Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Sep 30;8(2-3):73–79. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7

Creation and use of a Talairach‐compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data

Roger P Woods 1,, Mirella Dapretto 1, Nancy L Sicotte 1, Arthur W Toga 1,2, John C Mazziotta 1,3
PMCID: PMC6873303  PMID: 10524595

Abstract

Spatial normalization in functional imaging can encompass various processes, including nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable head movements, and data detrending to remove residual motion correlated artifacts. We describe the use of AIR to create a custom, site‐specific, normal averaged brain atlas that can be used to map T2 weighted echo‐planar images and coplanar functional images directly into a Talairach‐compatible space. We also discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head movements in a functional imaging series. Scores for these descriptors, derived using principal components analysis with singular value decomposition, can be treated as confounds associated with each individual image in the series and systematically removed prior to voxel‐by‐voxel statistical analysis. Hum. Brain Mapping 8:73–79, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: stereotaxis, fMRI, PET, statistics, brain atlas

Full Text

The Full Text of this article is available as a PDF (207.2 KB).

REFERENCES

  1. Bookstein FL. 1996. Biometrics, biomathematics and the morphometric synthesis. Bull Math Biol 58:313–365. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96342042&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  2. Bullmore ET, Brammer MJ, Rabe‐Hesketh S, Curtis VA, Morris RG, Williams SC, et al. 1999. Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38–48. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99096416&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. 1996. Movement‐related effects in fMRI time‐series. Magn Reson Med 35:346–355. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96234844&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  4. Rabiner LR, Schafer RW, Rader CM. 1969. The chirp z‐tranform algorithm and its application. Bell System Tech J 48:1249–1292. [Google Scholar]
  5. Talairach J, Szikla G, Tournoux P, Prossalentis A, Bordas‐Ferrer M, Covello L, et al. 1967. Atlas d'anatomie stéréotaxique du télencéphale. Paris: Masson. [Google Scholar]
  6. Talairach J, Tournoux P. 1988. Co‐planar Stereotaxic Atlas of the Human Brain. Stuttgart: Thieme. [Google Scholar]
  7. Woods RP. 1996. Modeling for intergroup comparisons of imaging data. Neuroimage 4:S84–S94. [DOI] [PubMed] [Google Scholar]
  8. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. 1998a. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152. [DOI] [PubMed] [Google Scholar]
  9. Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC. 1998b. Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22:153–165. [DOI] [PubMed] [Google Scholar]
  10. Woods RP, Mazziotta JC, Cherry SR. 1993. MRI‐PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93322508&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES