Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Jul 2;8(1):60–71. doi: 10.1002/(SICI)1097-0193(1999)8:1<60::AID-HBM5>3.0.CO;2-6

Neural correlates of visual form and visual spatial processing

Liming Shen 1,, Xiaoping Hu 1, Essa Yacoub 1, Kamil Ugurbil 1
PMCID: PMC6873321  PMID: 10432182

Abstract

Cortico‐cortical projections for visual processing that originate from the striate cortex are organized into two streams. The dorsal stream projects to the parietal region and the ventral stream to the inferior temporal region. One hypothesis is that the dorsal stream processes visual spatial information, and the ventral stream processes visual object information. Although recognition of human faces or common objects has been shown preferentially to activate the ventral stream, the issue of when such processing starts to engage the ventral or the dorsal stream is not clear. The question explored in this study is whether processing of visual form per se without evoking the brain mechanisms that are associated with recognition of human faces or common objects is sufficient to activate the ventral stream more significantly relative to the condition when only visual spatial processing is involved. Functional magnetic resonance images were acquired while subjects performed a delayed comparison task in which either visual spatial or visual form information was processed. Cortical areas that were preferentially activated in visual spatial or visual form processing showed not only ventral‐dorsal segregation, but also hemispheric laterality. The results extended previous findings by showing that preferential activation in the ventral pathway is not contingent upon such powerful stimuli as faces and common objects. Processing of simple visual form information is cause enough for such activation to be observed. A strong left hemisphere dominance in visual form recognition was also revealed. The observed laterality may be a reflection that the left hemisphere is more important in symbolic and/or semantic coding of visual form information. Hum. Brain Mapping 8:60–71, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: object recognition, hemispheric laterality, working memory, functional imaging

Full Text

The Full Text of this article is available as a PDF (544.3 KB).

REFERENCES

  1. Allen G, Buxton RB, Wong EC, Courchesne E. 1997. Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97228180&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  2. Andersen RA. 1997. Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B Biol Sci 352:1421–1428. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98035398&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beason‐held LL, Purpura KP, van Meter JW, Azari NP, Mangot DJ, Optican LM, Mentis MJ, Alexander GE, Grady CL, Horwitz B, Rapoport SI, Schapira MB. 1998. PET reveals occipitotemporal pathway activation during elementary form perception in humans. Visual Neurosci 15:503–511. [DOI] [PubMed] [Google Scholar]
  4. Boussaoud D, di Pellegrino G, Wise SP. 1995. Frontal lobe mechanisms subserving vision‐for‐action versus vision‐for‐perception. Behav Brain Res 72:1–15. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96380838&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  5. Chafee MV, Goldman‐Rakic PS. 1998. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98301499&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  6. Chen W, Zhu XH. 1997. Suppression of physiological eye movement artifacts in functional MRI using slab presaturation. Magn Reson Med 38:546–550. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97464499&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  7. Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV. 1996. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4:1–15. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98005353&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  8. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE. 1997. Temporal dynamics of brain activation during a working memory task [see comments]. Nature 386:604–608. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97256534&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  9. Corbetta M. 1998. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95:831–838. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98115837&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corbetta M, Shulman GL, Miezin FM, Petersen SE. 1995. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270:802–805. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96055117&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  11. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. 1998. An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98146420&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  12. Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1996. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cortex 6:39–49. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96324284&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  13. Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1997. Transient and sustained activity in a distributed neural system for human working memory [see comments]. Nature 386:608–611. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97256535&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  14. Dunbar K, MacLeod CM. 1984. A horse race of a different color: Stroop interference patterns with transformed words. J Exp Psychol Hum Percept Perform 10:622–639. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85032559&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  15. Farah MJ. 1990. Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision. Cambridge: MIT Press. [Google Scholar]
  16. Frith CD, Kapur N, Friston KJ, Liddle PF, Frackowiak RSJ. 1995. Regional cerebral activity associated with incidental processing of pseudo‐words. Hum Brain Map 3:153–160. [Google Scholar]
  17. Glaser WR, Dungelhoff FJ. 1984. The time course of picture‐word interference. J Exp Psychol Hum Percept Perform 10:640–654. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=85032560&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  18. Goldman‐Rakic PS, Chafee MV. 1994. Feedback processing in prefrontal‐parietal circuits during memory‐guided saccades. Soc Neurosci Abs 20:335.2. [Google Scholar]
  19. Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends Neurosci 15:20–25. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92263526&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  20. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G. 1996. Localization of grasp representations in humans by positron emission tomography: 2. observation compared with imagination. Exp Brain Res 112:103–111. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97109132&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  21. Hallett PE, Lightstone AD. 1976. Saccadic eye movements to flashed targets. Vision Res 16:107–114. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=76155717&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  22. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI. 1991. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88:1621–1625. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91156660&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. 1994. The functional organization of human extrastriate cortex: a PET‐rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95054355&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Haxby JV, Ungerleider LG, Horwitz B, Rapoport SI, Grady CL. 1995. Hemispheric difference in neural systems for face working memory: a PET‐rCBF study. Hum Brain Mapp 3:68–82. [Google Scholar]
  25. Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL. 1996. Face encoding and recognition in the human brain. Proc Natl Acad Sci USA 93:922–927. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96149411&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Koyama M, Sugiura M, Ito M, Fukuda H. 1998. PET study of pointing with visual feedback of moving hands. J Neurophysiol 79:117–125. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98087619&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  27. Ivry R. 1993. Cerebellar involvement in the explicit representation of temporal information. Ann NY Acad Sci 682:214–230. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93311812&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  28. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97296562&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim SG, Ugurbil K, Strick PL. 1994. Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94329806&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  30. Kohler S, Kapur S, Moscovitch M, Winocur G, Houle S. 1995. Dissociation of pathways for object and spatial vision: a PET study in humans. Neuroreport 6:1865–1868. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96107704&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  31. Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F. 1997. Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5:129–146. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98005410&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  32. Layman S, Greene E. 1988. The effect of stroke on object recognition. Brain Cogn 7:87–114. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=88149909&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  33. Le THPJV, Hu X, 1998. 4 T‐fMRI study of nonspatial shifting of selective attention. J Neurophysiol 1535–1548. [DOI] [PubMed] [Google Scholar]
  34. Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA. 1998. Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb Cortex 8:40–47. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98169204&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  35. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB. 1995. Object‐related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95396753&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mega MS, Cummings JL, Salloway S, Malloy P. 1997. The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiatry Clin Neurosci 9:315–330. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97422748&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  37. Oldfield RC, 1971. The assessment of and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 97–113. [DOI] [PubMed] [Google Scholar]
  38. Olson CR, Gettner SN. 1995. Object‐centered direction selectivity in the macaque supplementary eye field. Science 269:985–988. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95365819&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  39. Olson CR, Gettner SN. 1996. Representation of object‐centered space in the primate frontal lobe. Brain Res Cogn Brain Res 5:147–156. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97201298&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  40. Pearlson GD. 1997. Superior temporal gyrus and planum temporale in schizophrenia: a selective review. Prog Neuropsychopharmacol Biol Psychiatry 21:1203–1229. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98121389&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  41. Petit L, Clark VP, Ingeholm J, Haxby JV. 1997. Dissociation of saccade‐related and pursuit‐related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77:3386–3390. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97355802&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  42. Picard N, Strick PL. 1996. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96324290&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  43. Puce A, Allison T, Asgari M, Gore JC, McCarthy G. 1996. Differential sensitivity of human visual cortex to faces, letterstrings and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96322986&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reppas JB, Niyogi S, Dale AM, Sereno MI, Tootell RB. 1997. Representation of motion boundaries in retinotopic human visual cortical areas. Nature 388:175–179. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97360129&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  45. Richter W, Anderson PM, Georgopoulos AP, Kim SG. 1997. Sequential activity in human motor areas during a delayed cued finger movement task studied by time‐resolved fMRI. Neuroreport 8:1257–1261. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97318142&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  46. Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F. 1996. Localization of grasp representations in humans by PET: 1. observation versus execution. Exp Brain Res 111:246–252. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97046733&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  47. Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B. 1998. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98132582&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y. 1997. The TINS lecture: the parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97389557&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  49. Schacter DL, Reiman E, Uecker A, Polster MR, Yun LS, Cooper LA. 1995. Brain regions associated with retrieval of structurally coherent visual information. Nature 376:587–590. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=95364951&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  50. Sergent J, Ohta S, MacDonald B. 1992. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115:15–36. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=92216802&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  51. Shen L, Alexander GE. 1997. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophysiol 77:1195–1212. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97238270&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  52. Strupp JP. 1996. Stimulate: AGUI based fMRI analysis software package. Neuroimaging 3:S607 [Google Scholar]
  53. Talairach J, Tournoux P. 1988. Co‐Planar Stereotaxic Atlas of the Human Brain Trans. New York: Thieme. [Google Scholar]
  54. Ullman S. 1989. Aligning pictorial descriptions: an approach to object recognition. Cognition 32:193–254. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89324618&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  55. Ungerleider LG, Mishkin M. 1982. Two cortical pathways In: Ingle DJ, Goodale MA, Mansfield RJW, (eds): Analysis of Visual Behavior. Cambridge: MIT Press, pp 549–586. [Google Scholar]
  56. Wise SP, di Pellegrino G, Boussaoud D. 1996. The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74:469–482. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96426614&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  57. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. 1998. Automated image registration: I. general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98110229&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  58. Yarbus AL. 1967. Eye Movements and Vision. New York: Plenum Press. [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES