Abstract
High‐field (3 Tesla) functional magnetic resonance imaging (MRI) was used to investigate the cortical circuitry subserving pursuit tracking in humans and compare it to that for saccadic eye movements. Pursuit performance, relative to visual fixation, elicited activation in three areas known to contribute to eye movements in humans and in nonhuman primates: the frontal eye field, supplementary eye field, and intraparietal sulcus. It also activated three medial regions not previously identified in human neuroimaging studies of pursuit: the precuneus and the anterior and posterior cingulate cortices. All six areas were also activated during saccades. The spatial extent of activation was similar for saccades and pursuit in all but two regions: spatial extent was greater for saccades in the superior branch of the frontal eye field and greater for pursuit in posterior cingulate cortex. This set of activations for smooth pursuit parallels the network of oculomotor areas characterized in nonhuman primates and complements recent studies showing that common cortical networks subserve oculomotor functions and spatial attention in humans. Hum. Brain Mapping 8:209–225, 1999. © 1999 Wiley‐Liss, Inc.
Keywords: oculomotor, frontal eye field, supplementary eye field, parietal cortex, cingulate cortex
Full Text
The Full Text of this article is available as a PDF (443.2 KB).
REFERENCES
- Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L. 1990. Eye position effects on visual, memory, and saccade‐related activity in areas LIP and 7a of macaque. J Neurosci 10:1176–1196. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=90229917&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RSJ, Kennard C. 1994. Cortical control of saccades and fixation in man: a PET study. Brain 117:1073–1084. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95041391&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Barbas H, Mesulam MM. 1981. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=82008298&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Barnes GR, Asselman PT. 1991. The mechanism of prediction in human smooth pursuit eye movements. J Physiol 439:439–461. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91374365&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton JJ, Sharpe JA. 1998. Ocular tracking of step‐ramp targets by patients with unilateral cerebral lesions. Brain 121:1165–1183. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98312357&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Berman RA, Sweeney JA, Colby CL. 1999. Human posterior cingulate cortex is preferentially activated during visual tracking: an fMRI study. Cog Neurosci Soc Abstr 91:17B. [Google Scholar]
- Bon L, Lucchetti C. 1997. Attention‐related neurons in the supplementary eye field of the macaque monkey. Exp Brain Res 113:180–185. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97180613&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Brandt SA, Dale AM, Wenzel R, Culham JC, Mendola JD, Tootell RBH. 1997. Sensory, motor and attentional components of eye movement induced cortex activation revealed by FMRI. Soc Neurosci Abstr 864.10. [Google Scholar]
- Bremmer F, Distler C, Hoffmann K‐P. 1997. Eye position effects in monkey cortex. II. Pursuit‐ and fixation‐related activity in posterior parietal areas LIP and 7A. J Neurophysiol 77:962–977. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97218424&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85159812&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54(3):714–734. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=86010493&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Bushnell MC, Goldberg ME, Robinson DL. 1981. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–772. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=82032439&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Carpenter PA, Just MA, Keller TA, Eddy W, Thulborn KR. 1999. Graded functional activation in the visuospatial system with the amount of task demand. J Cogn Neurosci 11:9–24. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99136092&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Cavada C, Goldman‐Rakic PS. 1989. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=90009482&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Colby CL, Gattass R, Olson CR, Gross CG. 1988. Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88228489&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Colby CL, Duhamel JR, Goldberg ME. 1993. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93217510&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Colby CL, Duhamel JR, Goldberg ME. 1996. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:2841–2852. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97083893&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Collewijn H, Tamminga EP. 1984. Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol 351:217–250. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=84267450&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbetta M, Miezin FM, Shulman GL, Petersen SE. 1993. A PET study of visuospatial attention. J Neurosci 13:1202–1226. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93179925&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbetta M. 1998. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95:831–838. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98115837&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. 1998. A common network of functional areas for attention and eye movements. Neuron 21:761–73. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99023649&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Cornette L, Dupont P, Spileers W, Sunaert S, Michiels J, Van Hecke P, Mortelmans L, Orban GA. 1998. Human cerebral activity evoked by motion reversal and motion onset: a PET study. Brain 121:143–157. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98210663&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Cox RW. 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96408428&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB. 1998. Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80:2657–70. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99036905&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Dallos PJ, Jones RW. 1963. Learning behavior of the eye‐fixation control system. IEEE Trans Autom Contr 8:218–227. [Google Scholar]
- Darby DG, Nobre AC, Thangaraj V, Edelman R, Mesulam MM, Warach S. 1996. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage 3:53–62. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98005335&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Devinsky O, Morrell MJ, Vogt BA. 1995. Contributions of anterior cingulate cortex to behavior. Brain 118:279–306. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95202395&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Doricchi F, Perani D, Incoccia C, Grassi F, Cappa SF, Bettinardi V, Galati G, Pizzamiglio L, Fazio F. 1997. Neural control of fast‐regular saccades and antisaccades: an investigation using positron emission tomography. Exp Brain Res 116:50–62. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97449345&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Duvernoy H. 1991. The Human Brain: Surface, Three‐dimensional Sectional Anatomy and MRI. Vienna: Springer‐Verlag. [Google Scholar]
- Dymarkowski S, Van Hecke P, Peuskens J, Marchal G, Baert AL. 1997. Smooth pursuit and saccadic eye movements in schizophrenia: a fMRI study. Neuroimage 5:S286. [Google Scholar]
- Eddy WF, Fitzgerald M, Genovese CR, Mockus A, Noll DC. 1996. Functional image analysis software—computational olio. In: Prat A (ed.): Proceedings in Computational Statistics. Heidelberg: Physica‐Verlag, pp 39–49.
- Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE. 1997. Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–74. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97268915&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Fox PT, Fox JM, Raichle ME, Burde RM. 1985. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54:348–369. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85292012&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Galletti C, Battaglini PP, Fattori P. 1991. Functional properties of neurons in the anterior bank of the parieto‐occipital sulcus of the macaque monkey. Eur J Neurosci 3:452–461. [DOI] [PubMed] [Google Scholar]
- Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S. 1996. Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96351327&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Gaymard B, Pierrot‐Deseilligny C. 1990. Impairment of sequences of memory‐guided saccades after supplementary motor area lesions. Ann Neurol 28:622–626. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91083311&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot‐Deseilligny C. 1998. Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98291911&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Genovese CR. 1998. Statistical inference in functional magnetic resonance imaging. CMU Statistics Technical Report #674.
- Genovese CR, Sweeney JA. 1998. Functional connectivity in the cortical circuits subserving eye movements (with discussion) In: Gatsonis C, Kass RE, et al. (eds). Case Studies in Bayesian Statistics, Vol. 4 New York: Springer Verlag, in press. [Google Scholar]
- Goldberg ME, Colby CL, Duhamel JR. 1990. Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb Symp Quant Biol 55:729–739. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92111190&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Heide W, Kurzidim K, Kompf D. 1996. Deficits of smooth pursuit eye movements after frontal and parietal lesions. Brain 119:1951–1969. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97163165&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Heinen SJ. 1995. Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp Brain Res 104:357–361. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95402105&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Heinen SJ, Liu M. 1997. Single‐neuron activity in the dorsomedial frontal cortex during smooth‐pursuit eye movements to predictable target motion. Vis Neurosci 14:853–865. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98031307&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Hikosaka O, Sakamoto M, Usui S. 1989. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movement. J Neurophysiol 61:780–798. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89257512&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Huerta MF, Kaas JH. 1990. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330. [DOI] [PubMed] [Google Scholar]
- Kabani N, MacDonald DJ, Holmes CJ, Evans AC. 1998. 3D anatomical atlas of the human brain. Neuroimage Abstr 7:S717. [Google Scholar]
- Keating EG. 1991. Frontal eye field lesions impair predictive and visually‐guided pursuit eye movements. Brain Res 86:311–323. [DOI] [PubMed] [Google Scholar]
- Kim YH, Gitelman GR, Parrish TB, Nobre AC, LaBar KS, Mesulam MM. 1998. Posterior cingulate activation varies according to the effectiveness of attentional engagement. Neuroimage Abstr 7:S67. [Google Scholar]
- Komatsu H, Wurtz RH. 1988. Relation of cortical areas MT and MST to pursuit eye movements: I. Localization and visual properties of neurons. J Neurophysiol 60:580–603. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89010902&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92302304&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lekwuwa GU, Barnes GR. 1996. Cerebral control of eye movements I. The relationship between cerebral lesion sites and smooth pursuit deficits. Brain 119:473–490. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96235081&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA. 1998. Dorsal cortical regions subserving visually‐guided saccades in humans: an fMRI study. Cereb Cortex 8:40–47. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98169204&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Lynch JC. 1987. Frontal eye field lesions in monkeys disrupt visual pursuit. Exp Brain Res 68:437–441. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88083333&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- MacAvoy MG, Gottlieb JP, Bruce CJ. 1991. Smooth pursuit eye movement representation in the primate frontal eye field. Cereb Cortex 1:95–102. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92353555&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Melamed E, Larsen B. 1979. Cortical activation pattern during saccadic eye movement in humans: Localization by focal cerebral blood flow increases. Ann Neurol 5:79–88. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=79143600&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Mesulam MM. 1981. A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=82089922&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Morrow MJ, Sharpe JA. 1995. Deficits of smooth‐pursuit eye movement after unilateral frontal lobe lesions. Ann Neurol 37:443–451. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95233730&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Muri RM, Iba‐Zizen MT, Derosier C, Cabanis EA, Pierrot‐Deseilligny C. 1996. Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96370519&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muri RM, Nirkko AC, Ozdoba C, Tobler O, Heid O, Schroth G, Hess CW. 1997. Functional MRI of double step saccades: role of the cingulate cortex? Neuroimage Abstr 5:S165. [Google Scholar]
- Nobre AC, Dias EC, Gitelman DR, Mesulam MM. 1998. The overlap of brain regions that control saccades and covert visual spatial attention revealed by fMRI. Neuroimage Abstr 7:S9. [Google Scholar]
- Olson CR, Musil SY, Goldberg ME. 1996. Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J Neurophysiol 76:3285–3300. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97083929&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Ono M, Kubik S, Abernathy CD. 1990. Atlas of the Cerebral Sulci. New York: Thieme. [Google Scholar]
- Paus T. 1996. Location and function of the human frontal eye field: a selective review. Neuropsychologia 34:475–483. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96347164&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Paus T, Koski L, Caramanos Z, Westbury C. 1998. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9:R37–47. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98337324&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Paus T, Otaky N, Caramanos Z, MacDonald D, Zijdenbos A, D'Avirro D, Gutmans D, Holmes C, Tomaiuolo F, Evans AC. 1996. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior‐rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 376:664–673. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97133118&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Paus T, Petrides M, Evans AC, Meyer E. 1993. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94015258&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Petit L, Ingeholm JE, Clark VP, Courtney S. 1997. fMRI study of visually guided saccadic and pursuit eye movements. Neuroimage Abstr 5:S248. [Google Scholar]
- Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B. 1996. Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16:3714–3726. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96221431&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petit L, Clark VP, Ingeholm J, Haxby JV. 1997. Dissociation of saccade‐related and pursuit‐related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77:3386–3390. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97355802&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Petrides M, Pandya DN. 1984. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85007584&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Picard N, Strick PL. 1996. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96324290&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Pierrot‐Deseilligny C. 1994. Saccade and smooth‐pursuit impairment after cerebral hemispheric lesions. Eur Neurol 34:121–134. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94307308&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Pierrot‐Deseilligny C, Rivaud S, Gaymard B, Agid Y. 1991. Cortical control of reflexive visually‐guided saccades. Brain 114:1473–1485. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91292365&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Robinson DL, Goldberg ME, Stanton GB. 1978. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol 41:910–932. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=78244182&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Robinson DL, Fuchs AF. 1969. Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32:637–648. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=69281837&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Rosenberg DR, Sweeney JA, Gillen J, Kim J, Varenelli M, O'Hearn K, Erb P, Davis D, Thulborn KR. 1997. Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 36:853–859. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97326275&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B. 1998. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98132582&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schall JD. 1991. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. J Neurophysiol 66:530–558. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92129986&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Schlag‐Rey M, Schlag J. 1984. Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol 51:1149–1174. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=84241926&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Schlag J, Schlag‐Rey M. 1987. Evidence for a supplementary eye field. J Neurophysiol 57:179–200. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=87168605&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Segraves MA, Goldberg ME. 1987. Functional properties of corticotectal neurons in the monkey's frontal eye field. J Neurophysiol 58:1387–1419. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88140856&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Shaffer DM, Krisky CM, Kmiec JA, Sweeney JA. 1998. Dramatic effects of predictive extraretinal input on sustained smooth pursuit. Soc Neurosci Abstr 24:685.8. [Google Scholar]
- Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. 1996. A positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75:454–468. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96419812&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Sweeney JA, Luna B, Strojwas MH, Thulborn KR. 1997. Mapping distinct cortical eye fields for saccadic and pursuit eye movements in humans using fMRI. Soc Neurosci Abstr 23:864.8. [Google Scholar]
- Talairach J, Tournoux P. 1988. Co‐planar Stereotaxic Atlas of the Human Brain. New York: Thieme. [Google Scholar]
- Thulborn KR, Davis D, Erb P, Strojwas M, Sweeney JA. 1996a. Clinical fMRI: implementation and experience. Neuroimage 4:101–107. [DOI] [PubMed] [Google Scholar]
- Thulborn KR, Gillen JS, McCurtain B, Betancourt C, Sweeney JA. 1996b. Functional magnetic resonance imaging of the human brain. Bull Magn Reson 18:37–42. [Google Scholar]
- Thulborn KR, Chang SY, Shen GX, Voyvodic JT. 1997. High‐resolution echo‐planar fMRI of human visual cortex at 3.0 tesla. NMR Biomed 10:183–190. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98090211&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Tian JR, Lynch JC. 1995. Slow and saccadic eye movements evoked by microstimulation in the supplementary eye field of the cebus monkey. J Neurophysiol 74:2204–2210. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96150932&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
- Voyvodic JT. 1996. Real‐time fMRI paradigm control software for integrating stimulus presentation, behavioral and physiological monitoring, and statistical analysis. Proc Int Soc Magn Reson Med Abstr 3:1835. [Google Scholar]
