Skip to main content
PLOS ONE logoLink to PLOS ONE
. 2019 Nov 18;14(11):e0225133. doi: 10.1371/journal.pone.0225133

Antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding: A population cohort analysis

Sue Jordan 1,*,#, Gareth I Davies 2,#, Daniel S Thayer 2,#, David Tucker 1,3,#, Ioan Humphreys 1,#
Editor: Kenji Hashimoto4
PMCID: PMC6860440  PMID: 31738813

Abstract

Objectives

To explore associations between exposure to antidepressants, their discontinuation, depression [medicated or unmediated] and preterm birth [<37 and <32 weeks], small for gestational age (SGA) [<10th and <3rd centiles], breastfeeding [any] at 6–8 weeks.

Methods

Design: A population-based cohort study.

Setting: The Secure Anonymised Information Linkage [SAIL] databank in Wales, linking maternal primary care data with infant outcomes.

Participants: 107,573, 105,331, and 38,725 infants born 2000–2010 with information on prematurity, SGA and breastfeeding respectively, after exclusions.

Exposures: Maternal antidepressant prescriptions in trimesters 2 or 3, discontinuation after trimester 1, recorded diagnosis of depression [medicated or unmediated] in pregnancy.

Methods: Odds ratios for adverse pregnancy outcomes were calculated, adjusted for smoking, parity, socio-economic status, and depression.

Results

Exclusive formula feeding at 6–8 weeks was associated with prescriptions in trimesters 2 or 3 for any antidepressants (adjusted odds ratio [aOR] 0.81, 95% confidence intervals 0.67–0.98), SSRIs [aOR 0.77, 0.62–0.95], particularly higher doses [aOR 0.45, 0.23–0.86], discontinuation of antidepressants or SSRIs after trimester 1 (aOR 0.70, 0.57–0.83 and 0.66, 0.51–0.87), diagnosis of depression aOR 0.76 [0.70–0.82), particularly if medicated (aOR 0.70, 0.58–0.85), rather than unmedicated (aOR 0.87, 0.82–0.92). Preterm birth at <37 and <32 weeks’ gestation was associated with diagnosis of depression (aOR 1.27, 1.17–1.38, and 1.33, 1.09–1.62), particularly if medicated (aOR 1.56, 1.23–1.96, and 1.63, 0.94–2.84); birth at <37 weeks was associated with antidepressants, (aOR 1.24, 1.04–1.49]. SGA <3rd centile was associated with antidepressants (aOR 1.43, 1.07–1.90), and SSRIs (aOR 1.46, 1.06–2.00], particularly higher doses [aOR 2.10, 1.32–3.34]. All adverse outcomes were associated with socio-economic status and smoking.

Implications

Exposure to antidepressants or depression increased risks of exclusive formula feeding at 6–8 weeks, and prescription of antidepressants was associated with SGA <3rd centile. Prescription of antidepressants offers a useful marker to target additional support and additional care before and during pregnancy and lactation.

Introduction

Some 20% women aged 16–54 report at least one common mental health problem: this figure [point prevalence of 19.5–25.2%] has remained unchanged since 2000. [1] The prevalence of depression during pregnancy is reported as between 6 and 13%,[2, 3] and around 10% pregnant women develop a depressive illness during pregnancy or postpartum, with a further 16% developing a self-limiting depressive reaction. [4]

Selective serotonin reuptake inhibitors [SSRIs] are the most commonly prescribed antidepressants: [5,4] 2.8% [6] to 10.2%[7] pregnant women are prescribed SSRIs during pregnancy, with marked variation across Europe. [8] SSRIs, and their metabolites, cross the placenta, [9] and appear in cord blood [10, 11] in proportion to dose administered; [12] foetal exposure is prolonged by accumulation in amniotic fluid. SSRIs, and some other antidepressants, act on the crucial serotonin transporter [SERT, aka 5HTT, SLC6A4, OMIM 182138], increasing the bioavailability of serotonin [5HT] in many tissues, including the placenta. [13] Serotonin-induced vasoconstriction [11, 14, 15] reduces placental blood flow, leaving the foetus vulnerable to intra-uterine growth retardation. Serotonin may also promote preterm birth by its uterotonic actions. [16]

The dose-response relationship between SSRI prescriptions in trimester 1 and the adverse outcome ‘major congenital anomaly and/ or stillbirth’ [17] is a concern, but the effects of SSRI exposure, discontinuation and depression on the range of pregnancy outcomes, including lactation, need to be considered together. Observation studies indicate increased risks of spontaneous abortion [18] low birth weight [19], prematurity [20, 21, 22], admission to neonatal special care facilities, [23] gestational hypertension, [24] and persistent pulmonary hypertension in neonates. [25, 26] However, despite biological plausibility, not all studies report an increase in preterm birth, [27] and poor parental perinatal mental health can adversely affect childhood outcomes. [27]

Many studies are unable to account for the effects of underlying mental illness, discontinuation of medication, social stress or smoking and some associations with adverse outcomes may be shared with non-SSRI antidepressants [28] or depressive illness. [29] Consequently, the key question for women and clinicians—the harm to benefit balance of starting, stopping or continuing antidepressant pharmacotherapy [5]—remains unanswered. Accordingly, the aim of this study is to investigate any associations between antidepressants, SSRIs at standard and higher doses, their discontinuation after trimester 1, and depression [medicated or unmedicated] and the range of adverse outcomes important to women: preterm birth, intra-uterine growth as SGA and, for the first time, breastfeeding [any] at 6–8 weeks, complementing reports of increased prevalence of congenital anomalies [17].

Methods

A population-based cohort was built from prospectively collected routine NHS data and analysed retrospectively.

Ethics

The Secure Anonymised Information Linkage [SAIL] Databank Information Governance Review Panel [IGRP] approved the study on behalf of the National Research Ethics Service, Wales on 24th March 2011. Data were irrevocably anonymised and obtained with permission of the relevant Caldicott Guardian and Data Protection Officer [30].

Setting

Data were extracted from existing routinely collected data in SAIL, housed in Swansea University. Within SAIL, we linked primary care records, including prescriptions, for the ~40% of the population whose general practitioners (GPs) had agreed to share data with SAIL, without payment, by 2014. [31,32] to: the Office of National Statistics births and deaths register, the National Community Child Health Database [NCCHD] [http://www.wales.nhs.uk/news/28291], the Patient Episode Database for Wales [http://www.wales.nhs.uk/document/176173], CARIS [Congenital Anomaly Register and Information Service for Wales] [http://www.caris.wales.nhs.uk/home]. Databases were linked by a trusted third party [NHS Wales Informatics Service [NWIS], [http://www.wales.nhs.uk/sitesplus/956/home], using unique personal identifiers, which remained undisclosed to researchers, ensuring anonymity. [33]

Population

The study population included all births in Wales after 24 gestational weeks between 1st January 2000 and 31st December 2010, with linked maternal prescription data. Infants were included where the associated maternal ID could be linked with the primary care dataset, which was dependent on the general practice, and the record was complete. [33] We included all infants where the woman was present in the linked database with primary care prescription information 91 days before last menstrual period [LMP] to birth. Information on start of pregnancy was obtained from ultrasound scan data recorded in the NCCHD. [33]

Exposure

Exposure was defined as one or more prescription for an antidepressant issued between 92 days after the first day of LMP and birth [Table 1]. We based our timeframe on prescription duration [typically 90 days] and relevant pharmacokinetic parameters: for example, elimination of the active metabolite of fluoxetine can take ~40 days in adults, [34] and longer in the embryo or foetus. [35] Antidepressants were investigated according to anatomical, therapeutic, chemical [ATC] classification grouped: a] all SSRIs [N06AB]; b] all serotonin and norepinephrine reuptake inhibitors (SNRIs) [N06AX]; c] all antidepressants, including SSRIs and SNRIs [N06A].

Table 1. Classification of exposures.

Exposure ATC Timeframe
SSRI [any]
≥1 SSRI [any] prescription in trimesters 2 or 3
N06AB From 92 days after the first day of LMP to birth
High dose SSRI
≥1 high dose SSRI [any] prescription t2-3 [defined as tablet sizes: 60mg fluoxetine, 40mg citalopram, 30mg paroxetine, 100mg sertraline, 20mg escitalopram]
N06AB From 92 days after the first day of LMP to birth
Antidepressant [any]
≥1 Antidepressant prescription trimesters 2 or 3 t2-3*
N06A From 92 days after the first day of LMP to birth
SNRI [any]
≥1 prescription for an SNRI in trimesters 2 or 3
Venlafaxine N06AX16, reboxetine N06AX18, duloxetine N06AX21 From 92 days after the first day of LMP to birth
Depression diagnosis in the primary care record whilst on the database - Any time before the end of trimester 1 [91 days after 1st day of LMP]
Unmedicated depression Depression diagnosis recorded [as above] but no antidepressant prescribed in trimesters 2 or 3 [t2-3].
Medicated depression N06A Depression diagnosis recorded [as above] plus an antidepressant in trimesters 2 or 3 [t2-3].
Discontinued SSRI:
≥1 SSRI prescription in trimester 1, but not in trimesters 2 or 3
N06AB Prescription between 1st day LMP and 91 days after 1st day LMP] and no further prescriptions recorded throughout pregnancy
Discontinued antidepressant:
≥1 prescription of any antidepressant in trimester 1, but not in trimesters 2 or 3
N06A Prescription between 1st day LMP and 91 days after 1st day LMP] and no further prescriptions recorded throughout pregnancy

LMP—last menstrual period, SSRI–selective serotonin reuptake inhibitor, SNRI–serotonin and noradrenaline reuptake inhibitor

Medicines were defined by ATC codes, and then matched to version 2 Read codes in the GP database, using reference data provided by NHS Digital Technology Reference Data Update Distribution [https://isd.digital.nhs.uk/trud3/user/guest/group/0/home].

Depression was defined as any diagnosis of depression in the woman’s record before the end of trimester 1 [91 days after 1st day of LMP], recorded by the GP using Read codes, version 2 [17,36, 37] (S1 File). Vulnerability and kindling hypotheses [38] suggest that any episode of depression may predispose to recurrence during pregnancy [39] with associated stressor-induced release of inflammatory cytokines, and any episode of depression permanently changes the hippocampus, prefrontal cortex neurochemistry and fronto-cingulate connections: [38] accordingly, we did not time-limit depression exposure. Medicated and unmedicated depression were defined as a recorded diagnosis of depression, with / without any antidepressant prescribed in trimesters 2 or 3. Discontinuation was defined as ≥1 prescription during trimester 1 and no further prescriptions recorded throughout pregnancy [Table 1]. Other indications for antidepressants recorded were: post-traumatic stress disorder [PTSD], obsessive compulsive disorder [OCD], panic disorder, bulimia, general and social anxiety disorders. We ascertained whether women had been admitted to hospital with a mental health diagnosis or had contacted community mental health teams [CMHTs] before [any time], during or up to 1 year after pregnancy.

Dose was not directly available, so tablet and capsule strengths were taken as proxies. We classified high dose SSRI exposure as prescription of: 60mg fluoxetine, 40mg citalopram, 30mg paroxetine, 100mg sertraline, 20mg escitalopram, based on tablet/ capsule sizes quoted in the British National Formulary. [40] Smaller tablets and capsules were classified as ‘other dose’ [low or medium]. [33]

Outcomes

Prematurity was defined as <37, and extreme prematurity as <32 completed weeks’ gestation. [41] Growth centiles were calculated from WHO standards for the UK, and infants below the 10th and 3rd centiles were identified; the latter category is defined as 2 standard deviations below the median. [42]

Breastfeeding [any, even if supplemented by formula feeding] at birth and 6–8 weeks is routinely recorded by health visitors, and this information is transferred to NCCHD; data collection is more complete in some Health Boards than others. [43] Breastfeeding at birth is considered an indirect measure, which may represent intention rather than practice, and may not indicate successful breastfeeding; [44] we report data at 6–8 weeks. Data were available from 2004, reducing the sample size.

Confounding

To minimise confounding by co-exposure, we excluded pregnancies known to be at increased risk of adverse outcomes. We achieved a relatively homogeneous population by excluding from the main analysis infants: 1) with major congenital anomalies [as defined by EUROCAT; [45] 2) from multiple pregnancies; 3) stillborn; 4) whose mothers were prescribed medicines more closely associated with adverse outcomes than antidepressants in trimester 1 or the quarter preceding pregnancy: anti-epileptic drugs [AEDs] [N03]; [46] coumarins [B01AA], mainly warfarin [47]; insulins [A10A]; [48] and 5) whose mothers had any record of: heavy alcohol use and/or substance misuse. [49] We did not exclude moderate alcohol use as this is not known to affect perinatal outcomes, [49] and may be inconsistently recorded. To minimize confounding by indication, we adjusted analyses for depression [any recorded diagnosis], [38] and investigated depression, both medicated and unmedicated, discontinuation of medication and higher doses separately. We also adjusted for socioeconomic status [SES], as Townsend fifths (Tables A1, A2 in S2 File), parity, smoking [as ‘yes’ or ‘no’], and year of birth. In this cohort, SES is associated with antidepressant prescriptions, depression and maternal age at birth. [17,50] Where confounders are correlated, the odds ratios are less vulnerable to bias [51]. Therefore, in view of the low numbers in some outcomes, to reduce co-linearity with SES and parity, age [a non-modifiable risk factor] was not entered into the regression analyses. There were too few women aged >39 at birth to explore this potentially high risk group separately.

Statistical analysis

We explored associations between prematurity, SGA and breastfeeding and: a) ≥1 prescription in trimesters 2 or 3 of any antidepressant, and SSRIs at any and high doses; b) discontinuation of SSRI or antidepressant after trimester 1; c) depression, medicated or unmedicated. Outcomes with sufficient numbers of exposed pregnancies were explored by multivariate logistic regression, backwards likelihood ratio [52], with covariates SES [53], parity, smoking, year of birth, and, where appropriate, depression using SPSS version 25 for windows [IBM Corp 2011]. [54] Interaction variables ‘depression*SSRI’ or ‘depression*antidepressant’ were entered into the models to test the independence of the diagnosis and the prescription. Where associations were statistically significant, numbers needed to harm [NNH] were calculated, to aid interpretation of findings. We explored demographic differences between the women with and without breastfeeding data at 6–8 weeks.

Results

After exclusions, 107,573, 105,331, and 38,725 infants available for analysis on prematurity, SGA and breastfeeding [Fig 1]. Adverse outcomes were more prevalent and breastfeeding rates were lower in infants exposed to insulin, AEDs, coumarins substance misuse or heavy alcohol use [Tables B1, B2 in S2 File]. Some 2% women prescribed antidepressants were co-exposed to AEDs, and exposure to insulin, smoking, substance misuse or heavy alcohol use was more prevalent than in the population. Co-exposures with diagnosed depression was slightly lower. Both depression and antidepressant prescriptions were more prevalent amongst the most economically deprived and the most obese [BMI>30] [Tables A1, A2 in S2 File].

Fig 1. Study flow diagram.

Fig 1

In trimesters 2 or 3, 1625 [1.5%] women were prescribed SSRIs, [538 at high doses], and 2043 [1.9%] an antidepressant. Of these, 836 [51.4%] and 1048 [51.3%] had a diagnosis of depression. 12,748 women had been diagnosed with depression at some point. Many women diagnosed with post-traumatic stress disorder [PTSD], obsessive compulsive disorder [OCD], panic disorder, bulimia, general and social anxiety disorders were also diagnosed with depression. Of the 2394 women diagnosed with any of these conditions, but not depression, 141 [5.89%] were prescribed an antidepressant in trimesters 2 or 3, indicating that 854 [2043-1048-141] [41.80%] recipients of antidepressants had no recorded indication for their prescriptions.

Most (4252/6295, 67.55%) women prescribed antidepressants in trimester 1 had no further prescriptions in trimesters 2 or 3: of these, 2076 [48.8%] had a diagnosis of depression, and 2285 were prescribed an SSRI. In the entire cohort (107,573), nine women were admitted to hospital with a mental health diagnosis during pregnancy, and 18 in the year following childbirth. Eleven or the 27 women admitted had discontinued an antidepressant after trimester 1, representing 0.26% of the 4252 discontinuing. Some [numbers too low for disclosure] had contacted their CMHTs. Of the 4252 women discontinuing antidepressants, 163 (3.93%) had contacted CMHTs during, and 127 (2.99%) after pregnancy.

All exposures were associated with increased prevalence of at least some adverse outcomes. Not all associations were statistically significant. There were low numbers of infants in the extreme prematurity, <3rd centile, high dose and medicated depression categories. Economic deprivation, smoking and primiparity were associated with SGA and prematurity; only breastfeeding was associated with year of birth [Tables C-E in S2 File].

Preterm birth, before 37 and 32 weeks’ gestation, was associated with a diagnosis of depression [aOR 1.27, 1.17–1.38, NNH 69, 52–101 and 1.33, 1.09–1.62, NNH 389, 222–1451], particularly medicated depression [aOR 1.56, 1.23–1.96], NNH 30, 20–62, and aOR 1.63, 0.94–2.84]. Birth at <37 weeks’ was associated with any antidepressant in trimesters 2 or 3 [1.24, 1.04–1.49, NNH 44, 29–90]. Associations with SSRI prescription were not statistically significant. Prevalence of birth at <32 weeks’ was highest with medicated depression and high dose SSRIs, but associations did not reach statistical significance. There was no increased risk if antidepressants were discontinued after trimester 1 [Tables 2 and 3].

Table 2. Preterm birth @<37 weeks’ gestation (n = 107573).

Exposures Exposed n [%] Unexposed n [%] Unadjusted OR [95% CI] Adjusted* OR [95% CI] NNH Interaction term with depression variable
SSRI [any N06AB] in trimesters 2 or 3 124/1625 [7.63] 6033/105,948 [5.69] 1.37[1.14–1.65] 1.19[0.97–1.46] Ns 1.03[0.68–1.54]
SSRI high dose in trimesters 2 or 3 38/538 [7.06] 6119/107,035 [5.72] 1.25[0.90–1.75] 1.05[0.72–1.53] Ns 1.27[1.17–1.37]
Antidepressant [any N06A] in trimesters 2 or 3 163/2043 [7.98] 5994/105,530 [5.68] 1.44[1.24–1.63] 1.24 [1.04–1.49] 44 [29–90] 0.90[0.63–1.30]
SSRI in trimester 1 but not in trimesters 2 or 3 165/2285 [7.22] 5992/ 205,288 [5.69] 1.29[1.10–1.51] 1.00[0.77–1.30] Ns 1.28[1.18–1.38]
Antidepressant in trimester 1 but not in trimesters 2 or 3 306/4252 [7.2] 5851/103,321 [5.66] 1.29[1.15–1.46] 0.99[0.82–1.21] Ns 1.28[1.19–1.39]
Depression unmedicated 812/11,700 [6.94] 5345/95,873 [5.58] 1.26[1.17–1.36] 1.23[1.13–1.34] 74 [55–115] NA
Depression medicated 95/1048 [9.06] 6062/10,652 [5.69] 1.65[1.34–2.04] 1.56[1.23–1.96] 30 [20–62] NA
Depression diagnosed 907/12,748 [7.11] 5250/94,034 [5.54] 1.30[1.22–1.41] 1.27[1.17–1.38] 69 [52–101] NA

*Adjusted for parity, smoking, socio-economic status [SES] as Townsend fifth [quintile].

Exclusions from analysis: all congenital anomalies, terminations of pregnancy for foetal anomalies [TOPFA], stillbirths, multiple births [twins, triplets and quadruplets [no higher multiples in the dataset]], ≥1 prescription for insulin, anti-epileptic drugs [AEDs] or coumarins in the quarter preceding pregnancy and trimester 1, heavy drinking/substance misuse [any record].

Deprivation [Townsend] scores, ranks and fifths are based on geographical area of residence, using Lower Super Output Areas [LSOAs] defined by residential postcodes. This measure of material deprivation is calculated from rates of unemployment, vehicle ownership, home ownership, and overcrowding]. [54]

Abbreviations and definitions are listed in Table 1.

OR odds ratio, CI confidence intervals, NNH number needed to harm, Ns not statistically significant.

Table 3. Preterm birth @<32 weeks’ gestation (n = 107573).

Prescriptions Exposed n [%] Unexposed n [%] Unadjusted OR [95% CI Adjusted* OR [95% CI] Interaction term with depression variable
SSRI [any N06AB] in trimesters 2 or 3 20/1625 [1.23] 913/105,948 [0.86] 1.43 [0.92–2.24] 1.24 [0.76–2.03] 1.04(0.39–2.81)
SSRI high dose in trimesters 2 or 3 7/538 [1.3] 926/107035 [0.87] 1.51 [0.72–3.19] 1.74 [0.55–5.46] 0.69[0.17–2.82]
Antidepressant [any N06A] in trimesters 2 or 3 23/2043 [1.13] 910/105,530 [0.86] 1.31 [0.86–1.99] 1.15 [0.73–1.81] 1.31(0.73–2.34)
SSRI in trimester 1 but not in trimesters 2 or 3 25/2285 [1.09] 908/105288 [0.86] 1.27 [0.85–1.90]  0.88 [0.48–1.60] 1.09[0.54–2.20]
Antidepressant in trimester 1 but not in trimesters 2 or 3 48/4252 [1.13] 885/103,321 [0.86] 1.32 [0.99–1.77] 1.11 [0.80–1.55] 0.85[0.44–1.65]
Depression unmedicated 127/11,700 [1.09] 806 [0.84] 1.29 [1.07–1.56] 1.29[1.05–1.58] na
Depression medicated 15/1048 [1.43] 918/10,652 [0.86] 1.67[1.00–2.79] 1.63 [0.94–2.84] na
Depression diagnosed 139–142**/12,748 [1.09–1.11] 791/94,034 [0.84] OR> 1 statistically significant 1.33 [1.09–1.62] na

Exclusions, definitions and abbreviations as in Table 2

*Adjusted for parity, smoking, socio-economic status [SES] as Townsend fifth [quintile].

NNH for depression diagnosed and unmedicated 409 [227–2070].

** Numbers have been blurred to avoid revealing a number <5 in another cell.

Birth weight below 3rd centile was associated with SSRI or any antidepressant prescription in trimesters 2 or 3 [aOR 1.46, 1.06–2.00, NNH 81, 48–261 and 1.43, 1.07–1.90, NNH 90, 54–275], particularly high dose SSRIs [aOR 2.10, 1.32–3.34, NNH 40, 24–130]. Associations with diagnosed depression or discontinuation of medication after trimester 1 were statistically insignificant. SGA <10th centile was only statistically significantly associated with discontinuation of antidepressants [Tables 4 and 5].

Table 4. SGA, birth weight <10th centile (n = 105331).

Exposures Exposed n [%] Unexposed [n [%] Unadjusted OR [95% CI Adjusted* OR [95% CI] Interaction term with depression variable
SSRI [any N06AB] in trimesters 2 or 3 166/1587 [10.46] 8991/103,744 [8.67] 1.23 [1.05–1.45] 1.09 [0.91–1.30] 0.88(0.69–1.13)
SSRI high dose in trimesters 2 or 3 63/525 [12] 9094/104,806 [8.68] 1.44 [1.10–1.87] 1.30 [0.98–1.74] 0.85[0.47–1.53]
Antidepressant [any N06A] in trimesters 2 or 3 204/1993 [10.24] 8953/103,338 [8.66] 1.20 [1.04–1.39] 1.07 [0.91–1.25] 0.96(0.70–1.33)
SSRI in trimester 1 but not in trimesters 2 or 3 229/2234 [10.25] 8928/103,097 [8.66] 1.21 [1.05–1.38] 1.27(1.03–1.57)
0.76(0.56–1.03)
Antidepressant in trimester 1 but not in trimesters 2 or 3 418/4156 [10.06] 8739/101,175 [8.64] 1.18 [1.07–1.31] 1.23 [1.04–1.44] 0.79[0.62–0.99]
Depression unmedicated 1070/11,435 [9.36] 8087/93,896 [8.61] 1.10 [1.02–1.17] 1.04[0.97–1.12] Na
Depression medicated 107/1024 [10.45] 9050/104,307 [8.68] 1.23 [1.00–1.50] 1.13 [0.91–1.41] Na
Depression diagnosed 1177/12,459 [9.45] 7980/92,872 [8.59] 1.11 [1.04–1.18] 1.05 [0.98–1.13] Na

Exclusions, definitions and abbreviations as in Table 2

*Adjusted for parity, smoking, socio-economic status [SES] as Townsend fifth [quintile].

NNH for any antidepressant discontinuation 71 [43–204].

Table 5. SGA, birth weight <3rd centile (n = 105331).

Exposures Exposed n [%] Unexposed [n [%] Unadjusted OR [95% CI] Adjusted* OR
[95% CI]
Number Needed to Harm Interaction term with depression variable
SSRI [any N06AB] in trimesters 2 or 3 49/1587 [3.09] 1918/103,744 [1.85] 1.69 [1.27–2.26] 1.46 [1.06–2.00] 81 [48–261] 1.11(0.59–2.11)
SSRI high dose in trimesters 2 or 3 23/525 [4.38] 1944/104,806 [1.85] 2.42 [1.59–3.69] 2.10 [1.32–3.34] 40 [24–130] 0.76[0.29–2.01]
Antidepressant [any N06A] in trimesters 2 or 3 59/1993 [2.96] 1908/103,338 [1.85] 1.62 [1.25–2.11] 1.43 [1.07–1.90] 90 [54–274] 1.14(0.64–2.03)
SSRI in trimester 1 but not in trimesters 2 or 3 45/2234 [2.01] 1922/103,097 [1.86] 1.08 [0.80–1.46] 1.11 [0.72–1.71] Ns 0.69[0.36–1.33]
Antidepressant in trimester 1 but not in trimesters 2 or 3 92/4156 [2.21] 1875/101.175 [1.85] 1.20 [0.97–1.48] 1.12 [0.80–1.55] Ns 0.90[0.65–1.24]
Depression unmedicated 244/11,435 [2.13] 1723/93,896 [1.84] 1.17 [1.02–1.34] 1.10 [0.95–1.27] Ns Na
Depression medicated 30/1024 [2.93] 1937/104,307 [1.86] 1.59 [1.11–2.30] 1.41 [0.95–2.09] Ns Na
Depression diagnosed 274/12,459 [2.2] 1639/92,872 [1.82] 1.21 [1.06–1.38] 1.13 [0.98–1.30] Ns Na

Exclusions, definitions and abbreviations as in Table 2

*Adjusted for parity, smoking, socio-economic status [SES] as Townsend fifth [quintile].

At 6–8 weeks, breastfeeding [any] was less prevalent amongst those prescribed SSRIs [aOR 0.77, 0.62–0.95, NNH 9, 7–12], particularly high doses [aOR 0.45, 0.23–0.86, NNH 9, 6–18], or any antidepressants in trimesters 2 and 3 [aOR 0.81, 0.67–0.98, NNH 10, 8–13]. Depression was an equally important predictor of exclusive formula feeding [aOR 0.76, 0.70–0.82, NNH 12, 11–14], and discontinuation of SSRIs or antidepressants after trimester 1 offered no benefit in terms of predicting breastfeeding success [aOR 0.66, 0.51–0.87, NNH 11, 9–16 and 0.70, 0.57–0.85, NNH 10, 8–13]. Medicated depression appeared a stronger predictor of exclusive formula feeding than unmedicated depression [Table 6]. High SES, non-smoking and nulliparity predicted breastfeeding at 6–8 weeks. Associations with breastfeeding at birth were similar [Tables D, E in S2 File].

Table 6. Breastfeeding at 6–8 weeks (n = 38725).

Exposures Exposed n [%] Unexposed [n [%] Unadjusted OR
[95% CI]
Adjusted* OR [95% CI] NNH Interaction term with depression variable
SSRI [any N06AB] in trimesters 2 or 3 137/645 [21.24] 12,656/38,080 [33.24] 0.54 [0.45–0.66] 0.77 [0.62–0.95] 9 [712] 1.11(0.72–1.70)
SSRI high dose in trimesters 2 or 3 47/214 [21.96] 12,746/38,511 [33.1] 0.57 [0.41–0.79] 0.45 [0.23–0.86] 9 [618] 2.49[11.13–5.52]
Antidepressant [any N06A] in trimesters 2 or 3 179/806 [22.21] 12,614/37,919 [33.27] 0.57 [0.48–0.68] 0.81 [0.67–0.98] 10 [813] 1.25[0.86–1.83]
SSRI in trimester 1 but not in trimesters 2 or 3 207/862 [24.02] 12,586/37,863 [33.24] 0.64 [0.54–0.74] 0.66 [0.51–0.87] 11 [916] 1.59[1.10–2.30]
Antidepressant in trimester 1 but not in trimesters 2 or 3 376/1619 [23.22] 12,417/37,106 [33.46] 0.60 [0.54–0.68] 0.70 [0.57–0.85] 10 [913] 1.37[1.04–1.80]
Depression diagnosed and unmedicated in t2 and t3 1365/5241 [25.87] 11,428/33,484 [34.13] 0.68 [0.67–0.73] 0.87 [0.82–0.92] 13 [1115] Na
Depression medicated in t2 or t3 102/472 [21.62] 12,691/38,253 [33.18] 0.56 [0.45–0.69] 0.70 [0.58–0.85] 9 [713] Na
Depression diagnosed 1467/5713 [25.7] 11,346/33,012 [34.31] 0.66 [0.62–0.71] 0.76 [0.70–0.82] 12 [1114] Na

Exclusions, definitions and abbreviations as in Table 2

*Adjusted for SES, as Townsend fifth, parity, smoking and year of birth.

Interaction terms between depression and prescribed medicines were statistically significant for: discontinuing SSRIs and breastfeeding, gestation <37 weeks, and <10th centile; high dose SSRIs and breastfeeding, <37 weeks; discontinuing any antidepressant and breastfeeding, <37 weeks and birth weight <10th centile. Interaction terms were not statistically significant for prescription of SSRIs or antidepressants and prematurity, SGA or breastfeeding, indicating that the impact of depression and the prescriptions were independent of each other (Tables 26).

Seventy-three infants were exposed to SNRIs in trimesters 2 & 3, including 49 whose mothers had been diagnosed with depression. None of these was born before 32 weeks, <5 were below the 3rd centile, OR >2, but not statistically significant, and 6 were breastfeeding at 6–8 weeks, OR 2.39 [0.99–5.75]. Unadjusted analysis indicated a significant association with birth at <37 weeks, OR 2.93 [1.54–5.56], and a non-significant association with <10th centile OR 1.30 [0.52–3.21]. [Numbers were too low for adjusted analyses.] Too few women were diagnosed with PTSD, OCD, panic disorder, bulimia, general and social anxiety disorders for exploration. Women with breastfeeding data were older than those without [mean ages 28.48 [6.09] vs. 28.04 [6.04] years, mean difference 0.44 [0.36–0.51], t 11.36, df 79659, p<0.001], more deprived [mean Townsend score 0.40 [3.24] vs. 0.21 [3.12], mean difference 0.20 [0.16–0.24], t 9.65, df 77578, p<0.001], and less likely to be primiparous [16095/38725, 41.6% vs. 29388/68848, 42.7% OR 0.96 [0.93–0.98].

Discussion

To our knowledge, this is the first report, in the published literature, that antidepressants, particularly high dose SSRIs, depression, particularly medicated depression, and discontinuation of antidepressants adversely affect breastfeeding rates at 6–8 weeks; the effects of high doses and discontinuation were not independent of depression. Lower rates of breastfeeding at 6–8 weeks were also apparent with exposure to insulin, AEDs, coumarins, substance misuse and heavy alcohol use, multiple pregnancy and congenital anomalies (Table B in S2 File).

Intra-uterine exposure to SSRIs, antidepressants and maternal depression were associated with adverse perinatal outcomes. Birth weight <3rd centile was significantly associated with antidepressant prescriptions [particularly high dose SSRIs], but depression was not, and the association was not statistically significant if medication was discontinued after trimester 1. Gestation length was adversely affected by depression, particularly if medicated, and prescription of antidepressants. We confirmed associations between preterm birth and SGA and economic deprivation, particularly the most deprived fifth, [55] smoking, [56] and nulliparity, [57] and between breastfeeding and SES, smoking and parity, [58, 59] but aORs were <2 in most analyses (Tables C-E in S2 File).

Preterm birth

As elsewhere, depression[2022, 60], particularly if medicated [2022,61] was associated with preterm birth. SNRIs were associated with gestation <37 weeks in unadjusted analyses, partially accounting for the discrepancy between any antidepressant and SSRI exposure for this outcome. Women who discontinued antidepressants after trimester 1 had no additional risk of prematurity [Tables 2 and 3]. Meta-analysis of depression and preterm birth gave a random effects OR close to ours; however, adjusted analysis was not significant. [62] Prematurity was associated with psychiatric disorders in a Scandinavian cohort [27], and, in contrast with our findings, SSRI exposure appeared protective; however, different timeframes were used for SSRI exposure [90 days before LMP to birth], and we found no impact if prescriptions were restricted to trimester 1. Prematurity was associated with SSRI exposure in a meta-analysis of 8 studies, most of which considered trimester 1 exposure, and the aOR [1.24, 109–1.41] was similar to ours. [21] An unadjusted analysis of 13 studies gave a slightly higher OR, 1.55, 1.38–1.74. [63] Within family analysis found SSRI exposure decreased gestation by 2.3 days, 0.8–3.8., [64] which is unlikely to be clinically significant or reflected in our findings. In a meta-analysis, the effect of depression on prematurity was more marked amongst women of lower SES in the USA and developing countries, but in contrast to our findings, SES did not affect prematurity. [60]

Maternal stress, short and long-term, increases the risk of pre-term birth, possibly due to activation of the hypothalamic-pituitary-adrenal [HPA] axis and sympathomimetic responses, which are intensified in depression, [65,66] congruent with an association between depressive illness and preterm birth. The corticotrophin releasing hormone [CRH] increase observed in SSRI treated women may, in part, be due to depressive illness, [16] but higher CRH levels are reported in women prescribed SSRIs than those with unmedicated depression. [67]

SGA

These findings support the consensus associating intrauterine growth restriction with SSRIs: [20,22,60,68] SGA <3rd centile was more prevalent amongst those exposed to antidepressants in trimesters 2 or 3, particularly at higher doses; prevalence was lower if antidepressants were discontinued after trimester 1 [92 and 45 exposed infants] [69]. Discontinuation of antidepressants was significantly associated with SGA <10th centile, but this outcome is only a modest predictor of childhood morbidity. [70] Unmedicated depression was not significantly associated with SGA, confirming meta-analyses suggesting no association between antenatal depression and SGA [66, 71] [Tables 4 and 5].

SSRI-induced vasoconstriction [11, 14, 15] may explain associations between SSRIs and low birth weight, growth restriction, [19, 22, 20, 70] persistent pulmonary hypertension, [71, 61] pregnancy-induced hypertension [72], and certain congenital anomalies and stillbirth. [17] Our findings of increased risk of SGA <3rd centile, particularly at high SSRI doses, but a statistically insignificant SSRI effect on prematurity are consistent with in vitro embryo studies reporting fluoxetine dose response effects on cell proliferation, migration and differentiation, but not the timing of development. [73]

Breastfeeding

Antidepressants or SSRIs after trimester 1, discontinuation, and depression were all associated with lower breastfeeding rates at 6–8 weeks. Reduction was greater if depression was medicated or high doses of SSRIs were prescribed, but numbers were low [[102 and 47 at 6–8 weeks], and associations with high doses and discontinuation may not have been independent of depression [interaction term aOR 2.49, 1.13–5.52] [Tables 6 and E in S2 File]. Breastfeeding initiation is less likely amongst women with depression [OR 0.68, 0.61–0.76] [62], particularly if co-exposed to antidepressants in trimester 3 [aOR 0.25, 0.11–0.57] [64], [aOR 0.25, 0.11–0.56] [64], or dispensed antidepressants [aOR 0.63, 0.50–0.80] [74], but we did not locate reports of breastfeeding at 6–8 weeks.

SSRI [any dose] exposure predicted exclusive formula feeding independently of a history of depression, suggesting an underlying biological mechanism. SSRIs may delay alveolar secretary activation by 69–86 hours, due to serotonin-dependent changes in tight (inter-cellular) junctions, [75] thwarting establishment of breastfeeding. SSRI exposure in trimester 3 affects monoamine metabolism in infants, causing a dose-response increase in restlessness, tremor, and incoordination, [10] impeding breastfeeding; this may be the mechanism underlying delays in fine motor development at 3 years [76] or autistic-like behaviours secondary to increased serotonin post-partum. [77] Epigenetic changes, activation of the HPA axis and transfer of cortisol and other mediators to the fetus are associated with both maternal depression and antidepressants [16,78] and their impacts on neurobehavioural development are difficult to disentangle. [77] These symptoms, and any SSRI neonatal withdrawal symptoms of irritability, may impede latching, making breastfeeding painful & difficult, promoting breastfeeding discontinuation. How insomnia caused by SSRIs [40] affects breastfeeding is unknown. Effects may be exacerbated by transfer of medication into breast milk: transfer varies with drug, dose, timing of administration and feeding and supplementary formula feeding, but is ~5–10% of adult SSRI dose. Irritability, restlessness, diarrhoea and suboptimal weight gain are reported in case series, but reports of developmental delay attributed to lactation have not been located.[79] Some women were breastfeeding at 6–8 weeks, at all doses, supporting suggestions that impact may vary with genotype. [80]

Women using prescription medicines are less likely to breastfeed, particularly if there is little information about the transfer of the medicine to breastfed infants. [81] Women prescribed SSRIs at 12 weeks’ gestation are less likely to express intention to breastfeed, [82, 83] which is a powerful predictor of breastfeeding at discharge. [58] In Wales, linear relationships between economic deprivation and breastfeeding, [58, 59] and economic deprivation and SSRI prescription in pregnancy, adjusted for diagnosed depression, have been identified. [50] Given the known benefits of breastfeeding, these new data provide further evidence that prescribing patterns are contributing to the concentration of the adverse effects of medicines amongst the poorest. Our findings [NNH 10, 8–13]suggest that successfully targeting women prescribed antidepressants or with a recorded diagnosis of depression would improve breastfeeding rates by ~10%, and protect 1.3% of infants from obesity [1.3%, 0.6–1.9% population reduction] and 0.7% of women from breast cancer [0.7%, 0.3–1.1% population reduction]. [84]

Wider context: Addressing inequalities

Preterm birth, SGA and suboptimal breastfeeding remain threats to global health. These must be minimised before UN targets to reduce neonatal mortality to <10 per 1,000 live births and the prevalence of non-communicable disease [cardiovascular disease, obesity and type 2 diabetes] can be achieved. [85] Lower family income and education intensify the impact on families of behavioural and neurodevelopmental sequelae [cerebral palsy, cognitive impairment, impaired hearing or vision], [86] and the concentration of adverse outcomes and antidepressant prescriptions amongst the most economically deprived intensifies the importance of using these findings to target support. [50, 17] Women with depression or prescribed antidepressants, insulin, AEDs or coumarins or misusing alcohol and other substances need additional breastfeeding support post-partum, including uninterrupted time with their infants.

The risks of harm from depression [mainly prematurity] should be considered against those of antidepressant prescription, particularly SGA <3rd centile [NNH 90, 54–274], which is associated with neonatal mortality, seizures and sepsis. [87] For women with severe depression the additional risks associated with antidepressants are outweighed by the high risk of relapse [88]. However, detailed monitoring is warranted. [89] For example, scans in trimester 3 for women prescribed antidepressants in trimesters 2 and 3 would identify growth restriction, and ensure delivery of affected infants where neonatal intensive care is available. [17] Systematic review suggests that cognitive behavioural therapy [CBT] improves depressive symptoms [90] as effectively as medication. [91] Randomization of women diagnosed with depression to SSRI rather than psychotherapy increases the risk of preterm birth, 6.8% vs 5.8% aOR 1.17, 1.10–1.25, [21] but further exploration of the impact of talking therapies or discontinuation in early pregnancy on pregnancy outcomes is needed. [92,93]

Limitations and strengths

We acknowledge the limitations of routine health services databases: adherence to prescribed regimens cannot be ascertained from prescription data [17]. However, in the absence of clinical trials, this detailed analysis of continuation and discontinuation of antidepressants and depression in pregnancy identifies a population receiving insufficient support.

Incomplete information

Only data recorded by primary care professionals could be analysed. Hospital, private and internet prescribing, genetic makeup, family history, particularly paternal family history, recreational drug use, alcohol use and substance misuse are captured poorly in routine care, fieldwork and databases: however, the Wales database is relatively complete for the last. [17] The high proportion of missing data for BMI precluded incorporation into multivariate analyses. Ethnicity is considered too sensitive for release to researchers by Wales’ trusted third parties.

Diagnosing depression

Comparisons with other studies may be complicated by differences in ascertainment of diagnosis of depression, and the low numbers of hospital admissions. Depression may be under-reported in primary care records, due to inaccurate diagnosis by primary care practitioners, [94] fears of ‘labeling’ or stigmatizing, [72] and, possibly, incomplete record transfer from secondary care. [17] We acknowledge the risks of under-ascertainment or inconsistency between individual GPs, and the limitations of taking the absence of records as ‘no problems’. The decision not to time-restrict the diagnosis of depression is based on the depression diathesis model, [36] and the reluctance of clinicians to repeatedly enter the same diagnoses. Alternative indications for anti-depressants did not account for the 42% of women, including some women prescribed higher doses, with no recorded indications for antidepressants. Manifestations of depression are not routinely and uniformly recorded in healthcare databases, and we were unable to explain why so many women discontinued their prescriptions, without needing hospitalization or CMHT contact. However, consideration of interaction terms, medicated and unmedicated depression, doses, admissions, and discontinuation makes our analyses as robust as possible.

Potential confounding and effect mediation

Like all non-randomised studies, population cohort analyses are vulnerable to residual confounding [51, 95]. To address confounding by indication we analysed prescriptions and diagnoses separately and together, and checked interaction terms. Women diagnosed with depression but not receiving prescriptions may have been relatively unaffected by symptoms, and those continuing into trimesters 2 and 3 or prescribed higher doses may have experienced more severe symptoms, risking confounding by severity [95]. Exclusion of co-exposed infants from the analysis reduced confounding by co-exposure: use of insulin, AEDs, coumarins, substances and alcohol was higher amongst women with depression, medicated and unmedicated, and adverse perinatal outcomes were more prevalent following these exposures [4649] [Tables A and B in S2 File]. We were unable to determine if any adverse outcomes were complicated by co-exposure to pre-eclampsia or pregnancy-induced hypertension, [24, 26, 96] which might have prompted preterm induction of labour or caused SGA. Congenital anomalies are associated with SGA and preterm birth [97, 98], therefore, affected infants were excluded; associations are previously reported [17].

Multiple testing

We acknowledge the hazards of multiple testing, without correction. Our independent [predictor] variables are highly correlated. This makes standard adjustments, such as the Bonferroni method, unduly conservative, risking false negatives. [99] Our findings are consistent with biological plausibility and the literature.

Generalization

Data from one European country, where most of the population are in an EU convergence zone [GDP <75% of the EU mean], cannot necessarily be extrapolated to different populations, but they evidence the need for national initiatives here and in similar populations. There were too few infants at <32 weeks’ gestation to draw conclusions, as elsewhere, [67] but analysis of high dose exposure assists interpretation. The restrictions of our cohort were due to incomplete GP participation and incomplete data, secondary to practices’ technical failures or women moving to practices not covered by SAIL [33]. Rather than any participant self-selection bias, the breastfeeding outcome was restricted by variations in recording practices across the seven Health Boards in Wales. Had a volunteer bias been operating, we should have expected to see older, less deprived women over-represented [100]; this was not the case. Too few women were hospitalised for mental health problems to draw conclusions.

Drawing causal inferences from observation data may be imprudent. However, using these findings to target support is justified, reflecting that, for most adverse outcomes, retrospective analyses yield lower odds or risk ratios than prospective studies. [101]

Conclusion and implications: Support before, during and after pregnancy

This analysis identified a population vulnerable to adverse outcomes, including exclusive formula feeding at 6–8 weeks. Antidepressants, particularly high dose SSRIs, increased the prevalence of SGA <3rd centile, whereas depression, particularly if medicated, affected duration of gestation. Like others [69], we found little evidence that antidepressants are protective. Discontinuing antidepressants after trimester 1 appeared to reduce risks of SGA <3rd centile, but infants remained vulnerable to exclusive formula feeding. The concentration of prescribing and adverse outcomes amongst the economically disadvantaged should encourage pre-conception monitoring in tandem with review of antidepressants and non-pharmacological therapies. These data indicate that prescription of antidepressants is an important marker for adverse outcomes, easily identified in primary care records. This could, and should, be used to trigger additional monitoring, including third trimester scans or alternative continuous monitoring technology to detect SGA. Using prescriptions to target care before, during and after pregnancy warrants exploration as a strategy to optimize breastfeeding at 6–8 weeks, and all perinatal outcomes [17].

Supporting information

S1 File. Read codes for depression.

(DOCX)

S2 File. Supplementary tables.

(DOCX)

S3 File. STROBE statement.

(DOC)

Acknowledgments

This study uses anonymised data held in the Secure Anonymised Information Linkage [SAIL] system, which is part of the national e-health records research infrastructure for Wales. We should like to acknowledge all the data providers who make anonymised data available for research. Data held in SAIL databases are anonymised and aggregated and have been obtained with permission of relevant Data Protection Officers, as approved by the National Research Ethics Service, Wales. Under this agreement, disclosure of numbers <5 is not permitted. The project was approved by the SAIL Information Governance Review Panel [IGFRP] on 24th March 2011. Since the project uses only anonymised data, ethical review was deemed unnecessary.

We should like to thank: Hildrum Sundseth from the European Institute of Women’s Health for advice as service user representative on EUROmediCAT, and Professors Helen Dolk and Joan Morris for their roles as leads of EUROmediCAT and their continuing support.

Data Availability

All relevant data are within the manuscript and its Supporting Information files. Additional data are available in the EUROmediCAT report and its appendices (reference 33 - publicly available). The datasets generated and analysed during the current study are not publicly available, because the anonymised data, held by SAIL, can only be accessed within the SAIL secure remote access environment within the context of an approved project, following governance review. No patient level data are available under the terms of ethical and governance reviews. No participant consent is obtained for population level studies. Individual records for all databases were anonymised, and individual patient data cannot be publicly deposited or fully shared upon request. They are only available directly from the database providers. All interested parties are able to apply to obtain the data in the same way as the current investigators. Data used in the study can be accessed within the SAIL secure environment subject to approval by the SAIL Information Governance Review Panel. The URL for the SAIL databank is: https://saildatabank.com/, and the non-author contacts are Cynthia McNerney, Information Governance Manager, The SAIL Team, Swansea University: c.l.mcnerney@swansea.ac.uk and Charlotte Arkley, Administrator, SAIL Databank c.r.arkley@swansea.ac.uk. Dataset information (names of datasets and provenance) is provided under 'Methods, subsection Setting'. As indicated in the text, further details are in reference 33. The corresponding author will endeavour to meet requests for further data and information. We confirm that data that are not publicly available are not part of the minimal data set.

Funding Statement

This paper was developed from the EUROmediCAT project, and uses the cohort identified in that project. The analyses presented here were completed outside the funded period. Financial support for the EUROmediCAT study was provided by the European Union under the 7th Framework Program [grant agreement HEALTH-F5-2011-260598]. Start date: 1 March 2011. Duration: 48 months. Coordinator Prof. Helen Dolk, University of Ulster. Further information can be found at www.euromedicat.eu The paper is based on data in the all-Wales SAIL databank, which is supported by UK Research and Innovation funding to Swansea University through an Administrative Data Research Centre grant (2018-2921), project reference: ES/S007393/1, Principal Investigator: Professor David Ford.

References

  • 1.McManus S, Meltzer H, Brugha T, Bebbington P, Jenkins R Morbidity in England, 2007: results of a household survey, overview. Adult Psychiatric 2009 NHS Information Centre. Leeds. Available on: https://digital.nhs.uk/catalogue/PUB02931 accessed 4.1.18 [table on p.41]
  • 2.Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal Depression: A Systematic Review of Prevalence and Incidence. Obstet Gynecol. 2005;106 [5, Part 1]. [DOI] [PubMed] [Google Scholar]
  • 3.Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004;103[4]:698–709. 10.1097/01.AOG.0000116689.75396.5f [DOI] [PubMed] [Google Scholar]
  • 4.Taylor D., Paton C., Kerwin R. The Maudsley Prescribing Guidelines, 12th Edition, Informa healthcare, London: 2015 [Google Scholar]
  • 5.NCCMH. [National Collaborating Centre for Mental Health] Antenatal and postnatal mental health: Clinical management and service guidance, updated edition, National Clinical Guideline 192. 2014, with 2018 updates Published by The British Psychological Society and The Royal College of Psychiatrists, London. https://www.nice.org.uk/guidance/cg192/evidence/full-guideline-pdf-4840896925.
  • 6.Reefhuis J, Rasmussen SA, Friedman JM. Selective serotonin-reuptake inhibitors and persistent pulmonary hypertension of the newborn. NEJM. 2006;354[20]:2188–90. [DOI] [PubMed] [Google Scholar]
  • 7.Cooper WO, Willy ME, Pont SJ, Ray WA. Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 2007;196[6]:544.e1–.e5. [DOI] [PubMed] [Google Scholar]
  • 8.Charlton RA, Jordan S, Pierini A, Garne E, Neville AJ, Hansen AV, Gini R, Thayer D, Tingay K, Puccini A, Bos HJ, Nybo Andersen AM, Sinclair M, Dolk H, de Jong-van den Berg LTW SSRI use before, during and after pregnancy: a population-based study in 6 European regions BJOG: An International Journal of Obstetrics and Gynecology. 2015. 122[7]:1010–20. 10.1111/1471-0528.13143 [DOI] [PubMed] [Google Scholar]
  • 9.Olivier JD, Akerud H, Kaihola H, Pawluski JL, Skalkidou A, Högberg U, et al. The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring. Front Cell Neurosci. 2013;7:73 10.3389/fncel.2013.00073 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Laine K, Heikkinen T, Ekblad U, Kero P: Effects of exposure to selective serotonin reuptake inhibitors during pregnancy on serotonergic symptoms in newborns and cord blood monoamine and prolactin concentrations. Arch Gen Psychiatry. 2003. July;60[7]:720–6. In. 10.1001/archpsyc.60.7.720 [DOI] [PubMed] [Google Scholar]
  • 11.Salisbury AL, Ponder KL, Padbury JF, Lester BM. Fetal effects of psychoactive drugs. Clin Perinatol. 2009;36[3]:595–619. 10.1016/j.clp.2009.06.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hendrick V, Stowe ZN, Altshuler LL, Hwang S, Lee E, Haynes D. Placental passage of antidepressant medications. Am J Psychiatry. 2003;160[5]:993–6. 10.1176/appi.ajp.160.5.993 . [DOI] [PubMed] [Google Scholar]
  • 13.Daws LC, Gould GG. Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther. 2011;131[1]:61–79. 10.1016/j.pharmthera.2011.03.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Santos-Silva AJ, Cairrão E, Marques B, Verde I. Regulation of human umbilical artery contractility by different serotonin and histamine receptors. Reprod Sci. 2009;16[12]:1175–85. 10.1177/1933719109343787 . [DOI] [PubMed] [Google Scholar]
  • 15.Ray S, Stowe ZN. The use of antidepressant medication in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2014;28[1]:71–83. 10.1016/j.bpobgyn.2013.09.005 . [DOI] [PubMed] [Google Scholar]
  • 16.Gentile S, Fusco ML. Placental and fetal effects of antenatal exposure to antidepressants or untreated maternal depression. J Matern Fetal Neonatal Med. 2017. May;30[10]:1189–1199. 10.1080/14767058.2016.1209184 [DOI] [PubMed] [Google Scholar]
  • 17.Jordan S, Morris JK, Davies GI, Tucker D, Thayer DS, Luteijn JM, Morgan M, Garne E, Hansen AV, Klungsøyr K, Engeland A, Boyle B, Dolk H Selective Serotonin Reuptake Inhibitor [SSRI] antidepressants in Pregnancy and Congenital Anomalies: analysis of linked databases in Wales, Norway and Funen, Denmark. 2016. Plos One 11[12]: e0165122 10.1371/journal.pone.0165122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nikfar S, Rahimi R, Hendoiee N, Abdollahi M. Increasing the risk of spontaneous abortion and major malformations in newborns following use of serotonin reuptake inhibitors during pregnancy: A systematic review and updated meta-analysis. Daru. 2012. November 1;20[1]:75 10.1186/2008-2231-20-75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Chambers CD, Johnson KA, Dick LM, Felix RJ, Jones KL. Birth outcomes in pregnant women taking fluoxetine. N Engl J Med. 1996;335[14]:1010–5. 10.1056/NEJM199610033351402 . [DOI] [PubMed] [Google Scholar]
  • 20.Maschi S, Clavenna A, Campi R, Schiavetti B, Bernat M, Bonati M. Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG. 2008;115[2]:283–9. 10.1111/j.1471-0528.2007.01518.x . [DOI] [PubMed] [Google Scholar]
  • 21.Eke AC, Saccone G, Berghella V. Selective serotonin reuptake inhibitor [SSRI] use during pregnancy and risk of preterm birth: a systematic review and meta-analysis. BJOG. 2016. May 30 10.1111/1471-0528.14144 [Epub ahead of print] Review. . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Huang H, Coleman S, Bridge JA, Yonkers K, Katon W. A meta-analysis of the relationship between antidepressant use in pregnancy and the risk of preterm birth and low birth weight. Gen Hosp Psychiatry. 2014;36[1]:13–8. 10.1016/j.genhosppsych.2013.08.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Jeffries A: Canadian Paediatric Society, Fetus & Newborn Committee. Selective serotonin reuptake inhibitors in pregnancy and infant outcomes. position statement available http://www.cps.ca/en/documents/position/SSRI-infant-outcomes accessed 16.5.13 abridged version Paediatr Child Health 2011;16[9]:562 10.1093/pch/16.9.562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Toh S, Mitchell AA, Louik C, Werler MM, Chambers CD, Hernández-Díaz S. Selective serotonin reuptake inhibitor use and risk of gestational hypertension. Am J Psychiatry. 2009a. March;166[3]:320–8. 10.1176/appi.ajp.2008.08060817 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL, et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med. 2006;354[6]:579–87. 10.1056/NEJMoa052744 . [DOI] [PubMed] [Google Scholar]
  • 26.'tJong GW, Einarson T, Koren G, Einarson A. Antidepressant use in pregnancy and persistent pulmonary hypertension of the newborn [PPHN]: a systematic review. Reprod Toxicol. 2012. November;34[3]:293–7. 10.1016/j.reprotox.2012.04.015 . [DOI] [PubMed] [Google Scholar]
  • 27.Malm H, Sourander A, Gissler M, Gyllenberg D, Hinkka-Yli-Salomäki S, McKeague IW, Artama M, Brown AS. Pregnancy Complications Following Prenatal Exposure to SSRIs or Maternal Psychiatric Disorders: Results From Population-Based National Register Data. Am J Psychiatry. 2015. December;172[12]:1224–32. 10.1176/appi.ajp.2015.14121575 . [DOI] [PubMed] [Google Scholar]
  • 28.Toh S, Mitchell AA, Louik C, Werler MM, Chambers CD, Hernández-Díaz S. Antidepressant use during pregnancy and the risk of preterm delivery and fetal growth restriction. J Clin Psychopharmacol. 2009b. December;29[6]:555–60. 10.1097/JCP.0b013e3181bf344c ; [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Yonkers KA, Wisner KL, Stewart DE, Oberlander TF, Dell DL, Stotland N, et al. The management of depression during pregnancy: a report from the American Psychiatric Association and the American College of Obstetricians and Gynecologists. Gen Hosp Psychiatry. 2009;31[5]:403–13. 10.1016/j.genhosppsych.2009.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.International Conference on Harmonisation [ICH]. ICH Harmonised Tripartite Guideline for Good Clinincal Practice. Institute of Clinical Research, Marlow, Buckinghamshire. 1996. Available at: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf [Accessed January 2, 2016]. Number 56. In.
  • 31.Ford DV, Jones KH, Verplancke JP, Lyons RA, John G, Brown G, Brooks CJ, Thompson S, Bodger O, Couch T, Leake K. The SAIL Databank: building a national architecture for e-health research and evaluation. BMC Health Services Research. 2009. 9:157 10.1186/1472-6963-9-157 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Lyons RA, Jones KH, John G, Brooks CJ, Verplancke JP, Ford DV, Brown G, Leake K. The SAIL databank: linking multiple health and social care datasets. BMC Medical Informatics and Decision Making. 2009. 9:3 10.1186/1472-6947-9-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.EUROmediCAT. [EMC] Selective Serotonin Reuptake Inhibitor [SSRI] antidepressants in Pregnancy and Congenital Anomalies: population cohort study using linked electronic data in 3 countries V2. 2015 Deliverable number 21.–ISBN 978–0956746252 http://www.EUROmediCAT.eu/publicationsandpresentations/publications
  • 34.Hiemke C, Härtter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther. 2000;85[1]:11–28. . [DOI] [PubMed] [Google Scholar]
  • 35.Velasquez JC, Goeden N, Bonnin A. Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci. 2013;7:47 10.3389/fncel.2013.00047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Chisholm J. The read clinical classification. Br Med J. 1990;300(6732):1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Robinson D, Schulz E, Brown P, Price C. Updating the Read Codes: user-interactive maintenance of a dynamic clinical vocabulary. J Am Med Inform Assoc. 1997;4(6):465–472. 10.1136/jamia.1997.0040465 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Willner P, Scheel-Krüger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2013;37[10 Pt 1]:2331–71. 10.1016/j.neubiorev.2012.12.007 [DOI] [PubMed] [Google Scholar]
  • 39.Cohen LS, Altshuler LL, Harlow BL, Nonacs R, Newport DJ, Viguera AC, et al. Relapse of major depression during pregnancy in women who maintain or discontinue antidepressant treatment. JAMA. 2006;295[5]:499–507. 10.1001/jama.295.5.499 . [DOI] [PubMed] [Google Scholar]
  • 40.BNF [British National Formulary] British Medical Association and the Royal Pharmaceutical Society of Great Britain, London. [2017 no. 74]
  • 41.WHO 2013 Per-term Birth Fact Sheet. Available: http://www.who.int/mediacentre/factsheets/fs363/en/index.html accessed 18.3.16
  • 42.Royal College of Paediatrics and Child Health 2015 Early years—UK-WHO growth charts and resources. Available: http://www.rcpch.ac.uk/child-health/research-projects/uk-who-growth-charts-early-years/uk-who-0-4-years-growth-charts-initi accessed 12.4.16
  • 43.Statistics Wales Birth Statistics from the National Community Child Health Database [NCCHD] Quality Report 2013 available: http://gov.wales/docs/statistics/2013/130730-births-in-wales-quality-report-en.pdf accessed 13.4.16
  • 44.McAndrew F., Thompson J., Fellows L., Large A., Speed M. and Renfrew MJ The Infant Feeding Survey 2010. NHS Information Centre for Health and Social Care, Office of National Statistics 2012 available: http://data.gov.uk/dataset/infant-feeding-survey-2010 accessed 6.1.18
  • 45.EUROCAT EUROCAT European surveillance of congenital anomalies. Guide 1.4. EUROCAT Central Registry, University of Ulster, Newtownabbey, Co Antrim, UK. 2013 Available: http://www.eurocatnetwork.eu/content/EUROCAT-Guide-1.4-Full-Guide.pdf [accessed 26.2.15]
  • 46.Morrow J, Russell A, Guthrie E, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006;77[2]:193–8. 10.1136/jnnp.2005.074203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sillesen M, Hjortdal V, Vejlstrup N, Sørensen K. Pregnancy with prosthetic heart valves—30 years' nationwide experience in Denmark. Eur J Cardiothorac Surg. 2011. August;40[2]:448–54. 10.1016/j.ejcts.2010.12.011 [DOI] [PubMed] [Google Scholar]
  • 48.Casson IF, Clarke CA, Howard CV, et al. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ 1997;315[7103]:275–8. 10.1136/bmj.315.7103.275 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cooper DL, Petherick ES, Wright J. The association between binge drinking and birth outcomes: results from the Born in Bradford cohort study. J Epidemiol Community Health. 2013. October;67[10]:821–8. 10.1136/jech-2012-202303 Epub 2013 May 31. . [DOI] [PubMed] [Google Scholar]
  • 50.Jordan S, Charlton RA, Tingay K, Thayer DS, Davies GI, Morgan M, Tucker D, Watkins A, Gini R, Pierini A, Hansen A, Garne E, Nybo Andersen A, Puccini A, Neville AJ, Bos HJ, de Jong-van den Berg LTW, de Vries CS, Dolk H. SSRI use in pregnancy: a study in 6 European databases. The International Marcé Society For Perinatal Mental Health Biennial Scientific Conference, Swansea University, Swansea, Wales, Uk. Abstract Booklet The Marce Society. Arch Womens Ment Health 2015. 18:269–408 P.368 10.1007/S00737-014-0488-6 [DOI] [Google Scholar]
  • 51.Fewell Zoe, Smith George Davey, Sterne Jonathan A. C., The Impact of Residual and Unmeasured Confounding in Epidemiologic Studies: A Simulation Study, American Journal of Epidemiology, Volume 166, Issue 6, 15 September 2007, Pages 646–655, 10.1093/aje/kwm165 [DOI] [PubMed] [Google Scholar]
  • 52.Royston P, Moons KG, Altman DG, Vergouwe Y Prognosis and prognostic research. Developing a prognostic model. BMJ 2009. 338: b604 10.1136/bmj.b604 [DOI] [PubMed] [Google Scholar]
  • 53.Townsend P, Phillimore P, Beattie A: Health and Deprivation: Inequality and the North. London: Routledge; 1988. [Google Scholar]
  • 54.IBM Corp. Released. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp; 2011 [Google Scholar]
  • 55.Weightman AL, Morgan HE, Shepherd MA, Kitcher H, Roberts C, Dunstan FD. Social inequality and infant health in the UK: systematic review and meta-analyses. BMJ Open. 2012;2[3]:e000964 10.1136/bmjopen-2012-000964 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Delpisheh A, Kelly Y, Rizwan S, Attia E, Drammond S, Brabin BJ. Population attributable risk for adverse pregnancy outcomes related to smoking in adolescents and adults. Public Health. 2007. November;121[11]:861–8. Epub 2007 Jul 2. 10.1016/j.puhe.2007.03.015 . [DOI] [PubMed] [Google Scholar]
  • 57.Kozuki N, Lee AC, Silveira MF, et al. The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis. BMC Public Health. 2013;13[Suppl 3]:S2 10.1186/1471-2458-13-S3-S2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Jordan S., Emery S., Bradshaw C., Watkins A., Friswell W. The Impact of Intrapartum Analgesia on Infant Feeding. BJOG: An International Journal of Obstetrics and Gynecology. 2005. 112, 927–34 10.1111/j.1471-0528.2005.00548.x [DOI] [PubMed] [Google Scholar]
  • 59.Jordan S, Emery S, Watkins A, Evans J, Storey M, Morgan G. Associations of drugs routinely given in labour with breastfeeding at 48 hours: analysis of the Cardiff Births Survey. BJOG 2009; 116[12] 1622–30 10.1111/j.1471-0528.2009.02256.x [DOI] [PubMed] [Google Scholar]
  • 60.Grote NK, Bridge JA, Gavin AR, Melville JL, Iyengar S, Katon WJ. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch Gen Psychiatry. 2010. October;67[10]:1012–24. 10.1001/archgenpsychiatry.2010.111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Tak CR, Job KM, Schoen-Gentry K, Campbell SC, Carroll P, Costantine M, Brixner D, Birnbaum AK, Sherwin CMT. The impact of exposure to antidepressant medications during pregnancy on neonatal outcomes: a review of retrospective database cohort studies. Eur J Clin Pharmacol. 2017. September;73[9]:1055–1069. 10.1007/s00228-017-2269-4 Epub 2017 Jun 9. Review. . [DOI] [PubMed] [Google Scholar]
  • 62.Grigoriadis S, Vonderporten EH, Mamisashvili L, Tomlinson G, Dennis CL, Koren G, Steiner M, Mousmanis P, Cheung A, Radford K, Martinovic J, Ross LE. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J Clin Psychiatry. 2013. April;74[4]:e321–41. 10.4088/JCP.12r07968 Review. . [DOI] [PubMed] [Google Scholar]
  • 63.Ross LE, Grigoriadis S, Mamisashvili L, VonderPorten EH, Roerecke M, Rehm J, Dennis C, Koren G, Steiner M, Mousmanis P, Cheung A. Selected Pregnancy and Delivery Outcomes After Exposure to Antidepressant MedicationA Systematic Review and Meta-analysis. JAMA Psychiatry. 2013;70[4]:436–443. 10.1001/jamapsychiatry.2013.684 [DOI] [PubMed] [Google Scholar]
  • 64.Viktorin A, Meltzer-Brody S, Kuja-Halkola R, Sullivan PF, Landén M, Lichtenstein P, Magnusson PK. Heritability of Perinatal Depression and Genetic Overlap With Nonperinatal Depression. Am J Psychiatry. 2016. February 1;173[2]:158–65. 10.1176/appi.ajp.2015.15010085 . [DOI] [PubMed] [Google Scholar]
  • 65.Wadhwa PD, Entringer S, Buss C, Lu MC. The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol. 2011. September;38[3]:351–84. 10.1016/j.clp.2011.06.007 Review. . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Christiaens I, Hegadoren K, Olson DM. Adverse childhood experiences are associated with spontaneous preterm birth: a case-control study. BMC Med. 2015. June 11;13:124 10.1186/s12916-015-0353-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Hannerfors AK, Hellgren C, Schijven D, Iliadis SI, Comasco E, Skalkidou A, Olivier JD, Sundström-Poromaa I. Treatment with serotonin reuptake inhibitors during pregnancy is associated with elevated corticotropin-releasing hormone levels. [DOI] [PubMed] [Google Scholar]
  • 68.Zhao X, Liu Q, Cao S, Pang J, Zhang H, Feng T, Deng Y, Yao J, Li H. A meta-analysis of selective serotonin reuptake inhibitors (SSRIs) use during prenatal depression and risk of low birth weight and small for gestational age. J Affect Disord. 2018. December 1;241:563–570. 10.1016/j.jad.2018.08.061 Epub 2018 Aug 15. . [DOI] [PubMed] [Google Scholar]
  • 69.Venkatesh KK, Castro VM, Perlis RH, Kaimal AJ. Impact of antidepressant treatment during pregnancy on obstetric outcomes among women previously treated for depression: an observational cohort study. J Perinatol. 2017. September;37(9):1003–1009. 10.1038/jp.2017.92 Epub 2017 Jul 6. . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Malin G, Morris R, Riley R, Teune M, Khan K. When is birthweight at term [≥37 weeks’ gestation] abnormally low? A systematic review and meta-analysis of the prognostic and predictive ability of current birthweight standards for childhood and adult outcomes. Bjog. 2015;122[5]:634–642. 10.1111/1471-0528.13282 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Huybrechts KF, Bateman BT, Hernandez-Diaz S. Maternal Antidepressant Use and Persistent Pulmonary Hypertension of the Newborn—Reply. JAMA. 2015;314[12]:1294 10.1001/jama.2015.10048 . [DOI] [PubMed] [Google Scholar]
  • 72.Angermeyer MC, Matschinger H, Link BG, Schomerus G. Public attitudes regarding individual and structural discrimination: two sides of the same coin? Soc Sci Med. 2014;103:60–6. 10.1016/j.socscimed.2013.11.014 . [DOI] [PubMed] [Google Scholar]
  • 73.KAIHOLA H, YALDIR FG, HREINSSON J, HÖRNAEUS K, BERGQUIST J, OLIVIER JD, ÅKERUD H, SUNDSTRÖM-POROMAA I. EFFECTS OF FLUOXETINE ON HUMAN EMBRYO DEVELOPMENT. FRONT CELL NEUROSCI. 2016. June 16;10:160 10.3389/fncel.2016.00160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Leggett C, Costi L, Morrison JL, Clifton VL, Grzeskowiak LE. Antidepressant Use in Late Gestation and Breastfeeding Rates at Discharge from Hospital. J Hum Lact. 2017. November;33[4]:701–709. 10.1177/0890334416678209 Epub 2016 Dec 1. . [DOI] [PubMed] [Google Scholar]
  • 75.Marshall A.M., Nommsen-Rivers L.A., Hernandez L.L., Dewey K.G., Chantry C.J., Gregerson K.A. & Horseman N.D. Serotonin Transport and Metabolism in the Mammary Gland Modulates Secretory Activation and Involution. J Clin Endocrinol Metab, 2010. 95[2], 837–846 10.1210/jc.2009-1575 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Handal M, Skurtveit S, Furu K, Hernandez-Diaz S, Skovlund E, Nystad W, et al. Motor development in children prenatally exposed to selective serotonin reuptake inhibitors: a large population-based pregnancy cohort study. BJOG. 2015. 10.1111/1471-0528.13582 . [DOI] [PubMed] [Google Scholar]
  • 77.Gemmel M, Bögi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, Oberlander TF, Charlier TD, Pawluski JL. Perinatal selective serotonin reuptake inhibitor medication [SSRI] effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev. 2018. February;85:102–116. 10.1016/j.neubiorev.2017.04.023 [DOI] [PubMed] [Google Scholar]
  • 78.Kendall-Tackett K, Hale TW. The use of antidepressants in pregnant and breastfeeding women: a review of recent studies. J Hum Lact. 2010. May;26[2]:187–95. 10.1177/0890334409342071 [DOI] [PubMed] [Google Scholar]
  • 79.Merlob P. & Schaefer C. Psychotropic drugs In: Schaefer C., Peters P., Miller R. [eds] Drugs During Pregnancy and Lactation pp.743–774. 2015; Academic Press/ Elsevier, London: 3rd edition. [Google Scholar]
  • 80.Hilli J, Heikkinen T, Rontu R, Lehtimäki T, Kishida I, Aklillu E, Bertilsson L, Vahlberg T, Laine K. MAO-A and COMT genotypes as possible regulators of perinatal serotonergic symptoms after in utero exposure to SSRIs. Eur Neuropsychopharmacol. 2009. May;19[5]:363–70. 10.1016/j.euroneuro.2009.01.006 [DOI] [PubMed] [Google Scholar]
  • 81.Saha MR, Ryan K, Amir LH. Postpartum women's use of medicines and breastfeeding practices: a systematic review. Int Breastfeed J. 2015. October 28;10:28 10.1186/s13006-015-0053-6 eCollection 2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Bogen DL, Hanusa BH, Moses-Kolko E, Wisner KL. Are maternal depression or symptom severity associated with breastfeeding intention or outcomes? J Clin Psychiatry. 2010. August;71[8]:1069–78. 10.4088/JCP.09m05383blu [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Galbally M, Watson SJ, Ball H, Lewis AJ. Breastfeeding, Antidepressants, and Depression in the Mercy Pregnancy and Emotional Well-Being Study. J Hum Lact. 2018. March 1:890334418758658 10.1177/0890334418758658 . [DOI] [PubMed] [Google Scholar]
  • 84.Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC; Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016. January 30;387[10017]:475–90. 10.1016/S0140-6736(15)01024-7 [DOI] [PubMed] [Google Scholar]
  • 85.Lawn JE, Blencowe H, Oza S, You D, Lee AC, Waiswa P, Lalli M, Bhutta Z, Barros AJ, Christian P, Mathers C, Cousens SN; Lancet Every Newborn Study Group. Every Newborn: progress, priorities, and potential beyond survival. Lancet. 2014. July 12;384[9938]:189–205. 10.1016/S0140-6736(14)60496-7 Erratum in: Lancet. 2014 Jul 12;384[9938]:132. [DOI] [PubMed] [Google Scholar]
  • 86.Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008. January 19;371[9608]:261–9. 10.1016/S0140-6736(08)60136-1 [DOI] [PubMed] [Google Scholar]
  • 87.McIntire D. D., PhD., Bloom S. L., M.D., Casey B. M., M.D., & Leveno K. J., M.D. [1999]. Birth weight in relation to morbidity and mortality among newborn infants. The New England Journal of Medicine, 340[16], 1234–1238. Retrieved from https://search.proquest.com/docview/223945545?accountid=14680 10.1056/NEJM199904223401603 [DOI] [PubMed] [Google Scholar]
  • 88.Mitchell J, Goodman J. Comparative effects of antidepressant medications and untreated major depression on pregnancy outcomes: a systematic review. Arch Womens Ment Health. 2018. October;21[5]:505–516. 10.1007/s00737-018-0844-z Epub 2018 Apr 11. Review. . [DOI] [PubMed] [Google Scholar]
  • 89.Alwan S, Friedman JM, Chambers C. Safety of Selective Serotonin Reuptake Inhibitors in Pregnancy: A Review of Current Evidence. CNS Drugs. 2016. June;30[6]:499–515. 10.1007/s40263-016-0338-3 [DOI] [PubMed] [Google Scholar]
  • 90.Sockol LE. A systematic review of the efficacy of cognitive behavioral therapy for treating and preventing perinatal depression. J Affect Disord. 2015. May 15;177:7–21. 10.1016/j.jad.2015.01.052 [DOI] [PubMed] [Google Scholar]
  • 91.Amick HR, Gartlehner G, Gaynes BN, Forneris C, Asher GN, Morgan LC, et al. Comparative benefits and harms of second generation antidepressants and cognitive behavioral therapies in initial treatment of major depressive disorder: systematic review and meta-analysis. BMJ. 2015;351:h6019 10.1136/bmj.h6019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Pearlstein T. Depression during Pregnancy. Best Pract Res Clin Obstet Gynaecol. 2015;29[5]:754–64. 10.1016/j.bpobgyn.2015.04.004 . [DOI] [PubMed] [Google Scholar]
  • 93.Molenaar NM, Brouwer ME, Bockting CL, Bonsel GJ, van der Veere CN, Torij HW, Hoogendijk WJ, Duvekot JJ, Burger H, Lambregtse-van den Berg MP. Stop or go? Preventive cognitive therapy with guided tapering of antidepressants during pregnancy: study protocol of a pragmatic multicentre non-inferiority randomized controlled trial. BMC Psychiatry. 2016. March 18;16:72 10.1186/s12888-016-0752-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Kendrick T, King F, Albertella L, Smith PW. GP treatment decisions for patients with depression: an observational study. Br J Gen Pract. 2005;55[513]:280–6. [PMC free article] [PubMed] [Google Scholar]
  • 95.The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance [ENCePP]. Guide on Methodological Standards in Pharmacoepidemiology [Revision 7]. EMA/95098/2010. http://www.encepp.eu/standards_and_guidances/documents/ENCePPGuideonMethStandardsinPE_Rev7.pdf 22.3.19
  • 96.De Vera MA, Bérard A. Antidepressant use during pregnancy and the risk of pregnancy-induced hypertension. Br J Clin Pharmacol. 2012. August;74[2]:362–9. 10.1111/j.1365-2125.2012.04196.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Purisch SE, DeFranco EA, Muglia LJ, Odibo AO, Stamilio DM. Preterm birth in pregnancies complicated by major congenital malformations: a population-based study. Am J Obstet Gynecol. 2008. September;199[3]:287.e1–8. 10.1016/j.ajog.2008.06.089 . [DOI] [PubMed] [Google Scholar]
  • 98.Miquel-Verges F, Mosley BS, Block AS, Hobbs CA. A spectrum project: preterm birth and small-for-gestational age among infants with birth defects. J Perinatol. 2015. March;35[3]:198–203. 10.1038/jp.2014.180 Epub 2014 Oct 2. . [DOI] [PubMed] [Google Scholar]
  • 99.Rothman K. J. No adjustments are needed for multiple comparisons. Epidemiology. 1990 1, 43-6.Psychoneuroendocrinology. 2015. August;58:104–13. 10.1016/j.psyneuen.2015.04.009 [DOI] [PubMed] [Google Scholar]
  • 100.Jordan S, Watkins A, Storey M, Allen SJ, Brooks CJ, Garaiova I, Heaven ML, Jones R, Plummer SF, Russell IT, Thornton CA, Morgan G. [2013] Volunteer Bias in Recruitment, Retention, and Blood Sample Donation in a Randomised Controlled Trial Involving Mothers and Their Children at Six Months and Two Years: A Longitudinal Analysis. PLoS ONE 8[7]: e67912 10.1371/journal.pone.0067912 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Martins AC, Giordani F, Rozenfeld S. Adverse drug events among adult inpatients: A meta-analysis of observational studies. J Clin Pharm Ther 2014. December;39[6]:609–20 10.1111/jcpt.12204 [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Kenji Hashimoto

17 Sep 2019

PONE-D-19-17104

Antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding: a population cohort analysis

PLOS ONE

Dear Professor Jordan,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Two reviewers addressed several major and minor concerns about your manuscript. Please revise your manuscript carefully.

We would appreciate receiving your revised manuscript by Nov 01 2019 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Kenji Hashimoto, PhD

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: I Don't Know

Reviewer #2: I Don't Know

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: Dear authors,

This manuscript presents data based on a population cohort to study associations between exposure to antidepressants, their discontinuation, depression and preterm birth, small for gestational and breastfeeding at 6-8 weeks. The data presented are incredibly valuable and valid, however I would recommend to explain and demonstrate why these results are important? How they can contribute to the practice? what can be done regarding depression prevention? The manuscript lacks information, reflection and soundness.

In addition, it seems that authors were just describing results (because data was available) and were not doing it for a specific propose. This feeling begins in introduction. A more reflective way on implications for practice would improve your manuscript.

Please explain better how depression was measured, by whom? What manual/diagnosis system they used? can you guarantee they use the same methods? This need more detail since it is the main outcome.

Reviewer #2: The authors investigated the associations between exposure to antidepressants, their discontinuation, depression and preterm birth, small for gestational age (SGA), breastfeeding at 6-8 weeks. They found that exclusive formula feeding at 6-8 weeks was associated with prescriptions in trimesters 2 or 3 for any antidepressants, SSRIs, particularly higher doses, discontinuation of antidepressants or SSRIs after trimester 1, diagnosis of depression, particularly if medicated, rather than unmedicated. Moreover, preterm birth at <37 and <32 weeks’ gestation was associated with diagnosis of depression, particularly if medicated; birth at <37 weeks was associated with antidepressants, SGA <3rd centile was associated with antidepressants, and SSRIs, particularly higher doses. They stated that both depression and antidepressants indicated increased risks of exclusive formula feeding at 6-8 weeks. These findings will be of interest to practitioners, as well as researchers in the field.

I have the following concerns.

1.Abstract Line 59. Conclusions. What do the authors conclude from the results that intra-uterine exposure to antidepressants and maternal depression were associated with adverse perinatal outcomes? If possible, the authors should comment on the results.

2. The amount of the presented tables is very large, and this is confusing for readers. This aspect of the paper should be improved. Table 2a, 2b,and 2c show the infants excluded from the analysis. If possible, Table 2 could be transferred to the section of supplementary tables.

3. Discussion. Line 275. “To our knowledge, this is the first report that antidepressants, particularly high dose SSRIs, depression, particularly medicated depression, and discontinuation of antidepressants adversely affect breastfeeding rates at 6-8 weeks; the effects of high doses and discontinuation were not independent of depression.”

The authors claim that this is the first report. But what do they mean by “first report”?

Line 423, The authors also stated that “In Wales, the relationships between economic deprivation and breastfeeding, [55, 56] and SSRI prescription in pregnancy, adjusted for diagnosed depression are linear. [48]. This statement indicates that other researchers have also reported the relationships between breastfeeding, [55, 56] and SSRI prescription in pregnancy. The authors should clarify the new findings they found.

In conclusion, I enjoyed reading this paper. This is a valuable paper that presents evidence of the associations between antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2019 Nov 18;14(11):e0225133. doi: 10.1371/journal.pone.0225133.r002

Author response to Decision Letter 0


23 Oct 2019

Rebuttal letter PONE-D-19-17104

3.10.19

Dear Professor Hashimoto,

Thank you for the return of our manuscript. We are very grateful for the reviewers’ support and suggestions. We have done our best to comply.

We hope that readers will concur with reviewer 2: I enjoyed reading this paper. This is a valuable paper that presents evidence of the associations between antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding.

Thank you for your time spent on this paper.

Yours,

Sue Jordan, on behalf of all authors

Reviewer #1:

Dear authors,

This manuscript presents data based on a population cohort to study associations between exposure to antidepressants, their discontinuation, depression and preterm birth, small for gestational and breastfeeding at 6-8 weeks. The data presented are incredibly valuable and valid, however I would recommend to explain and demonstrate why these results are important? Thank you. We have added to lines 455-464:

The concentration of prescribing and adverse outcomes amongst the economically disadvantaged should encourage pre-conception monitoring in tandem with review of antidepressants and non-pharmacological therapies. These data indicate that prescription of antidepressants is an important marker for adverse outcomes, easily identified in primary care records. This could, and should, be used to trigger additional monitoring, including third trimester scans or alternative continuous monitoring technology to detect SGA. Using prescriptions to target care before, during and after pregnancy

How they can contribute to the practice? what can be done regarding depression prevention? We agree, it is essential to explain how the findings contribute to practice. We hope that the implications for practice derived from the study are set out clearly above. Prevention of depression is an important area, but outside the scope of the data presented.

The manuscript lacks information, reflection and soundness.

In addition, it seems that authors were just describing results (because data was available) and were not doing it for a specific propose. This feeling begins in introduction.

A more reflective way on implications for practice would improve your manuscript.

Thank you. To ensure the paper is of a manageable length, readers are referred to earlier work for methodological details at points (references 33 and 17). The information from the study is contained in 9 tables, 5 with 8 multivariate models.

Thank you. We have added to the statement of purpose / aim, line 63 et seq:

… the key question for women and clinicians - the harm to benefit balance of starting, stopping or continuing antidepressant pharmacotherapy [5] - remains unanswered. Accordingly, the aim of this study is to investigate …

The implications for practice are summarised in the ‘Conclusion and Implications’ section, to which we have added, lines 455-464, above. We feel that some caution is needed before drawing causal inferences from observation data, and our main implication for practice is the need to target groups identified for additional care. We have added, line 446:

Drawing causal inferences from observation data may be imprudent.

Please explain better how depression was measured, by whom? What manual/diagnosis system they used?

can you guarantee they use the same methods?

This need more detail since it is the main outcome. Thank you, we have added, line 114-5:

Depression was defined as any diagnosis of depression in the woman’s record before the end of trimester 1 [91 days after 1st day of LMP], recorded by the GP using Read codes, version 2 [17, 36, 37]

We acknowledge the limitations of using the diagnoses of GPs, lines 598-.

We acknowledge the risks of under-ascertainment or inconsistency between individual GPs, and the limitations of taking the absence of records as ‘no problems’.

Thank you. We have added, line 408:

We acknowledge the risks of under-ascertainment or inconsistency between individual GPs, and the limitations of taking the absence of records as ‘no problems’.

We agree that more detail will improve the value of the paper. Therefore, we have added the S1 file, to give full details of the codes GPs used to record depression.

Reviewer #2:

The authors investigated the associations between exposure to antidepressants, their discontinuation, depression and preterm birth, small for gestational age (SGA), breastfeeding at 6-8 weeks. They found that exclusive formula feeding at 6-8 weeks was associated with prescriptions in trimesters 2 or 3 for any antidepressants, SSRIs, particularly higher doses, discontinuation of antidepressants or SSRIs after trimester 1, diagnosis of depression, particularly if medicated, rather than unmedicated. Moreover, preterm birth at <37 and <32 weeks’ gestation was associated with diagnosis of depression, particularly if medicated; birth at <37 weeks was associated with antidepressants, SGA <3rd centile was associated with antidepressants, and SSRIs, particularly higher doses. They stated that both depression and antidepressants indicated increased risks of exclusive formula feeding at 6-8 weeks. Thank you

These findings will be of interest to practitioners, as well as researchers in the field. Thank you

I have the following concerns.

1.Abstract Line 59. Conclusions. What do the authors conclude from the results that intra-uterine exposure to antidepressants and maternal depression were associated with adverse perinatal outcomes? If possible, the authors should comment on the results.

Thank you. Our comment has been modified, and the section retitled ‘implications’:

Implications: Exposure to antidepressants or depression increased risks of exclusive formula feeding at 6-8 weeks, and prescription of antidepressants was associated with SGA <3rd centile. Prescription of antidepressants offers a useful marker to target additional support and additional care before and during pregnancy and lactation.

We feel that some caution is needed before drawing causal inferences from observation data, and our main implication for practice is the need to target groups identified for additional care. This is now stated under ‘limitations’. We have added, line 446:

Drawing causal inferences from observation data may be imprudent.

2. The amount of the presented tables is very large, and this is confusing for readers. This aspect of the paper should be improved. Table 2a, 2b,and 2c show the infants excluded from the analysis. If possible, Table 2 could be transferred to the section of supplementary tables. This is very helpful. Done.

3. Discussion. Line 275. “To our knowledge, this is the first report that antidepressants, particularly high dose SSRIs, depression, particularly medicated depression, and discontinuation of antidepressants adversely affect breastfeeding rates at 6-8 weeks; the effects of high doses and discontinuation were not independent of depression.”

The authors claim that this is the first report. But what do they mean by “first report”?

Thank you. We have clarified by adding ‘in the published literature’. Line 278:

To our knowledge, this is the first report, in the published literature,

Line 423, The authors also stated that “In Wales, the relationships between economic deprivation and breastfeeding, [55, 56] and SSRI prescription in pregnancy, adjusted for diagnosed depression are linear. [48]. This statement indicates that other researchers have also reported the relationships between breastfeeding, [55, 56] and SSRI prescription in pregnancy. The authors should clarify the new findings they found.

Thank you, we have clarified, lines 361-3.

In Wales, linear relationships between economic deprivation and breastfeeding, [58, 59] and economic deprivation and SSRI prescription in pregnancy, adjusted for diagnosed depression, have been identified. [50]

These studies were authored by our group.

In conclusion, I enjoyed reading this paper. This is a valuable paper that presents evidence of the associations between antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding. Thank you. We hope that others will concur, and modify practice to help prevent some of these adverse outcomes in future.

Attachment

Submitted filename: Rebuttal letter PONE.docx

Decision Letter 1

Kenji Hashimoto

30 Oct 2019

Antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding: a population cohort analysis

PONE-D-19-17104R1

Dear Dr. Jordan,

We are pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it complies with all outstanding technical requirements.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

Kenji Hashimoto, PhD

Section Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #2: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #2: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #2: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #2: (No Response)

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #2: No

Acceptance letter

Kenji Hashimoto

7 Nov 2019

PONE-D-19-17104R1

Antidepressant prescriptions, discontinuation, depression and perinatal outcomes, including breastfeeding: a population cohort analysis

Dear Dr. Jordan:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Prof. Kenji Hashimoto

Section Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 File. Read codes for depression.

    (DOCX)

    S2 File. Supplementary tables.

    (DOCX)

    S3 File. STROBE statement.

    (DOC)

    Attachment

    Submitted filename: Rebuttal letter PONE.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files. Additional data are available in the EUROmediCAT report and its appendices (reference 33 - publicly available). The datasets generated and analysed during the current study are not publicly available, because the anonymised data, held by SAIL, can only be accessed within the SAIL secure remote access environment within the context of an approved project, following governance review. No patient level data are available under the terms of ethical and governance reviews. No participant consent is obtained for population level studies. Individual records for all databases were anonymised, and individual patient data cannot be publicly deposited or fully shared upon request. They are only available directly from the database providers. All interested parties are able to apply to obtain the data in the same way as the current investigators. Data used in the study can be accessed within the SAIL secure environment subject to approval by the SAIL Information Governance Review Panel. The URL for the SAIL databank is: https://saildatabank.com/, and the non-author contacts are Cynthia McNerney, Information Governance Manager, The SAIL Team, Swansea University: c.l.mcnerney@swansea.ac.uk and Charlotte Arkley, Administrator, SAIL Databank c.r.arkley@swansea.ac.uk. Dataset information (names of datasets and provenance) is provided under 'Methods, subsection Setting'. As indicated in the text, further details are in reference 33. The corresponding author will endeavour to meet requests for further data and information. We confirm that data that are not publicly available are not part of the minimal data set.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES