Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Nov 30;8(4):194–208. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C

Measuring phase synchrony in brain signals

Jean‐Philippe Lachaux 1, Eugenio Rodriguez 1, Jacques Martinerie 1, Francisco J Varela 1,
PMCID: PMC6873296  PMID: 10619414

Abstract

This article presents, for the first time, a practical method for the direct quantification of frequency‐specific synchronization (i.e., transient phase‐locking) between two neuroelectric signals. The motivation for its development is to be able to examine the role of neural synchronies as a putative mechanism for long‐range neural integration during cognitive tasks. The method, called phase‐locking statistics (PLS), measures the significance of the phase covariance between two signals with a reasonable time‐resolution (<100 ms). Unlike the more traditional method of spectral coherence, PLS separates the phase and amplitude components and can be directly interpreted in the framework of neural integration. To validate synchrony values against background fluctuations, PLS uses surrogate data and thus makes no a priori assumptions on the nature of the experimental data. We also apply PLS to investigate intracortical recordings from an epileptic patient performing a visual discrimination task. We find large‐scale synchronies in the gamma band (45 Hz), e.g., between hippocampus and frontal gyrus, and local synchronies, within a limbic region, a few cm apart. We argue that whereas long‐scale effects do reflect cognitive processing, short‐scale synchronies are likely to be due to volume conduction. We discuss ways to separate such conduction effects from true signal synchrony. Hum Brain Mapping 8:194–208, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: neural synchrony, phase‐locking, coherence, EEG, EcoG, epilepsy, gamma‐band, deblurring

Full Text

The Full Text of this article is available as a PDF (743.0 KB).

REFERENCES

  1. Bressler SL, Coppola R, Nakamura R. 1993. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366:153–156. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94050139&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  2. Bullock TH, McClune MC. 1989. Lateral coherence of the electrocorticogram: A new measure of brain synchrony. EEG Clin Neurophys 73:479–498. [DOI] [PubMed] [Google Scholar]
  3. Clifford Carter G. 1987. Coherence and time delay estimation. Proceedings of the IEEE 75:236–255. [Google Scholar]
  4. Damasio AR. 1990. Synchronous activation in multiple cortical regions: A mechanism for recall. Seminars in Neurosci 2:287–296. [Google Scholar]
  5. Desmedt JE, Tomberg C. 1994. Transient phase‐locking of 40 Hz electrical oscillations in prefrontal parietal cortex reflects the process of conscious somatic perception. Neurosci Lett 168:126–129. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94301513&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  6. Fisher NI. 1993. Statistical Analysis of Circular Data. Cambridge: Cambridge University Press. [Google Scholar]
  7. Friston KJ, Stephan KM, Frackowiak RSJ. 1997. Transient phase‐locking and dynamic correlations: are they the same thing? Hum Brain Mapp 5:48–57. [DOI] [PubMed] [Google Scholar]
  8. Gray CM, Konig P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter‐columnar synchronization which reflects global stimulus properties. Nature 338:334 http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89159429&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  9. Grossman A, Kronland‐Martinet R, Morlet J. 1989. Reading and understanding continuous wavelets transforms In: Combes JM, Groosmsman A, Tchamitchian P. (eds): Wavelets, Time‐frequency Methods and Phase Space. Berlin: Springer‐Verlag, pp 2–20. [Google Scholar]
  10. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. 1993. Magnetoencephalography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65. [Google Scholar]
  11. König P, Engel AK, Singer W. 1995. Relation between oscillatory activity and long‐range synchronization in cat visual cortex. Proc Natl Acad Sci USA 92:290–294. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95116544&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lachaux J‐Ph, Pezard L, Garnero L, Pelte C, Renault B, Varela FJ, Martinerie J. 1997. Spatial extension of brain activity fools the single‐channel reconstruction of EEG dynamics. Hum Brain Mapp 5:26–47. [DOI] [PubMed] [Google Scholar]
  13. Lachaux JP, Rodriguez E, Martinerie J, Adam C, Hasboun D, Varela FJ. 1998. Gamma‐band activity in human intracortical recordings triggered by cognitive tasks. Submitted to Europ. J. Neurosci. [DOI] [PubMed] [Google Scholar]
  14. Lachaux J‐P, Hurtado JM, Sigvart K, Varla FJ, Gray CM. 1999b. Measuring coherence between brain signals: A new method for single‐trial analysis. J Comput Neuroscience (submitted) [Google Scholar]
  15. Lagerlund TD, Sharbrough FW, Busacker NE, Cicora KM. 1995. Interelectrode coherences from nearest‐neighbor and spherical harmonic expansion computation of laplacian of scalp potential. Electroencephalogr Clin Neurophysiol 95:178–188. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96041239&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  16. Le J, Gevins A. 1993. Methods to reduce blur distorsion from EEG's using a realistic head model. IEEE Transact BioMed Eng 40:517–528. [DOI] [PubMed] [Google Scholar]
  17. Le Van Quyen M, Adam C, Lachaux JP, Martinerie J, Baulac M, Renault B, Varela FJ. 1997. Temporal patterns in human epileptic activity are modulated by perceptual discriminations. Neuroreport 8:1703–1710. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97333791&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  18. Menon V, Freeman WJ, Cutillo BA, Desmond JE, Ward MF, Bressler SL, Laxer KD, Barbaro N, Gevins AS. 1996. Spatio‐temporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol 98:89–102. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96173433&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  19. Müller‐Gerking J, Neuenschwander S, Martinerie J, Pezard L, Renault B, Varela FJ. 1996. Detecting non‐linearities in neuro‐electrical signals: A study of synchronous local field potentials. Physica D 94:65–91. [Google Scholar]
  20. Neuenschwander S, Engel A, König P, Singer W, Varela F. 1996. Synchronization of neuronal responses in the optic tectum of awake pigeons. Visual Neurosci 13:575–584. [DOI] [PubMed] [Google Scholar]
  21. Nunez PL, Srinivasan R, Wetdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ. 1997. EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging and interpretation at multiple scales. EEG Clin Neurophys 103:499–515. [DOI] [PubMed] [Google Scholar]
  22. Pernier J, Perrin F, Bertrand O. 1988. Scalp current densities: Concept and properties. Electroenceph Clin Neurophysiol 69:385–389. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88166565&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  23. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela F. 1999. Perception's shadow: Long‐distance synchronization of human brain activity. Nature 397:430–433. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99142514&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  24. Roelfsema PR, Engel AK, König P, Singer W. 1997. Visuomotor integration is associated with zero time‐lag synchronization among cortical areas. Nature 385:157–161. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97144351&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  25. Scherg M. 1990. Fundamentals of dipole source potential analysis In: Grandori F, Hoke M, Roamni GL. (eds): Auditory Evoked Magnetic Fields and Potentials: Advances in Audiology, Vol 6 Basel: Karger, pp 40–69. [Google Scholar]
  26. Singer W, Gray CM. 1995. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95328818&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  27. Tallon‐Baudry C, Bertrand O, Delpuech C, Pernier J. 1996. Stimulus specificity of phase‐loked and non‐phase‐locked 40 Hz visual responses in human. J Neurosci 16:4240–4249. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96312475&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tallon‐Baudry C, Bertrand O, Delpuech C, Pernier J. 1997. Oscillatory gamma‐band (30–70 Hz) activity induced by a visual search task in human. J Neurosci 17:722–734. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98007481&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer D. 1992. Testing for nonlinearity in time series: The method of surrogate data. Physica D 58. [Google Scholar]
  30. Tononi G, Edelman M. 1998. Consciousness and complexity. Science 282:1846–1851. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99055387&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  31. Varela FJ. 1995. Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biol Res 28:81–95. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96340532&form=6&db=m&Dopt=r [PubMed] [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES