Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Jul 2;8(1):13–27. doi: 10.1002/(SICI)1097-0193(1999)8:1<13::AID-HBM2>3.0.CO;2-B

Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging

Antti Korvenoja 1,2,, Juha Huttunen 1, Eero Salli 2,5, Hanna Pohjonen 3, Sami Martinkauppi 2, Jaakko M Palva 2, Leena Lauronen 1,2, Juha Virtanen 1,4, Risto J Ilmoniemi and 1, Hannu J Aronen 1,2
PMCID: PMC6873291  PMID: 10432179

Abstract

We combined information from functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to assess which cortical areas and in which temporal order show macroscopic activation after right median nerve stimulation. Five healthy subjects were studied with the two imaging modalities, which both revealed significant activation in the contra‐ and ipsilateral primary somatosensory cortex (SI), the contra‐ and ipsilateral opercular areas, the walls of the contralateral postcentral sulcus (PoCS), and the contralateral supplementary motor area (SMA). In fMRI, two separate foci of activation in the opercular cortex were discerned, one posteriorly in the parietal operculum (PO), and one anteriorly near the insula or frontal operculum (anterior operculum, AO). The activation sites from fMRI were used to constrain the solution of the inverse problem of MEG, which allowed us to construct a model of the temporal sequence of activation of the different sites. According to this model, the mean onset latency for significant activation at the contralateral SI was 20 msec (range, 17–22 msec), followed by activation of PoCS at 23 msec (range, 21–25 msec). The contralateral PO was activated at 26 msec (range, 19–32 msec) and AO at 33 msec (range, 22–51 msec). The contralateral SMA became active at 36 msec (range, 24–48 msec). The ipsilateral SI, PO, and AO became activated at 54–67 msec. We conclude that fMRI provides a useful means to constrain the inverse problem of MEG, allowing the construction of spatiotemporal models of cortical activation, which may have significant implications for the understanding of cortical network functioning. Hum. Brain Mapping 8:13–27, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: inverse problem, somatosensory cortex, posterior parietal cortex, supplementary motor area, insula, magnetoencephalography, functional magnetic resonance imaging

