Skip to main content
Natural Products and Bioprospecting logoLink to Natural Products and Bioprospecting
. 2019 Nov 6;9(6):357–392. doi: 10.1007/s13659-019-00222-3

The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review

Xiao-Rui Zhang 1,2, Joseph Sakah Kaunda 1,2, Hong-Tao Zhu 1, Dong Wang 1, Chong-Ren Yang 1, Ying-Jun Zhang 1,3,
PMCID: PMC6872704  PMID: 31696441

Abstract

Terminalia Linn, a genus of mostly medium or large trees in the family Combretaceae with about 250 species in the world, is distributed mainly in southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Many species are used widely in many traditional medicinal systems, e.g., traditional Chinese medicine, Tibetan medicine, and Indian Ayurvedic medicine practices. So far, about 39 species have been phytochemically studied, which led to the identification of 368 compounds, including terpenoids, tannins, flavonoids, phenylpropanoids, simple phenolics and so on. Some of the isolates showed various bioactivities, in vitro or in vivo, such as antitumor, anti HIV-1, antifungal, antimicrobial, antimalarial, antioxidant, diarrhea and analgesic. This review covers research articles from 1934 to 2018, retrieved from SciFinder, Wikipedia, Google Scholar, Chinese Knowledge Network and Baidu Scholar by using “Terminalia” as the search term (“all fields”) with no specific time frame setting for the search. Thirty-nine important medicinal and edible Terminalia species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.

Keywords: Terminalia, Combretaceae, Ethnomedicine, Traditional uses, Phytochemistry, Hydrolyzable tannins, Pharmacology

Introduction

Terminalia Linn, comprising about 250 species in the world mostly as medium or large trees, is the second largest genus in the family Combretaceae. The name “Terminalia” is derived from Latin word “terminus”, which means the leaves are located at the tip of the branch. The bark of Terminalia plants usually has cracks and branches tucked into layers. Most of the Terminalia plants’ leaves are large, leathery with solitary or clustered small green white flowers. Their fruits are yellow, dark red or black; drupe, usually angular or winged. Some fruits are edible, highly nutritious and possess medicinal values.

Terminalia species are widely distributed in the southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Terminalia plants in southern Asia have been intensively studied phytochemically due to their wide usage in Asian (India, Tibetan, and Chinese) traditional medicine systems [1]. For example, the fruits of Terminalia bellirica and Terminalia chebula, together with Phyllanthus emblica (Euphorbiaceae) which form the herbal remedy, Triphala, in Tibetan medicine, have received much attention because of its extensive and remarkable effectiveness in the treatment of anticancer, antifungal, antimicrobial, antimalarial, antioxidant.

So far, 39 Terminalia species have been investigated for their phytochemical constituents, which resulted in the identification of terpenes, tannins, flavonoids, lignans and simple phenols, amongst others. Pharmacological studies suggest that they have exhibited activity on liver and kidney protection, antibacterial, antiinflammatory, anticancer, and have displayed a positive effect on immune regulation, cardiovascular disease and diabetes, and acceleration of wound healing.

This paper features 39 important medicinal and edible Terminalia species and summarizes their traditional usage, geographical distribution, structures of isolated chemical constituents and pharmacological activities.

Species’ Description, Distribution and Traditional Uses

So far, 50 Terminalia species have been documented, 39 of which have been reported to possess medicinal properties and/or being edible. Among them, eight species and four varieties including T. argyrophylla, T. bellirica, T. catappa, T. chebula, T. franchetii, T. hainanensis, T. myriocarpa, T. intricate, T. chebula var. tomentella, T. franchetii var. membranifolia, T. franchetii var. glabra, and T. myriocarpa var. hirsuta are distributed in China (Yunnan, southeast Tibet, Taiwan, Guangdong, south Guangxi and southwest Sichuan). Their distribution and traditional applications are shown in Table 1.

Table 1.

Local names, distributions and traditional uses of Terminalia plants

No. Plants Local names Distributions Traditional uses
T1 T. alata Unknown Southern Vietnam [2, 3] Anti-diarrhea, ulcer, diuretics, supplements [3]
T2 T. amazonia White olive Southern Costa Rica [4] Wood
T3 T. arborea Jaha Kling Indonesia Cardiovascular disease, myocardial infarction, atherosclerosis, diabetes, cancer, stroke, cataract, shoulder stiffness, cold allergy, hypertension, senile dementia, inflammation, gum disease (e.g. gingivitis, pneumonia), Alzheimer’s, skin conditions [5]
T4 T. arjuna Arjuna, White Marudah, Koha India, South Asia, Sri Lanka [6]

Cardiotonic, sores, bile infection, poison antidote [6]

Coughs, dysentery, fractures, contusions, ulcers, hypertension ischaemic heart diseases [23]

T5 T. argyrophylla Silver leaves Chebula, Xiao Chebula (Yunnan), Manna (Yunnan Dai language) China (Yunnan) [7] Autoimmune diseases [7]
T6 T. australis Tanimbu, palo amarillo Punta Lara, Argentina (Buenos Aires) [8] Hemostasis
T7 T. avicennioides kpayi, Kpace, baushe Nigeria [9, 10] Malaria, worms, gastric peptic ulcer [9], scorpion bites [10], tuberculosis, cough [90]
T8 T. bellirica Beleric China (southern Yunnan), Vietnam, Laos, Thailand, Cambodia, Myanmar, India (except West), Malaysia, Indonesia

Laxative, edible

Edema, diarrhea, leprosy, bile congestion, indigestion, headache [11]

Fever, diarrhea, cough, dysentery, skin diseases [12]

Wine, palm sugar [23]

Diarrhea [94]

T9 T. bentzoe Unknown Rodrigues [13] Essential oil [13]
T10 T. bialata Indian silver greywood India, South Asia Wood [14]
T11 T. brachystemma Kalahari cluster leaf Southern Africa Shistosomiasis, gastrointestinal disorders [15]
T12 T. brownii kuuku, muvuku (Kamba, Kenya), koloswa (northern region, Kenya), weba (Ethiopia), lbukoi (Samburu, Kenya), orbukoi (Maasai, Tanzania), and mbarao or mwalambe, in Kiswahili Southern and central Africa

Diarrhea, stomach pain, gastric ulcer, colic, heartburn

Genitourinary infection, urethral pain, endometritis, cystitis, leucorrhea, syphilis, gonorrhea, malaria, dysmenorrhea, nervousness, hysteria, epilepsy, athlete’s foot, indigestion, stomach pain, gastric ulcer, colitis, cough, vomiting, hepatitis, jaundice, cirrhosis, yellow fever [16]

T13 T. bursarina Yellow wood Australia, South Asia [17] Unknown
T14 T. calamansanai Phillipine almond, Anarep Philippines, Southeast Asia Lithontriptic [18], horticultural plant [102]
T15 T. calcicola Unknown Madagascar Rain Forest [19] Unknown
T16 T. catappa Indian almond, umbrella tree, tropical almond China (Guangdong, Taiwan, SE Yunnan), Australia and SE Asia, Africa, South America Tropical Coast

Blood stasis, liver injury [20]

Diarrhea, dysentery, biliary inflammation [23], dermatitis, hepatitis [106]

T17 T. chebula Black Mytrobalan, Inknut, Chebulic Myrobalan Nepal, northern India, Myanmar, Sri Lanka, Thailand, Bangladesh, China (Yunnan), Himalayan Digestion appetizers, vomiting, infertility, asthma, sore throat, vomiting, urticaria, diarrhea, dysentery, bleeding, ulcers, gout, bladder disease [21]
T18 T. chebula var. tomentella Weimaohezi (variant) China (western Yunnan), Myanmar Unknown
T19 T. citrina Manahei, Yellow myrobalan India, Bangladesh [22] Dysmenorrhea, bleeding, heart disease, dysentery, constipation [22]
T20 T. elliptica Indian laurel SE Asia, India, Bangladesh, Laos, Myanmar, Nepal, Thailand, Cambodia, Vietnam

Wine, palm sugar

Ulcers, fractures, bleeding, bronchitis, diarrhea [23]

T21 T. franchetii Dianlanren SW China [24] Unknown
T22 T. franchetii var. membranifolia Baoyedianlanren (variant) China [western Guangxi (Longlin), central to SE Yunnan] Unknown
T23 T. franchetii var. glabra Guang yedianlanren (variant) China (Sichuan and Yunnan Jinsha River Basin) Unknown
T24 T. ferdinandiana Gubinge, Bbillygoat plum, Kakadu plum, green plum, salty plum, murunga, mador Australia [25] Dietary supplements, skin care [25]
T25 T. glaucescens Unknown Nigeria [26]

Amenorrhea, vaginal infections, syphilis, sores, neurological disorders

Anti-plasma, antiparasitic, antiviral, antimicrobial [26, 27]

T26 T. hainanensis Ji zhenmu, Hainan lanren China (Hainan) Antioxidant [28]
T27 T. intricate Cuozhilanren China (NW Yunnan and SW Sichuan) Unknown
T28 T. ivorensis Idigbo, Black Afara, Shingle Wood, Brimstone Wood, Blackbark Cameroon, West Africa, Ivory Coast, Liberia, Nigeria, Sierra Leone, Ghana

Rheumatism, gastroenteritis, psychotic analgesics [29]

Syphilis, burns and bruises [30]

T29 T. kaernbachii Okari Nut Solomon Islands, Papua New Guinea α-Glucosidase inhibitor activity [31]
T30 T. kaiserana Unknown Tanzania Diarrhea, gonorrhea vomiting [44]
T31 T. laxiflora Unknown West Africa, Sudan Savannah

Malaria, cough [32]

Fumigant, rheumatic pain, smoothen skin, body relaxation [33]

T32 T. macroptera Bayankada Tropical (West Africa) Wound, hepatitis, malaria, fever, cough, diarrhea, tuberculosis, skin diseases [34]
T33 T. mantaly Unknown Africa, Madagascar Dysentery
T34 T. mollis Bush willow Africa Diarrhea, gonorrhea, malaria, AIDS adjuvant therapy [35]
T35 T. muelleri Ketapang kencana Indonesia, SE Asia, South Asia Antibacterial [36], antioxidants [37]
T36 T. myriocarpa Qianguolanren China [Guangxi (Longjin), Yunnan (central to the south), and Tibet (Medog)], northern Vietnam, Thailand, Laos, northern Myanmar, Malaysia, NE India, Sikkim Antioxidant, liver protection [38]
T37 T. myriocarpa var. hirsuta Yingmaoqianguolanren (variant) Yunnan, China; Thailand Unknown
T38 T. oblongata Rose wood, yellow wood Central Queensland [39] Unknown [39]
T39 T. paniculata Vellamaruth India Cholera, mumps, menstrual disorders, cough, bronchitis, heart failure, hepatitis, diabetes, obesity [40]
T40 T. parviflora Tropical almond, umbrella tree, Indian almond Sri Lanka and India [41] Diarrhea [41]
T41 T. prunioides Hareri, Sterkbos, Purple pod Terminalia, Mwangati Southern Africa Postnatal abdominal pain
T42 T. sambesiaca Unknown Southern Africa

Cancer, gastric ulcer, appendicitis

Bloody diarrhea [45]

T43 T. schimperiana Idi odan Africa, Sierra Leone, Guinea, Uganda, Ethiopia Local burns, bronchitis, dysentery [42]
T44 T. sericea Monakanakane, Mososo, Mogonono, Amangwe, Vaalboom, Mangwe, Silver clutter-leaf Northern South Africa, Botswana (except central Kalahari), southern Mozambique, Tanzania, Namibia, Zimbabwe, Northern Democratic Republic of Congo, tropical Africa [43]

Diarrhea, sexually transmitted infections, rash, tuberculosis [43]

Fever, high blood pressure [44]

T45 T. spinosa Musosahwai, spiny cluster leaf, Kasansa Southern Africa

Malaria, fever [46]

Epilepsy, poisoning [47]

T46 T. stenostachya Rosette leaf Terminalia Southern Africa Epilepsy, poisoning [47]
T47 T. stuhlmannii Unknown Acacia [48] Unknown
T48 T. superba Limba Tropical Western Africa Gastroenteritis, diabetes, female infertility, abdominal pain, bacteria/fungi/viral infections [49], diabetes remedies, anesthetic, hepatitis [50]
T49 T. triflora Lanza, lanza amarilla, amarillo derío, paloamarillo

Tropical (South America)

Northern and Northwest Argentina [149]

Making posts, furniture, weapons, fuel [149]
T50 T. tropophylla Unknown Madagascan [51] Unknown

SE southeastern, NE northeastern, SW southwestern, NW northwestern

Terminalia species are broadly used in many aspects. Some are employed as drugs, while others can provide high quality wood, tannin or dyes. For example, fruits of T. ferdinandiana, a species largely distributed in Australia, are rich in vitamin C, and possess strong antioxidant activity [25]. T. bellirica and T. chebula are not only recorded in every version of Chinese pharmacopoeia, but are also the important and most commonly applied drugs in Han, Tibetan, Mongolian and many other folk medicinal systems in India, Burma, Thailand, Malaysia, Vietnam and other southeast asian countries. T. catappa is a commonly used medicinal plant for liver protection in China [20].

Chemical Composition

Since 1930s, the chemical compositions of the genus Terminalia have been vastly studied. T. arjuna, T. bellirica, T. catappa and T. chebula, having been frequently used in the Ayurvedic, Chinese and Tibetan medicines, attracted scholars’ attention. To date, 368 compounds, largely terpenoids (1–104), tannins (105–196), flavonoids (197–241), lignans (242–265), phenols and glycosides (268–318) were reported from the genus (Tables 2, 3).

Table 2.

Chemical constituents isolated from the genus Terminalia and the studied plant organs

No. Compounds Plants Organs References
Triterpenes (86)
 1 2α,3β,19α-Trihydroxyolean-12-en-20-oic acid 3-O-β-d-galactosyl-(1 → 3)-β-d-glucoside T1 R [3]
 2 2α,3β,19α-Trihydroxyolean-12-en-28-oic acid methylester 3β-O-rutinoside T1 R [53]
 3 2α,3β,19β,23-Tetrahydroxyolean-12-en-28-oic acid 3β-O-β-d-galactosyl-(1 → 3)-β-d-glucoside-28-O-β-d-glucoside T1 R [52]
 4 3-Acetylmaslinic acid T1 RB [54]
 5 Arjunic acid

T1

T4

T17

T25

T28

T32

T44

B

SB, F

F

SB

B

B

R

[55, 74]

[60, 79, 124]

[146]

[130]

[132]

[145]

[133]

 6 Arjunoside I T4 SB [61]
 7 Arjunoside II T4 SB [61]
 8 Arjunoside III T4 R [62, 63]
 9 Arjunoside IV T4 R [62, 63]
 10 Arjunetin

T1

T4

T8, T16, T17, T20, T39

B

B, L, S, R, F

B, L, S, R, F

[55, 74]

[23, 67]

[23]

 11 Oleanolic acid

T1

T9

T4, T16, T20

T8, T17

T39

T28

T36

H

L

B, L, S, R, F

B, L, S, R

L, S, R, F

B

B

[56]

[97]

[23]

[23]

[23]

[132]

[140]

 12 Ursolic Acid

T4, T16, T20

T8, T17

T39

B, L, S, R, F

L, S, R

B, L, S, F

[23]

[23]

[23]

 13 Maslinic acid

T1

T9

T17

T36

H

L

F

B

[56]

[97]

[21, 116]

[140]

 14 2α,3α,24-Trihydroxyolean-11,13(18)-dien-28-oic acid T33 SB [158]
 15 Terminoside A T4 B [58]
 16 Arjungenin

T4

T25

T12

T8, T16, T20, T39

T17

T25

T28

T32

T33

T44

SB,L,R,F

R

B

B, L, S, R, F

B, L, S, R, F

R, SB

B

B

SB

RB

[23, 60, 70, 74]

[60]

[99]

[23]

[23, 146]

[69, 130]

[132]

[145]

[158]

[133, 152]

 17 Hypatic acid T25 R [69]
 18 Arjunglucoside I

T4

T17

T50

T32

B, R

F

R

B

[70, 74, 78]

[146]

[72]

[145]

 19 Sericoside

T4

T25

T28

T44

T32

T50

B

SB

B

R, L, SB

B

R

[71]

[130]

[76, 131]

[43, 133, 149]

[145]

[72]

 20 Crataegioside

T4

T17

B

F

[75]

[146]

 21 23-O-neochebuloylarjungenin 28-O-β-d-glycosyl ester T17 F [146]
 22 23-O-4′-epi-neochebuloylarjungenin T17 F [146]
 23 23-O-galloylarjunic acid

T39

T32

B

B

[144]

[145]

T17 F [146]
 24 Quercotriterpenoside I T32 B [145]
T17 F [146]
 25 Sericic acid

T28

T32

T44

B

B

R

[132]

[145]

[150]

 26 24-Deoxy-sericoside T32 B [138]
 27 Arjunolic acid

T1

T4

T7

T9

T8

T16, T17, T20, T39

T34

T36

B, H

B, H, L, S, R, F

RB

L

B, L, S, R

B, L, S, R, F

L

B

[55, 56, 74]

[23, 77, 78, 91]

[97]

[23]

[23]

[23, 144]

[35]

[140]

 28 Terminolic acid

T1

T17

T7, T16, T31

T25

T32

H

F

H

H, Rl

H, B

[56]

[146]

[128]

[128]

[128, 145]

 29 Arjunglucoside II

T4

T17

B

F

[70, 74]

[146]

 30 23-O-galloylarjunolic acid T17 F [146]
 31 23-O-galloylarjunolic acid 28-O-β-d-glucosyl ester T17 F [146]
 32 23-O-galloylterminolic acid 28-O-β-d-glucosyl ester T17 F [146]
 33 Arjunolitin T4 SB [80]
 34 Terminolitin T4 F [80]
 35 Arjunglucoside III T4 B [74]
 36 Methyl oleanate T4 R, F [80, 124]
 37 Olean-3α,22β-diol-12 en-28-oic acid 3-O-β-d-glucosyl-(1 → 4)-β-d-glucoside T4 B [81, 84]
 38 Arjunetoside T4 R, SB [82]
 39 Olean 3β,6β,22α-triol-12en-28-oic acid-3-O-β-d-glucosyl-(1 → 4)-β-d-glucoside T4 B [84]
 40 2α,19α,Dihydroxy-3-oxo-olean-12-en-28-oic acid-28-O-β-d-glucoside T4 R [85]
 41 Ivorengenin A (2α,19α,24-trihydroxy-3-oxoolean-12-en-28-oic acid) T28 B [132]
 42 Chebuloside I T17 F [115]
 43 Chebuloside II

T17

T32

F

B

[115]

[138]

 44 Arjunglucoside

T17

T44

T33

F

R, SB

SB

[115]

[133]

[158]

 45 Glaucescic acid (2α,3α,6α,23-tetrahydroxyolean-2-en-28-oic acid) T25 R [69]
 46 Glaucinoic acid (2α,3β,19α,24-tetrahydroxyolean-12-en-30-oic acid) T25 SB [130]
 47 Termiarjunoside I (olean-1α,3β,9α,22α-tetraol-12-en-28-oic acid-3-β-d-glucoside) T4 SB [156]
 48 Termiarjunoside II (olean-3α,5α,25-triol-12-en-23,28-dioic acid-3α-d-glucoside) T4 SB [156]
 49 β-Amyrin

T25

T36

SB

B

[129]

[140]

 50 Ivorenoside A T28 B [131]
 51 Ivorenoside B T28 B [131]
 52 Ivorenoside C T28 B [131]
 53 Ivorengenin B (4-oxo-19α-hydroxy-3,24-dinor-2,4-secoolean-12-ene-2,28-dioic acid) T28 B [132]
 54 1α,3β-Hydroxyimberbic acid 23-O-α-l-4-acetylrhamnoside T47 SB [48]
 55 1α,3β,3,23-Trihydroxy-olean-12-en-29-oate-23-O-α-[4-acetoxyrhamnosyl]-29-α-rhamnoside T47 SB [48]
 56 2α,3β-Dihydroxyolean-12-en-28-oic acid 28-O-β-d-glucoside T48 SB [49]
 57 2α,3β,21β-Trihydroxyolean-12-en-28-oic acid 28-O-β-d-glucoside T48 SB [49]
 58 2α,3β,29-Trihydroxyolean-12-en-28-oic acid 28-O-β-d-glucoside T48 SB [49]
 59 2α,3β,23,27-Tetrahydroxyolean-12-en-28-oic acid 28-O-β-d-glucoside T48 SB [49]
 60 Terminaliaside A ((3β,21β,22α)-3-O-(3′-O-angeloylglucosyl)-21,22-dihydroxy-28-O-sophorosyl-16-oxoolean-12-ene) T50 R [72]
 61 2, 3, 23-Trihydroxylolean-12-ene T7 RB [91]
 62 2α,3β,23-Trihydroxylolean-12-en-28-oic acid T48 SB [49]
 63 23-O-galloylpinfaenoic acid 28-O-β-d-glucosyl ester T17 F [146]
 64 Pinfaenoic acid 28-O-β-d-glucosyl ester

T4

T17

B

F

[76]

[146]

 65 2α,3β-Dihydroxyurs-12,18-dien-28-oic acid 28-O-β-d-glucosyl ester T4 B [76]
 66 Quadranoside VIII T4 B [76]
 67 Kajiichigoside F1 T4 B [76]
 68 2α,3β,23Trihydroxyurs-12,19-dien-28-oic acid 28-O-β-d-glucosyl ester T4 B [76]
 69 α-Amyrin T7 RB [91]
 70 2α,3β,23-Trihydroxy-urs-12-en-28-oic acid T34 L [35]
 71 2α-Hydroxyursolic acid

T34

T17

L

F

[35]

[115, 116]

 72 Ursolic acid T11 L [35]
 73 2α-Hydroxymicromeric acid T17 F [115, 116]
 74 Betulinic acid

T1

T11

T12

T4, T16, T17, T20, T39

T8

T25

T28

T36

B

L

B

B, L, S, R, F

B, L, S, R

SB

B

B

[55]

[35]

[99]

[23]

[23]

[129]

[132]

[140]

 75 Terminic acid T4 R, H [57, 62]
 76 Lupeol

T4

T25

T44

SB

SB

SB, R

[80]

[129]

[43]

 77 Monogynol A T12 B [99]
 78 Triterpenes

T25

T44

SB

R, SB

[129]

[133]

 79 Friedelin

T4

T7

T25

T34

F

RB

SB

SB

[83]

[93]

[129, 130]

[35]

 80 Maslinic lactone T1 H [56]
 81 Terminalin A T25 SB [129]
 82 Arjunaside A T4 B [68]
 83 Arjunaside B T4 B [68]
 84 Arjunaside C T4 B [68]
 85 Arjunaside D T4 B [68]
86 Arjunaside E T4 B [68]
Mono- (14) and sesqui- (4) terpendoids
 87 α-Pinene T9 L [13]
 88 Sabinene T9 L [13]
 89 Myrcene T9 L [13]
 90 β-Pinene T9 L [13]
 91 1,8-Cineole T9 L [13]
 92 Linalool T9 L [13]
 93 Menthone T9 L [13]
 94 γ-Terpineol T9 L [13]
 95 α-Terpineol T9 L [13]
 96 Limonene T9 L [13]
 97 Neral T9 L [13]
 98 Geraniol T9 L [13]
 99 Thymol T9 L [13]
 100 Isomenthone T9 L [13]
 101 β-Copaene T9 L [13]
 102 β-Caryophyllene T9 L [13]
 103 Caryophyllene T9 L [13]
 104 α-Humulene T9 L [13]
Hydrolysable (89) and condensed tannins (2)
 105 1,2,3,6-Tetra-O-galloyl-β-d-glucose T17 F [159]
 106 Gallotannin (1,2,3,4,6 penta galloyl glucose)

T4

T17

T19

T30

T45, T46

SB, L

F

F

R

L

[86]

[21, 118, 119]

[120]

[133]

[133]

 107 1,3,4,6-Tetra-O-galloyl-β-d-glucose T17 F [159]
 108 2,3,4,6-Tetra-O-galloyl-d-glucose

T3

T4

F

SB, L

[154]

[86]

 109 1,2,6-Tri-O-galloyl-β-d-glucose T31 R [101]
 110 Sanguiin H-1 T14 L [102]
 111 1,6-Di-O-galloyl-β-d-glucose

T3

T17

T40

F

F

B

[154]

[21, 119]

[41]

 112 1,3,6-Tri-O-galloyl-β-d-glucose

T3

T40

T19

T17

F

B

F

F

[154]

[41]

[120]

[159]

 113 Methyl 3,6-di-O-galloyl-β-d-glucoside T40 B [41]
 114 4,6 Bis hexahydroxydiphenyl-1-galloyl-glucose T4 SB, L [86]
 115 Sanguiin H-4 T14  L [18, 102]
 116 Corilagin

T3

T31

T16

T17

T19

T24

T32

F

R

L, B

F

F

F

L

[154]

[101]

[41, 106, 107]

[21, 118, 119, 159]

[120]

[126]

[135, 136]

 117 Tercatain

T16

T17

B, L

F

[41, 106, 107]

[159]

 118 1,3-Di-O-galloyl-β-d-glucose T17 F [159]
 119 2,3-O-(S)-HHDP-d-glucose

T3

T14

T4

T16

T40

T36

F

L

B

B, L

B

L

[154]

[102]

[104]

[41, 107]

[41]

[38]

 120 2,3-(S)-HHDP-6-O-galloyl-d-glucose

T3

T4

T40

T32

F

B

B

B

[154]

[104]

[41]

[137]

 121 3,6-Di-O-galloyl-d-glucose

T3

T40

T17

F

B

F

[154]

[41]

[159]

 122 3,4-Di-O-galloyl-d-glucose T3 F [154]
 123 6-O-galloyl-d-glucose T17 F [159]
 124 3,4,6-Tri-O-galloyl-d-glucose T17 F [159]
 125 Tellimagrandin I

T35

T17

L

F

[139]

[159]

 126 Gemin D T17 F [159]
 127 Arjunin

T4

T17

L

F

[65, 86]

[115]

 128 Punicalin

T3

T4

T14

T40

T16

T17

T28

T49

F

L, B

L

B

L

L, F

SB

L

[154]

[65, 86, 104]

[102]

[41]

[106, 107]

[21, 155]

[29]

[149]

 129 Casuarinin

T4

T16

T17

L, B

B

F

[88, 104]

[41]

[21, 118, 119]

 130 Casuariin T4 B [90, 104]
 131 Terchebulin

T3

T4

T7

T12

T17

T31

F

B

SB

B

F

W

[154]

[90, 104]

[92]

[100]

[21]

[134]

 132 Castalagin

T4

T16, T40

B

B

[90, 104]

[41]

 133 Grandinin T16, T40 B [41]
 134 Castalin T16, T40 B [41]
 135 α/β-Punicalagin

T3

T7

T4

T11

T12

T31

T14

T16

T17

T40

T19

T28

T32

T35

T36

T38

F

SB

B

L

B

R

L

B

L, F

B

F

SB

B

L

L

L

[154]

[92]

[104]

[35]

[100]

[101]

[18, 103]

[41]

[21, 106, 119, 155]

[41]

[120]

[29]

[137]

[139]

[38]

[39]

 136 1-α-O-galloylpunicalagin T14  L [18, 102, 103]
 137 6′-O-methyl neochebulagate T17 F [159]
 138 Dimethyl neochebulagate T17 F [159]
 139 Neochebulagic acid T17 F [159]
 140 Dimethyl 4′-epi-neochebulagate T17 F [159]
 141 Methyl chebulagate T17 F [159]
 142 Chebulagic acid

T3

T4

T8

T17

T16

T39

T20

T19

T32

T35

F

B, L, S

F, B, L, S

F, B, L, S, R

F, B, L, S, R

F, B, L, S, R

F, B, L, R

F

L

L

[154]

[23]

[23]

[23, 96]

[3, 4, 9, 21, 110]

[23]

[23]

[120]

[135, 136]

[139]

 143 Chebulinic acid

T3

T4, T8, T16, T20, T39

T17

T32

T35

F

F, B, L, S, R

F, B, L, S, R

L

L

[154]

[23]

[3, 4, 21, 110, 119, 155]

[23]

[110, 135, 139]

 144 Chebulanin

T34, T11

T17

L

F

[35]

[21, 119, 155, 159]

 145 1,3-Di-O-galloyl-2,4-chebuloyl-β-d-glucose T3 F [154]
 146 1,6-Di-O-galloyl-2,4-chebuloyl-β-d-glucose T17 F [155, 159]
 147 2-O-galloylpunicalin

T14

T40

T32

T49

L

B

B

L

[18]

[41]

[137]

[149]

 148 1-Desgalloyleugeniin

T14

T16

L

L

[102]

[107]

 149 Eugeniin T14  L [102]
 150 Rugosin A T14  L [102]
 151 1(α)-O-galloylpedunculagin T14  L [102]
 152 Praecoxin A T14  L [102]
 153 Calamansanin T14  L [102]
 154 Calamanin A T14  L [102]
 155 Calamanin B T14  L [102]
 156 Calamanin C T14  L [102]
 157 Terflavin C

T4

T14

T17

B

L

L

[104]

[103]

[21]

 158 Terflavin A

T16

T17

T32

L

F

B

[106, 107]

[21]

[137]

 159 Terflavin B

T16

T17

T32

L

L, F

B

[106, 107]

[21, 155]

[137]

 160 3-Methoxy-4-hydroxyphenol-1-O-β-d-(6′-O-galloyl)-glucoside T16 B [41]
 161 3,5-Di-methoxy-4-hydroxyphenol-1-O-β-d-(6′-O-galloyl)-glucoside T16 B [41]
 162 Acutissimin A T16 B [41]
 163 Eugenigrandin A T16 B [41]
 164 Catappanin A T16 B [41]
 165 Castamollinin T40 B [41]
 166 Tergallagin T16 L [106, 107]
 167 Geraniin T16 L [107]
 168 Granatin B T16 L [107]
 169 Gallotannic (tannic acid)

T17,T8

T38

F

L

[113]

[141]

 170 Chebulin T17 F [113, 114]
 171 Terchebin T17 F [113, 119]
 172 Neochebulinic acid

T3

T17

F

F

[154]

[21, 119, 155]

 173 Chebumeinin A T17 F [118]
 174 Chebumeinin B T17 F [118]
 175 Isoterchebulin T32 B [137]
 176 Punicacortein C

T3

T32

T17

F

B

F

[154]

[137]

[159]

 177 Punicacortein D T17 F [159]
 178 4,6-O-Isoterchebuloyl-d-glucose T32 B [137]
 179 Trigalloyl-β-d-glucose T35 L [139]
 180 Tetragalloyl-β-d-glucose T35 L [139]
 181 Pentagalloyl-β-d-glucose T35 L [139]
 182 1,2,3-Tri-O-galloyl-6-O-cinnamoyl-β-d-glucose T17 F [159]
 183 1,2,3,6-Tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose T17 F [159]
 184 1,6-Di-O-galloyl-2-O-cinnamoyl-β-d-glucose T17 F [159]
 185 1,2-Di-O-galloyl-6-O-cinnamoyl-β-d-glucose T17 F [159]
 186 4-O-(2′′, 4′′-di-O-galloyl-α-l-rhamnosyl) ellagic acid T17 F [159]
 187 4-O-(4′′-O-galloyl-α-l-rhamnosyl) ellagic acid T17 F [159]
 188 4-O-(3′′, 4′′-di-O-galloyl-α-l-rhamnosyl) ellagic acid T17 F [159]
 189 1′-O-methyl neochebulanin T17 F [159]
 190 Dimethyl neochebulinate T17 F [159]
 191 Phyllanemblinin E T17 F [159]
 192 1′-O-methyl neochebulinate T17 F [159]
 193 Phyllanemblinin F T17 F [159]
 194 Procyanidin B-1 T16 B [41]
 195 3′-O-galloyl procyanidin B-2 T16 B [41]
Flavonoids (45)
 196 5,7,2′-Tri-O-methylflavanone4′-O-α-l-rhamnosyl-(1 → 4)-β-d-glucoside T1 R [52]
 197 Arjunone T4 B, F [83, 89]
 198 8-Methyl-5,7,2′,4′-tetramethoxy-flavanone 

T1

T39

R

B

[53]

[144]

 199 Naringin

T4

T8

T17

T39

T20

L, S, F

B, F

L, R, F

R, F

B, L, S, R

[23]

[23]

[23]

[23]

[23]

 200 Eriodictyol

T4, T8, T17, T20, T39

T16

B, L, S, R, F

L, S, R, F

[23]

[23]

 201 Hesperitin T24 F [122]
 202 Flavanone T24 F [122]
 203 Arjunolone (6,4-dihydroxy-7-methoxy flavone) T4 SB [64]
 204 Bicalein (5,6,7-trihydroxy flavone) T4 SB [64]
 205 Scutellarein

T4

T8, T17, T20

T16

T39

B, R

B, L, S, R, F

L, F

B, L, R, F

[23]

[23]

[23]

[23]

 206 Luteolin

T4

T8, T20

T17

T16

T39

T24

B, L

L, S

R, L

L

L, S, F

F

[23, 65]

[23]

[23]

[23]

[23]

[122]

 207 Apigenin

T4

T8, T16, T17, T20, T39

B, L, S, R, F

B, L, S, R, F

[23, 66]

[23]

 208 Isoorientin

T11

T4, T8, T17, T16, T20, T39

T35

T36

L

B, L, S, R, F

L

L

[35]

[23]

[139]

[38]

 209 Orientin

T11

T4

T8

T17

T16

T39

T20

T35

T36

L

L, F

B, S

B, L, S, R, F

L, R, F

B, S, F

L, S, F, R

L

L

[35]

[23]

[23]

[23]

[23]

[23]

[23]

[139]

[38]

 210 Isovitexin

T11

T4

T17

T16

T39

T20

T35

T36

L

L, F

L, R, F

L

S, F

L, S, F

L

L

[35]

[23]

[23]

[23, 105]

[23]

[23]

[139]

[38]

 211 Apigenin-6-C-(2″-O-galloyl)-β-d-glucoside T16 L [105]
 212 Apigenin-8-C-(2″-O-galloyl)-β-d-glucoside

T16

T34

L

L

[105]

[35]

 213 Vitexin

T4, T17, T20

T8

T16

T39

T35

T36

B, L, S, R, F

B, L, S, R

L, S, R, F

B, L, S, F

L

L

[23]

[23]

[23]

[23]

[139]

[38]

 214 Amentoflavone

T8

T17

T20

L, S

L, R, F

L

[23]

[23]

[23]

 215 Neosaponarin T36 L [38]
 216 (−)-Epicatechin T4 B [76]
 217 Epicatechin 

T4, T8, T17, T20, T39

T16

T34

B, L, S, R, F

L, S, R, F

SB

[23]

[23]

[35]

 218 Catechin

T34

T11

T4, T8, T16, T17, T20, T39

T44

SB

L

B, L, S, R, F

R

[35]

[35]

[23]

[133]

 219 Catechin–epicatechin T44 R [43]
 220 Catechin–epigallocatechin T44 R [43]
 221 Epigallocatechin T34 SB [35]
 222 (−)-Epicatechin-3-O-gallate T16 B [41]
 223 (−)-Epigallocatechin-3-O-gallate T16 B [41]
 224 Flavanol T24 F [122]
 225 Gallocatechin

T34

T24

SB

F

[35]

[126]

 226 Quercetin

T4

T8

T17

T16

T39

T20

T24

T49

B, L, R

R

S, R, F

L, S, F

L, B

F

F

L

[23]

[23]

[23]

[23]

[23, 142]

[23]

[124]

[124]

 227 Kaempferol

T4

T8

T16, T17

T20, T39

T24

B, L, S, R, F

B, L, S, F

B, L, S, R, F

L, S, R, F

F

[23, 66]

[23]

[23]

[23]

[122]

 228 Kaempferol-3-O-β-d-rutinoside

T4, T8, T17

T16

T39

T20

T36

B, L, S, R, F

L, S, F

L, R, F

L, S, R

L

[23]

[23]

[23]

[23]

[38]

 229 Afzelin (kaempferol 3-O-rhamnoside) T49 L [124]
 230 Rutin

T4, T16

T8

T17, T39

T20

T32

T36

B, L, S, F

L, S

B, L, S, R, F

L, S, F

L

L

[23]

[23]

[23]

[23]

[135, 136]

[38]

 231 Narcissin T32 L [135, 136]
 232 Quercetin-3,4′-di-O-glucoside

T4

T8

T16, T17, T20, T39

B, L, S, F

B, S, F

B, L, S, R, F

[23]

[23]

[23]

 233 Quercetin-7-O-rhamnoside T4 F [80]
 234 2-O-β-glucosyloxy-4,6,2′,4′-tetramethoxychalcone T1 R [53]
 235 Cerasidin T4 F [80]
 236 Genistein

T4

T8, T16, T17, T20, T39

B, L, S, R, F

B, L, S, R, F

[23, 80]

[23]

 237 Cyaniding T4 B [66]
 238 Pelargonidin T4 B [66]
 239 Leucocyanidin T4 B [80]
 240 7-Hydroxy-3′,4-(methylenedioxy)flavan T8 FR [12]
Lignan (27)
 241 Termilignan

T8

T39

FR

B

[12]

[144]

 242 Anolignan B

T8

T44

FR

R

[12]

[43, 151]

 243 Thannilignan T8 FR [12]
 244 Termilignan B T44 R [133]
 245 Ferulic acid dehydrodimer T24 F [125]
 246 (7S,8R,7′R,8′S)-4′-hydroxy-4-methoxy-7,7′-epoxylignan T48 SB [50]
 247 Meso-(rel7S,8R,7′R,8′S)-4,4′-dimethoxy-7,7′-epoxylignan T48 SB [50]
 248 4′-O-cinnamoyl cleomiscosin A T50 R [72]
 249 Diethylstilbestrol monosulphate T24 F [126]
 250 Terminaloside A T19 L [22]
 251 Terminaloside B T19 L [22]
 252 Terminaloside C T19 L [22]
 253 Terminaloside D T19 L [22]
 254 Terminaloside E T19 L [22]
 255 Terminaloside F T19 L [22]
 256 Terminaloside G T19 L [22]
 257 Terminaloside H T19 L [22]
 258 Terminaloside I T19 L [22]
 259 Terminaloside J T19 L [22]
 260 Terminaloside K T19 L [22]
 261 2-Epiterminaloside D T19 L [22]
 262 6-Epiterminaloside K T19 L [22]
 263 Terminaloside L T19 L [121]
 264 Terminaloside M T19 L [121]
 265 Terminaloside N T19 L [121]
 266 Terminaloside O T19 L [121]
 267 Terminaloside P T19 L [121]
Phenols and glycosides (52)
 268 Ellagic acid

T1

T7

T10, TM, TT

T12

T40

T4, T8, T20

T17

T16

T39

T24

T25

T31

T28, T32

T35

T42

T30, T44

T36, T45, T46

T48

T49

B

SB

SB

B

B

B, L, S, R, F

L, SB, R F

SB, L, R, F

B, L, S, R, F, H

F

B, R, Rl

B

H

L, F

R, SB

R

L

SB

L

[55]

[92, 127]

[14]

[100]

[41]

[23, 80, 83, 86]

[3, 9, 21, 23, 111, 119]

[14, 23, 41, 108, 144]

[23, 142]

[123]

[70, 127, 128]

[127, 134]

[128]

[37, 38]

[133]

[133]

[133]

[50]

[124]

 269 Methyl ellagic acid T4 B [90]
 270 3-O-methylellagic acid T33 SB [158]
 271 3,3′-Di-O-methylellagic acid

T28

T39

T48

SB

H,B

SB

[29]

[8, 9, 143, 144]

[50]

 272 3,3′-Di-O-methylellagic acid 4-mono glucoside T39 H [147, 148]
 273 Tetra-O-methyl ellagic acid T39 H [148]
 274 3,3′-Di-O-methylellagic acid 4-O-β-d-glucosyl-(1 → 4)-β-d-glucosyl-(1 → 2)-α-l-arabinoside T1 R [52]
 275 3,4,3′-Tri-O-methylflavellagic acid

T7

T12

T24

T25

T31

T28

T32

T39

B

B

F

L, B, R, Rl

B

SB, H

H, B

H

[126]

[100]

[126]

[26, 70, 127, 128]

[127]

[29, 128]

[128, 138]

[143, 148]

 276 3,3′,4-O-trimethyl-4′-O-β-d-glucosylellagic acid T28 SB [29]
 277 3,3′-Di-O-methyl ellagic acid 4′-O-β-d-xyloside T48 SB [50]
 278 3,4′-Di-O-methylellagic acid 3′-O-β-d-xyloside T48 SB [153]
 279 4′-O-galloy-3,3′-di-O-methylellagic acid 4-O-β-d-xyloside T48 SB [153]
 280 Flavogallonic acid

T7

T40

T31

T12

T36

SB

B

W

R

L

[92]

[41]

[134]

[101]

[38]

 281 Methyl (S)-flavogallonate T36 L [38]
 282 Vanillic acid 4-O-β-d-(6′-O-galloyl) glucoside T32 B [138]
 283 3-O-methylellagic acid 4′-O-α-l-rhamnoside

T4

T34

T33

B

SB

SB

[76]

[35]

[158]

 284 Eschweilenol C (ellagic acid 4-O-α-l-rhamnoside)

T12

T17

B

F

[100]

[164]

 285 3-O-methylellagic acid 4′-O-xyloside T31 R [101]
 286 Brevifolincarboxylic acid T35 L [139]
T17 F [159]
 287 Terflavin D T17 L [21]
 288 Gallic acid

T3

T4, T8, T20, T39

T10, TM, TT

T17

T16

T34

T12

T31

T40

T24

T30

T35

T36

T38

T42

T44

T45, T46

T48

T49

F

B, L, S, R, F

SB

SB, F, R, L

SB, F, R, L

L

B

R, W

B

F

R

L

L

L

R, SB

R

L

SB

L

[154]

[23, 80, 83, 86]

[14]

[14, 21, 23, 118, 119]

[14, 23, 41, 108]

[35]

[100]

[101, 134]

[41]

[123, 125]

[133]

[139]

[38]

[141]

[133]

[133]

[133]

[50]

[124]

289 Phyllemblin (ethyl gallate isomers1 progallin A)

T4

T8

T24

T28

T36

B

F

F

SB

L

[86]

[96, 113]

[126]

[29]

[38]

290 Monogalloyl glucose

T3

T8

T17

T31

F

F

F

R

[154]

[113]

[21]

[101]

 291 Methyl gallate

T14

T8

T32

T36

T48

T49

L

F

L

L

SB

L

[18]

[113]

[135, 136]

[38]

[50]

[124]

 292 Shikimic acid T32 L [135, 136]
 293 5-O-galloyl-(−)-shikimic acid

T3

T17

F

F

[118]

[154, 159]

 294 4-O-galloyl-(−)-shikimic acid T17 F [159]
 295 3,5-Di-O-galloyl-(−)-shikimic acid T3 F [154]
 296 Digallic acid T17 F [159]
 297 Ethyl gallate isomers2 T24 F [126]
 298 Ethyl gallate isomers3 T24 F [126]
 299 Dimethyl gallic acid T35 L [139]
 300 Chebulic acid

T3

T17

T24

T35

F

F

F

L

[154]

[4, 9, 112, 119, 159]

[125, 126]

[139]

 301 6′-O-methyl chebulate T17 F [159]
 302 7′-O-methyl chebulate T17 F [159]
 303 Chebulic acid trimethyl ester T32 L [135, 136]
 304 Terminalin T38 L [39]
 305 Decarboxyellagic acid T3 F [154]
 306 3-O-galloyl-d-glucose T3 F [154]
 307 6-O-galloyl-d-glucose

T3

T17

F

F

[154]

[159]

 308 Vanillic acid

T4, T8, T20, T39

T17

T16

T44

B, L, S, R, F

B

S, R, B, F

R

[23]

[23, 117]

[23]

[43]

 309 Benzoic acid

T44

T24

R

F

[43]

[122]

 310 Hydrocinnamic acid T44 R [43]
 311 Gentisic acid T16 L [108]
 312 Protocatechuic acid T4, T8, T16, T17, T20, T39 B, L, S, R, F [23]
 313 2,3-Di-hydroxyphenyl β-d-glucosiduronic acid T24 F [125]
 314 Quinic acid

T4, T8, T16, T17, T20, T39

T24

B, L, S, R, F

[23]

[125]

 315 p-Coumaric acid

T17

T44

WP

R

[117]

[43]

 316 Caffeic acid

T4, T8

T17

T16

T39

T20

T44

L, S

L, S, R

L

B, L, S, R, F

B

R

[23]

[23]

[23]

[23]

[23]

[43]

 317 Chlorogenic acid

T4

T17

T16, T39

T20

L, S

S, R, F, L

L

B

[23]

[23]

[23]

[23]

 318 Ferulic acid

T4

T8, T17, T20, T39

T16

B, L, S, F

B, L, S, R, F

L, S, R

[23]

[23]

[23]

 319 Sinapic acid

T4, T16, T20, T39

T8

T17

B, L, S, R, F

S, R, F

B, S, R, F

[23]

[23]

[23]

Steroids (8), polyols (9) and esters (6)
 320 β-Sitosterol

T1

T4

T8

T12

T16

T48

T25

T36

T39

T44

B, H

S, F

F

F

B, SB

H

H

SB

B

H, SB, R

[55, 56]

[57, 83]

[96, 113]

[99]

[128]

[128]

[129]

[140]

[147, 148]

[43, 133, 152]

 321 β-Sitosterol-3-acetate T44 SB, R [43]
 322 β-Sitosteryl palmitate

T16

T25, T31

SB, H

L,F

[128]

[128]

 323 Stigmasterol 3-O-β-d-glucoside

T4

T33

F

SB

[80]

[158]

 324 Stigmasterol

T12

T25

T33

T44

B

SB

SB

RB

[99]

[129]

[158]

[133, 152]

 325 Stigma-4-ene-3-one T44 RB [43]
 326 16,17-Dihydroneridienone 3O-β-d-glucosyl-(1 → 6)-O-β-d-galactoside T4 R [59]
 327 Cannogenol 3-O-β-d-galactosyl-(1 → 4)-O-α-l-rhamno-side T8 Se [94]
 328 2-Hexanol T9 L [13]
 329 Octanol T9 L [13]
 330 Methoxycarbonyloxymethyl methylcarbonate T24 F [125]
 331 Ribonolactone T24 F [125]
 332 Apionic acid T24 F [125]
 333 Ascorbic acid T24 F [125]
 334 Gluconolactone T24 F [125]
 335 Glucohepatonic acid-1,4-lactone T24 F [125]
 336 Galacturonic acid T44 R [43]
 337 Geranyl formate T9 L [13]
 338 Citronellyl acetate T9 L [13]
 339 Geranyl acetate T9 L [13]
 340 Geranyl tiglate T9 L [13]
 341 Laxiflorin T31 RB [127]
 342 (1S,5R)-4-oxo-6,8-dioxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid T24 F [125]
Others (26)
 343 Glucuronic acid T24 F [125]
 344 Coumarin T45 L [133]
 345 Eujavonic acid T24 F [125]
 346 Purine T24 F [125]
 347 5-(4-Hydroxy-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid (gemfibrozil M1) T24 F [125]
 348 p-Hydroxytiaprofenic acid T24 F [125]
 349 Cis-polyisoprene T32 L [135]
 350 Arachidic acid T17 F [113]
 351 Behenic acid T8, T17 F [113]
 352 Arjunaphthanoloside T4 SB [87]
 353 Resveratrol (3′,4,5′-trihydroxystilbene)

T24

T44

F

R

[126]

[43]

 354 Resveratrol glucoside (piceid)

T24

T44

F

RB

[126]

[152]

 355 Resveratrol-β-d-glucoside T44 RB [152]
 356 Combretastatin T24 F [126]
 357 Combretastatin A1 T24 F [126]
 358 (Z)-Stilbene T44 R [133]
 359 (E)-Stilbene T44 R [133]
 360 3′5′-Dihydroxy-4-(2-hydroxyethoxy) resveratrol-3-O-β-rutinoside T44 R, RB [43, 152]
 361 Resveratrol-3-β-rutinoside glycoside T44 R, RB [43, 152]
 362 1,4-Cineole T9 L [13]
 363 Terpinen-4-ol T9 L [13]
 364 Terminalianone T12 B [98]
 365 Termicalcicolanone A T15 WP [19]
 366 Termicalcicolanone B T15 WP [19]
 367 Mangiferin

T4

T8

T17

T16

T39

T20

B, S, F

B, R, F

B, L, S, R, F

L, R, F

B, L, S, F

L, S, R

[23]

[23]

[23]

[23]

[23]

[23]

 368 Benzoyl-β-d-(4′ → 10″geranilanoxy)-pyranoside T8 F [160]

R root, SB stem bark, B bark, F fruit, S stem, H heartwood, RB root bark, Rl rootlet, Se seed, FR fruit rind, WP whole plant, T1T50 plants from Table 1, TM T. manii, TT T. tomentosa

Table 3.

The numbers and main types of compounds reported from different Terminalia species

No. Plant Plant organs Numbers Main types
T1 T. alata Roots, barks 18 Triterpenes
T3 T. arborea Fruits 24 Hydrolysable tannin
T4 T. arjuna Whole plants 93 Triterpenes, tannins, flavonoids
T7 T. avicennioides Barks 10 Triterpenes, tannins
T8 T. bellirica Fruits, barks 45 Triterpenes, flavonoids, lignin, simple phenols
T9 T. bentzoe Leaves 29 Monoterpenoids, sesquiterpenoid
T11 T. brachystemma Leaves 8 Flavonoids
T12 T. brownii Leaves 13 Triterpenes
T14 T. calamansanai Leaves 18 Hydrolysable tannin
T16 T. catappa Whole plants 64 Triterpenes, tannins, flavonoids, simple phenols
T17 T. chebula Whole plants 120 Triterpenes, tannins, flavonoids, simple phenols
T19 T. citrina Fruits, leaves 23 Lignan
T20 T. elliptica Whole plants 36 Flavonoids
T24 T. ferdinandiana Fruits 35 Flavonoids, simple phenols, polyols
T25 T. glaucescens Barks 19 Triterpenes
T28 T. ivorensis Barks 18 Triterpenes
T31 T. laxiflora Roots 13 Tannins
T32 T. macroptera Whole plants 28 Triterpenes, tannins, simple phenols
T33 T. mantaly Stem barks 7 Triterpenes, simple phenols
T34 T. mollis Barks 12 Triterpenes, flavonoids
T35 T. muelleri Leaves 16 Hydrolysable tannin, flavonoids, simple phenols
T36 T. myriocarpa Leaves, barks 21 Triterpenes, flavonoids, simple phenols
T39 T. paniculata Barks 43 Triterpenes, flavonoids, simple phenols
T40 T. parviflora Barks 16 Tannins
T44 T. sericea Roots 32 Triterpenes, simple phenols, other compounds
T48 T. superba Barks 15 Triterpenes, simple phenols

Chemical components identified from the other 12 species, including T. bialata (T10), T. calcicola (T15), T. kaiserana (T30), T. manii (TM), T. macroptera (T32), T. oblongata (T38), T. sambesiaca (T42), T. spinosa (T45), T. stenostachya (T46), T. stuhlmannii (T47), T. triflora (T49), T. tropophylla (T50) were less than 6 compounds

Terpenoids

So far, 104 terpenoids (Fig. 1) including 86 triterpenes (1–86), 14 monoterpenes (87–100), 4 sesquiterpenes (101–104) have been reported from the genus Terminalia. The triterpenoids are mainly oleanane, ursane and lupine types, and their glycosides. Particularly, Atta-ur-Rahman et al. isolated a new seco-triterpene terminalin A (81) possessing a novel rearranged seco-glutinane structure with a pyran ring-A and an isopropanol moiety from the stem barks of T. glaucescens [129]. Ponou et al. found two dimeric triterpenoid glucosides, ivorenosides A and B (49–50) possessing an unusual skeleton [131], and two new oleanane type triterpenes, 3-oxo-type ivorengenin A (41) and 3,24-dinor-2,4-secooleanane-type ivorengenin B (53) from the barks of T. ivorensis [132]. Compounds 41, 49 and 53 showed significant anticancer activities. Wang et al. isolated five new 18,19-secooleanane type triterpene glycosyl esters, namely arjunasides A–E (82–86) from the MeOH extract of T. arjunas barks, TaBs [68]. Moreover, five ursane type triterpene glucosyl esters (64–68) were also obtained for the first time [76]. From the fruits of T. chebula, 23-O-neochebuloylarjungenin 28-O-β-d-glycosyl ester (21) and 23-O-4′-epi-neochebuloylarjungenin (22) with novel substituents at C-23 were reported, in addition to compounds 23–24, 30–32 and 63, whose C-23 substituents were gallate. Compounds 30 and 31 had strong hypoglycemic effect [146]. Furthermore, compound 40 was obtained from the barks of T. arjuna [85], while friedelin (79) with 3-oxo moiety was reported from the fruits of T. arjuna [83], the root barks of T. avicennioides [93], and the stem barks of T. glaucescens [130] and T. mollis [35].

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

The structures of terpenoids 1–104

Tannins

As the main secondary metabolites, 91 tannins (105–195) were reported from the genus Terminalia (Fig. 2), including ellagitannins, gallotannins, dimeric, and trimeric tannins. Four cinnamoyl-containing gallotannins (182–185) were discovered firstly from the fruits of T. chebula, and 1,2,3,6-tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose (183) and 4-O-(2″,4″-di-O-galloyl-α-l-rhamnosyl) ellagic acid (186) showed significant inhibitory activity on α-glucosidase with IC50 values of 2.9 and 6.4 μM, respectively [159].

Fig. 2.

Fig. 2

Fig. 2

Fig. 2

The structures of tannins 105–195

Tannins possess not only liver and kidney protection properties, but also anti-diarrhea, anticancer, antibacterial and hypoglycemic activities [133]. However, a condensed tannin terminalin (186) from T. oblongata was reported to have severe hepatorenal toxicity and even caused renal necrosis [39].

Flavonoids

The Terminalia genus are rich in flavonoids (Fig. 3) comprising of flavanones (196–202), flavones (203–215), flavan-3-ols (216–225), and flavonols (226–233). Among them, cerasidin (235) of chalcone, genistein (236) of isoflavone, and leucocyanidin (239) of flavan-3,4-diol from T. arjuna [80] were described as rare structural types in the Terminalia genus. Moreover, a new chalcone glycoside 2-O-β-glucosyloxy-4,6,2′,4′-tetramethoxychalchone (234) was reported from the roots of T. alata [53]. In addition, anthocyanidin cyanidin (237) and pelargonidin (238), flavanoid 7-hydroxy-3′,4-(methylenedioxy)flavan (240) and other structure were reported [12, 23, 66]. Compounds 209–213, 215 were C-glycosides at C-6 or C-8 of ring A.

Fig. 3.

Fig. 3

The structures of flavonoids 197–240

Lignans

Twenty-seven lignans (241–267) were reported from the genus Terminalia (Fig. 4). A new lignan 4′-O-cinnamoyl cleomiscosin A (248) was reported from the ethanol extract of T. tropophylla roots [72]. Moreover, 13 new furofuran lignan glucosides, terminalosides A–K (250–260), 2-epiterminaloside D (261), 6-epiterminaloside K (262) and 5 new polyalkoxylated furofuranone lignan glucosides, terminalosides L–P (263–267) were obtained from the leaves of T. citrina. All of them were tested for their estrogenic and/or antiestrogenic activities using estrogen responsive breast cancer cell lines T47D and MCF-7, and showed varying degrees of inhibitory activity. Among them, terminalosides B (251), G (256), L (263) and M (264) inhibited cell growth by up to 90% at a minimum concentration of 10 nM [22, 121].

Fig. 4.

Fig. 4

The structures of lignans 241–267

Phenols and Glycosides

There are 52 phenols and glycosides reported in the Terminalia genus (Fig. 5), in which ellagic acid (268) and gallic acid (289) are present in almost all species. Studies have shown that most of the simple phenolic compounds have antioxidant, antibacterial, hypoglycemic, liver and kidney protection [23].

Fig. 5.

Fig. 5

The structures of phenols and glycosides (268–319)

Sterols and Cardiac Glycosides

Only 6 sterols (320–325) and 2 cardiac glycosides (326-327) were isolated from the genus Terminalia before 2001 (Fig. 6).

Fig. 6.

Fig. 6

The structures of steroids (320–325) and cardiac glycosides (326–327)

Polyols and Esters

Polyols and lipids were reported to be abundant in the genus Terminalia and concentrated mainly in fruits and leaves [125]. So far, 9 polyol (328–336) and 6 esters (337–342) have been documented (Fig. 7).

Fig. 7.

Fig. 7

The structures of polyols and esters (328–342)

Other Compounds

Other compounds featured in the Terminalia genus are shown in Fig. 8 and are mostly styrenes. Cao et al. isolated two new cytotoxic xanthones - termicalcicolanone A (365), termicalcicolanone B (366) in T. calcicola, and found an inhibitory effect on ovarian cancer [19]. Hiroko Negishi et al. obtained a new chromone derivative - terminalianone (364) from the barks of Terminalia brownii [98]. Ansari et al. isolated the novel compound, 4′-substituted benzoyl-β-d glycoside (368), from the fruits of T. bellirica and illustrated its potential for anticoagulation [160].

Fig. 8.

Fig. 8

The structures of other compounds (343–368)

Moreover, chlorophyll and various vitamins were reported from the genus Terminalia.

Pharmacological Activities

The pharmacological activities of the genus Terminalia, mainly including antimicrobial, antioxidant, cytotoxicity, anti-inflammatory, hypoglycemic, cardiovascular, mosquitocidal and antiviral, have been extensively studied.

Antimicrobial

Extracts of several Terminalia species exhibit antimicrobial activity against various microbes. For example, methanol and aqueous extracts of T. australis were demonstrated antimicrobial activity against Ca. albicans (MIC = 180 and 250 µg/mL, resp.) and Ca. kruzzei (MIC = 250 and 300 µg/mL, resp.) [8]. Aqueous extracts of the stem barks, woods and whole roots of T. brownii showed antibacterial activity against standard strains of Sta. aureus (14.0 ± 1.1 µg/mL), Escherichia coli, Ps. aeruginosa (12.0 ± 1.1 µg/mL), Klebsiella pneumonia (6.0 ± 1.0 µg/mL), Sa. typhi and Bacillus anthracis (13.0 ± 1.0 µg/mL), as well as fungi Ca. albicans (12.3 ± 1.5 µg/mL) and Cr. neoformans (9.7 ± 1.1 µg/mL) [16]. Ethanol extracts of the root barks and leaves of T. schimperiana were against Sta. aureus, Ps. aeruginosa and Sa. typhi (MIC = 0.058–2.089 mg/mL), with inhibition zone diameters (IZDs) of 17.2 to 10.0 mm, compared to gentamicin (IZD = 21.8–10 mm). The results supported the efficacy of the extracts in the folkloric treatment of burns wounds, bronchitis and dysentery, respectively [42]. Antibacterial tests on Mycobacterium smegmatis ATCC 14468 showed that methanol extract of T. sambesiaca roots and stem barks had promising effects (MIC = 1.25 mg/mL, both) [133].

Ellagitannin punicalagin (133) obtained from the stem barks of T. mollis demonstrated crucial activity against Ca. parapsilosis and Ca. krusei (MIC = 6.25 μg/mL), as well as Ca. albicans (MIC = 12.5 μg/mL) [35]. 7-Hydroxy-3′,4′-(methylenedioxy) flavan (240), termilignan (241), anolignan B (242) and thannilignan (243) isolated from the fruit rinds of T. bellirica displayed significant antifungal activity against Penicillium expansum (MIC = 1.0, 2.0, 3.0 and 4.0 µg/mL, resp.), also with 240 and 241 against Ca. albicans at 10 and 6 µg/mL, resp. [12]. The antimycobacterial activity of friedelin (79) furnished from the root barks of T. avicennioides was 4.9 μg/mL in terms of MIC value [93]. β-Arjungenin (16), betulinic acid (74), sitosterol (319) and stigmasterol (323) from T. brownii were proved to possess antibacterial activity, with 74 the most active against A. niger and S. ipomoea (MIC = 50 μg/ml) [99].

Antioxidant

Terminalia species have also illustrated some interesting antioxidant properties [161]. By a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, relatively high anti-oxidant activities of the methanol extracts of T. alata, T. bellirica and T. corticosa trunk-barks were found (IC50 = 0.24, 1.02 and 0.25 mg/mL, resp.), compared to the positive control, l-ascorbic acid (IC50 = 0.24 mg/mL) [2].

Flavonoid glycosides, apigenin-6-C- (211) and apigenin-8-C- (212) (2″-O-galloy1)-β-d-glucoside, isolated from dried fallen leaves of T. catappa, showed significant antioxidative effects (IC50 = 2.1 and 4.5 µM, resp.) on Cu2+/02-induced low density lipoprotein lipid peroxidation, with probucol (IC50 = 4.0 µM) as positive control [105].

Arjunaphthanoloside (351), isolated from the stem barks of T. arjuna showed potent antioxidant activity and inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages [87], while ivorenosides B (51) and C (52), two triterpenoid saponins from T. ivorensis, exhibited scavenging activities against DPPH and ABTS+ radicals [131].

The antioxidant potential of T. paniculata (TPW) was investigated by DPPH, ABTS2−, NO, superoxide (O2−), Fe2+ chelating and ferric reducing/antioxidant power (FRAP) assays. TPW showed maximum superoxide, ABTS2−, NO, DPPH inhibition, and Fe2+-chelating property at 400 µg/mL, resp. FRAP value was 4.5 ± 0.25 µg Fe(II)/g, which demonstrated the efficacy of aqueous barks extract of T. paniculata as a potential antioxidant and analgesic agent [142].

TaB contains various natural antioxidants and has been used to protect animal cells against oxidative stress. The alleviating effect of TaB aqueous extract against Ni toxicity in rice (Oryza sativa L.) suggested that TaB extract considerably alleviated Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings [162]. Behavioral paradigms and PCR studies of TaB extract against picrotoxin-induced anxiety showed that TaB supplementation increased locomotion towards open arm (EPM), illuminated area (light–dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, alcoholic extract of TaB showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes [174].

Cytotoxicity

70% Acetone extracts of T. calamansanai leaves inhibited the viability of human promyelocytic leukemia HL-60 cells. Sanguiin H-4 (115), 1-α-O-galloylpunicalagin (136), punicalagin (135), 2-O-galloylpunicalin (147) and methyl gallate (290) were the main components isolated from T. calamansanai with the IC50 values of 65.2, 74.8, 42.2, 38.0 and > 100 µM, respectively, for HL-60 cells. Apoptosis of HL-60 cells treated with 1-α-O-galloylpunicalagin, 115, 135, and 147 was noted by the appearance of a sub-G1 peak in flow cytometric analysis and DNA fragmentation by gel electrophoresis. 115 and 147 induced a decrease of the human poly (ADP-ribose) polymerase (PARP) cleavage-related procaspase-3 and elevated activity of caspase-3 in HL-60 cells, but not normal human peripheral blood mononuclear cells, PBMCs [18].

Terminaliaside A (60), an oleanane-type triterpenoid saponin isolated from the roots of T. tropophylla showed antiproliferative activity against the A2780 human ovarian cancer cell line with an IC50 value of 1.2 µM [72]. The 70% methanolic extract of T. chebula fruits was found to decrease cell viability, inhibit cell proliferation, and induce cell death of human (MCF-7) and mouse (S115) breast cancer, human osteosarcoma (HOS-1), human prostate cancer (PC-3) and a non-tumorigenic, immortalized human prostate (PNT1A) cell lines. Flow cytometry and other analyses showed that some apoptosis was induced by the extract at lower concentrations, but at higher concentrations, necrosis was the major mechanism of cell death. Chebulinic acid (143) and ellagic acid (186) were tested by ATP assay on HOS-1 cell line in comparison with three known antigrowth phenolics of Terminalia, gallic acid (287), methyl gallate (290), luteolin (206), and tannic acid (169). Results showed that the most growth inhibitory phenolics in T. chebula fruits were chebulinic acid (IC50 = 53.2 µM ±/0.16) >/tannic acid (IC50 = 59.0 mg/mL ±/0.19) > ellagic acid (IC50 = 78.5 µM ±/0.24) [111].

Aqueous and ethanolic extracts of T. citrina fruits were revealed to exhibit significant mutagenicity in tested strains of baby hamster kidney cell line (BHK-21). Ethanolic extract showed higher mutagenicity in TA 100 strain, whereas aqueous extract exhibited higher mutagenicity in TA 102 strain than TA 100. Both extracts showed dose-dependent mutagenicity. Fifty percent cell viability was exhibited by 260 and 545 μg/mL of ethanolic and aqueous extracts respectively [169]. Moreover, ivorenoside A (50) showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC50 values of 3.96 and 3.43 µM, respectively [131].

Anti-inflammatory

Inflammation has been considered as a major risk factor for various kinds of human diseases. Macrophages play substantial roles in host defense against infection. It can be activated by LPS, the major component of the outer membrane of Gram-negative bacteria. An investigation was carried out to determine anti-inflammatory potential of ethyl acetate fraction isolated from T. bellirica (EFTB) in LPS stimulated RAW 264.7 macrophage cell lines. EFTB (100 μg/mL) inhibited all inflammatory markers in dose dependent manner. Moreover, EFTB down regulated the mRNA expression of TNF-α, IL-6, COX-2 and NF-κB against LPS stimulation. These results demonstrated that EFTB is able to attenuate inflammatory response possibly via suppression of ROS and NO species, inhibiting the production of arachidonic acid metabolites, proinflammatory mediators and cytokines release [165].

Anolignan B (242) isolated from roots of T. sericea was tested for anti-inflammatory activity using the cyclooxygenase enzyme assays (COX-1 and COX-2) It showed activity against both COX-1 (IC50 = 1.5 mM) and COX-2 (IC50 = 7.5 mM) enzymes [151]. Termiarjunosides I (47) and II (48) isolated from stem barks of T. arjuna inhibited aggregation of platelets and suppressed the release of NO and superoxide from macrophages [156].

The anti-inflammatory activities of a polyphenol-rich fraction (TMEF) obtained from T. muelleri was assessed using carrageenan-induced paw edema model by measuring PGE2, TNF-α, IL-1b, and IL-6 plasma levels as well as the paw thickness. The group treated with 400 mg/kg of TMEF showed a greater inhibition in the number of writhes (by 63%) than the standard treated group (61%). TMEF pretreatment reduced the edema thickness by 48, 53, and 62% at the tested doses, respectively. TMEF administration inhibited the carrageenan-induced elevations in PGE2 (by 34, 43, and 47%), TNF-α (18, 28, and 41%), IL-1β (14, 22, and 29%), and IL-6 (26, 31, and 46%) [166].

Hypoglycemic

Some species and isolates from Terminalia have indicated possession of α-glucosidase inhibitory capabilities. Gallic acid (287) and methyl gallate (290), from stem barks of T. superba, showed significant activity (IC50 = 5.2 ± 0.2 and 11.5 ± 0.1 μM, resp.). Arjunic acid (5) and glaucinoic acid (46) from stem barks of T. glaucescens showed significant β-glucuronidase inhibitory activity with IC50 value 80.1 and 500 μM, resp., against β-glucuronidase [130].

In a study to investigate α-glucosidase inhibition of extracts and isolated compounds from T. macroptera leaves, chebulagic acid (142) showed an IC50 value of 0.05 µM towards α-glucosidase and 24.9 ± 0.4 µM towards 15-lipoxygenase (15-LO), in contrast to positive controls (acarbose: IC50 = 201 ± 28 µM towards α-glucosidase, quercetin: IC50 = 93 ± 3 µM towards 15-LO). Corilagin (116) and narcissin (231) were good 15-LO and α-glucosidase inhibitors. Rutin (230) was a good α-glucosidase inhibitor (IC50 ca. 3 µM), but less active towards 15-LO [136].

From the fruits of T. chebula, 23-O-galloylarjunolic acid (30) and 23-O-galloylarjunolic acid 28-O-β-d-glucosyl ester (31) were afforded and showed potent inhibitory activities with IC50 values of 21.7 (30) and 64.2 (31) µM, resp., against Baker’s yeast α-glucosidase, compared to the positive control, acarbose (IC50 174.0 µM) [146].

Hydrolyzable tannins, 1,2,3,6-tetra-O-galloyl-4-O-cinnamoyl-β-d-glucose (183) and 4-O-(2″,4″-di-O-galloyl-α-l-rhamnosyl) ellagic acid (186) from the fruits of T. chebula, showed significant α-glucosidase inhibitory activities with IC50 values of 2.9 and 6.4 µM, resp. In addition, inhibition kinetic studies showed that both compounds have mixed-type inhibitory activities with the inhibition constants (Ki) of 1.9 and 4.0 µM, respectively [159].

Cardiovascular

A few species of Terminalia have demonstrated cardiovascular activities. It was reported that the barks of T. arjuna possessed significant inotropic and hypotensive effect, mild diuretic, antithrombotic, prostaglandin E2 enhancing and hypolipidaemic activities [66].

Ethanolic extract of T. pallida fruits (TpFE) were studied to determine their cardioprotection against isoproterenol (ISO)-administered rats. The supplementation of TpFE dose-dependently exerts notable protection on myocardium by virtue of its strong antioxidant activity. It could be used as a medicinal food for the treatment of cardiovascular ailments [163].

Mosquitocidal

Insect-borne diseases remain to this day a major source of illness and can cause death worldwide. The resistance to chemical insecticides among mosquito species has been a major problem in vector control. The larvicidal and ovicidal activities of crude benzene, hexane, ethyl acetate, chloroform and methanol extracts of T. chebula were tested for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. All extracts showed moderate larvicidal effects, the highest larval mortality was found in the methanol extract of T. chebula against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with the LC50 values of 87.13, 93.24 and 111.98 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h post treatment. All the five solvent extracts showed moderate ovicidal activity. The maximum egg mortality (zero hatchability) was observed in the methanol extract of T. chebula at 200 and 250 ppm against A. stephensi, while A. aegypti and C. quinquefasciatus showed 100% mortality at 300 ppm. No mortality was observed in the control group. The finding of the investigation revealed that the leaf extract of T. chebula possesses remarkable larvicidal and ovicidal activity against medically important vector mosquitoes [167, 168].

Antiviral

Termilignan (241) and anolignan B (242), obtained from T. bellirica exhibited antimalarial activity against the chloroquine-susceptible strain 3D7 of Plasmodium falciparum (IC50 = 9.6 ± 1.2 μM)[12]. Casuarinin (129), chebulagic acid (142) from the fruits of T. chebula possessed hepatitis C virus inhibition activities (IC50 = 9.6 and 5.2 μM, resp.) [118]. Punicalin (128) and 2-O-galloylpunicalin (147), isolated from aqueous extract of T. triflora leaves, showed inhibitory activity on HIV-1 reverse transcriptase with IC50 of 0.11 μg/mL (0.14 μM) and 0.10 μg/mL (0.11 μM), resp. [149].

In vitro anti-HIV-1 activity of acetone and methanol extracts of T. paniculata fruits was studied by Durge A. et al. Cytotoxicity tests were conducted on TZM-bl cells and PBMCs, the CC50 values of both extracts were ≥ 260 μg/mL. By using TZM-bl cells, the extracts were tested for their ability to inhibit replication of two primary isolates HIV-1 (X4, Subtype D) and HIV-1 (R5, Subtype C). The activity against HIV-1 primary isolate (R5, Subtype C) was confirmed by using activated PBMC and quantification of HIV-1 p24 antigen. Both the extracts showed anti-HIV-1 activity in a dose-dependent manner. The EC50 values of the acetone and methanol extracts of T. paniculata were ≤ 10.3 μg/mL. Furthermore, the enzymatic assays were performed to determine the mechanism of action which indicated that the anti-HIV-1 activity might be due to inhibition of reverse transcriptase (≥ 77.7% inhibition) and protease (≥ 69.9% inhibition) enzymes [172].

Kesharwani A. et al. investigated anti-HSV-2 activity of T. chebula extract and its constituents, chebulagic acid (142) and chebulinic acid (143). Cytotoxicity assay using Vero cells revealed CC50 = 409.71 ± 47.70 μg/mL for the extract whereas 142 and 143 showed more than 95% cell viability up to 200 μg/mL. The extract from T. chebula (IC50 = 0.01 ± 0.0002 μg/mL), chebulagic (IC50 = 1.41 ± 0.51 μg/mL) and chebulinic acids (IC50 = 0.06 ± 0.002 μg/mL) showed dose dependent in vitro anti-viral activity against HSV-2, which can also effectively prevent the attachment and penetration of the HSV-2 to Vero cells. In comparison, acyclovir showed poor direct anti-viral activity and failed to significantly (p > 0.05) prevent the attachment as well as penetration of HSV-2 to Vero cells when tested up to 50 μg/mL. Besides, in post-infection plaque reduction assay, T. chebula extract, chebulagic and chebulinic acids showed IC50 values of 50.06 ± 6.12, 31.84 ± 2.64, and 8.69 ± 2.09 μg/mL, resp., which were much lower than acyclovir (71.80 ± 19.95 μg/mL) [173].

Others

Terminalia species were also reported to be used in the treatment of diarrhea [95], Alzheimer’s disease [112], psoriasis [164], liver disease [170], kidney disease [171], etc. Terminalosides A–K (249–259) from the leaves of the Bangladeshi medicinal plant T. citrina possess estrogen-inhibitory properties. Among them, Terminaloside E (253) showed inhibitory activity against the T47D cell line, such terminalosides C (252), F (255), and I (258). Besides, 6-epiterminaloside K (262) displayed antiestrogenic activity against MCF-7 cells [22].

Conclusion and Future Prospects

The genus Terminalia contains not only a large number of tannins, simple phenolics, but also a lot of terpenoids, flavonoids, lignans and other compounds. Most tannins, simple phenolics and flavonoids have antioxidation, antibacterial, antiinflammatory and anticancer activities. The plants of the genus Terminalia have exhibited positive effect on immune regulation, cardiovascular disease and diabetes, and can accelerate wound healing [157]. Therefore, the Terminalia genus has great medicinal potential. However, most of the chemical composition of species is still unknown, we should use modern advanced technology such as LC–MS to continue to isolate its compounds, and determine their pharmacological activities and mechanism of action, to explore other possible greater medicinal value.

Acknowledgements

This work was supported by the Key Projects of Yunnan Science and Technology, and Yunnan Key Laboratory of Natural Medicinal Chemistry (S2017-ZZ14).

Abbreviations

A.

Aspergillus

BCG

Bacillus Calmette Guerin

BMM

Broth microdilution method

Ca.

Candida

Cr.

Cryptococcus

CC50

Cytotoxic concentration of the extracts to cause death to 50% of host’s viable cells

DPPH

2,2-Diphenyl-1-picrylhydrazyl

E.

Escherichia

EC50

Half maximal effective concentration

FRAP

Ferric reducing/antioxidant power

GABA

Neurotransmitter gamma-aminobutyric acid

IC50

Minimum inhibition concentration for inhibiting 50% of the pathogen

K.

Klebsiella

MIC

Minimum inhibitory concentration

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

Ps.

Pseudomonas

Sa.

Salmonella

Sta.

Staphylococcus

Str.

Streptomyces

Conflict of interest

All authors declare no conflict of interest.

References

  • 1.McGaw LJ, Rabe T, Sparg SG, Jäger AK, Eloff JN, van Staden J. J. Ethnopharmacol. 2001;75:45–50. doi: 10.1016/s0378-8741(00)00405-0. [DOI] [PubMed] [Google Scholar]
  • 2.Nguyen Q, Nguyen VB, Eun J, Wang S, Nguyen DH, Tran TN, Ngugen AD. Res. Chem. Intermed. 2016;42:5859–5871. [Google Scholar]
  • 3.Srivastava SK, Chouksey BK, Srivastava SD. Fitoterapia. 2001;72:191–193. doi: 10.1016/s0367-326x(00)00262-8. [DOI] [PubMed] [Google Scholar]
  • 4.Arias D, Calvo-Alvarado J, de Richter DB, Dohrenbusch A. Biomass Bioenergy. 2011;35:1779–1788. [Google Scholar]
  • 5.Y. Noboru, I. Ayako, K. Chika, S. Keisuke, JP2001098264 A 20010410 (2001)
  • 6.Yadav RN, Rathore K. Phytochem. Commun. 2001;72:459–461. doi: 10.1016/s0367-326x(00)00337-3. [DOI] [PubMed] [Google Scholar]
  • 7.S. Fangwen, P. Raoji, CN105232959 A 20160113 (2016)
  • 8.Carpano SM, Spegazzini ED, Rossi JS, Castro MT, Debenedetti SL. Fitoterapia. 2003;74:294–297. doi: 10.1016/s0367-326x(03)00026-1. [DOI] [PubMed] [Google Scholar]
  • 9.Omonkhua AA, Cyril-Olutayo MC, Akanbi OM, Adebayo OA. Parasitol. Res. 2013;112:3497–3503. doi: 10.1007/s00436-013-3530-0. [DOI] [PubMed] [Google Scholar]
  • 10.Zanna H, Ahmad S, Abdulmalik B. Tasi’u M, Abel GO, Musa HM. Adv. Biochem. 2014;2:55–59. [Google Scholar]
  • 11.Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants. New Delhi: CSIR; 1956. p. 241. [Google Scholar]
  • 12.Valsaraj R, Pushpangadan P, Smitt UW, Adsersen A, Christensen SB, Sittie A, Nyman U, Nielsen C, Olsen CE. J. Nat. Prod. 1997;60:739–742. doi: 10.1021/np970010m. [DOI] [PubMed] [Google Scholar]
  • 13.Gurib-Fakim A. J. Essent. Oil Res. 1994;6:533–534. [Google Scholar]
  • 14.Khatoon S, Singh N, Srivastava N, Rawat A, Mehrotra S. J. Planar Chromatogr. 2008;21:167–171. [Google Scholar]
  • 15.Gelfand M. The Traditional Medical Practitioner in Zimbabwe, His Principles of Practice and Pharmacopoeia. Gweru: Mambo Press; 1985. pp. 58–61. [Google Scholar]
  • 16.Mbwambo ZH, Moshi MJ, Masimba PJ, Kapingu MC, Nondo RS. BMC Complement. Altern. Med. 2007;7:9. doi: 10.1186/1472-6882-7-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.McIntosh KS. Qld Agric. J. 1934;42:727–729. [Google Scholar]
  • 18.Chen LG, Huang WT, Lee LT, Wang CC. Toxicol. Vitro. 2009;23:603–609. doi: 10.1016/j.tiv.2009.01.020. [DOI] [PubMed] [Google Scholar]
  • 19.Cao S, Brodie PJ, Miller JS, Randrianaivo R, Ratovoson F, Birkinshaw C, Andriantsiferana R, Rasamison VE, Kingston DGI. J. Nat. Prod. 2007;70:679–681. doi: 10.1021/np060627g. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lin Y, Kuo Y, Shiao M, Chen C, Ou J. J. Chin. Chem. Soc. 2000;47:253–256. [Google Scholar]
  • 21.Bag A, Bhattacharyya SK, Chattopadhyay RR. Asian Pac. J. Trop. Biomed. 2013;3:244–252. doi: 10.1016/S2221-1691(13)60059-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Muhit MA, Umehara K, Moriyasumoto K, Noguchi H. J. Nat. Prod. 2016;79:1298–1307. doi: 10.1021/acs.jnatprod.5b01042. [DOI] [PubMed] [Google Scholar]
  • 23.Singh A, Bajpai V, Kumar S, Kumar B, Srivastava M, Rameshkumar KB. Ind. Crop Prod. 2016;87:236–246. [Google Scholar]
  • 24.Zhang T, Sun H. J. Plant. Res. 2011;124:63–73. doi: 10.1007/s10265-010-0360-3. [DOI] [PubMed] [Google Scholar]
  • 25.Konczak I, Maillot F, Dalar A. Food Chem. 2014;151:248–256. doi: 10.1016/j.foodchem.2013.11.049. [DOI] [PubMed] [Google Scholar]
  • 26.Koudou J, Roblot G, Wylde R. Planta Med. 1995;61:490–491. doi: 10.1055/s-2006-958153. [DOI] [PubMed] [Google Scholar]
  • 27.Okpekon T, Yolou S, Gleye C, Roblot F, Loiseau P, Bories C, Grellier P, Frappier F, Laurens A, Hocquemiller R. J. Ethnopharmcol. 2004;90:91–97. doi: 10.1016/j.jep.2003.09.029. [DOI] [PubMed] [Google Scholar]
  • 28.O. Nobuhiko, S. Shizu, C. Nuan, JP2007099733 A 20070419 (2007)
  • 29.Adiko VA, Attioua BK, Tonzibo FZ, Assi KM, Siomenan C, Djakouré LA. Afr. J. Biotechnol. 2013;12:4393–4398. [Google Scholar]
  • 30.J. Hutchinson, J.M. Dalziel, Appendix to the Flora of West Tropical Africa (Published on behalf of the Governments of Nigeria, Ghana, Sierra Leone and the Gambia by the Crown Agents for Oversea Governments and Administrations, London, 1936), p. 81
  • 31.Anam K, Widharna RM, Kusrini D. Int. J. Pharmacol. 2009;5:277–280. [Google Scholar]
  • 32.Musa MS, Abdelrasool FE, Elsheikh EA, Ahmed LA, Mahmoud ALE, Yagi SM. J. Med. Plants Res. 2011;5:4287–4297. [Google Scholar]
  • 33.Ogbazghi W, Bein E. Drylands Coord. Group Rep. 2006;40:26–27. [Google Scholar]
  • 34.Zou Y, Ho GTT, Malterud KE, Le NHT, Inngjerdingen KT, Barsett H, Diallo D, Michaelsen TE, Paulsen BS. J. Ethnopharmacol. 2014;155:1219–1226. doi: 10.1016/j.jep.2014.07.004. [DOI] [PubMed] [Google Scholar]
  • 35.Liu M, Katerere DR, Gray AI, Seidel V. Fitoterapia. 2009;80:369–373. doi: 10.1016/j.fitote.2009.05.006. [DOI] [PubMed] [Google Scholar]
  • 36.Anam K, Suganda AG, Sukandar EY, Kardono LBS. Res. J. Med. Plant. 2010;4:197–205. [Google Scholar]
  • 37.Bajpai M, Pande A, Tewari SK, Prakash D. Int. J. Food Sci. Nutr. 2005;56:287–291. doi: 10.1080/09637480500146606. [DOI] [PubMed] [Google Scholar]
  • 38.Marzouk MSA, El-Toumy SAA, Moharram FA. Planta Med. 2002;68:523–527. doi: 10.1055/s-2002-32549. [DOI] [PubMed] [Google Scholar]
  • 39.Oelrichs PB, Pearce CM, Zhu J, Filippich LJ. Nat. Toxins. 1994;2:144–150. doi: 10.1002/nt.2620020311. [DOI] [PubMed] [Google Scholar]
  • 40.Malekzadeh F, Ehsanifar H, Shahamat M. Int. J. Antimicrob. Agents. 2001;18:85–88. doi: 10.1016/s0924-8579(01)00352-1. [DOI] [PubMed] [Google Scholar]
  • 41.Lin TC, Hsu FL. J. Chin. Chem. Soc. 1999;46:613–618. [Google Scholar]
  • 42.Nmema EE, Anaele EN. J. Appl. Sci. Environ. Manag. 2013;17:595. [Google Scholar]
  • 43.Mongalo NI, McGaw LJ, Segapelo TV, Finnie JF, Van Staden J. J. Ethnopharmacol. 2016;194:789–802. doi: 10.1016/j.jep.2016.10.072. [DOI] [PubMed] [Google Scholar]
  • 44.Fyhrquist P, Mwasumbi L, Haeggstrom CA, Vuorela H, Hiltunen R, Vuorela P. J. Ethnopharmacol. 2002;79:169–177. doi: 10.1016/s0378-8741(01)00375-0. [DOI] [PubMed] [Google Scholar]
  • 45.Chhabra SC, Mahunnah RLA, Mshiu EN. J. Ethnopharmacol. 1989;25:339–359. doi: 10.1016/0378-8741(89)90038-x. [DOI] [PubMed] [Google Scholar]
  • 46.B. Heine, M. Brenzinger, Plants of the Borana (Ethiopia and Kenya), Plant Concepts and Plant Use: An Ethno-botanical Survey of the Semi-arid and Arid Lands of East Africa: Part 4 (Verlag Brentenbach, 1988), p. 23
  • 47.Ndamba J, Lemmich E, Mølgaard P. Phytochemistry. 1994;35:95–98. doi: 10.1016/s0031-9422(00)90515-6. [DOI] [PubMed] [Google Scholar]
  • 48.Katerere DR, Gray AI, Nash RJ, Waigh RD. Phytochemistry. 2003;63:81–88. doi: 10.1016/s0031-9422(02)00726-4. [DOI] [PubMed] [Google Scholar]
  • 49.Tabopda TK, Ngoupayo J, Tanoli SAK, Mitaine-Offer AC, Ngadjui BT, Ali MS, Luu B, Lacaille-Dubois MA. Planta Med. 2009;75:522–527. doi: 10.1055/s-0029-1185328. [DOI] [PubMed] [Google Scholar]
  • 50.Wansi JD, Lallemand MC, Chiozem DD, Toze FAA, Mbaze LMA, Naharkhan S, Iqbal MC, Fomum ZT. Phytochemistry. 2007;68:2096–2100. doi: 10.1016/j.phytochem.2007.02.020. [DOI] [PubMed] [Google Scholar]
  • 51.Jono T. Curr. Herpetol. 2015;34:85–88. [Google Scholar]
  • 52.Srivastava SK, Srivastava SD, Chouksey BK. Fitoterapia. 2001;72:106–112. doi: 10.1016/s0367-326x(00)00261-6. [DOI] [PubMed] [Google Scholar]
  • 53.Srivastava SK, Srivastava SD, Chouksey BK. Fitoterapia. 1999;70:390–394. [Google Scholar]
  • 54.Anjaneyulu ASR, Reddy AVR, Mallavarapu RG, Chandrasekhara RS. Phytochemistry. 1986;25:2670–2671. [Google Scholar]
  • 55.Mallavarapu GR, Rao SB, Syamasundar KV. J. Nat. Prod. 1986;49:549–550. [Google Scholar]
  • 56.Mallavarapu GR, Muralikrishna E. J. Nat. Prod. 1983;46:930–931. [Google Scholar]
  • 57.Anjaneyulu ASR, Prasad AVR. Phytochemistry. 1983;22:993–998. [Google Scholar]
  • 58.Ali A, Kaur G, Hamid H, Abdullah T, Ali M, Niwa M, Alam MS. J. Asian Nat. Prod. Res. 2003;5:137–142. doi: 10.1080/1028602031000066834. [DOI] [PubMed] [Google Scholar]
  • 59.Yadav RN, Rathore K. Fitoterapia. 2001;72:459–461. doi: 10.1016/s0367-326x(00)00337-3. [DOI] [PubMed] [Google Scholar]
  • 60.Honda T, Murae T, Tsuyuki T. Chem. Pharm. Bull. 1976;24:178–180. [Google Scholar]
  • 61.Honda T, Murae T, Tsuyuki T, Takahashi T, Sawai M. Bull. Chem. Soc. Jpn. 1976;49:3213–3218. [Google Scholar]
  • 62.Anjaneyulu ASR, Prasad ASR. J. Chem. 1982;21B:530–533. [Google Scholar]
  • 63.Anjaneyulu ASR, Prasad AVR. Phytochemistry. 1982;21:2057–2060. [Google Scholar]
  • 64.Sharma PN, Shoeb PN, Kapil RS. Indian J. Chem. 1982;21:263–264. [Google Scholar]
  • 65.Pettit GR, Hoard MS, Doubek DL, Schmidt JM, Pettit RK, Tackett LP, Chapuis JC. J. Ethnopharmacol. 1996;53:57–63. doi: 10.1016/S0378-8741(96)01421-3. [DOI] [PubMed] [Google Scholar]
  • 66.Dwivedi S. J. Ethnopharmacol. 2007;114:114–129. doi: 10.1016/j.jep.2007.08.003. [DOI] [PubMed] [Google Scholar]
  • 67.Row LR, Murty PS, Rao GS, Sastry CP, Rao KVJ. Indian J. Chem. 1970;8:772–775. [Google Scholar]
  • 68.Wang W, Ali Z, Li XC, Shen Y, Khan IA. Planta Med. 2010;76:903–908. doi: 10.1055/s-0029-1240841. [DOI] [PubMed] [Google Scholar]
  • 69.Aiyelaagbe O, Olaoluwa O, Oladosu I, Gibbons S. Rec. Nat. Prod. 2014;8:7–11. [Google Scholar]
  • 70.Kalola J, Rajani M. Chromatographia. 2006;63:475–481. [Google Scholar]
  • 71.Bombardelli E, Martinelli EM, Mustich G. Phytochemistry. 1974;13:2559–2562. [Google Scholar]
  • 72.Cao S, Brodie PJ, Callmander M, Randrianaivo R, Rakotobe E, Rasamison VE, Kingston DG. Phytochemistry. 2010;71:95–99. doi: 10.1016/j.phytochem.2009.09.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Nandy AK, Podder G, Sahu NP, Mahato SB. Phytochemistry. 1989;28:2769–2772. [Google Scholar]
  • 74.Tsuyuki T, Hamada Y, Honda T, Takahashi T, Matsushita K. Bull. Chem. Soc. Jpn. 1979;52:3127–3128. [Google Scholar]
  • 75.Jung SW, Shin MH, Jung JH, Kim ND, Im KS. Arch. Pharmacal Res. 2001;24:412–415. doi: 10.1007/BF02975185. [DOI] [PubMed] [Google Scholar]
  • 76.Wang W, Ali Z, Shen Y, Li XC, Khan IA. Fitoterapia. 2010;81:480–484. doi: 10.1016/j.fitote.2010.01.006. [DOI] [PubMed] [Google Scholar]
  • 77.King FE, King TJ, Ross JM. J. Chem. Soc. 1954;85:3995. [Google Scholar]
  • 78.Row LR, Murty PS, Rao GSRS, Sastry CSP, Rao KVJ. Indian J. Chem. 1970;8:716–721. [Google Scholar]
  • 79.Aggarwal RR, Dutt S. Proc. Natl. Acad. Sci. U.S.A. 1936;6:305. [Google Scholar]
  • 80.Tripathi VK, Singh B, Tripathi RC, Upadhyay RK, Pandey VB. Orient. J. Chem. 1996;12:1–16. [Google Scholar]
  • 81.Upadhyay RK, Pandey MB, Jha RN, Singh VP, Pandey VB. J. Asian Nat. Prod. Res. 2001;3:207–212. doi: 10.1080/10286020108041392. [DOI] [PubMed] [Google Scholar]
  • 82.Pawar RS, Bhutani KK. Phytomedicine. 2005;12:391–393. doi: 10.1016/j.phymed.2003.11.007. [DOI] [PubMed] [Google Scholar]
  • 83.Nagar A, Gujral VK, Gupta SR. Planta Med. 1979;37:183–185. [Google Scholar]
  • 84.Ali A, Abdullah ST, Hamid H, Ali M, Alam MS. Indian J. Chem. 2003;42:2905–2909. [Google Scholar]
  • 85.Chouksey BK, Srivastava SK. Indian J. Chem. 2001;40:354–356. [Google Scholar]
  • 86.Kandil FE, Narsar NI. Phytochemistry. 1998;47:1567–1568. doi: 10.1016/s0031-9422(97)01078-9. [DOI] [PubMed] [Google Scholar]
  • 87.Ali A, Kaur G, Hayat K, Ali M, Ather M. Pharmazie. 2003;58:932–934. [PubMed] [Google Scholar]
  • 88.Link HY, Chang L. Planta Med. 2005;71:237–243. doi: 10.1055/s-2005-837823. [DOI] [PubMed] [Google Scholar]
  • 89.Nair S, Nagar R. South Asian J. Prev. Cardiol. 1997;1:33–35. [Google Scholar]
  • 90.Lin TC, Chien SC, Chen HF, Hsu FL. Chin. Pharm. J. 2000;52:1–26. [Google Scholar]
  • 91.Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Am. J. Org. Chem. 2012;2:14–20. [Google Scholar]
  • 92.Shuaibu MN, Wuyep PT, Yanagi T, Hirayama K, Ichinose A, Tanaka T, Kouno I. Parasitol. Res. 2008;102:697–703. doi: 10.1007/s00436-007-0815-1. [DOI] [PubMed] [Google Scholar]
  • 93.Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Am. J. Chem. 2011;1:52–55. [Google Scholar]
  • 94.Yadava RN, Rathore K. Fitoterapia. 2001;72:310–312. doi: 10.1016/s0367-326x(00)00293-8. [DOI] [PubMed] [Google Scholar]
  • 95.Pandey G, Gupta SS, Bhatia A, Sidhu OP, Rawat AKS, Rao CV. J. Ethnopharmacol. 2017;202:63–66. doi: 10.1016/j.jep.2016.12.003. [DOI] [PubMed] [Google Scholar]
  • 96.Row JR, Murty PS. Indian J. Chem. 1970;8:1047–1048. [Google Scholar]
  • 97.Elsayed HE, Akl MR, Ebrahim HY, Sallam AA, Haggag EG, Kamal AM, El Sayed KA. Chem. Biol. Drug Des. 2015;85:231–243. doi: 10.1111/cbdd.12380. [DOI] [PubMed] [Google Scholar]
  • 98.Negishi H, Maoka T, Njelekela M, Yasui N, Juman S, Mtabaji J, Miki T, Nara Y, Yamori Y, Ikeda K. J. Asian Nat. Prod. Res. 2011;13:281–283. doi: 10.1080/10286020.2011.552431. [DOI] [PubMed] [Google Scholar]
  • 99.Opiyo SA, Manguro LOA, Owuor PO, Ochieng CO, Ateka EM, Lemmen P. Nat. Prod. J. 2011;1:116–120. [Google Scholar]
  • 100.Yamauchi K, Mitsunaga T, Muddathir AM. J. Wood Sci. 2016;62:285–293. [Google Scholar]
  • 101.Salih EYA, Kanninen M, Sipi M, Luukkanen O, Hiltunen R, Vuorela H, Julkunen-Tiitto R, Fyhrquist P. S. Afr. J. Bot. 2017;108:370–386. [Google Scholar]
  • 102.Tanaka T, Morita A, Nonaka GI, Lin TC, Nishioka I, Ho FC. Chem. Pharm. Bull. 1991;39:60–63. [Google Scholar]
  • 103.Chen LG, Wang CC, Yang LL. Abstr. Pap. Am. Chem. Soc. 2004;228:61. [Google Scholar]
  • 104.Lin TC, Ma YT, Hsu FL. Chin. Pharm. J. (Taipei) 1996;48:25–35. [Google Scholar]
  • 105.Chen PS, Li JH, Liu TY, Lin TC. Cancer Lett. 2000;152:115–122. doi: 10.1016/s0304-3835(99)00395-x. [DOI] [PubMed] [Google Scholar]
  • 106.Chandrasekhar Y, Ramya EM, Navya K, Kumar GP, Anilakumar KR. Biomed. Pharmacother. 2017;86:414–425. doi: 10.1016/j.biopha.2016.12.031. [DOI] [PubMed] [Google Scholar]
  • 107.Tanaka T, Nonaka GI, Nishioka I. Chem. Pharm. Bull. 1986;34:1039–1049. [Google Scholar]
  • 108.Dukes Phytochemical and Ethnobotanical Database (2008), p. 11
  • 109.Mandloi S, Mishra R, Varma R, Varughese B, Tripathi J. Int. J. Pharm. Bio Sci. 2013;4:1385–1393. [Google Scholar]
  • 110.Han Q, Song J, Qiao C, Wong L, Xu H. J. Sep. Sci. 2006;29:1653–1657. doi: 10.1002/jssc.200600089. [DOI] [PubMed] [Google Scholar]
  • 111.Saleem A, Husheem M, Härkönen P, Pihlaja K. J. Ethnopharmacol. 2002;81:327–336. doi: 10.1016/s0378-8741(02)00099-5. [DOI] [PubMed] [Google Scholar]
  • 112.Afshari AR, Sadeghnia HR, Mollazadeh H. Adv. Pharmacol. Sci. 2016 doi: 10.1155/2016/8964849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Baliga MS. J. Altern. Complement. Med. 2010;16:1301–1308. doi: 10.1089/acm.2009.0633. [DOI] [PubMed] [Google Scholar]
  • 114.Sornwatana T, Bangphoomi K, Roytrakul S, Wetprasit N, Choowongkomon K, Ratanapo S. Biotechnol. Appl. Biochem. 2015;62:746–753. doi: 10.1002/bab.1321. [DOI] [PubMed] [Google Scholar]
  • 115.Mammen D, Bapat S, Sane R. Int. J. Pharm. Bio Sci. 2012;3:416–419. [Google Scholar]
  • 116.Chandan S. Phytochemistry. 1990;29:2348–2350. [Google Scholar]
  • 117.Khare CP. Botany, Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage. New York: Springer; 2004. pp. 451–452. [Google Scholar]
  • 118.Ajala OS, Jukov A, Ma CM. Fitoterapia. 2014;99:117–123. doi: 10.1016/j.fitote.2014.09.014. [DOI] [PubMed] [Google Scholar]
  • 119.Juang LJ, Sheu SJ, Lin TC. J. Sep. Sci. 2004;27:718–724. doi: 10.1002/jssc.200401741. [DOI] [PubMed] [Google Scholar]
  • 120.Burapadaja S, Bunchoo A. Planta Med. 1995;61:365–366. doi: 10.1055/s-2006-958103. [DOI] [PubMed] [Google Scholar]
  • 121.Muhit MA, Umehara K, Noguchi H. Fitoterapia. 2016;113:74–79. doi: 10.1016/j.fitote.2016.07.004. [DOI] [PubMed] [Google Scholar]
  • 122.Konczak I, Zabaras D, Dunstan M, Aguas P. Food Chem. 2010;123:1048–1054. [Google Scholar]
  • 123.Cunningham AB, Garnett S, Gorman J, Courtenay K, Boehme D. Econ. Bot. 2009;63:16–28. [Google Scholar]
  • 124.Martino VS, Graziano MN, Hnatyszyn O, Coussio JD. Planta Med. 1975;27:226–230. doi: 10.1055/s-0028-1097790. [DOI] [PubMed] [Google Scholar]
  • 125.Rayan P, Matthews B, McDonnell PA, Cock IE. Parasitol. Res. 2015;114:2611–2620. doi: 10.1007/s00436-015-4465-4. [DOI] [PubMed] [Google Scholar]
  • 126.Sirdaarta J, Matthews B, Cock IE. J. Funct. Food. 2015;17:610–620. [Google Scholar]
  • 127.Ekong DEU, Idemudia OG. J. Chem. Soc. C. 1967 doi: 10.1039/J39670000863. [DOI] [Google Scholar]
  • 128.Idemudia OG. Phytochemistry. 1970;9:2401–2402. [Google Scholar]
  • 129.Zareen S, Choudhary MI, Ngounou FN, Yasin A, Parvez M. Tetrahedron Lett. 2002;43:6233–6236. [Google Scholar]
  • 130.Rahman AU, Zareen S, Choudhary MI, Akhtar MN, Ngounou FN. Z. Nat. B. 2005;60:347–350. [Google Scholar]
  • 131.Ponou BK, Teponno RB, Ricciutelli M, Quassinti L, Bramucci M, Lupidi G, Barboni L, Tapondjou LA. Phytochemistry. 2010;71:2108–2115. doi: 10.1016/j.phytochem.2010.08.020. [DOI] [PubMed] [Google Scholar]
  • 132.Ponou BK, Teponno RB, Ricciutelli M, Nguelefack TB, Quassinti L, Bramucci M, Lupidi G, Barboni L, Tapondjou LA. Chem. Biodivers. 2011;8:1301–1309. doi: 10.1002/cbdv.201000145. [DOI] [PubMed] [Google Scholar]
  • 133.Fyhrquist P, Laakso I, Marco SG, Julkunen-Tiitto R, Hiltunen R. S. Afr. J. Bot. 2014;90:1–16. [Google Scholar]
  • 134.Muddathir AM, Yamauchi K, Mitsunaga T. J. Wood Sci. 2013;59:426–431. [Google Scholar]
  • 135.Pham AT, Malterud KE, Paulsen BS, Diallo D, Wangensteen H. Nat. Prod. Commun. 2011;6:1125–1128. [PubMed] [Google Scholar]
  • 136.Pham AT, Malterud KE, Paulsen BS, Diallo D, Wangensteen H. Pharm. Biol. 2014;52:1166–1169. doi: 10.3109/13880209.2014.880486. [DOI] [PubMed] [Google Scholar]
  • 137.Conrad J, Vogler B, Reeb S, Klaiber I, Papajewski S, Roos G, Vasquez E, Setzer MC, Kraus W. J. Nat. Prod. 2001;64:294–299. doi: 10.1021/np000506v. [DOI] [PubMed] [Google Scholar]
  • 138.Conrad J, Vogler B, Klaiber I, Reeb S, Guse JH, Roos G, Kraus W. Nat. Prod. Lett. 2001;15:35–42. doi: 10.1080/10575630108041255. [DOI] [PubMed] [Google Scholar]
  • 139.Fahmy NM, Al-Sayed E, Abdel-Daim MM, Karonen M, Ingab AN. Pharm. Biol. 2016;54:303–313. doi: 10.3109/13880209.2015.1035794. [DOI] [PubMed] [Google Scholar]
  • 140.Majumdar K, Sinha MB, Som UK, Das S. J. Indian Chem. Soc. 2005;82:673–674. [Google Scholar]
  • 141.Murdiati TB, McSweeney CS, Lowry JB. Aust. J. Agric. Res. 1992;43:1307–1319. [Google Scholar]
  • 142.Talwar S, Nayak PG, Mudgal J, Paul P, Bansal P, Nandakumar K. Nandakumar. J. Med. Food. 2013;16:1153–1161. doi: 10.1089/jmf.2012.2658. [DOI] [PubMed] [Google Scholar]
  • 143.Row LR, Raju RR. Tetrahedron. 1967;23:879–884. [Google Scholar]
  • 144.Mopuri R, Ganjayi M, Banavathy KS, Parim BN, Meriga B. BMC Complement. Altern. Med. 2015;15:76. doi: 10.1186/s12906-015-0598-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Conrad J, Vogler B, Klaiber I, Roos G, Walter U, Kraus W. Phytochemistry. 1998;48:647–650. [Google Scholar]
  • 146.Lee DY, Woo KH, Yang HJ, Hyun SS. Bioorg. Med. Chem. Lett. 2017;27:34–39. doi: 10.1016/j.bmcl.2016.11.039. [DOI] [PubMed] [Google Scholar]
  • 147.Ramachandra RL, Ramkrishnam RR. Curr. Sci. 1965;34:177. [Google Scholar]
  • 148.Row LR, Rao GS. Tetrahedron. 1962;18:357–360. [Google Scholar]
  • 149.Martino V, Morales J, Martínez-Irujo JJ, Font M, Monge A, Coussio J. Phytother. Res. 2004;18:667–669. doi: 10.1002/ptr.1504. [DOI] [PubMed] [Google Scholar]
  • 150.Moshi MJ, Mbwambo ZH. J. Ethnopharmacol. 2005;97:43–47. doi: 10.1016/j.jep.2004.09.056. [DOI] [PubMed] [Google Scholar]
  • 151.Eldeen IM, Elgorashi EE, Mulholland DA, van Staden J. J. Ethnopharmacol. 2006;103:135–138. doi: 10.1016/j.jep.2005.09.005. [DOI] [PubMed] [Google Scholar]
  • 152.Joseph CC, Moshi MJ, Innocent E, Nkunya MHH. Afr. J. Tradit. Complement. Altern. Med. 2007;4:383–386. [PMC free article] [PubMed] [Google Scholar]
  • 153.Kuete V, Tabopda TK, Ngameni B, Nana F, Tshikalange TE, Ngadjui BT. S. Afr. J. Bot. 2010;76:125–131. [Google Scholar]
  • 154.Li TC, Hsu FL. Chin. Pharm. J. 1996;48:167–175. [Google Scholar]
  • 155.Wu LF, Yuan YB, Wang KF, Li SQ, Liu J, Zhang LZ, She GM. Chin. Tradit. Herb. Drugs. 2014;45:290–299. [Google Scholar]
  • 156.Alam MS, Kaur G, Ali A, Hamid H, Ali M, Athar M. Nat. Prod. Res. 2008;22:1279–1288. doi: 10.1080/14786410701766380. [DOI] [PubMed] [Google Scholar]
  • 157.Cock IE. Inflammopharmacology. 2015;23:203–229. doi: 10.1007/s10787-015-0246-z. [DOI] [PubMed] [Google Scholar]
  • 158.Tchuenmogne MT, Kammalac T, Gohlke S, Kouipou R, Aslan A, Kuzu M, Sewald N. Medicines (Basel) 2017;4:6. doi: 10.3390/medicines4010006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Lee DY, Kim HW, Yang H, Sung SH. Phytochemistry. 2017;137:109–116. doi: 10.1016/j.phytochem.2017.02.006. [DOI] [PubMed] [Google Scholar]
  • 160.Ansari VA, Arif M, Hussain MS, Siddiqui HH, Dixit RK. Integr. Med. Res. 2016;5:317–323. doi: 10.1016/j.imr.2016.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Rice-Evans C, Miller N, Paganga G. Trends Plant Sci. 1997;2:152–159. [Google Scholar]
  • 162.Rajpoot R, Rani A, Srivastava RK, Pandey P, Dubey RS. Protoplasma. 2016;253:1449–1462. doi: 10.1007/s00709-015-0899-x. [DOI] [PubMed] [Google Scholar]
  • 163.Hussain SA, Kareem MA, Rasoo SN, Al Omar SY, Saleh A, Al-Fwuaires MA, Devi KL. Biol. Trace Elem. Res. 2018;181:112–121. doi: 10.1007/s12011-017-1037-8. [DOI] [PubMed] [Google Scholar]
  • 164.An J, Li T, Dong Y, Li Z, Huo J. Cell. Physiol. Biochem. 2017;39:531–543. doi: 10.1159/000445645. [DOI] [PubMed] [Google Scholar]
  • 165.Jayesh K, Helen LR, Vysakh A, Binil E, Latha MS. Biomed. Pharmacother. 2017;95:1654–1660. doi: 10.1016/j.biopha.2017.09.080. [DOI] [PubMed] [Google Scholar]
  • 166.Fahmy NM, Al-Sayed E, Abdel-Daim MM, Singab AN. Drug Dev. Res. 2017;78:146–154. doi: 10.1002/ddr.21385. [DOI] [PubMed] [Google Scholar]
  • 167.Veni T, Pushpanathan T, Mohanraj J. J. Parasit. Dis. 2017;41:693–702. doi: 10.1007/s12639-016-0869-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Thanigaivel A, Vasantha-Srinivasan P, Senthil-Nathan S, Edwin ES, Ponsankar A, Chellappandian M, Kalaivani K. Ecotoxicol. Environ. Saf. 2017;137:210–217. doi: 10.1016/j.ecoenv.2016.11.004. [DOI] [PubMed] [Google Scholar]
  • 169.Akhtar MF, Saleem A, Sharif A, Akhtar B, Nasim MB, Peerzada S, Ali S. EXCLI J. 2016;15:589. doi: 10.17179/excli2016-551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Kuriakose J, Raisa HL, Vysakh A, Eldhose B, Latha MS. Biomed. Pharmacother. 2017;93:327–333. doi: 10.1016/j.biopha.2017.06.080. [DOI] [PubMed] [Google Scholar]
  • 171.Mittal A, Tandon S, Singla SK, Tandon C. Cytotechnology. 2017;69:349–358. doi: 10.1007/s10616-017-0065-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Durge A, Jadaun P, Wadhwani A, Chinchansure AA, Said M, Thulasiram HV, Kulkarni SS. Nat. Prod. Res. 2017;31:1468–1471. doi: 10.1080/14786419.2016.1258561. [DOI] [PubMed] [Google Scholar]
  • 173.Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. BMC Complement. Altern. Med. 2017;17:110. doi: 10.1186/s12906-017-1620-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Sekhar YC, Kumar GP, Anilakumar KR. Chin. J. Nat. Med. 2017;15:584–596. doi: 10.1016/S1875-5364(17)30086-9. [DOI] [PubMed] [Google Scholar]

Articles from Natural Products and Bioprospecting are provided here courtesy of Springer

RESOURCES