.765
196 TM7_[G-2] sp._oral_taxon_350 N − 1.82 (0.09) − 1.86 (0.18) − 1.82 (0.13) − 1.80 (0.15) 0.968 0.02 0.412
197 Prevotella veroralis U − 1.82 (0.08) −1.73 (0.18) − 1.78 (0.13) − 1.93 (0.13) 0.582 −0.02 0.413
198 Aggregatibacter paraphrophilus N − 1.82 (0.09) −1.48 (0.21) − 1.69 (0.14) −2.19 (0.13) 0.007 −0.10 <.001
199 Leptotrichia sp._oral_taxon_223 P − 1.82 (0.08) −1.71 (0.17) − 1.98 (0.11) − 1.69 (0.14) 0.206 0.02 0.499
200 Bifidobacterium dentium N − 1.85 (0.08) −2.10 (0.18) −2.12 (0.12) −1.37 (0.15) <.001* 0.15 <.001*
201 Alloprevotella sp._oral_taxon_473 U − 1.87 (0.08) −1.63 (0.17) − 1.88 (0.12) − 1.98 (0.13) 0.300 −0.10 0.030
202 Veillonellaceae_[G-1] sp._oral_taxon_145 U − 1.88 (0.08) −1.98 (0.16) − 1.83 (0.12) − 1.88 (0.14) 0.768 0.02 0.551
203 Neisseria bacilliformis N −1.89 (0.09) −1.82 (0.20) − 1.90 (0.13) − 1.93 (0.14) 0.906 −0.04 0.194
204 Capnocytophaga sp._oral_taxon_412 N − 1.89 (0.08) −1.74 (0.18) − 1.81 (0.12) −2.09 (0.13) 0.173 − 0.04 0.162
205 Neisseria subflava N − 1.89 (0.09) − 1.84 (0.18) −2.04 (0.13) − 1.73 (0.16) 0.267 0.10 0.118
206 Veillonella sp._oral_taxon_780 N − 1.94 (0.08) − 1.46 (0.20) − 1.93 (0.12) − 2.20 (0.12) 0.004 −0.10 <.001
207 Lachnospiraceae_[G-8] sp._oral_taxon_500 N − 1.94 (0.07) −1.91 (0.16) −2.03 (0.10) − 1.83 (0.12) 0.443 0.01 0.695
208 Capnocytophaga sp._oral_taxon_323 P −1.94 (0.08) −1.99 (0.17) − 1.93 (0.12) − 1.94 (0.14) 0.966 − 0.01 0.731
209 Scardovia wiggsiae P −1.94 (0.09) − 2.07 (0.19) − 2.11 (0.12) − 1.66 (0.16) 0.061 0.10 0.009
210 Sphingomonas echinoides N − 1.95 (0.06) −1.75 (0.14) − 1.89 (0.10) − 2.15 (0.11) 0.056 −0.10 <.001
211 SR1_[G-1] sp._oral_taxon_874 U − 1.99 (0.07) −1.76 (0.15) − 1.88 (0.10) −2.26 (0.11) 0.008 −0.10 0.006
212 Treponema lecithinolyticum U −2.01 (0.08) −1.98 (0.17) − 1.90 (0.12) − 2.18 (0.13) 0.302 −0.10 0.068
213 Prevotella baroniae P −2.04 (0.07) −2.20 (0.15) − 2.03 (0.11) − 1.96 (0.13) 0.490 0.04 0.209
214 Pseudomonas fluorescens P − 2.05 (0.07) − 2.12 (0.15) − 2.07 (0.11) −1.98 (0.13) 0.767 0.03 0.334
215 Shuttleworthia satelles P − 2.08 (0.07) − 2.27 (0.14) − 2.21 (0.10) −1.82 (0.12) 0.016 0.10 <.001
216 Prevotella sp._oral_taxon_306 U −2.08 (0.07) −2.32 (0.14) − 2.21 (0.10) −1.79 (0.13) 0.010 0.10 <.001
217 Porphyromonas sp._oral_taxon_275 N − 2.11 (0.07) −2.09 (0.16) − 2.01 (0.12) − 2.26 (0.12) 0.321 −0.04 0.184
218 Streptococcus sinensis P − 2.14 (0.06) − 1.95 (0.13) − 2.30 (0.08) − 2.05 (0.11) 0.050 0.02 0.517
219 Anaerolineae_[G-1] sp._oral_taxon_439 N − 2.14 (0.08) − 2.47 (0.15) − 2.22 (0.11) −1.85 (0.14) 0.008 0.12 <.001*
220 Bacteroidaceae_[G-1] sp._oral_taxon_272 N − 2.15 (0.07) − 2.48 (0.15) − 2.21 (0.10) −1.87 (0.13) 0.007 0.10 <.001
221 Prevotella micans N − 2.15 (0.07) −2.24 (0.14) − 2.18 (0.10) − 2.08 (0.12) 0.658 0.02 0.452
222 Leptotrichia goodfellowii U − 2.17 (0.07) −1.90 (0.17) −2.14 (0.11) − 2.36 (0.12) 0.080 −0.10 0.008
223 Capnocytophaga sp._oral_taxon_903 N − 2.17 (0.08) −2.15 (0.17) − 2.12 (0.11) − 2.25 (0.13) 0.751 − 0.01 0.731
224 Peptostreptococcaceae_[XI][G-5] [Eubacterium]_saph U − 2.18 (0.08) −2.46 (0.15) − 2.13 (0.12) − 2.08 (0.13) 0.195 0.04 0.229
225 Treponema sp._oral_taxon_237 P − 2.20 (0.08) −1.68 (0.19) −2.21 (0.12) − 2.46 (0.13) 0.003 −0.11 <.001*
226 Fusobacterium sp._oral_taxon_370 U − 2.20 (0.06) −2.25 (0.12) − 2.08 (0.09) − 2.32 (0.10) 0.176 −0.04 0.176
227 Atopobium sp._oral_taxon_199 U − 2.26 (0.07) −2.19 (0.16) − 2.18 (0.11) − 2.40 (0.12) 0.334 −0.02 0.433
228 Prevotella sp._oral_taxon_314 N − 2.28 (0.07) − 2.29 (0.16) − 2.35 (0.11) − 2.18 (0.13) 0.605 0.02 0.519
229 Capnocytophaga sp._oral_taxon_324 U − 2.28 (0.07) −2.43 (0.15) − 2.24 (0.11) − 2.25 (0.12) 0.588 0.03 0.256
230 Haemophilus parahaemolyticus N − 2.29 (0.08) −1.86 (0.18) −2.23 (0.12) − 2.61 (0.11) 0.002 −0.11 <.001*
231 Porphyromonas sp._oral_taxon_278 U − 2.29 (0.07) −2.40 (0.14) − 2.24 (0.11) − 2.30 (0.12) 0.716 0.00 0.977
232 Selenomonas sp._oral_taxon_937 U − 2.35 (0.06) −2.34 (0.12) − 2.46 (0.09) − 2.22 (0.11) 0.203 0.03 0.386
233 Selenomonas dianae N − 2.36 (0.07) − 2.52 (0.14) − 2.27 (0.10) − 2.38 (0.11) 0.367 0.02 0.569
234 Selenomonas sp._oral_taxon_133 U − 2.37 (0.08) − 2.25 (0.18) − 2.40 (0.11) − 2.41 (0.13) 0.719 −0.02 0.396
235 Selenomonas sp._oral_taxon_478 P − 2.49 (0.06) −2.54 (0.13) − 2.46 (0.09) − 2.49 (0.10) 0.882 0.03 0.306
236 Capnocytophaga sp._oral_taxon_332 U − 2.50 (0.07) −2.26 (0.16) − 2.42 (0.11) − 2.72 (0.11) 0.043 −0.10 0.043
237 Megasphaera sp._oral_taxon_123 N − 2.51 (0.08) − 2.06 (0.19) − 2.51 (0.12) − 2.77 (0.13) 0.009 − 0.10 0.002
238 Bradyrhizobium elkanii U − 2.54 (0.08) −2.37 (0.17) − 2.68 (0.11) − 2.44 (0.13) 0.209 −0.00 0.900
239 Prevotella sp._oral_taxon_376 P − 2.54 (0.07) −2.22 (0.17) − 2.49 (0.11) − 2.79 (0.12) 0.015 −0.10 <.001
240 Prevotella sp._oral_taxon_526 P − 2.56 (0.07) −2.59 (0.14) − 2.57 (0.10) − 2.52 (0.12) 0.923 0.01 0.736
241 Selenomonas sp._oral_taxon_442 U − 2.58 (0.05) − 2.78 (0.11) − 2.52 (0.09) − 2.53 (0.09) 0.177 0.10 0.065
242 Leptotrichia sp._oral_taxon_879 U − 2.60 (0.07) − 2.56 (0.16) − 2.62 (0.10) −2.59 (0.11) 0.951 − 0.02 0.597
243 Selenomonas sp._oral_taxon_149 P − 2.61 (0.06) − 2.75 (0.12) − 2.70 (0.09) − 2.42 (0.10) 0.048 0.10 0.004
244 Aggregatibacter sp._oral_taxon_513 U − 2.66 (0.07) − 2.64 (0.14) − 2.52 (0.11) − 2.85 (0.11) 0.107 − 0.03 0.368
245 Treponema vincentii N − 2.67 (0.06) −2.55 (0.13) − 2.60 (0.09) − 2.83 (0.09) 0.140 −0.04 0.125
246 Capnocytophaga sp._oral_taxon_380 N − 2.70 (0.07) −2.65 (0.14) − 2.59 (0.11) − 2.88 (0.11) 0.132 −0.10 0.107
247 Johnsonella sp._oral_taxon_166 U − 2.78 (0.06) −2.96 (0.12) − 2.69 (0.10) − 2.80 (0.11) 0.292 −0.01 0.855
248 Treponema medium P −2.79 (0.06) − 2.85 (0.14) − 2.74 (0.10) −2.81 (0.10) 0.777 0.02 0.579
249 Fretibacterium sp._oral_taxon_358 U − 2.84 (0.07) −2.87 (0.14) − 2.88 (0.10) − 2.77 (0.12) 0.708 0.02 0.494
250 Neisseria pharyngis N − 2.87 (0.06) −2.81 (0.13) − 2.95 (0.09) − 2.80 (0.11) 0.479 0.01 0.760
251 Prevotella sp._oral_taxon_475 N − 2.87 (0.06) −2.81 (0.12) − 2.84 (0.09) − 2.95 (0.09) 0.575 −0.04 0.157
252 Microbacterium flavescens P − 2.89 (0.04) − 2.73 (0.09) − 2.89 (0.06) −2.97 (0.07) 0.151 −0.10 0.051
253 Mitsuokella sp._oral_taxon_521 N − 2.90 (0.06) −2.91 (0.12) − 2.92 (0.08) − 2.87 (0.11) 0.929 0.02 0.603
254 Lactobacillus gasseri N − 2.95 (0.06) −3.08 (0.12) − 3.09 (0.09) −2.70 (0.12) 0.012 0.10 0.002
255 Butyrivibrio sp._oral_taxon_080 P − 2.96 (0.06) −2.85 (0.13) − 2.90 (0.09) −3.10 (0.09) 0.193 −0.10 0.038
256 Fretibacterium sp._oral_taxon_361 P − 2.98 (0.06) − 3.18 (0.10) − 2.97 (0.09) − 2.88 (0.11) 0.207 0.02 0.469
257 Aggregatibacter actinomycetemcomitans P − 3.01 (0.07) −2.97 (0.15) −3.09 (0.10) −2.94 (0.11) 0.575 0.03 0.349
258 Streptococcus sobrinus U − 3.04 (0.06) −3.21 (0.10) − 3.19 (0.09) −2.75 (0.14) 0.005 0.11 <.001*
259 GN02_[G-2] sp._oral_taxon_873 P − 3.06 (0.05) −3.08 (0.12) − 3.03 (0.08) − 3.10 (0.09) 0.851 −0.00 0.927
260 Prevotella multiformis N − 3.08 (0.06) − 3.12 (0.11) − 3.10 (0.09) − 3.05 (0.10) 0.901 0.03 0.359
261 Brevundimonas diminuta N − 3.30 (0.04) − 3.17 (0.09) − 3.35 (0.06) − 3.30 (0.07) 0.232 −0.03 0.306
262 Atopobium sp._oral_taxon_416 P − 3.38 (0.05) − 3.45 (0.09) − 3.44 (0.07) − 3.27 (0.09) 0.202 0.10 0.042
263 Treponema sp._oral_taxon_247 P − 3.45 (0.05) − 3.35 (0.09) − 3.50 (0.07) − 3.44 (0.08) 0.436 − 0.02 0.566
264 Leptothrix sp._oral_taxon_025 P − 3.50 (0.04) −3.37 (0.08) − 3.53 (0.06) − 3.53 (0.06) 0.216 − 0.04 0.221
265 Pyramidobacter piscolens P − 3.53 (0.04) − 3.44 (0.10) − 3.60 (0.06) −3.47 (0.07) 0.251 − 0.01 0.919
266 Sphingomonas sp._oral_taxon_006 P − 3.55 (0.04) −3.49 (0.08) − 3.60 (0.05) − 3.52 (0.06) 0.407 − 0.00 0.989
267 Porphyrobacter tepidarius N −3.58 (0.03) −3.51 (0.08) − 3.65 (0.05) −3.54 (0.06) 0.216 0.01 0.869

Rank order, OTUs are sorted high to low, with most abundant OTU at the top of the table

The CLR OTU is interpreted as a log [2] fold-difference for the given species relative to the overall compositional geometric mean. A mean CLR of 3 indicates a 8-fold [23] higher abundance, and a mean CLR of − 3 indicates a 8-fold lower abundance, relative to the overall compositional geometric mean

SE standard error, Pearson r the Pearson product-moment correlation coefficient

p-values: bolded are significant at alpha 0.05; asterisk are significant at alpha 0.05 after Bonferroni correction

Culture status: N = named; U = unnamed; P = phylotyped

Socransky complex32: R = red; O = orange; P = purple; G = green; Y = yellow; B = blue; −-- = not part of the Socransky classification

Among all 1219 women (Table 4), Pearson correlations ranged from r = − 0.18 to r = 0.18. Eighty two (31%) taxa were significantly correlated with age (uncorrected P < 0.05; bolded), of which 28 (34.2%) remained significant after Bonferroni correction. The largest positive correlation was with Oribacterium sp._oral_taxon 078 (r = 0.18; corrected P < 0.001); the most negative correlation was with Strep. sanguinis (r = − 0.18; corrected P < .001). Correlations between established pathogenic bacteria from Socransky’s complex [34] and age were of weak (T. denticola, r = − 0.04; P. gingivalis, r = 0.03; F. nucleatum, r = 0.03) to moderate (Fusobacterium nucleatum polymorphum, r = − 0.10; T. forsythia, r = 0.10) magnitude. Bacteria associated with healthy periodontium were correlated with age on a similar (S. oralis, r = − 0.10; intermedius r = − 0.10; mutans, r = 0.10) or somewhat stronger (S. sanguinis, r = − 0.16) magnitude.

Ninety (33.7%) bacteria were observed to be significantly different across age categories (uncorrected P < 0.05; bolded in Table 4), of which 12 (13.3%) remained significant after Bonferroni correction (corrected P < 0.05). Fig. 5 presents box-and-whisker plots depicting the variability of CLR OTUs for the 12 bacteria that were significantly different across age groups (corrected P < 0.001). Of these 12 bacteria, 7 were significantly higher in older than younger women; whilst the remaining 5 were higher in the younger women. Bifidobacterium dentium showed the greatest difference (0.73 CLR OTU units) between age groups among the bacteria observed to be higher in older women, whereas S. sanguinis showed the largest difference (1.19 CLR OTU units) between age groups for bacteria higher in younger women.

Fig. 5.

Fig. 5

Box plots of mean CLR OTUs that differed between age categories (corrected P < 0.05). Box reflects the 25th, 50th, and 75th percentile CLR OTU; whiskers reflect the range of CLR OTU

Tables 5 and 6 present additional measures used in previous studies to characterize the oral microbiome. Relative abundance for the overall cohort and according to age categories is shown in Table 5, ranked high to low, with dashed lines denoting the top 20 taxa. V. dispar demonstrated the highest relative abundance (mean, 8.9%), and the remaining bacterial order is quite similar to the top 20 when ordered according to CLR mean OTU (Table 2). Patterns of relative abundance across age categories also were generally comparable to those observed for CLR mean OTUs. Bacterial prevalence (present at any abundance) is shown in Table 6, for which a slightly different ordering is noted for the top 20 most prevalent bacteria compared to those ordered on CLR OTU or relative abundance. There were 12 (4.5%) bacteria prevalent at 99% or higher and 3 (1.1%) present in all samples (S. oralis, V. dispar and parvula). Differences in prevalence across age categories were modest. Among all women, prevalence of established pathogenic bacteria in Socransky’s complex was 86.8, 82.9 56.6, and 55.1% for F. nucleatum, T. forsythia, T. denticola, and P. gingivalis, respectively. Prevalence of T. forsythia did not vary consistently with age, whereas prevalence of F. nucleatum and T. denticola tended to decline with age and P. gingivalis tended to increase with age.

Table 5.

Mean Relative Abundance for each of 267 bacterial species, overall and by age categories

Rank Ordera OTU label Overall
(N = 1219)
50–59
(N = 239)
60–69
(N = 554)
≥70
(N = 426)
Relative Abundance (%)
Mean (SE)
Relative Abundance (%)
Mean (SE)
Relative Abundance (%)
Mean (SE)
Relative Abundance (%)
Mean (SE)
1 Veillonella dispar 8.94 (0.26) 8.66 (0.52) 8.52 (0.37) 9.64 (0.48)
2 Streptococcus oralis 7.68 (0.24) 9.52 (0.60) 7.95 (0.39) 6.29 (0.31)
3 Veillonella parvula 6.57 (0.22) 6.14 (0.44) 6.07 (0.30) 7.46 (0.42)
4 Fusobacterium nucleatum_subsp._vincentii 4.00 (0.14) 3.82 (0.32) 4.11 (0.21) 3.97 (0.23)
5 Selenomonas sputigena 2.94 (0.12) 2.23 (0.20) 2.66 (0.16) 3.70 (0.25)
6 Fusobacterium sp._oral_taxon_203 2.35 (0.13) 2.15 (0.28) 2.63 (0.21) 2.09 (0.20)
7 Prevotella oris 1.85 (0.07) 1.81 (0.14) 1.89 (0.11) 1.81 (0.10)
8 Prevotella nigrescens 1.78 (0.07) 1.64 (0.13) 1.81 (0.11) 1.81 (0.12)
9 Fusobacterium nucleatum_subsp._animalis 1.65 (0.06) 1.54 (0.13) 1.63 (0.09) 1.74 (0.09)
10 Selenomonas noxia 1.48 (0.07) 1.52 (0.18) 1.45 (0.11) 1.50 (0.11)
11 Fusobacterium nucleatum_subsp._polymorphum 1.42 (0.04) 1.57 (0.11) 1.50 (0.07) 1.24 (0.07)
12 Rothia dentocariosa 1.41 (0.10) 1.43 (0.17) 1.60 (0.18) 1.16 (0.13)
13 Streptococcus sanguinis 1.40 (0.07) 1.83 (0.14) 1.40 (0.09) 1.16 (0.13)
14 Alloprevotella tannerae 1.39 (0.07) 1.22 (0.16) 1.46 (0.12) 1.41 (0.11)
15 Haemophilus parainfluenzae 1.21 (0.09) 1.62 (0.24) 1.15 (0.13) 1.07 (0.14)
16 Corynebacterium matruchotii 1.17 (0.05) 1.34 (0.13) 1.24 (0.07) 0.99 (0.06)
17 Fretibacterium sp._oral_taxon_360 1.15 (0.07) 0.89 (0.13) 1.24 (0.11) 1.19 (0.10)
18 Streptococcus intermedius 1.05 (0.05) 1.27 (0.12) 1.13 (0.08) 0.84 (0.05)
19 TM7_[G-1] sp._oral_taxon_349 1.04 (0.06) 0.97 (0.14) 0.97 (0.07) 1.18 (0.14)
20 Streptococcus gordonii 1.03 (0.05) 0.98 (0.15) 1.01 (0.07) 1.09 (0.10)
21 TM7_[G-1] sp._oral_taxon_346 1.02 (0.05) 1.01 (0.11) 1.05 (0.07) 1.00 (0.08)
22 Porphyromonas gingivalis 0.94 (0.10) 0.95 (0.27) 0.74 (0.10) 1.21 (0.19)
23 Campylobacter gracilis 0.94 (0.02) 0.90 (0.06) 0.96 (0.04) 0.95 (0.04)
24 Fusobacterium naviforme 0.89 (0.06) 0.91 (0.13) 0.92 (0.10) 0.83 (0.07)
25 Parvimonas micra 0.88 (0.03) 0.87 (0.07) 0.96 (0.05) 0.78 (0.05)
26 Neisseria sicca 0.80 (0.07) 0.83 (0.21) 0.87 (0.11) 0.69 (0.09)
27 Leptotrichia wadei 0.79 (0.06) 0.81 (0.15) 0.74 (0.08) 0.86 (0.11)
28 Selenomonas artemidis 0.79 (0.05) 0.87 (0.12) 0.75 (0.07) 0.79 (0.08)
29 Bacteroidales_[G-2] sp._oral_taxon_274 0.79 (0.04) 0.64 (0.08) 0.85 (0.07) 0.79 (0.06)
30 Prevotella sp._oral_taxon_317 0.77 (0.04) 0.67 (0.07) 0.80 (0.05) 0.78 (0.06)
31 Anaeroglobus geminatus 0.67 (0.04) 0.43 (0.08) 0.58 (0.06) 0.92 (0.09)
32 Capnocytophaga granulosa 0.65 (0.03) 0.63 (0.09) 0.66 (0.05) 0.64 (0.06)
33 Streptococcus salivarius 0.64 (0.05) 0.61 (0.09) 0.67 (0.09) 0.64 (0.07)
34 TM7_[G-1] sp._oral_taxon_952 0.64 (0.03) 0.72 (0.08) 0.71 (0.05) 0.50 (0.05)
35 Prevotella denticola 0.62 (0.05) 0.49 (0.07) 0.57 (0.08) 0.76 (0.09)
36 Capnocytophaga leadbetteri 0.61 (0.03) 0.59 (0.07) 0.63 (0.05) 0.61 (0.07)
37 Gemella morbillorum 0.61 (0.02) 0.69 (0.07) 0.65 (0.04) 0.52 (0.04)
38 Veillonella atypica 0.61 (0.05) 0.50 (0.09) 0.55 (0.07) 0.75 (0.08)
39 Streptococcus mutans 0.60 (0.05) 0.47 (0.09) 0.51 (0.07) 0.80 (0.10)
40 Fretibacterium sp._oral_taxon_359 0.60 (0.06) 0.77 (0.17) 0.60 (0.09) 0.49 (0.07)
41 Prevotella intermedia 0.59 (0.06) 0.62 (0.15) 0.63 (0.09) 0.52 (0.09)
42 Dialister invisus 0.57 (0.02) 0.47 (0.04) 0.60 (0.04) 0.60 (0.04)
43 Granulicatella adiacens 0.56 (0.02) 0.65 (0.05) 0.55 (0.03) 0.53 (0.03)
44 Porphyromonas endodontalis 0.55 (0.04) 0.63 (0.08) 0.57 (0.05) 0.49 (0.06)
45 Streptococcus cristatus 0.55 (0.03) 0.51 (0.07) 0.59 (0.05) 0.53 (0.04)
46 Capnocytophaga gingivalis 0.55 (0.03) 0.60 (0.07) 0.55 (0.04) 0.51 (0.04)
47 Prevotella pleuritidis 0.53 (0.04) 0.51 (0.08) 0.56 (0.06) 0.51 (0.06)
48 Neisseria elongata 0.53 (0.04) 0.66 (0.10) 0.55 (0.05) 0.43 (0.07)
49 Actinomyces naeslundii 0.52 (0.02) 0.62 (0.05) 0.53 (0.03) 0.46 (0.03)
50 Selenomonas sp._oral_taxon_137 0.51 (0.04) 0.51 (0.09) 0.52 (0.05) 0.50 (0.07)
51 Tannerella forsythia 0.49 (0.03) 0.42 (0.06) 0.46 (0.04) 0.58 (0.05)
52 TM7_[G-5] sp._oral_taxon_356 0.47 (0.03) 0.36 (0.07) 0.51 (0.06) 0.48 (0.06)
53 Campylobacter showae 0.46 (0.02) 0.44 (0.04) 0.47 (0.04) 0.46 (0.03)
54 Fretibacterium fastidiosum 0.46 (0.03) 0.54 (0.10) 0.45 (0.04) 0.42 (0.04)
55 Rothia aeria 0.45 (0.03) 0.45 (0.05) 0.55 (0.06) 0.33 (0.04)
56 Capnocytophaga sputigena 0.45 (0.03) 0.47 (0.05) 0.44 (0.04) 0.46 (0.05)
57 Gemella haemolysans 0.44 (0.04) 0.54 (0.08) 0.45 (0.07) 0.38 (0.06)
58 Leptotrichia hongkongensis 0.43 (0.03) 0.36 (0.04) 0.44 (0.05) 0.44 (0.05)
59 Neisseria flavescens 0.42 (0.04) 0.29 (0.06) 0.38 (0.06) 0.55 (0.09)
60 Neisseria oralis 0.42 (0.05) 0.59 (0.15) 0.32 (0.04) 0.45 (0.11)
61 Streptococcus anginosus 0.42 (0.03) 0.38 (0.05) 0.38 (0.04) 0.49 (0.06)
62 Aggregatibacter aphrophilus 0.37 (0.04) 0.33 (0.05) 0.45 (0.07) 0.28 (0.05)
63 Kingella oralis 0.36 (0.02) 0.41 (0.05) 0.31 (0.02) 0.39 (0.04)
64 Leptotrichia shahii 0.36 (0.04) 0.32 (0.07) 0.26 (0.03) 0.50 (0.08)
65 Leptotrichia buccalis 0.35 (0.03) 0.36 (0.07) 0.40 (0.05) 0.29 (0.05)
66 Selenomonas sp._oral_taxon_134 0.34 (0.02) 0.23 (0.04) 0.32 (0.03) 0.43 (0.05)
67 Leptotrichia hofstadii 0.33 (0.04) 0.42 (0.11) 0.34 (0.05) 0.27 (0.05)
68 Leptotrichia sp._oral_taxon_417 0.32 (0.03) 0.23 (0.04) 0.36 (0.05) 0.32 (0.05)
69 Cardiobacterium hominis 0.32 (0.02) 0.47 (0.08) 0.33 (0.02) 0.23 (0.02)
70 Selenomonas sp._oral_taxon_136 0.31 (0.02) 0.20 (0.03) 0.29 (0.03) 0.40 (0.04)
71 Eikenella corrodens 0.31 (0.01) 0.34 (0.03) 0.33 (0.02) 0.25 (0.02)
72 Prevotella melaninogenica 0.30 (0.02) 0.25 (0.03) 0.28 (0.03) 0.36 (0.04)
73 Porphyromonas sp._oral_taxon_279 0.30 (0.02) 0.28 (0.04) 0.32 (0.04) 0.30 (0.03)
74 Treponema denticola 0.28 (0.02) 0.26 (0.05) 0.28 (0.03) 0.31 (0.04)
75 Filifactor alocis 0.28 (0.02) 0.29 (0.05) 0.29 (0.04) 0.27 (0.04)
76 Actinomyces oris 0.28 (0.02) 0.31 (0.04) 0.27 (0.02) 0.27 (0.03)
77 Parvimonas sp._oral_taxon_393 0.28 (0.02) 0.36 (0.05) 0.28 (0.02) 0.23 (0.02)
78 Veillonellaceae_[G-1] sp._oral_taxon_150 0.27 (0.02) 0.22 (0.04) 0.23 (0.02) 0.35 (0.03)
79 Actinomyces sp._oral_taxon_169 0.27 (0.02) 0.39 (0.06) 0.26 (0.02) 0.22 (0.03)
80 Leptotrichia sp._oral_taxon_212 0.27 (0.02) 0.28 (0.03) 0.28 (0.02) 0.24 (0.04)
81 Rothia mucilaginosa 0.27 (0.02) 0.21 (0.03) 0.28 (0.04) 0.29 (0.03)
82 Selenomonas infelix 0.27 (0.02) 0.21 (0.02) 0.27 (0.03) 0.29 (0.03)
83 Cardiobacterium valvarum 0.25 (0.01) 0.31 (0.04) 0.26 (0.02) 0.21 (0.02)
84 Capnocytophaga sp._oral_taxon_326 0.25 (0.02) 0.26 (0.04) 0.28 (0.03) 0.22 (0.03)
85 Prevotella sp._oral_taxon_472 0.25 (0.02) 0.30 (0.05) 0.27 (0.02) 0.19 (0.02)
86 Treponema socranskii 0.25 (0.01) 0.22 (0.02) 0.24 (0.01) 0.27 (0.02)
87 Streptococcus constellatus 0.25 (0.02) 0.19 (0.03) 0.25 (0.03) 0.28 (0.03)
88 Veillonella rogosae 0.24 (0.02) 0.21 (0.04) 0.27 (0.04) 0.23 (0.03)
89 Fusobacterium nucleatum_subsp._nucleatum 0.24 (0.03) 0.21 (0.06) 0.19 (0.04) 0.34 (0.07)
90 Prevotella sp._oral_taxon_300 0.23 (0.01) 0.24 (0.03) 0.20 (0.01) 0.27 (0.03)
91 Veillonellaceae_[G-1] sp._oral_taxon_155 0.23 (0.02) 0.20 (0.03) 0.20 (0.02) 0.28 (0.03)
92 Campylobacter concisus 0.22 (0.01) 0.20 (0.02) 0.23 (0.01) 0.23 (0.02)
93 Leptotrichia sp._oral_taxon_225 0.22 (0.02) 0.26 (0.06) 0.28 (0.04) 0.12 (0.03)
94 Selenomonas sp._oral_taxon_892 0.22 (0.01) 0.24 (0.04) 0.21 (0.02) 0.21 (0.02)
95 Catonella morbi 0.21 (0.01) 0.23 (0.02) 0.21 (0.01) 0.19 (0.01)
96 Aggregatibacter segnis 0.20 (0.02) 0.21 (0.05) 0.24 (0.04) 0.15 (0.02)
97 Prevotella oulorum 0.20 (0.01) 0.21 (0.03) 0.18 (0.01) 0.22 (0.02)
98 Leptotrichia sp._oral_taxon_392 0.19 (0.01) 0.20 (0.04) 0.22 (0.02) 0.16 (0.02)
99 Dialister pneumosintes 0.19 (0.01) 0.18 (0.03) 0.19 (0.02) 0.20 (0.02)
100 Veillonella denticariosi 0.19 (0.03) 0.17 (0.06) 0.17 (0.04) 0.22 (0.07)
101 Peptostreptococcaceae_[XI][G-9] [Eubacterium]_brac 0.19 (0.01) 0.21 (0.02) 0.19 (0.01) 0.17 (0.01)
102 Megasphaera micronuciformis 0.19 (0.02) 0.15 (0.03) 0.17 (0.02) 0.23 (0.04)
103 Lautropia mirabilis 0.18 (0.01) 0.23 (0.03) 0.20 (0.02) 0.14 (0.01)
104 Streptococcus parasanguinis_II 0.18 (0.02) 0.15 (0.03) 0.17 (0.02) 0.21 (0.03)
105 Porphyromonas sp._oral_taxon_284 0.18 (0.01) 0.18 (0.02) 0.19 (0.02) 0.17 (0.02)
106 Selenomonas sp._oral_taxon_919 0.18 (0.01) 0.18 (0.02) 0.17 (0.02) 0.20 (0.03)
107 Bergeyella sp._oral_taxon_322 0.18 (0.01) 0.22 (0.02) 0.19 (0.01) 0.14 (0.01)
108 Leptotrichia sp._oral_taxon_498 0.18 (0.02) 0.14 (0.03) 0.16 (0.03) 0.22 (0.04)
109 Kingella denitrificans 0.17 (0.01) 0.17 (0.04) 0.17 (0.02) 0.18 (0.02)
110 Prevotella maculosa 0.17 (0.01) 0.16 (0.02) 0.16 (0.01) 0.18 (0.01)
111 Atopobium rimae 0.17 (0.01) 0.12 (0.02) 0.15 (0.02) 0.21 (0.03)
112 Corynebacterium durum 0.17 (0.01) 0.24 (0.03) 0.16 (0.01) 0.13 (0.03)
113 TM7_[G-1] sp._oral_taxon_488 0.17 (0.02) 0.23 (0.07) 0.18 (0.02) 0.11 (0.01)
114 Capnocytophaga sp._oral_taxon_336 0.17 (0.01) 0.15 (0.02) 0.17 (0.01) 0.17 (0.02)
115 Selenomonas flueggei 0.16 (0.01) 0.15 (0.03) 0.16 (0.02) 0.18 (0.03)
116 Aggregatibacter sp._oral_taxon_458 0.16 (0.02) 0.14 (0.02) 0.16 (0.02) 0.17 (0.03)
117 Fretibacterium sp._oral_taxon_362 0.16 (0.02) 0.15 (0.04) 0.18 (0.04) 0.14 (0.03)
118 Neisseria subflava 0.16 (0.02) 0.14 (0.04) 0.16 (0.04) 0.17 (0.03)
119 Peptostreptococcaceae_[XI][G-7] [Eubacterium]_yuri 0.16 (0.01) 0.18 (0.02) 0.17 (0.01) 0.12 (0.01)
120 TM7_[G-1] sp._oral_taxon_869 0.16 (0.03) 0.15 (0.04) 0.20 (0.06) 0.11 (0.02)
121 Lachnoanaerobaculum saburreum 0.15 (0.01) 0.14 (0.02) 0.15 (0.01) 0.15 (0.01)
122 Prevotella oralis 0.15 (0.01) 0.09 (0.01) 0.13 (0.01) 0.20 (0.02)
123 TM7_[G-2] sp._oral_taxon_350 0.15 (0.02) 0.12 (0.03) 0.14 (0.02) 0.17 (0.04)
124 Megasphaera sp._oral_taxon_123 0.14 (0.03) 0.17 (0.05) 0.12 (0.03) 0.15 (0.06)
125 Aggregatibacter paraphrophilus 0.14 (0.02) 0.18 (0.06) 0.18 (0.03) 0.07 (0.02)
126 Desulfobulbus sp._oral_taxon_041 0.14 (0.01) 0.11 (0.02) 0.13 (0.02) 0.17 (0.02)
127 Actinomyces massiliensis 0.14 (0.01) 0.18 (0.02) 0.15 (0.02) 0.10 (0.01)
128 Johnsonella ignava 0.13 (0.01) 0.13 (0.02) 0.14 (0.01) 0.13 (0.01)
129 Prevotella loescheii 0.13 (0.01) 0.15 (0.03) 0.15 (0.02) 0.09 (0.02)
130 Lachnospiraceae_[G-3] sp._oral_taxon_100 0.13 (0.01) 0.12 (0.01) 0.14 (0.01) 0.12 (0.01)
131 Actinomyces johnsonii 0.13 (0.01) 0.12 (0.01) 0.13 (0.02) 0.12 (0.02)
132 TM7_[G-1] sp._oral_taxon_347 0.12 (0.02) 0.16 (0.05) 0.14 (0.02) 0.08 (0.02)
133 Bacteroidetes_[G-5] sp._oral_taxon_511 0.12 (0.01) 0.10 (0.02) 0.13 (0.02) 0.12 (0.02)
134 Actinomyces sp._oral_taxon_180 0.12 (0.01) 0.13 (0.01) 0.12 (0.01) 0.10 (0.01)
135 Prevotella salivae 0.12 (0.01) 0.09 (0.02) 0.12 (0.01) 0.13 (0.02)
136 Actinomyces sp._oral_taxon_171 0.12 (0.01) 0.12 (0.02) 0.12 (0.01) 0.11 (0.01)
137 Selenomonas sp._oral_taxon_146 0.12 (0.01) 0.12 (0.02) 0.11 (0.01) 0.12 (0.01)
138 Abiotrophia defectiva 0.12 (0.01) 0.14 (0.03) 0.13 (0.01) 0.09 (0.01)
139 Pseudomonas fluorescens 0.11 (0.05) 0.07 (0.04) 0.15 (0.10) 0.10 (0.04)
140 Veillonella sp._oral_taxon_780 0.11 (0.02) 0.16 (0.06) 0.12 (0.04) 0.08 (0.03)
141 Porphyromonas catoniae 0.11 (0.01) 0.13 (0.03) 0.13 (0.02) 0.08 (0.01)
142 Mitsuokella sp._oral_taxon_131 0.11 (0.02) 0.05 (0.01) 0.11 (0.03) 0.14 (0.04)
143 Actinobaculum sp._oral_taxon_183 0.11 (0.01) 0.12 (0.02) 0.11 (0.01) 0.09 (0.01)
144 Oribacterium sp._oral_taxon_078 0.11 (0.01) 0.07 (0.01) 0.10 (0.01) 0.14 (0.01)
145 Treponema sp._oral_taxon_237 0.11 (0.01) 0.11 (0.03) 0.10 (0.02) 0.11 (0.02)
146 Haemophilus sp._oral_taxon_036 0.10 (0.01) 0.11 (0.03) 0.10 (0.02) 0.09 (0.02)
147 Leptotrichia sp._oral_taxon_215 0.10 (0.01) 0.12 (0.02) 0.10 (0.01) 0.08 (0.01)
148 Prevotella histicola 0.10 (0.01) 0.06 (0.01) 0.08 (0.02) 0.15 (0.03)
149 TM7_[G-1] sp._oral_taxon_348 0.10 (0.01) 0.08 (0.01) 0.12 (0.01) 0.09 (0.01)
150 Peptostreptococcus stomatis 0.10 (0.01) 0.11 (0.02) 0.10 (0.01) 0.08 (0.01)
151 Prevotella veroralis 0.10 (0.01) 0.08 (0.02) 0.12 (0.02) 0.08 (0.02)
152 Streptococcus sp._oral_taxon_056 0.10 (0.01) 0.11 (0.02) 0.09 (0.01) 0.09 (0.01)
153 Selenomonas sp._oral_taxon_126 0.10 (0.01) 0.09 (0.02) 0.10 (0.01) 0.09 (0.01)
154 Treponema sp._oral_taxon_231 0.09 (0.01) 0.07 (0.01) 0.10 (0.01) 0.09 (0.01)
155 Neisseria bacilliformis 0.09 (0.01) 0.11 (0.04) 0.08 (0.01) 0.08 (0.02)
156 Actinomyces gerencseriae 0.09 (0.01) 0.09 (0.01) 0.08 (0.01) 0.09 (0.01)
157 Prevotella dentalis 0.08 (0.01) 0.08 (0.02) 0.08 (0.02) 0.08 (0.01)
158 Fusobacterium periodonticum 0.08 (0.01) 0.06 (0.01) 0.09 (0.01) 0.09 (0.01)
159 Prevotella pallens 0.08 (0.01) 0.08 (0.02) 0.06 (0.01) 0.11 (0.02)
160 Centipeda periodontii 0.08 (0.01) 0.05 (0.01) 0.10 (0.01) 0.08 (0.01)
161 Scardovia wiggsiae 0.08 (0.01) 0.09 (0.03) 0.07 (0.02) 0.09 (0.02)
162 Streptococcus sp._oral_taxon_074 0.08 (0.01) 0.07 (0.01) 0.09 (0.01) 0.07 (0.01)
163 Haemophilus parahaemolyticus 0.08 (0.02) 0.09 (0.03) 0.11 (0.03) 0.04 (0.02)
164 Tannerella sp._oral_taxon_286 0.08 (0.00) 0.06 (0.01) 0.08 (0.01) 0.08 (0.01)
165 Selenomonas sp._oral_taxon_936 0.08 (0.01) 0.06 (0.01) 0.07 (0.01) 0.10 (0.02)
166 Actinomyces sp._oral_taxon_170 0.08 (0.01) 0.06 (0.01) 0.10 (0.02) 0.06 (0.02)
167 Ruminococcaceae_[G-1] sp._oral_taxon_075 0.08 (0.01) 0.09 (0.02) 0.08 (0.01) 0.07 (0.01)
168 Bifidobacterium dentium 0.08 (0.01) 0.07 (0.02) 0.06 (0.01) 0.10 (0.02)
169 Alloprevotella rava 0.08 (0.01) 0.07 (0.01) 0.07 (0.01) 0.09 (0.01)
170 Atopobium parvulum 0.08 (0.01) 0.06 (0.01) 0.06 (0.01) 0.11 (0.02)
171 Ottowia sp._oral_taxon_894 0.08 (0.01) 0.08 (0.02) 0.09 (0.01) 0.06 (0.01)
172 Prevotella sp._oral_taxon_313 0.07 (0.01) 0.09 (0.02) 0.05 (0.01) 0.10 (0.03)
173 TM7_[G-6] sp._oral_taxon_870 0.07 (0.01) 0.08 (0.02) 0.08 (0.01) 0.06 (0.01)
174 Capnocytophaga sp._oral_taxon_864 0.07 (0.01) 0.08 (0.01) 0.08 (0.01) 0.05 (0.01)
175 Actinomyces meyeri 0.07 (0.00) 0.08 (0.01) 0.08 (0.01) 0.06 (0.00)
176 Leptotrichia sp._oral_taxon_223 0.07 (0.01) 0.05 (0.01) 0.07 (0.02) 0.09 (0.02)
177 Capnocytophaga sp._oral_taxon_338 0.07 (0.00) 0.07 (0.01) 0.07 (0.01) 0.07 (0.01)
178 Streptococcus parasanguinis_I 0.07 (0.01) 0.06 (0.01) 0.06 (0.01) 0.08 (0.01)
179 Pseudoramibacter alactolyticus 0.07 (0.01) 0.10 (0.05) 0.05 (0.01) 0.07 (0.01)
180 Haemophilus haemolyticus 0.07 (0.01) 0.15 (0.05) 0.05 (0.01) 0.05 (0.01)
181 Neisseria pharyngis 0.07 (0.02) 0.06 (0.03) 0.04 (0.02) 0.10 (0.05)
182 Treponema maltophilum 0.07 (0.00) 0.06 (0.01) 0.06 (0.00) 0.08 (0.01)
183 Bradyrhizobium elkanii 0.07 (0.02) 0.12 (0.06) 0.05 (0.01) 0.05 (0.02)
184 Alloprevotella sp._oral_taxon_473 0.07 (0.01) 0.05 (0.01) 0.08 (0.02) 0.06 (0.01)
185 Streptococcus lactarius 0.06 (0.01) 0.11 (0.04) 0.05 (0.01) 0.06 (0.01)
186 Prevotella sp._oral_taxon_292 0.06 (0.00) 0.05 (0.01) 0.06 (0.01) 0.08 (0.01)
187 Capnocytophaga sp._oral_taxon_332 0.06 (0.01) 0.08 (0.04) 0.07 (0.01) 0.05 (0.01)
188 Prevotella saccharolytica 0.06 (0.00) 0.06 (0.01) 0.07 (0.01) 0.06 (0.00)
189 Leptotrichia sp._oral_taxon_879 0.06 (0.02) 0.14 (0.11) 0.03 (0.01) 0.05 (0.01)
190 Prevotella sp._oral_taxon_314 0.06 (0.01) 0.05 (0.02) 0.05 (0.01) 0.07 (0.01)
191 Actinobaculum sp._oral_taxon_848 0.06 (0.00) 0.04 (0.01) 0.06 (0.01) 0.06 (0.01)
192 Fretibacterium sp._oral_taxon_358 0.06 (0.01) 0.04 (0.02) 0.06 (0.02) 0.06 (0.01)
193 Streptococcus sobrinus 0.06 (0.01) 0.00 (0.00) 0.03 (0.01) 0.12 (0.04)
194 Aggregatibacter actinomycetemcomitans 0.06 (0.01) 0.06 (0.02) 0.06 (0.02) 0.05 (0.02)
195 Treponema lecithinolyticum 0.06 (0.01) 0.06 (0.01) 0.05 (0.01) 0.06 (0.01)
196 Capnocytophaga sp._oral_taxon_902 0.06 (0.01) 0.08 (0.02) 0.05 (0.01) 0.05 (0.01)
197 Peptostreptococcaceae_[XI][G-5] [Eubacterium]_saph 0.06 (0.01) 0.04 (0.01) 0.07 (0.01) 0.05 (0.01)
198 Lachnoanaerobaculum umeaense 0.06 (0.00) 0.06 (0.01) 0.06 (0.01) 0.05 (0.01)
199 Peptostreptococcaceae_[XI][G-6] [Eubacterium]_noda 0.05 (0.00) 0.06 (0.01) 0.05 (0.01) 0.06 (0.01)
200 Veillonellaceae_[G-1] sp._oral_taxon_145 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.06 (0.01)
201 TM7_[G-1] sp._oral_taxon_352 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.06 (0.01)
202 Capnocytophaga sp._oral_taxon_412 0.05 (0.01) 0.05 (0.01) 0.05 (0.01) 0.06 (0.01)
203 Gemella sanguinis 0.05 (0.00) 0.04 (0.01) 0.05 (0.01) 0.06 (0.01)
204 Aggregatibacter sp._oral_taxon_513 0.05 (0.01) 0.03 (0.02) 0.07 (0.01) 0.04 (0.01)
205 Selenomonas sp._oral_taxon_133 0.05 (0.01) 0.06 (0.02) 0.05 (0.01) 0.05 (0.01)
206 Granulicatella elegans 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.05 (0.01)
207 Veillonellaceae_[G-1] sp._oral_taxon_129 0.05 (0.01) 0.03 (0.01) 0.04 (0.01) 0.07 (0.02)
208 Selenomonas dianae 0.05 (0.01) 0.04 (0.02) 0.04 (0.01) 0.07 (0.03)
209 Prevotella sp._oral_taxon_526 0.05 (0.01) 0.02 (0.01) 0.06 (0.02) 0.05 (0.01)
210 Porphyromonas sp._oral_taxon_275 0.05 (0.01) 0.04 (0.01) 0.06 (0.01) 0.03 (0.01)
211 Anaerolineae_[G-1] sp._oral_taxon_439 0.05 (0.01) 0.04 (0.01) 0.04 (0.01) 0.06 (0.01)
212 Stomatobaculum longum 0.05 (0.00) 0.04 (0.01) 0.04 (0.00) 0.05 (0.01)
213 Olsenella sp._oral_taxon_807 0.04 (0.00) 0.04 (0.01) 0.04 (0.00) 0.05 (0.00)
214 Capnocytophaga sp._oral_taxon_323 0.04 (0.00) 0.03 (0.01) 0.05 (0.01) 0.05 (0.01)
215 Capnocytophaga sp._oral_taxon_903 0.04 (0.00) 0.03 (0.01) 0.04 (0.01) 0.05 (0.01)
216 Fretibacterium sp._oral_taxon_361 0.04 (0.01) 0.01 (0.00) 0.05 (0.02) 0.05 (0.02)
217 Leptotrichia sp._oral_taxon_219 0.04 (0.00) 0.05 (0.02) 0.04 (0.00) 0.04 (0.01)
218 Prevotella sp._oral_taxon_306 0.04 (0.01) 0.04 (0.02) 0.03 (0.01) 0.06 (0.01)
219 Atopobium sp._oral_taxon_199 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.03 (0.01)
220 Capnocytophaga sp._oral_taxon_324 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.05 (0.01)
221 Prevotella buccae 0.04 (0.00) 0.02 (0.00) 0.04 (0.01) 0.05 (0.01)
222 Prevotella baroniae 0.04 (0.00) 0.02 (0.01) 0.04 (0.01) 0.04 (0.01)
223 Lachnospiraceae_[G-8] sp._oral_taxon_500 0.04 (0.00) 0.04 (0.01) 0.04 (0.01) 0.04 (0.00)
224 Prevotella sp._oral_taxon_376 0.04 (0.00) 0.05 (0.01) 0.04 (0.01) 0.03 (0.01)
225 Porphyromonas sp._oral_taxon_278 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01)
226 Solobacterium moorei 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)
227 Campylobacter curvus 0.03 (0.00) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)
228 Prevotella micans 0.03 (0.00) 0.03 (0.01) 0.03 (0.01) 0.04 (0.01)
229 Bacteroidaceae_[G-1] sp._oral_taxon_272 0.03 (0.00) 0.03 (0.01) 0.03 (0.00) 0.04 (0.01)
230 Streptococcus australis 0.03 (0.00) 0.03 (0.01) 0.03 (0.00) 0.04 (0.01)
231 Tannerella sp._oral_taxon_808 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.04 (0.01)
232 Bergeyella sp._oral_taxon_907 0.03 (0.00) 0.03 (0.01) 0.04 (0.01) 0.03 (0.00)
233 Prevotella multiformis 0.03 (0.01) 0.01 (0.00) 0.03 (0.01) 0.05 (0.02)
234 Fusobacterium sp._oral_taxon_370 0.03 (0.01) 0.02 (0.01) 0.04 (0.01) 0.03 (0.01)
235 Capnocytophaga sp._oral_taxon_380 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.03 (0.01)
236 Peptostreptococcaceae_[XI][G-1] [Eubacterium]_infi 0.03 (0.00) 0.03 (0.01) 0.03 (0.00) 0.04 (0.00)
237 Treponema medium 0.03 (0.00) 0.03 (0.01) 0.04 (0.01) 0.02 (0.01)
238 Lachnoanaerobaculum orale 0.03 (0.00) 0.04 (0.01) 0.02 (0.00) 0.03 (0.01)
239 Alloprevotella sp._oral_taxon_308 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.01)
240 SR1_[G-1] sp._oral_taxon_874 0.03 (0.00) 0.03 (0.00) 0.03 (0.01) 0.02 (0.00)
241 Actinomyces israelii 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
242 Shuttleworthia satelles 0.03 (0.00) 0.02 (0.01) 0.03 (0.01) 0.04 (0.01)
243 Mycoplasma salivarium 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00)
244 Leptotrichia goodfellowii 0.03 (0.00) 0.04 (0.01) 0.03 (0.01) 0.02 (0.00)
245 Streptococcus sinensis 0.03 (0.00) 0.03 (0.01) 0.02 (0.00) 0.04 (0.01)
246 TM7_[G-3] sp._oral_taxon_351 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00)
247 Mitsuokella sp._oral_taxon_521 0.03 (0.01) 0.01 (0.01) 0.02 (0.01) 0.04 (0.02)
248 Selenomonas sp._oral_taxon_442 0.03 (0.01) 0.01 (0.00) 0.04 (0.01) 0.02 (0.01)
249 Actinomyces sp._oral_taxon_178 0.03 (0.00) 0.02 (0.00) 0.03 (0.00) 0.03 (0.00)
250 Johnsonella sp._oral_taxon_166 0.02 (0.00) 0.02 (0.01) 0.03 (0.00) 0.02 (0.00)
251 Lactobacillus gasseri 0.02 (0.01) 0.01 (0.00) 0.02 (0.01) 0.03 (0.01)
252 Treponema sp._oral_taxon_247 0.02 (0.01) 0.01 (0.01) 0.03 (0.01) 0.02 (0.01)
253 GN02_[G-2] sp._oral_taxon_873 0.02 (0.00) 0.03 (0.02) 0.02 (0.01) 0.02 (0.01)
254 Selenomonas sp._oral_taxon_937 0.02 (0.00) 0.01 (0.00) 0.02 (0.01) 0.02 (0.00)
255 Atopobium sp._oral_taxon_416 0.02 (0.01) 0.00 (0.00) 0.01 (0.01) 0.04 (0.02)
256 Sphingomonas echinoides 0.02 (0.00) 0.02 (0.01) 0.02 (0.00) 0.02 (0.01)
257 Butyrivibrio sp._oral_taxon_080 0.02 (0.00) 0.02 (0.01) 0.02 (0.01) 0.02 (0.00)
258 Treponema vincentii 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.01 (0.00)
259 Selenomonas sp._oral_taxon_149 0.02 (0.00) 0.01 (0.00) 0.02 (0.01) 0.02 (0.00)
260 Selenomonas sp._oral_taxon_478 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.02 (0.01)
261 Prevotella sp._oral_taxon_475 0.02 (0.00) 0.02 (0.01) 0.02 (0.00) 0.02 (0.01)
262 Pyramidobacter piscolens 0.01 (0.00) 0.01 (0.01) 0.00 (0.00) 0.01 (0.00)
263 Microbacterium flavescens 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
264 Brevundimonas diminuta 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
265 Sphingomonas sp._oral_taxon_006 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
266 Leptothrix sp._oral_taxon_025 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
267 Porphyrobacter tepidarius 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

aBacteria in the table are rank ordered according to their mean relative abundance (%) in the overall cohort

Dashed line inserted below the top 20 taxa

Table 6.

Prevalence (present, absent) for each of 267 bacterial species identified, overall and by age categories

Rank Ordera OTU Label Age categories (years)
Overall
(N = 1219)
50–59
(N = 239)
60–69
(N = 554)
≥70
(N = 426)
% % % %
1 Streptococcus oralis 100 100 100 100
1 Veillonella dispar 100 100 100 100
1 Veillonella parvula 100 100 100 100
4 Selenomonas sputigena 99.8 99.6 99.8 99.8
5 Fusobacterium nucleatum_subsp._vincentii 99.6 99.6 99.6 99.5
6 Fusobacterium nucleatum_subsp._animalis 99.3 99.6 99.3 99.3
6 Granulicatella adiacens 99.3 99.2 99.5 99.3
8 Streptococcus sanguinis 99.3 100 99.3 99.1
9 Rothia dentocariosa 99.2 99.2 99.3 99.1
10 Campylobacter gracilis 99.1 99.6 98.9 99.1
11 Selenomonas noxia 99.0 98.7 99.1 99.1
11 Streptococcus gordonii 99.0 98.7 98.9 99.3
13 Fusobacterium nucleatum_subsp._polymorphum 98.6 99.2 98.9 97.9
14 Fusobacterium sp._oral_taxon_203 98.4 98.7 98.0 98.8
14 Streptococcus cristatus 98.4 98.7 98.2 98.6
14 Fusobacterium naviforme 98.4 99.2 98.6 97.7
17 Actinomyces naeslundii 98.0 97.9 98.2 97.9
18 Corynebacterium matruchotii 97.5 96.7 97.3 98.1
19 Prevotella oris 97.2 97.5 97.3 96.9
20 Actinomyces oris 97.1 97.5 96.9 97.2
21 Streptococcus salivarius 97.0 96.7 96.8 97.7
21 Parvimonas micra 97.0 95.8 96.9 97.7
23 Haemophilus parainfluenzae 96.9 98.7 97.3 95.3
24 Streptococcus intermedius 96.8 97.9 95.5 97.9
25 Veillonella atypica 96.4 95.0 95.7 98.1
26 Rothia mucilaginosa 96.1 96.2 96.2 96.0
27 Dialister invisus 95.4 95.8 94.6 96.2
28 Campylobacter concisus 95.2 95.8 94.8 95.3
29 Capnocytophaga gingivalis 94.9 95.8 94.9 94.4
29 TM7_[G-1] sp._oral_taxon_346 94.9 95.0 96.0 93.4
31 Prevotella nigrescens 94.2 95.0 94.2 93.7
32 Kingella oralis 93.0 92.9 94.2 91.5
33 Bergeyella sp._oral_taxon_322 92.7 92.9 91.9 93.7
34 Gemella haemolysans 92.5 91.6 94.2 90.8
35 Actinomyces sp._oral_taxon_169 92.3 93.7 93.0 90.6
36 Actinomyces sp._oral_taxon_180 92.1 94.1 92.2 90.8
36 Eikenella corrodens 92.1 95.4 92.6 89.7
38 Prevotella melaninogenica 91.6 92.1 90.6 92.7
38 TM7_[G-1] sp._oral_taxon_349 91.6 92.9 92.4 89.7
40 Campylobacter showae 91.3 91.6 91.0 91.5
41 Actinomyces johnsonii 91.1 91.6 91.7 90.1
42 Capnocytophaga granulosa 90.8 89.5 92.4 89.4
43 Selenomonas sp._oral_taxon_136 90.7 89.1 90.4 92.0
44 Bacteroidales_[G-2] sp._oral_taxon_274 90.4 88.3 91.5 90.1
45 Selenomonas artemidis 90.3 90.4 90.4 90.1
46 Capnocytophaga leadbetteri 90.2 90.0 91.7 88.5
46 Actinomyces massiliensis 90.2 92.1 91.3 87.6
48 Fretibacterium sp._oral_taxon_360 90.0 91.2 90.4 88.7
49 Gemella morbillorum 89.8 89.5 90.3 89.4
50 Streptococcus sp._oral_taxon_074 89.3 87.0 91.0 88.3
51 Rothia aeria 89.2 90.0 91.9 85.2
52 Treponema socranskii 88.8 88.7 88.4 89.4
53 Leptotrichia hongkongensis 88.7 85.4 89.2 89.9
54 Streptococcus mutans 88.4 84.9 88.1 90.8
54 Cardiobacterium hominis 88.4 91.6 89.2 85.4
54 TM7_[G-1] sp._oral_taxon_952 88.4 90.0 90.3 85.0
57 Actinomyces gerencseriae 87.9 84.9 87.0 90.6
58 Leptotrichia wadei 87.7 86.6 87.0 89.2
59 Anaeroglobus geminatus 87.6 89.1 86.5 88.3
60 Streptococcus parasanguinis_II 87.4 87.4 84.3 91.5
61 Alloprevotella tannerae 87.3 90.0 85.6 88.0
62 Actinomyces sp._oral_taxon_171 87.2 88.7 87.4 86.2
62 Capnocytophaga sputigena 87.2 88.7 89.0 84.0
64 Fusobacterium nucleatum_subsp._nucleatum 86.8 90.8 86.5 85.0
65 Catonella morbi 86.6 87.0 87.2 85.7
66 Corynebacterium durum 85.6 88.7 86.8 82.2
66 Selenomonas infelix 85.6 88.7 85.6 83.8
68 Prevotella denticola 85.5 82.8 84.7 88.0
69 Prevotella sp._oral_taxon_317 85.2 88.3 83.6 85.4
70 Leptotrichia sp._oral_taxon_212 84.8 87.4 87.0 80.5
71 Porphyromonas sp._oral_taxon_279 84.5 83.7 85.7 83.3
72 Neisseria sicca 83.5 80.8 86.3 81.5
73 Gemella sanguinis 83.1 85.4 80.9 84.7
74 Peptostreptococcaceae_[XI][G-9] [Eubacterium]_brac 83.0 87.4 82.5 81.2
75 Tannerella forsythia 82.9 82.0 83.8 82.4
75 Neisseria flavescens 82.9 77.8 85.4 82.4
77 Prevotella sp._oral_taxon_300 82.5 80.8 81.4 85.0
78 Prevotella maculosa 82.3 80.8 81.4 84.3
79 Neisseria elongata 82.2 80.3 84.1 80.8
80 Selenomonas flueggei 82.0 79.9 82.9 81.9
81 Selenomonas sp._oral_taxon_892 81.8 85.4 83.6 77.5
82 Actinomyces israelii 81.7 79.9 80.9 83.8
83 Oribacterium sp._oral_taxon_078 81.4 78.2 80.1 84.7
84 Lachnoanaerobaculum saburreum 81.3 78.7 82.5 81.2
85 Megasphaera micronuciformis 81.1 79.1 78.5 85.4
85 Prevotella salivae 81.1 73.2 80.9 85.7
87 Streptococcus parasanguinis_I 80.6 80.3 78.2 84.0
88 Cardiobacterium valvarum 80.5 81.2 82.1 77.9
89 Prevotella oulorum 80.1 82.8 77.6 81.9
89 Veillonellaceae_[G-1] sp._oral_taxon_150 80.1 78.2 79.1 82.4
91 Leptotrichia sp._oral_taxon_417 79.7 74.5 80.3 81.7
92 Veillonella rogosae 79.6 82.4 82.7 73.9
93 Streptococcus anginosus 79.5 81.2 78.0 80.5
94 Veillonellaceae_[G-1] sp._oral_taxon_155 79.4 77.4 77.8 82.6
95 Fretibacterium fastidiosum 79.2 79.1 80.1 78.2
96 Lautropia mirabilis 78.2 82.8 78.9 74.6
97 Actinobaculum sp._oral_taxon_183 78.0 78.7 78.3 77.2
98 Fusobacterium periodonticum 77.7 74.9 82.1 73.5
99 Selenomonas sp._oral_taxon_919 77.2 84.1 75.6 75.4
100 Selenomonas sp._oral_taxon_137 76.8 80.3 76.9 74.6
101 Atopobium parvulum 76.5 76.2 73.8 80.3
101 Streptococcus lactarius 76.5 80.3 75.1 76.1
103 Kingella denitrificans 76.3 72.0 76.0 79.1
104 Capnocytophaga sp._oral_taxon_336 75.1 77.4 75.5 73.5
105 Lachnospiraceae_[G-3] sp._oral_taxon_100 73.7 77.0 73.6 72.1
106 Atopobium rimae 73.3 72.4 73.1 74.2
107 Streptococcus constellatus 73.0 72.8 71.7 74.9
108 Tannerella sp._oral_taxon_286 72.8 69.9 74.9 71.8
108 Selenomonas sp._oral_taxon_134 72.8 75.7 72.9 70.9
110 Leptotrichia buccalis 72.0 64.9 76.0 70.9
111 Selenomonas sp._oral_taxon_146 71.9 73.2 72.9 69.7
112 Leptotrichia sp._oral_taxon_215 71.8 75.3 72.4 69.0
113 Leptotrichia sp._oral_taxon_392 71.4 74.5 74.9 65.0
114 TM7_[G-5] sp._oral_taxon_356 71.2 74.5 72.2 68.1
115 Dialister pneumosintes 70.6 74.1 70.2 69.2
115 Prevotella sp._oral_taxon_472 70.6 71.5 75.3 64.1
117 Streptococcus sp._oral_taxon_056 70.6 69.0 73.3 68.1
118 Fretibacterium sp._oral_taxon_359 70.5 66.9 71.1 71.6
119 Solobacterium moorei 70.4 69.0 70.0 71.6
120 Abiotrophia defectiva 70.1 69.9 72.9 66.7
121 Lachnoanaerobaculum umeaense 69.3 69.9 70.2 67.8
122 Parvimonas sp._oral_taxon_393 69.2 69.9 70.2 67.4
123 Actinomyces meyeri 67.8 71.1 69.7 63.4
124 Centipeda periodontii 67.7 64.0 69.1 67.8
125 Leptotrichia shahii 67.6 72.4 66.6 66.2
126 Olsenella sp._oral_taxon_807 66.9 61.9 67.1 69.2
127 Actinobaculum sp._oral_taxon_848 66.3 64.9 66.1 67.4
128 Leptotrichia hofstadii 66.0 63.6 68.2 64.6
128 Neisseria oralis 66.0 66.1 69.0 62.2
128 Prevotella histicola 66.0 62.3 62.8 72.1
131 Actinomyces sp._oral_taxon_178 65.8 61.1 65.3 69.0
132 Stomatobaculum longum 65.7 62.3 63.7 70.2
132 TM7_[G-1] sp._oral_taxon_352 65.7 60.3 70.6 62.4
134 Capnocytophaga sp._oral_taxon_326 65.4 64.4 68.1 62.4
135 Prevotella oralis 64.5 63.6 65.2 64.1
136 Streptococcus sinensis 63.9 65.7 62.1 65.3
137 Alloprevotella sp._oral_taxon_308 63.5 68.6 61.9 62.7
138 Porphyromonas sp._oral_taxon_284 63.3 64.4 66.8 58.2
138 Prevotella pallens 63.3 63.2 61.7 65.5
140 Aggregatibacter sp._oral_taxon_458 63.2 65.7 65.3 58.9
141 Porphyromonas endodontalis 63.1 69.5 63.7 58.7
142 Prevotella saccharolytica 63.0 65.3 65.0 59.2
143 Selenomonas sp._oral_taxon_126 62.0 62.3 63.4 60.1
144 Lachnoanaerobaculum orale 61.1 63.2 58.5 63.4
145 Treponema maltophilum 61.0 59.0 62.3 60.3
146 Peptostreptococcaceae_[XI][G-7] [Eubacterium]_yuri 60.2 64.0 62.3 55.4
147 Veillonella denticariosi 60.1 56.5 60.8 61.3
148 Sphingomonas echinoides 59.8 64.9 61.7 54.5
149 Streptococcus australis 59.7 57.3 59.0 62.0
150 TM7_[G-1] sp._oral_taxon_348 59.6 57.7 63.4 55.9
151 TM7_[G-1] sp._oral_taxon_488 57.8 56.9 61.2 54.0
152 Ruminococcaceae_[G-1] sp._oral_taxon_075 56.9 58.2 59.7 52.6
153 Selenomonas sp._oral_taxon_936 56.8 58.2 56.3 56.8
154 Prevotella buccae 56.7 49.4 54.7 63.4
155 Leptotrichia sp._oral_taxon_225 56.4 60.3 58.7 51.4
155 Prevotella pleuritidis 56.4 55.2 59.4 53.3
157 Alloprevotella rava 56.2 57.7 56.9 54.5
158 Aggregatibacter aphrophilus 56.1 57.7 59.6 50.7
159 Treponema denticola 56.0 59.4 58.1 51.4
160 Peptostreptococcus stomatis 55.9 64.0 55.1 52.3
161 Pseudomonas fluorescens 55.5 53.6 57.0 54.5
162 Actinomyces sp._oral_taxon_170 55.2 60.3 57.0 50.0
163 Porphyromonas gingivalis 55.1 51.0 56.3 55.9
164 Haemophilus sp._oral_taxon_036 55.0 59.4 54.7 52.8
165 Johnsonella ignava 54.6 54.0 56.3 52.8
166 Porphyromonas catoniae 54.4 57.7 56.5 49.8
167 Peptostreptococcaceae_[XI][G-1] [Eubacterium]_infi 54.2 47.3 54.7 57.5
168 Prevotella sp._oral_taxon_292 53.8 49.4 54.3 55.6
169 Fretibacterium sp._oral_taxon_362 53.6 53.6 53.8 53.3
170 TM7_[G-1] sp._oral_taxon_347 53.2 58.2 54.3 49.1
171 Leptotrichia sp._oral_taxon_219 52.7 49.4 54.2 52.6
172 Aggregatibacter segnis 52.1 56.1 54.9 46.2
173 TM7_[G-3] sp._oral_taxon_351 51.9 45.6 55.4 50.9
174 Fusobacterium sp._oral_taxon_370 51.1 45.6 55.6 48.4
175 Prevotella sp._oral_taxon_313 50.5 53.1 46.4 54.2
176 Prevotella loescheii 50.4 52.3 54.5 43.9
177 Desulfobulbus sp._oral_taxon_041 50.3 48.1 50.9 50.7
178 Capnocytophaga sp._oral_taxon_864 49.1 51.9 52.0 43.9
179 Ottowia sp._oral_taxon_894 48.4 49.4 50.2 45.5
180 Microbacterium flavescens 48.0 50.2 49.5 44.8
181 Leptotrichia sp._oral_taxon_498 47.8 42.3 48.2 50.5
182 Granulicatella elegans 47.3 52.7 45.5 46.5
183 Filifactor alocis 46.8 50.2 46.8 44.8
184 Campylobacter curvus 46.2 45.6 46.4 46.2
185 Mycoplasma salivarium 45.0 47.7 45.3 43.2
186 Capnocytophaga sp._oral_taxon_338 44.8 42.7 44.4 46.5
187 Capnocytophaga sp._oral_taxon_902 44.3 43.1 46.6 42.0
188 Treponema sp._oral_taxon_231 43.6 51.5 45.3 37.1
189 Tannerella sp._oral_taxon_808 43.1 39.3 45.7 41.8
190 Prevotella intermedia 42.8 40.2 43.3 43.7
191 TM7_[G-6] sp._oral_taxon_870 42.7 43.9 44.2 39.9
192 Mitsuokella sp._oral_taxon_131 42.2 35.6 41.0 47.7
193 Haemophilus haemolyticus 42.0 47.3 41.3 39.9
194 Prevotella veroralis 41.7 44.4 40.8 41.3
195 Veillonellaceae_[G-1] sp._oral_taxon_129 40.9 37.7 40.8 43.0
195 Aggregatibacter paraphrophilus 40.9 45.2 42.2 36.6
197 Pseudoramibacter alactolyticus 40.9 33.5 41.5 44.1
198 Bergeyella sp._oral_taxon_907 40.6 39.7 42.8 38.3
199 Bifidobacterium dentium 40.5 33.9 37.9 47.7
199 TM7_[G-1] sp._oral_taxon_869 40.5 41.8 41.5 38.5
201 Prevotella sp._oral_taxon_306 40.3 36.0 39.5 43.7
202 Prevotella dentalis 39.3 40.2 36.5 42.5
203 Shuttleworthia satelles 39.2 34.7 37.5 43.9
204 Veillonella sp._oral_taxon_780 39.1 40.6 42.4 34.0
205 Capnocytophaga sp._oral_taxon_412 38.7 38.9 41.5 35.0
206 Neisseria subflava 38.6 39.3 37.4 39.7
206 Scardovia wiggsiae 38.6 37.2 37.7 40.4
208 Leptotrichia sp._oral_taxon_223 37.8 42.3 36.5 37.1
209 Peptostreptococcaceae_[XI][G-6] [Eubacterium]_noda 37.2 35.6 37.0 38.5
209 Selenomonas sp._oral_taxon_937 37.2 36.4 35.2 40.1
211 Bacteroidetes_[G-5] sp._oral_taxon_511 36.8 41.0 37.2 33.8
212 Capnocytophaga sp._oral_taxon_323 36.7 36.0 37.4 36.2
213 Selenomonas sp._oral_taxon_149 36.4 30.5 33.8 43.2
213 Selenomonas sp._oral_taxon_442 36.4 30.1 37.5 38.5
215 SR1_[G-1] sp._oral_taxon_874 36.3 39.3 40.3 29.6
216 Porphyromonas sp._oral_taxon_275 36.0 36.4 37.7 33.6
217 Selenomonas sp._oral_taxon_478 35.9 31.4 38.4 35.2
218 Alloprevotella sp._oral_taxon_473 35.8 39.7 36.8 32.4
219 Neisseria bacilliformis 35.5 35.1 35.4 35.9
220 Capnocytophaga sp._oral_taxon_324 35.4 32.6 38.1 33.3
221 Veillonellaceae_[G-1] sp._oral_taxon_145 35.2 35.1 36.1 34.0
222 Atopobium sp._oral_taxon_199 34.9 36.0 36.1 32.6
223 Lachnospiraceae_[G-8] sp._oral_taxon_500 34.8 33.1 35.7 34.5
224 TM7_[G-2] sp._oral_taxon_350 34.6 34.7 34.7 34.5
225 Bacteroidaceae_[G-1] sp._oral_taxon_272 33.1 26.8 33.9 35.7
225 Capnocytophaga sp._oral_taxon_903 33.1 31.8 36.1 30.0
225 Selenomonas dianae 33.1 28.9 35.0 32.9
228 Prevotella baroniae 33.0 32.2 33.4 32.9
229 Leptotrichia goodfellowii 32.2 37.2 34.1 27.0
230 Prevotella micans 31.4 29.3 32.7 31.0
231 Porphyromonas sp._oral_taxon_278 31.0 31.8 31.9 29.3
232 Prevotella sp._oral_taxon_314 30.8 30.1 31.4 30.5
233 Haemophilus parahaemolyticus 30.3 37.2 31.8 24.4
234 Anaerolineae_[G-1] sp._oral_taxon_439 30.2 25.5 30.0 33.1
235 Selenomonas sp._oral_taxon_133 30.1 28.9 30.5 30.3
236 Treponema lecithinolyticum 29.5 30.1 31.2 26.8
237 Peptostreptococcaceae_[XI][G-5] [Eubacterium]_saph 28.3 22.2 31.4 27.7
238 Treponema sp._oral_taxon_237 27.0 32.2 28.9 21.6
239 Neisseria pharyngis 25.8 25.1 25.5 26.8
240 Leptotrichia sp._oral_taxon_879 25.4 25.9 25.6 24.9
241 Brevundimonas diminuta 25.3 27.6 25.8 23.2
242 Bradyrhizobium elkanii 24.9 26.4 22.7 26.8
242 Capnocytophaga sp._oral_taxon_332 24.9 29.7 26.2 20.4
244 Megasphaera sp._oral_taxon_123 24.5 32.2 24.2 20.7
245 Capnocytophaga sp._oral_taxon_380 22.2 20.5 24.9 19.7
246 Treponema vincentii 22.0 23.0 23.5 19.5
247 Prevotella sp._oral_taxon_376 21.4 26.8 23.5 15.7
248 Prevotella sp._oral_taxon_526 21.1 21.8 21.7 20.0
249 Aggregatibacter sp._oral_taxon_513 20.2 21.8 23.1 15.5
250 Lactobacillus gasseri 19.9 18.0 17.9 23.7
251 Fretibacterium sp._oral_taxon_358 19.3 16.7 19.3 20.7
252 Mitsuokella sp._oral_taxon_521 18.7 18.4 19.9 17.4
253 Fretibacterium sp._oral_taxon_361 18.5 15.5 19.1 19.2
254 Prevotella sp._oral_taxon_475 18.2 19.2 20.0 15.3
255 Treponema medium 18.1 16.3 19.5 17.4
256 Johnsonella sp._oral_taxon_166 16.7 12.6 18.6 16.7
257 Streptococcus sobrinus 15.9 13.8 14.4 19.0
258 Prevotella multiformis 15.5 16.3 15.5 15.0
259 Butyrivibrio sp._oral_taxon_080 14.5 15.1 15.9 12.4
260 GN02_[G-2] sp._oral_taxon_873 13.7 10.9 15.0 13.6
261 Aggregatibacter actinomycetemcomitans 12.3 12.1 11.4 13.6
262 Leptothrix sp._oral_taxon_025 10.9 13.4 11.4 8.9
263 Atopobium sp._oral_taxon_416 8.7 5.4 8.5 10.8
264 Sphingomonas sp._oral_taxon_006 7.2 5.9 7.9 7.0
265 Porphyrobacter tepidarius 6.9 7.1 6.1 7.7
266 Treponema sp._oral_taxon_247 4.8 6.3 4.5 4.2
267 Pyramidobacter piscolens 4.0 2.9 3.8 4.9

aBacteria in the table are rank ordered according to their prevalence in the overall cohort

Dashed line inserted below top 20 taxa

Discussion

The objective of the present study was to characterize, using high throughput sequencing of the 16S rRNA bacterial gene, the subgingival microbiome in relation to age among community-dwelling postmenopausal women, aged 53–81 years, whose selection into the study was not conditioned on presence or severity of periodontitis. We identified 267 taxa, of which 55% had previously been named within the HOMD database. The remaining previously unnamed OTUs could potentially identify novel microbiota residing in human subgingival biofilm, new discovery that could have important implications to periodontal microbiology [17, 34, 35]. The majority of taxa identified in our study fell within the four major human bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) determined in the HMP [36] and by others [3, 23] including the oral microbiome [21, 22, 3739]. As in other studies on the oral microbiome [21, 22, 3841], the most abundant phyla in our study were Firmicutes, Bacteroidetes, Fusobacteria and Proteobacteria, accounting for 46, 17, 14, and 9%, respectively, of the 265 taxa identified. The Firmicutes-to-Bacteroidetes ratio has been suggested as a possible indicator of the overall status of a microbial habitat in aging humans [6]. Previous studies on the gut microbiome have shown a lower ratio in older compared with younger individuals [42, 43]. In contrast, we observed a tendency toward higher Firmicutes-to-Bacteroidetes ratios across incremental age groups. In so much as some of the most virulent and well established periodontal pathogens (e.g., P. gingivalis, T. forsythia, T. denticola) reside in the phylum Bacteroides, whereas bacteria associated with a healthy periodontium (S. sanguis, oralis) reside in the phylum Firmicutes, a higher F-B ratio in the present cohort of aging women might be expected given the relatively small mean probing pocket depth (2.2 mm) overall, and lack of difference in this clinical measure of periodontitis across age groups. Whether the F-B ratio has similar relevance in the oral microbiome as has been reported previously for the gut microbiome requires further investigation.

The most abundant genus in our cohort was Veillonella, followed by Streptococcus, Fusobacterium, and Prevotella, with little variation in the distribution across age categories. Previous studies using targeted methods for measuring oral microbiota found substantially elevated abundance of Actinomyces and Fusobacterium genera in older adults [17, 38], which was not the case in our study (Actinomyces, overall: 1%, 70–79 years: 2%; Fusobacterium, overall: 11%, 70–79 years 10%) when using untargeted high-throughput sequencing. Other studies that measured the oral microbiome using 16S rRNA sequencing have reported the distribution of genera. Among community-dwelling adults (mean age 83; 61% women), analysis of salivary microbiome revealed Prevotella (22%) was most abundant, followed by Neisseria (12%), Veillonella (10%), and Streptococcus (8%) [22]. In another study on the salivary microbiome in Mexican American women, aged 50 and older, Hoffman et al. [21] reported that Streptococcus was most abundant (37%), followed by Prevotella (11%), Haemophilus (10%), and Veillonella (6%). Among Alaskan adults, aged 20–40 years, Streptococcus (28%) and Prevotella (27%) were by far most abundant, followed by Rothia (11%) and Veillonella (8%) [41]. Variation of microbial genera with age was not reported in these previous studies. Notwithstanding, there does appear to be some consistency across studies using culture-independent sequencing methods, including ours, in that Streptococcus, Prevotella, and Veillonella are abundant microbial genera commonly observed in the adult human oral microbiome.

Our primary analysis on microbial species composition and variation with age was based on CLR transformed OTUs taking into account the complex compositional structure of microbiome data [32]. The top 20 most abundant bacterial species had CLR means from 3.85 to 8.25, indicating these species were 14- to 304-fold (i.e., 23.85 to 28.25) more abundant than the overall composition mean (Table 3). V. dispar, S. oralis, and V. parvula were the top three most abundant species, each with CLR means > 7. V. dispar and parvula are gram-negative anaerobic bacteria commonly found in the human oral cavity [44], and have been associated with caries and periodontitis [34]. Evidence suggests V. parvula synergizes with Lachnoanaerobaculum (Eubacterium) saburreum, and the energy it produces, as a critical part of human subgingival biofilm formation [45]. L. saburreum was found at a relatively small, but elevated, abundance in our cohort (mean CLR, 1.07). Both bacterial species were positively correlated with age in our study, with a stronger correlation for V. parvula (r = 0.10) compared with L. saburreum (r = 0.04). S. oralis, in contrast, tends to be abundant in soft tissues of healthy periodontium [34], and as such was an original component in Socransky’s “yellow complex” defined using the checkerboard DNA-DNA hybridization method. S. oralis abundance has been shown to decline in the setting of experimental subgingival biofilm growth [34], which suggests it might be a key bacterium involved with the shift from a healthy to disease subgingival microbial ecology leading to periodontitis. The correlations with age for V. parvula (r = 0.10) and S. oralis (r = − 0.10) observed in the present study suggest that age could be a potential host factor contributing to susceptibility for untoward shifts in the human subgingival microbial ecology. Chronological age, per se, however, may not be the biologically relevant effector of shifts in microbial ecology. Rather, the tendency of aging to be associated with chronic immune function decline and upregulated proinflammatory signaling [8], referred to as “inflamm-aging” by Franceshi and coworkers [46] is likely a culpable perturbation of colonizing microbiota. Consistent with this hypothesis are results from studies of experimentally induced gingivitis, which demonstrated markedly greater amounts and severity of biofilm development in older than younger adults, despite no obvious differences in microbial compositional characteristics of the biofilm between age groups [17].

In the present study, 12 bacterial species differed significantly across age groups (Fig. 5). The largest difference in bacteria elevated in older adults was for B. dentium (phylum Actinobacteria), an anaerobe that has strong adhesion capacity, tolerates highly acidic conditions, and has been associated with human dental caries [47], but also with suppression of P. gingivalis, a virulent periodontitis pathogen [48]. This might partially explain why P. gingivalis was in relatively low abundance in our cohort of older women. Anaeroglobus geminatus (phylum Firmicutes) also demonstrated a rather large elevation in older compared with younger adults in our cohort. This bacterium has an identified role in perturbing a shift in the subgingival microbial ecology that favors development of periodontitis [49]. There was no difference in mean pocket depth measures among age groups in our cohort of older women, among whom prevalence of major risk factors for periodontitis, smoking and diabetes, also were low. However, it is conceivable that higher abundance of B. dentium and A. geminatus in the older age group could be reflective of an ongoing subgingival microbial community shift that leads to increased susceptibility to periodontitis progression in these women over time. Longitudinal analyses are required to confirm this hypothesis.

S. sanguinis and Corynebacterium durum showed the largest differences in bacteria between age groups among those elevated in younger women (Fig. 5). S. sanguinis (phylum Firmicutes) is a gram-positive anaerobe that is abundant in healthy periodontium [34] and plays a role in modifying the environment on oral surfaces such as to suppress growth of other Streptococci bacteria involved with oral diseases, such as S. mutans which is a causal agent in human carries [50]. S. sanguinis also might play a role in the shift of subgingival microbiota from a healthy to a disease ecology, serving as an adhesion site for virulent periodontal pathogens, such as P. gingivalis and F. nucleatum [50], each of which were in relatively low abundance in the present study. The role that C. durum (phylum Actinobacteria), also a gram-positive bacterium, might have in the subginigival microbial ecology is not entirely clear. Elevations of this bacterium originally was identified in bronchial wash solution and implicated in maintaining a healthy respiratory tract [51] and later, it’s reduction in saliva was associated with halitosis [52] and celiac disease [53]. Given it’s propensity to produce acid from available sugar compounds in saliva [54], and perhaps in other oral fluids including the gingival crevice, it is possible that this bacterium has a role in establishing or maintaining pH of the gingival pocket at a level commensurate with survival of other bacteria associated with periodontal health, such as S. sanguinis.

The vast majority of studies using untargeted high-throughput sequencing methods of the oral microbiome have reported measures of relative abundance or prevalence when describing microbial composition. Our primary measure for analysis of microbiota abundance in was the centered log-transformed ratio (CLR) OTU, as recommended by Gloor and coworkers [32]. While the basic cross-sectional findings of the present study were generally consistent when based on mean CLR OTUs, relative abundance, and prevalence, we believe that the CLR approach is the method of choice. Compositional data are vectors of non-negative numbers that sum to a fixed value, a constraint that can lead to spurious correlations. Subsequent work by Aitchison and colleagues yielded a set of log-ratio transformations that alleviate the sum-constraint burden, provide a consistent variance-covariance structure, and ensure that statistical results show consistency over subcompositions and OTU permutations [32, 55]. Subcompositional consistency, in particular, is necessary for the fundamental scientific concept of reproducibility across studies. The application of methods which ignore the compositional structure of microbiome data, like simple proportions (e.g., relative abundance, prevalent, or rarefaction) can lead to false positive associations and inferences [32]. In addition, the CLR transformation does not reduce the dimensionality of the dataset, maintaining the correspondence between transformed variables and OTUs, and easing the interpretation of conventional statistical tests, such as bivariate correlations and analysis of variance. Given the recent growth in microbiome research, the plethora of published studies that used different analytic methods, and the potential impact that continued investigation of the human microbiome could have on future understanding of disease etiology and therapeutics [24], the need for standardization of methods for analyzing and reporting microbiome data is paramount.

The present study has both strengths and limitations that need be considered when interpreting and generalizing its findings. Strengths include the large sample size of community-dwelling older postmenopausal women whose selection into the study was not conditioned on periodontitis presence or severity. Of the published studies reporting on the oral microbiome in older adults, the vast majority included relatively small sample sizes (e.g., < 100) and individuals that were selected to have either periodontal health or disease, often recruited from dental or other healthcare settings [17, 18, 22, 37, 40, 56]. Understanding the epidemiology of oral microbiota composition and its association with host characteristics in a more general community setting is a critical foundational step for evaluating associations between oral microbiome and both oral and systemic disease, as well as response to therapeutic intervention [24]. Previous oral microbiome studies on older adults relied largely on targeted low-throughput methods for characterizing oral microbiota [17, 18, 38, 56]. The limitations of these methods have been discussed elsewhere [17, 57]. Only recently have studies, including ours, utilized state-of-the science untargeted high-throughput next generation sequencing methods to investigate the oral microbiome in adults in middle- and older ages [2123, 3941]. This not only allows for greater sensitivity in characterizing the complexity of oral microbial communities, but also for potential discovery of new previously unidentified microbiota, which is essential to deeper understanding of the oral microbiome [17, 35]. Weaknesses of the present study include its cross-sectional design, which precludes temporal understanding of the relationship between aging and formation of the observed oral microbiome. The cross-sectional nature of our results precludes causal inferences regarding the relationship between age and the subgingival microbial composition and diversity. Using means to describe complex data, such as the subgingival microbiome, is helpful for descriptive purposes and ease of understanding, however they do not provide insight on between-subject variability nor do they allow for understanding of shifts between healthy and disease ecologies [34]. Prospective studies are needed using statistical methods appropriate for quantifying changes in microbiota between groups differing on host characteristics, such as aging or periodontal disease onset and progression, or in response to therapeutic intervention. The present cross-sectional observations, such as the significant differences in CLR mean OTUs between older and younger women (Fig. 5), could inform development of hypotheses for testing in a prospective study design. Lastly, we were not able to determine the functional attributes of the particularly abundant or sparse microbiota identified in our older cohort of women, nor of the bacterium that differed in abundance between older and younger women. It is becoming clearer that the functions determined by the genes expressed by microbiota are likely more influential on health or disease states than is the microbial composition [1, 15, 17]. Because aging is a non-modifiable host characteristic intimately involved with both structural and functional changes in the human body over the adult lifespan, the relationship between age and microbial function is of high interest [7].

Conclusion

We conclude that in a large cross-sectional analysis on the subgingival microbiome in postmenopausal women, aged 53–81 years, who were not selected on the basis of periodontitis status, a diverse subgingival microbiome was present and several bacterial species were correlated with age across the age range studied. Twelve microbiota were identified that differed significantly in abundance between women aged 50–59 versus 70 and older. Prospective data are needed to characterize the temporal relation between aging and shifts or stability in the abundance and pattern of subgingival microbiota observed herein to better elucidate the role, if any, that aging has on the oral microbiome. Age alone, however, does not determine the human subgingival microbiome. Other factors, including senescence of tissues and functions, side effects of medication use, status of the gingiva and dentition, systemic diseases, oral hygiene and behavioral habits, are thought to influence the microbiome. The extensive cross-sectional observations reported here provide a starting point and direction to define a targeted subset of bacteria that appear be related with age for further analysis in which issues such as confounding or interaction with the above and other factors can be evaluated with greater statistical efficiency involving fewer tests to correct for false discovery. This will be the focus of a forthcoming manuscript from our longitudinal cohort. Additional understanding about the functions of bacteria that differ with age in later life could identify intervention targets for enhanced oral health and, possibly control of other diseases.

Acknowledgements

Not applicable.

Abbreviations

CLR

Centered-log(2)-ratio

OTU

Operational Taxonomic Unit

Authors’ contributions

Conception, design, and acquisition of data and biologic samples in the original studies (JWW, RJG). Microbiome laboratory (MJB, YS, MT, DIM). Data analysis and interpretation (LL, DIM, KMH, CAA, MJL, MJB, WZ, YS, JWW, RJG). Manuscript drafting and editing (MJL, KMH, CAA, DIM, JWW, RJG, YS, MJB, WZ, LL, HB, AEM). Final Approval of manuscript (MJL, RJG, MJB, DIM, LL, KMH, CAA, WZ, YS, MT, HB, AEM, JWW). Agreed to be accountable for all aspects of the work ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved (MJL, JWW).

Funding

National Heart, Lung, and Blood Institute contract N01WH32122; National Institute for Dental and Craniofacial Research Grants: DE13505, DE4898, DE022654, and DE024523; National Institute of Allergy and Infectious Diseases R01Al125982, U.S. Army Reserve Medical Corps Grant: DAMD17–96-1-6319; Feasibility Study Award (AS382) from the Women’s Health Initiative Program. Decisions concerning design and conduct of the study, collection, management, analysis, and interpretation of the data, preparation, review, and approval of the manuscript, and the decision to submit the manuscript for publication resided with committees comprising WHI investigators that included NHLBI and NIDCR representatives. The contents of the manuscript are solely the responsibility of the authors.

Availability of data and materials

Data that support the findings of this study are available from the authors upon reasonable request and with permission of the U.S. Women’s Health Initiative program.

Ethics approval and consent to participate

Participants provided written informed consent for all components of the studies, which were conducted in accord with the Helsinki Declaration on human subjects research. Experimental protocols for the WHI study, the OsteoPerio study, and microbiome study detailed in this paper were approved by the Institutional Review Board at the University at Buffalo.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prior to publication of this work, Dr. Robert Genco passed away unexpectedly. The manuscript is dedicated to his lasting memory as a pioneering scientist, teacher, mentor, colleague, and sorely missed friend. Rest in peace, Bob.

Contributor Information

Michael J. LaMonte, Phone: 716-829-5379, Email: mlamonte@buffalo.edu

Michael J. Buck, Email: mjbuck@buffalo.edu

Daniel I. McSkimming, Email: dim@buffalo.edu

Lu Li, Email: lli59@buffalo.edu.

Kathleen M. Hovey, Email: koreilly@buffalo.edu

Christopher A. Andrews, Email: candrews@buffalo.edu

Wei Zheng, Email: zhengw@buffalo.edu.

Yijun Sun, Email: yijunsun@buffalo.edu.

Amy E. Millen, Email: aemillen@buffalo.edu

Maria Tsompana, Email: mtsompana@buffalo.edu.

Hailey R. Banack, Email: hrbanack@buffalo.edu

Jean Wactawski-Wende, Email: jww@bufalo.ed.

References

  • 1.Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550(7674):61–66. doi: 10.1038/nature23889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J. Metagenomic pyrosequencing and microbial identification. Clin Chem. 2009;55(5):856–866. doi: 10.1373/clinchem.2008.107565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697. doi: 10.1126/science.1177486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Human MJR, Strains C, Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328(5981):994–999. doi: 10.1126/science.1183605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–270. doi: 10.1038/nrg3182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 2012;34(1):247–267. doi: 10.1007/s11357-011-9217-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–781. doi: 10.1111/jgs.13310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Weinert BT, Timiras PS. Invited review: theories of aging. J Appl Physiol (1985) 2003;95(4):1706–1716. doi: 10.1152/japplphysiol.00288.2003. [DOI] [PubMed] [Google Scholar]
  • 9.Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 2013;5(12):902–12. doi: 10.18632/aging.100623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral Microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77(23):6777–6787. doi: 10.1158/0008-5472.CAN-17-1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–974. doi: 10.1038/ismej.2010.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–5017. doi: 10.1128/JB.00542-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Takahashi N. Oral Microbiome metabolism: from "who are they?" to "what are they doing?". J Dent Res. 2015;94(12):1628–1637. doi: 10.1177/0022034515606045. [DOI] [PubMed] [Google Scholar]
  • 14.Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. 2005;13(12):589–595. doi: 10.1016/j.tim.2005.09.006. [DOI] [PubMed] [Google Scholar]
  • 15.Wang GP. Defining functional signatures of dysbiosis in periodontitis progression. Genome Med. 2015;7(1):40. doi: 10.1186/s13073-015-0165-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res. 2013;92(6):485–491. doi: 10.1177/0022034513487559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Feres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016;72(1):30–53. doi: 10.1111/prd.12136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Haffajee AD, Cugini MA, Tanner A, Pollack RP, Smith C, Kent RL, Jr, et al. Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J Clin Periodontol. 1998;25(5):346–353. doi: 10.1111/j.1600-051X.1998.tb02454.x. [DOI] [PubMed] [Google Scholar]
  • 19.Zawadzki PJ, Perkowski K, Padzik M, Mierzwinska-Nastalska E, Szaflik JP, Conn DB, et al. Examination of Oral microbiota diversity in adults and older adults as an approach to prevent spread of risk factors for Human infections. Biomed Res Int. 2017;2017:8106491. doi: 10.1155/2017/8106491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Asakawa M, Takeshita T, Furuta M, Kageyama S, Takeuchi K, Hata J, et al. Tongue microbiota and Oral health status in community-dwelling elderly adults. mSphere. 2018;3(4):e00332-18. [DOI] [PMC free article] [PubMed]
  • 21.Hoffman KL, Hutchinson DS, Fowler J, Smith DP, Ajami NJ, Zhao H, et al. Oral microbiota reveals signs of acculturation in Mexican American women. PLoS One. 2018;13(4):e0194100. doi: 10.1371/journal.pone.0194100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ogawa T, Hirose Y, Honda-Ogawa M, Sugimoto M, Sasaki S, Kibi M, et al. Composition of salivary microbiota in elderly subjects. Sci Rep. 2018;8(1):414. doi: 10.1038/s41598-017-18677-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, et al. Aging-related changes in the diversity of women's skin microbiomes associated with oral bacteria. Sci Rep. 2017;7(1):10567. doi: 10.1038/s41598-017-10834-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Foxman B, Seitz SM, Rothenberg R. Epidemiology and the microbiome. Ann Epidemiol. 2016;26(5):386–387. doi: 10.1016/j.annepidem.2016.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women's Health Initiative observational study: baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol. 2003;13(9 Suppl):S107–S121. doi: 10.1016/S1047-2797(03)00047-4. [DOI] [PubMed] [Google Scholar]
  • 26.LaMonte MJ, Hovey KM, Genco RJ, Millen AE, Trevisan M, Wactawski-Wende J. Five-year changes in periodontal disease measures among postmenopausal females: the Buffalo OsteoPerio study. J Periodontol. 2013;84(5):572–584. doi: 10.1902/jop.2012.120137. [DOI] [PubMed] [Google Scholar]
  • 27.Wactawski-Wende J, Hausmann E, Hovey K, Trevisan M, Grossi S, Genco RJ. The association between osteoporosis and alveolar crestal height in postmenopausal women. J Periodontol. 2005;76(11 Suppl):2116–2124. doi: 10.1902/jop.2005.76.11-S.2116. [DOI] [PubMed] [Google Scholar]
  • 28.Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Cimato TR, Hovey KM, et al. Association of clinical measures of periodontal disease with blood pressure and hypertension among postmenopausal women. J Periodontol. 2018;89(10):1193–1202. doi: 10.1002/JPER.17-0562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Brennan RM, Genco RJ, Wilding GE, Hovey KM, Trevisan M, Wactawski-Wende J. Bacterial species in subgingival plaque and oral bone loss in postmenopausal women. J Periodontol. 2007;78(6):1051–1061. doi: 10.1902/jop.2007.060436. [DOI] [PubMed] [Google Scholar]
  • 30.Zheng W, Tsompana M, Ruscitto A, Sharma A, Genco R, Sun Y, et al. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome. 2015;3:48. doi: 10.1186/s40168-015-0110-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 32.Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It's all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26(5):322–329. doi: 10.1016/j.annepidem.2016.03.003. [DOI] [PubMed] [Google Scholar]
  • 33.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontology 2000. 2005;38:135–187. doi: 10.1111/j.1600-0757.2005.00107.x. [DOI] [PubMed] [Google Scholar]
  • 35.Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, et al. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014;93(9):846–858. doi: 10.1177/0022034514542468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Human Microbiome Project C Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6(6):1176–1185. doi: 10.1038/ismej.2011.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Preza D, Olsen I, Willumsen T, Grinde B, Paster BJ. Diversity and site-specificity of the oral microflora in the elderly. Eur J Clin Microbiol Infect Dis. 2009;28(9):1033–1040. doi: 10.1007/s10096-009-0743-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016;10(10):2435–2446. doi: 10.1038/ismej.2016.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Huang S, Yang F, Zeng X, Chen J, Li R, Wen T, et al. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health. 2011;11:33. doi: 10.1186/1472-6831-11-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Li J, Quinque D, Horz HP, Li M, Rzhetskaya M, Raff JA, et al. Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol. 2014;14:316. doi: 10.1186/s12866-014-0316-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–4591. doi: 10.1073/pnas.1000097107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi: 10.1186/1471-2180-9-123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Sato T, Matsuyama J, Sato M, Hoshino E. Differentiation of Veillonella atypica, Veillonella dispar and Veillonella parvula using restricted fragment-length polymorphism analysis of 16S rDNA amplified by polymerase chain reaction. Oral Microbiol Immunol. 1997;12(6):350–353. doi: 10.1111/j.1399-302X.1997.tb00737.x. [DOI] [PubMed] [Google Scholar]
  • 45.Mashimo PA, Murayama Y, Reynolds H, Mouton C, Ellison SA, Genco RJ. Eubacterium saburreum and Veillonella parvula: a symbiotic association or oral strains. J Periodontol. 1981;52(7):374–379. doi: 10.1902/jop.1981.52.7.374. [DOI] [PubMed] [Google Scholar]
  • 46.Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. 2014;69(Suppl 1):S4–S9. doi: 10.1093/gerona/glu057. [DOI] [PubMed] [Google Scholar]
  • 47.Toh H, Hayashi J, Oshima K, Nakano A, Takayama Y, Takanashi K, et al. Complete genome sequence of Bifidobacterium dentium strain JCM 1195T, isolated from Human dental caries. Genome Announc. 2015;3(2):e00284-15. [DOI] [PMC free article] [PubMed]
  • 48.Jasberg H, Soderling E, Endo A, Beighton D, Haukioja A. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model. Eur J Oral Sci. 2016;124(3):251–258. doi: 10.1111/eos.12266. [DOI] [PubMed] [Google Scholar]
  • 49.Bao K, Bostanci N, Thurnheer T, Belibasakis GN. Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci Rep. 2017;7(1):4409. doi: 10.1038/s41598-017-04594-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018;13:915–932. doi: 10.2217/fmb-2018-0043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Riegel P, Heller R, Prevost G, Jehl F, Monteil H. Corynebacterium durum sp. nov., from human clinical specimens. Int J Syst Bacteriol. 1997;47(4):1107–1111. doi: 10.1099/00207713-47-4-1107. [DOI] [PubMed] [Google Scholar]
  • 52.Haraszthy VI, Zambon JJ, Sreenivasan PK, Zambon MM, Gerber D, Rego R, et al. Identification of oral bacterial species associated with halitosis. J Am Dent Assoc(1939) 2007;138(8):1113–1120. doi: 10.14219/jada.archive.2007.0325. [DOI] [PubMed] [Google Scholar]
  • 53.Francavilla R, Ercolini D, Piccolo M, Vannini L, Siragusa S, De Filippis F, et al. Salivary microbiota and metabolome associated with celiac disease. Appl Environ Microbiol. 2014;80(11):3416–3425. doi: 10.1128/AEM.00362-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Tsuzukibashi O, Uchibori S, Shinozaki-Kuwahara N, Kobayashi T, Takada K, Hirasawa M. A selective medium for the isolation of Corynebacterium species in oral cavities. J Microbiol Methods. 2014;104:67–71. doi: 10.1016/j.mimet.2014.06.005. [DOI] [PubMed] [Google Scholar]
  • 55.Aitchison J. The statistical analysis of compositional data. London: Chapman and Hall; 1986. [Google Scholar]
  • 56.Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol. 2000;27(9):648–657. doi: 10.1034/j.1600-051x.2000.027009648.x. [DOI] [PubMed] [Google Scholar]
  • 57.Dahlen G, Preus HR, Baelum V. Methodological issues in the quantification of subgingival microorganisms using the checkerboard technique. J Microbiol Methods. 2015;110:68–77. doi: 10.1016/j.mimet.2015.01.010. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data that support the findings of this study are available from the authors upon reasonable request and with permission of the U.S. Women’s Health Initiative program.


Articles from BMC Oral Health are provided here courtesy of BMC

RESOURCES