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

REFERENCES

  1. Ahonen AI, Hämäläinen MS, Kajola MJ, Knuutila JET, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD. 1993. 122‐channel SQUID instrument for investigating the magnetic signals in the human brain. Physica Scripta T49:198–205. [Google Scholar]
  2. Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD. 1989. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long‐latency activity. J Neurophysiol 62:711–722. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89361616&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  3. Allison T, McCarthy G, Luby M, Puce A, Spencer DD. 1996. Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroencephalogr Clin Neurophysiol 100:126–140. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96203059&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  4. Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L. 1995. Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7:1121–1124. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95338324&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  5. Beisteiner R, Erdler M, Teichtmeister M, Diemling E, Moser E, Edward V, Deecke L. 1997. Magnetoencephalography may help to improve functional MRI brain mapping. Eur J Neurosci 9:1072–1077. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97325947&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  6. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92054558&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  7. Bow S‐T. 1984. Pattern recognition. Applications to large data‐set problems. New York: Marcel Dekker, Inc. 323 p. [Google Scholar]
  8. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. 1995. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96107683&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  9. Burton H, Robinson CJ. 1981. Organisation of the SII parietal cortex: multiple sensory representations within and near second somatic sensory area of Cynomolgus monkeys In: Woolsey CN, editor. Cortical sensory organisation. Clifton NJ: Humana Press; p 67–114. [Google Scholar]
  10. Burton H, Videen TO, Raichle ME. 1993. Tactile‐vibration‐activated foci in insular and parietal‐opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297–308. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94055507&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  11. Caselli RJ. 1993. Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43:762–771. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93226114&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  12. Dale AM, Sereno MI. 1993. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176. [DOI] [PubMed] [Google Scholar]
  13. Drevets WC, Burton H, Videen T, Snyder AZ, Simpson JR, Raichle ME. 1995. Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature 373:249–252. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95115799&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  14. Forss N, Hari R, Salmelin R, Ahonen A, Hämäläinen M, Kajola M, Knuutila J, Simola J. 1994. Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309–315. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95010534&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  15. Forss N, Merlet I, Vanni S, Hämäläinen M, Mauguière F, Hari R. 1996. Activation of human mesial cortex during somatosensory target detection task. Brain Res 734:229–235. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97052194&form=6&db=m&Dopt=r [PubMed] [Google Scholar]
  16. Fox PT, Burton H, Raichle ME. 1987. Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87253354&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  17. Frostig RD, Lieke EE, Ts'o DY, Grinvald A. 1990. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high‐resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=90349559&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD, Sanders JA, Belliveau JW. 1995. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol 12:406–431. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96097333&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  19. Geyer S, Schleicher A, Zilles K. 1997. The somatosensory cortex of human: cytoarchitecture and regional distribution of receptor‐binding sites. Neuroimage 6:27–45. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97479551&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  20. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87065086&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  21. Hämäläinen MS, Ilmoniemi RJ. 1994. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94238932&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  22. Hämäläinen MS, Sarvas J. 1987. Feasibility of the homogenous head model in the interpretation of neuromagnetic fields. Phys Med Biol 32:91–97. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87147428&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  23. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. 1993. Magnetoencephalography—theory, instrumentation and applications to the studies of the working human brain. Rev Mod Phys 65:413–498. [Google Scholar]
  24. Hari R. 1993. Magnetoencephalography as a tool in clinical neurophysiology In: Niedermeyer H, Lopes da Silva F, editors. Electroencephalography: basic principles, clinical applications and related fields. New York: Williams & Wilkins; p 1035–1061. [Google Scholar]
  25. Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D. 1984. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=84131778&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  26. Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V. 1993. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94084298&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  27. Helmholtz H. 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche. Ann Phys Chem 89:211–233, 353–377. [Google Scholar]
  28. Huttunen J, Wikström H, Korvenoja A, Seppäläinen A‐M, Aronen H, Ilmoniemi RJ. 1996. Significance of the second somatosensory area in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport 7:1009–1012. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96396938&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  29. Hyvärinen J. 1982. The parietal cortex of monkey and man. Berlin: Springer Verlag. 202 p. [Google Scholar]
  30. Ibañez V, Deiber MP, Sadato N, Toro C, Grissom J, Woods RP, Mazziotta JC, Hallett M. 1995. Effects of stimulus rate on regional cerebral blood flow after median nerve stimulation. Brain 118:1339–1351. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96080062&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  31. Ilmoniemi RJ. 1995. Magnetoencephalography—a tool for studies of information processing the human brain In: Lübbig H, editor. The inverse problem: symposium ad memoriam Hermann von Helmholtz. Berlin: Akademie Verlag; p 89–106. [Google Scholar]
  32. Jones EG, Powell TPS. 1969. Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions. Brain 92:717–730. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=70080148&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  33. Jones EG, Coulter JD, Hendry SHC. 1978. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–348. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=79005908&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  34. Jones EG, Wise SP, Coulter JD. 1979. Differential thalamic relationships of sensory‐motor and parietal cortical fields in monkeys. J Comp Neurol 183:833–882. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=79110001&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  35. Karhu J, Tesche CD. 1999. Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol. 81:2017–2025. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99255609&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  36. Korvenoja A, Wikström H, Huttunen J, Virtanen J, Laine P, Aronen HJ, Ilmoniemi RJ. 1995. Activation of primary sensorimotor cortex by median nerve stimulation. Neuroreport 6:2589–2593. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96342984&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  37. Kwong KK. 1995. Functional magnetic resonance imaging with echo planar imaging. Magn Reson Q 11:1–20. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95336890&form=6&db=m&Dopt=r [PubMed] [Google Scholar]
  38. Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R. 1993. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 30:387–392. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94018547&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  39. Lin W, Kuppusamy K, Haacke EM, Burton H. 1996. Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6:565–572. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96432919&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  40. Liu AK, Belliveau JW, Dale AM. 1998. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci USA 95:8945–8950. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98338021&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH. 1985. The second sensory area in humans: evoked potentials and electrical stimulation studies. Ann Neurol 17:177–184. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85147601&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  42. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K. 1995. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo‐planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33:453–459. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95280710&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  43. Mishkin M. 1979. Analogous neural models for tactual and visual learning. Neuropsychologia 17:139–151. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=79222220&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  44. Okada YC, Tanenbaum R, Williamson SJ, Kaufman L. 1984. Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. Exp Brain Res 56:197–205. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85003949&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  45. Pons TP, Garragthy PE, Friedman DP, Mishkin M. 1987. Physiological evidence for serial processing in somatosensory cortex. Science 237:417–419. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87263408&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  46. Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T. 1995. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95341351&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  47. Ridley RM, Ettlinger G. 1976. Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey. Brain Res 109:656–660. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=76207692&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  48. Sakai K, Watanabe E, Onodera Y, Itagaki H, Yamamoto E, Koizumi H, Miyashita Y. 1995. Functional mapping of the human somatosensory cortex with echo‐planar MRI. Magn Reson Med 33:736–743. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95319320&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  49. Sanders JA, Lewine JD, Orrison WW. 1996. Comparison of primary motor localization using functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 4:47–57. [DOI] [PubMed] [Google Scholar]
  50. Shanks MF, Pearson RC, Powell TPS. 1985. The ipsilateral cortico‐cortical connexions between the cytoarchitectonic subdivisions of the primary somatic sensory cortex in the monkey. Brain Res 356:67–88. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85200968&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  51. Simpson GV, Pflieger ME, Foxe JJ, Ahlfors SP, Vaughan HJ, Hrabe J, Ilmoniemi RJ, Lantos G. 1995. Dynamic neuroimaging of brain function. J Clin Neurophysiol 12:432–449. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96097334&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  52. Stippich C, Freitag P, Kassubek J, Soros P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radu EW, Vieth JB. 1998. Motor, somatosensory and auditory cortex localization by fMRI and MEG. Neuroreport 9:1953–1957. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98337330&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  53. Talairach J, Tournoux P. 1988. Co‐planar stereotaxic atlas of the human brain. Stuttgart: Georg Thieme Verlag. 121 p. [Google Scholar]
  54. Tesche CD, Karhu J. 1997. Somatosensory evoked magnetic fields arising from sources in the human cerebellum. Brain Res 744:23–31. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97182385&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  55. Uusitalo MA, Ilmoniemi RJ. 1997. Signal‐space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35:135–140. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97281943&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  56. Wikström H, Huttunen J, Korvenoja A, Salonen O, Aronen HJ, Ilmoniemi RJ. 1996. Effects of interstimulus interval on somatosensory evoked fields: a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100:479–487. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97134851&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  57. Wiesendanger R, Wiesendanger M. 1985. The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (macaca fascicularis). Exp Brain Res 59:91–104. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85257965&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  58. Wood CC, Spencer DD, Allison T, McCarthy G, Williamson PD, Goff WR. 1988. Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68:99–111. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88089886&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  59. Xiong J, Gao J‐H, Lancaster JL, Fox P. 1996. Assessment and optimization of functional MRI analyses. Hum Brain Mapp 4:153–167. [DOI] [PubMed] [Google Scholar]
  60. Yang TT, Gallen CC, Schwartz BJ, Bloom FE. 1993. Noninvasive somatosensory homunculus mapping in humans using a large‐array biomagnetometer. Proc Natl Acad Sci USA 90:3098–3102. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93219432&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. 1997. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97208862&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES