Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Jun 15;7(4):267–283. doi: 10.1002/(SICI)1097-0193(1999)7:4<267::AID-HBM5>3.0.CO;2-3

Reproducibility of BOLD‐based functional MRI obtained at 4 T

Carola Tegeler 1, Stephen C Strother 2,3,4,, Jon R Anderson 2, Seong‐Gi Kim 1
PMCID: PMC6873294  PMID: 10408770

Abstract

The reproducibility of activation patterns in the whole brain obtained by functional magnetic resonance imaging (fMRI) experiments at 4 Tesla was studied with a simple finger‐opposition task. Six subjects performed three runs in one session, and each run was analyzed separately with the t‐test as a univariate method and Fisher's linear discriminant analysis as a multivariate method. Detrending with a first‐ and third‐order polynomial as well as logarithmic transformation as preprocessing steps for the t‐test were tested for their impact on reproducibility. Reproducibility across the whole brain was studied by using scatter plots of statistical values and calculating the correlation coefficient between pairs of activation maps. In order to compare reproducibility of “activated” voxels across runs, subjects and models, 2% of all voxels in the brain with the highest statistical values were classified as activated. The analysis of reproducible activated voxels was performed for the whole brain and within regions of interest. We found considerable variability in reproducibility across subjects, regions of interest, and analysis methods. The t‐test on the linear detrended data yielded better reproducibility than Fisher's linear discriminant analysis, and therefore seems to be a robust although conservative method. Preliminary data indicate that these modeling results may be reversed by preprocessing to reduce respiratory and cardiac physiological noise effects. The reproducibility of both the position and number of activated voxels in the sensorimotor cortex was highest, while that of the supplementary motor area was much lower, with reproducibility of the cerebellum falling in between the other two areas. Hum. Brain Mapping 7:267–283, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: reproducibility, fMRI, BOLD, brain mapping, high field, motor, statistical tests

Full Text

The Full Text of this article is available as a PDF (734.1 KB).

REFERENCES

  1. Ardekani BA, Strother SC, Anderson JR, Law I, Paulson OB, Kanno I, Rottenberg DA. 1998. On the detection of activation patterns using principal components analysis In: Carson RE, Daube‐Witherspoon ME, Herscovitch P, editors. Quantitative functional brain imaging with positron emission tomography. San Diego: Academic Press; p 253–257. [Google Scholar]
  2. Arndt S, Gold S, Cizadlo T, Zheng J, Ehrhardt JC, Flaum M. 1997. A method to determine activation thresholds in fMRI paradigms. Psychiatry Res 75:15–22. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97433433&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  3. Bandettini PA, Wong EC. 1995. Effects of biophysical and physiologic parameters on the brain activation‐induced R2* and R2 changes: simulations using a deterministic diffusion model. Int J Imaging Syst Technol 6:133–152. [Google Scholar]
  4. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. 1993. Processing strategies for time‐course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93375843&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  5. Flury BD. 1995. Developments in principal component analysis In: Krzanowski WJ, editor. Recent advances in descriptive multivariate analysis. Oxford: Clarendon Press; p 14–33. [Google Scholar]
  6. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintum MA, Noll DC. 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster‐size threshold. Magn Reson Med 33:636–647. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95319307&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  7. Friston KJ, Frith CD, Frackowiak RSJ, Turner R. 1995. Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2:166–172. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98003484&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  8. Gati JS, Menon RS, Ugurbil K, Rutt DK. 1997. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97398186&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  9. Genovese CR, Noll DC, Eddy WF. 1997. Estimating test‐retest reliability in functional MR imaging I: statistical methodology. Magn Reson Med 38:497–507. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97480807&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  10. Hu X, Le TH. 1996. Artifact reduction in EPI with phase‐encoded reference scan. Magn Reson Med 36:166–171. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96387534&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  11. Hu X, Le TH, Parrish T, Erhard P. 1995. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96070415&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  12. Keenan JP, Ives JR, Anand K, Cousins J, Pascual‐Leone A. 1998. Satterthwaite corrections for homogeneity of variance assumption failures in functional magnetic resonance imaging for a simple motor task. Neuroimage 7:S608. [Google Scholar]
  13. Kleinschmidt A, Requardt M, Merboldt K‐D, Frahm J. 1995. On the use of temporal correlation coefficients for magnetic resonance mapping of the functional brain activation: individualized thresholds and spatial response delineation. Int J Imaging Syst Technol 6:238–244. [Google Scholar]
  14. Lange N. 1996. Statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat Med 15:389–428. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96243494&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  15. Lange N, Hansen LK, Anderson JR, Nielsen FA, Savoy R, Kim S‐G, Strother SC. 1998. An empirical study of statistical model complexity in neuro‐fMRI. Neuroimage 7:S764. [Google Scholar]
  16. Lange N, Strother SC, Anderson JR, Nielsen FÅ, Holmes A, Kolenda T, Savoy R, Hansen LK. 1999. Plurality and resemblance in fMRI data analysis. Neuroimage, in press. [DOI] [PubMed] [Google Scholar]
  17. Le TH, Hu X. 1997. Methods for assessing accuracy and reliability in functional MRI. NMR Biomed 10:160–164. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98090207&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  18. Mattay VS, Frank JA, Sanatha AKS, Pekar JJ, Duyn JH, McLaughlin AC, Weinberger DR. 1996. Whole‐brain functional mapping with isotropic MR imaging. Radiology 201:399–404. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97043033&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  19. Mitra PP, Ogawa S, Hu X, Ugurbil K. 1997. The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging. Magn Reson Med 37:511–718. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97247949&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  20. Moeller JR, Strother SC. 1991. A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11:A121–A135. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91147446&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  21. Moser E, Teichtmeier C, Diemling M. 1996. Reproducibility and postprocessing of gradient‐echo functional MRI to improve localization of brain activity in the human visual cortex. Magn Reson Imaging 14:567–579. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97052725&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  22. Nielsen FA, Hansen LK, Strother SC. 1998. Canonical ridge analysis with ridge parameter optimization. Neuroimage 7:S758 [Google Scholar]
  23. Noll DC, Genovese CR, Nystrom LE, Vazquez AL, Forman SD, Eddy WF, Cohen JD. 1997. Estimating test‐retest reliability in functional MR imaging II: application to motor and cognitive activation studies. Magn Reson Med 38:508–517. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97480808&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  24. Ogawa S, Menon RS, Tank D, Kim SG, Merkle H, Ellermann JM, Ugurbil K. 1993. Functional brain mapping by blood oxygenation level‐dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophys J 64:800–812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oldfield RC. 1971. Assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=72164093&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  26. Purdon PL, Solo V, Brown E, Bruckner R, Rotte M, Weisskoff RM. 1998a. fMRI noise variability across subjects and trials: insights for noise estimation methods. Neuroimage 7:S617 [Google Scholar]
  27. Purdon PL, Solo V, Brown E, Weisskoff RM. 1998b. Signal processing in fMRI: noise estimation with regularization and hemodynamic response modeling. Neuroimage 7:S618. [Google Scholar]
  28. Rehm K, Lakshminaryan K, Frutiger S, Schaper K, Sumners DW, Strother SC, Anderson JR, Rottenberg DA. 1998. A symbolic environment for visualizing activated foci in functional neuroimaging datasets. Med Image Anal 2:215–226. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99090586&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  29. Rottenberg DA, Sidtis JJ, Strother SC, Schaper KA, Anderson JR, Nelson MJ, Price RW. 1996. Abnormal cerebral glucose metabolism in HIV‐1 seropositive subjects with and without dementia. J Nucl Med 37:1133–1141. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96268140&form=6&db=m&Dopt=r [PubMed] [Google Scholar]
  30. Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P, Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L. 1995. Sex differences in the functional organization of the brain for language. Nature 373:607–609. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95157632&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  31. Strother SC, Anderson JA, Schaper KA, Sidtis JJ, Liow J‐S, Woods RP, Rottenberg DA. 1995a. Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parameteric mapping: I. “Functional connectivity” of the human motor system studied with [15O] PET. J Cereb Blood Flow Metab 15:738–753. [DOI] [PubMed] [Google Scholar]
  32. Strother SC, Anderson JA, Schaper KA, Sidtis JJ, Rottenberg DA. 1995b. Linear models of orthogonal subspaces and networks from functional activation PET studies of the human brain In: Bizais Y, Barillot C, Di Paola R, editors. Information processing in medical imaging. 14th International Conference. Dordrecht: Kluwer Academic; p 299–310. [Google Scholar]
  33. Strother SC, Lange N, Savoy RL, Anderson JR, Sidtis JJ, Hansen LK, Bandettini PA, O'Craven K, Rezza M, Rosen BR, Rottenberg DA. 1996. Multidimensional state‐spaces for fMRI and PET activation studies. Neuroimage 3:S98. [Google Scholar]
  34. Strother SC, Lange N, Anderson JR, Schaper KA, Rehm K, Hansen LK, Rottenberg DA. 1997. Activation pattern reproducibility: measuring the effects of group size and data analysis models. Hum Brain Mapp 5:312–316. [DOI] [PubMed] [Google Scholar]
  35. Strother SC, Rehm K, Lange N, Anderson JR, Schaper KA, Hansen LK, Rottenberg DA. 1998. Measuring activation pattern reproducibility using resampling techniques In: Carson RE, Daube‐Witherspoon ME, Herscovitch P, editors. Quantitative functional brain imaging with positron emission tomography. San Diego: Academic Press; p 241–246. [Google Scholar]
  36. Svarer C, Strother SC, Morch N, Law I, Hansen LK, Paulson OB. 1996. Evaluating statistical parametric mapping (SPM) analysis results using leave‐one‐out resampling in a [15O]water PET functional activation study. Neuroimage 5:S374 [Google Scholar]
  37. Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban R. 1993. Functional mapping of the human visual cortex at 4 and 1.5 T using deoxygenation contrast EPI. Magn Reson Med 29:277–279. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93156622&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  38. Weiskoff RM, Zuo CS, Boxerman JL, Rosen BR. 1994. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94335590&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  39. Wexler BE, Fulbright RK, Lacardie CM, Skularski P, Kelz MB, Todd R, Gore JC. 1997. An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging 15:385–396. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97366229&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  40. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. 1998. Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98110229&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  41. Yetkin FZ, McAuliffe TL, Cox R, Haughton VM. 1996. Test‐retest precision of functional MR in sensory and motor task activation. Am J Neuroradiol 17:95–98. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96366079&form=6&db=m&Dopt=r [PMC free article] [PubMed] [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES