Skip to main content
Human Brain Mapping logoLink to Human Brain Mapping
. 1999 Sep 30;8(2-3):143–150. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<143::AID-HBM12>3.0.CO;2-9

Functional volumes modeling: Scaling for group size in averaged images

Peter T Fox 1, Aileen Y Huang 1, Lawrence M Parsons 1, Jin‐Hu Xiong 1, Lacey Rainey 1, Jack L Lancaster 1
PMCID: PMC6873332  PMID: 10524606

Abstract

Functional volumes modeling (FVM) is a statistical construct for metanalytic modeling of the locations of brain functional areas as spatial probability distributions. FV models have a variety of applications, in particular, to serve as spatially explicit predictions of the Talairach‐space locations of functional activations, thereby allowing voxel‐based analyses to be hypothesis testing rather than hypothesis generating. As image averaging is often applied in the analysis of functional images, an important feature of FVM is that a model can be scaled to accommodate any degree of intersubject image averaging in the data set to which the model is applied. In this report, the group‐size scaling properties of FVM were tested. This was done by: (1) scaling a previously constructed FV model of the mouth representation of primary motor cortex (M1‐mouth) to accommodate various degrees of averaging (number of subjects per image = n = 1, 2, 5, 10), and (2) comparing FVM‐predicted spatial probability contours to location‐distributions observed in averaged images of varying n composed from randomly sampling a 30‐subject validation data set. Hum. Brain Mapping 8:143–150, 1999. © 1999 Wiley‐Liss, Inc.

Keywords: FVM, brain, M1‐mouth

Full Text

The Full Text of this article is available as a PDF (200.1 KB).

REFERENCES

  1. Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, Ponto LLB, Hichwa RD. 1995. Remembering the past: two facets of eposidic memory explored with positron emission tomography. Am J Psych 152:1576–1585. [DOI] [PubMed] [Google Scholar]
  2. Bookheimer SY, Zeffiro TA, Blaxton T, Gaillard W, Theodore W. 1995. Regional cerebral blood flow during object naming and word reading. Hum Brain Mapp 3:93–106. [Google Scholar]
  3. Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisog JM, Carson RE, Ludlow CL. 1997. Altered patterns of cerebral activity during speech and language production in developmental stuttering. Brain 120:761–784. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=97326427&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  4. Buckner RL, Raichle ME, Petersen SE. 1995. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol 74:2163–2173. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96150925&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  5. Fox PT, Lancaster JL. 1996. Un atlas du cerveau sur internet. La Recherche 289:49–51. [Google Scholar]
  6. Fox PT, Lancaster JL, Parsons LM, Xiong JH, Zamarripa F. 1997. Functional volumes modeling: theory and preliminary assessment. Hum Brain Mapp 5:306–311. [DOI] [PubMed] [Google Scholar]
  7. Fox PT, Huang AY, Parsons LM, Xiong JH, Zamarripa F, Rainey L, Lancaster JL. 1999. Location‐probability profiles for the mouth region of human primary motor‐sensory cortex. J Neurosci (in press). [DOI] [PubMed] [Google Scholar]
  8. Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Martin C, Jerabek P, Glass T, Lancaster JL. 1996. A PET study of the neural systems of stuttering. Nature 382:158–162. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96317586&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  9. Fox PT, Mintun MA. 1989. Noninvasive functional brain mapping by change‐distribution analysis of average PET images of H2 15O tissue activity. J Nucl Med 30:141–149. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89293236&form=6&db=m&Dopt=r [PubMed] [Google Scholar]
  10. Fox PT, Parsons LM, Lancaster JL. 1998. Beyond the single study: function/location metanalysis in cognitive neuroimaging. Current Opinion Neurobiol 8:178–187. [DOI] [PubMed] [Google Scholar]
  11. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. 1991. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=91268178&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  12. Friston KJ. 1997. Testing for anatomically specified regional effects. Hum Brain Mapp 5:133–136. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=99194082&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  13. Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT. 1995. A modality‐independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp 3:209–223. [Google Scholar]
  14. Mintun MA, Fox PT, Raichle ME. 1989. A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography. J Cereb Blood Flow Metab 9:96–103. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=89093282&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  15. Murphy K, Corfield DR, Guz A, Fink GR, Wise RJS, Harrison J, Adams L. 1997. Cerebral areas associted with motor control of speech in humans. J Appl Physiol 83:1438–1447. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=98042873&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  16. Paus T, Petrides M, Evans AC, Meyer E. 1993. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=94015258&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  17. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. 1988. Positron emission tomographic studies of the cortical anatomy of single word processing. Nature 362:342–345. [DOI] [PubMed] [Google Scholar]
  18. Petrides M, Alivisatos B, Meyer E, Evans AC. 1993. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci 90:878–882. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93157375&form=6&db=m&Dopt=r [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramsey NF, Kirkby BS, Van Gelderen P, Berman KF, Duyn JH, Frank JA, Mattay VS, Van Horn JD, Esposito G, Moonen CTW, Weinberger DR. 1996. Functional mapping of human sensorimotor cortex with 3D BOLD correlates highly with H2 15O PET rCBF. J Cereb Blood Flow Metab 16:755–764. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=96378658&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  20. Strother SC, Lange N, Anderson JR, Schaper KA, Rehm K, Hansen LK, Rottenberg DA. 1997. Activation pattern reproducibility: measuring the effects of group size and data analysis models. Hum Brain Mapp 5:312–316. [DOI] [PubMed] [Google Scholar]
  21. Talairach J, Touroux P. 1988. Co‐planar Stereotaxic Atlas of the Human Brain. New York: Thieme. [Google Scholar]
  22. Worsley KJ, Evans AC, Marrett S, Neelin P. 1992. Determining the number of statistically significant areas if activation in the subtracted studies from PET. J Cereb Blood Flow Metab 12:900–918. http://www.ncbi.nlm.nih.gov:80/htbin-post/Entrez/query?uid=93016346&form=6&db=m&Dopt=r [DOI] [PubMed] [Google Scholar]
  23. Zar JH. 1996. Biostastical Analysis, 3rd ed. Upper Saddle River, NJ: Prentice‐Hall. [Google Scholar]

Articles from Human Brain Mapping are provided here courtesy of Wiley

RESOURCES